

Cubic-Centimeter Star Imager

Samir A. Rawashdeh Assistant Professor Electrical and Computer Engineering University of Michigan - Dearborn

2015 CubeSat Summer Workshop, Logan, UT

August 8, 2015

Brief Personal Introduction

KySat-2 ADCS (Star Imaging)

At Univ. of Michigan Dearborn 2014) (since Aug

Shoulder Health

3/20

Major challenges:

Objective

- Physically small sensor: less light sensitivity
- Small Lens: small aperture (less light enters the sensor)
- Small Lens: typically short focal length (wide field of view)

Introduction: Off-The-Shelf Star Trackers

Sinclair Interplanetary

Blue Canyon Technologies XACT ADCS

Mechanical Layout (Inches)

2015 CubeSat Summer Workshop, Logan, UT

Star Imager on KySat-2

- 5 Megapixel Sensor (MT9P031)
- BeagleBoard-xM Linux single-board computer

Rawashdeh, Samir, "VISUAL ATTITUDE PROPAGATION FOR SMALL SATELLITES" (2013). PhD Dissertations-Electrical and Computer Engineering, University of Kentucky

Stellar Gyroscope - Panning

Essentially: For two images of a star field, produce rotation estimates (three degree-offreedom / quaternion).

Estimation
 bias: within
 0.005°

- Standard deviation: below 0.02°
- Dimmest Star: magnitude 5.7

Stellar Gyroscope - Rotating

Essentially: For two images of a star field, produce rotation estimates (three degree-offreedom / quaternion).

- Estimation
 bias: within
 0.005°
- Standard deviation: below 0.02°
- Dimmest Star: magnitude 5.7

Random Sample Consensus (RANSAC)

- RANSAC: iterative method to estimate parameters of a mathematical model from a set of observed data which is contaminated a large number of outliers that do not fit the model.
- The steps of RANSAC can be summarized as
 - Hypothesize: A hypothesis rotation is calculated using randomly selected star pairs across frames.
 - **Test:** The estimated rotation matrix is tested against all the stars in the two frames. Stars that show consensus are counted towards the Consensus Set (CS).
 - Iterate: RANSAC iterates between the above two steps until a random hypothesis finds "enough" consensus to some selected threshold.

S. A. Rawashdeh, J. E. Lumpp, "Image-Based Attitude Propagation for Small Satellites using RANSAC", IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 3 pp 1864-1875, 2014.

False Star Rejection using RANSAC

- Random Sample Consensus (RANSAC) approach is effective at rejecting stars that do not show agreement with underlying motion.
- RANSAC can tolerate up to 50% un-pairable "stars" (noise, stars leaving or entering, shot noise, etc).
- Hypothesis: RANSAC as a filtering step before star database search

Imager Design

24.3 mm 24.3 mm	11 mm Proposed Design
Aptina MT9P031	OmniVision OV5640
(5MP, 1/2.5")	(5MP, 1/4")
Hi Res 16mm, F/1.2, 1/3"	Hi Res 6.3mm, F/2.0, 1/2.5"
Image plane to lens top: 24.3 mm	Image plane to lens top: <u>11mm</u>
15.2° x 20.2 °	24.5° x 32.5 °
Magnitude 5.7	To be tested.
Avg 22.9, Min 8 stars	Avg 15.3, Min 5
(threshold at magnitude 5.7, as	(with conservative threshold at
found in tests)	magnitude 4.5)
Parallel data bus (1 camera, 1	USB, smaller centralized processor,
processor board)	multiple camera nodes
	24.3 mm24.3 mmCurrent DesignAptina MT9P031(5MP, 1/2.5")Hi Res 16mm, F/1.2, 1/3"Image plane to lens top: 24.3 mm15.2° x 20.2°Magnitude 5.7Avg 22.9, Min 8 stars(threshold at magnitude 5.7, asfound in tests)Parallel data bus (1 camera, 1 processor board)

2015 CubeSat Summer Workshop, Logan, UT

New Topology

- A centralized image processing system, and multiple miniature cameras (facing various directions)
- Software developed under Linux; deployable to your favorite Linux system (rad-hard, smaller, multipurpose, etc)

Night-Sky Tests - Sensitivity

Illustration of detected stars in first photo set of the Cygnus constellation. A photo was taken every minute as Earth rotated in inertial space, every color represents star detections in a single photo and star apparent magnitudes are marked.

Reliably detected stars of magnitude ~5.2

Expected on orbit: magnitude ~5.7

S. A. Rawashdeh, J. E. Lumpp, "Image-Based Attitude Propagation for Small Satellites using RANSAC", IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 3 pp 1864-1875, 2014.

2015 CubeSat Summer Workshop, Logan, UT

New Sensor <u>Preliminary</u> Results: Night-Sky Tests - Sensitivity

Illustration of detected stars in first photo set of the Hercules constellation. A photo was taken every minute as Earth rotated in inertial space, every color represents star detections in a single photo and star apparent magnitudes are marked.

Reliably detected stars of magnitude ~3.5

Expected on orbit: magnitude ~4.5

Weather Conditions in test:

- Moon Phase: Waxing Gibbous
- Humidity: 55% to 60%

Star Database Simulations

For star detection threshold of magnitude 4.5 and FOV of 24.5° x 32.5°

- Sweeping the sky using SKY2000 Star Catalog:
 - On average 15.3 stars are in view
 - At least 5 stars in view in the darkest parts of the sky

Camera Array

- Star Tracker FOV typically $8 \sim 15^{\circ}$
- Miniature Camera FOV = 24.5° x
 23.5°

Advantages:

Wide view increases chances of bright stars in view; i.e. camera does not have to be as sensitive to dim stars as narrower cameras.

Disadvantages:

Wide view increases chances of obstruction in view (Earth, Moon, etc.)

Camera Array View of Sky

- When one camera is obscured, another camera may provide a view of the stars.
- A level of fault tolerance comes with multiple imagers in the system.

2015 CubeSat Summer Workshop, Logan, UT

Conclusion

- Modern Linux single-board computers and USB camera modules enable a camera array topology with centralized processing
- Miniature cameras produce noisy images, primarily because of the small lens aperture.
- Using "Random Sample Consensus" (RANSAC) by taking two photos and detecting the underlying rotation produces a "Consensus Set" in the presence of up to 50% noise (unpairable stars).
- This form of RANSAC could be used as a filtering step or as a search approach to identify stars (star tracker).
- Where the field of view using a small lens may be considered too wide (obstructed too often), a camera array can be used, enabled by the small size and the USB bus advantage.

Thank You

Samir Rawashdeh, Ph.D. Assistant Professor

Electrical & Computer Engineering University of Michigan - Dearborn

E-mail: rawashdeh@umich.edu Web: sar-lab.net

Acknowledgement: This project is supported by a seed grant from the NASA Michigan Space Grant Consortium (MSGC)

8/8/2015

2015 CubeSat Summer Workshop, Logan, UT

20/20

Stellar Gyroscope – Simulated Image Set

Essentially: For two images of a star field, produce rotation estimates (three degree-offreedom / quaternion).

