LunarCube: A Deep Space 6U CubeSat with Mission Enabling Ion Propulsion Technology

Paper SSC15-XI-1

Presented at 29th AIAA/USU Conference on Small Satellites North Logan, Utah August 8-13, 2015

Michael Tsay, Ph.D Chief Scientist, Electrothermal Propulsion Group

busek.com

Distribution Statement A: Distribution Unlimited.

© 2015 Busek Co. Inc. All Rights Reserved.

Introduction

- LunarCube is a 6U deep-space CubeSat platform with ion propulsion currently under development.
 - Innovative iodine-fueled micro ion propulsion by Busek (3cm RF ion thruster "BIT-3"); 3.2km/s delta-V for 12kg s/c.
 - Spacecraft bus supplied by partner Morehead State University, with customized EPS, C&DH, ADCS and comms.
 - MSU supports tracking and comm via 21m-dish ground station, won't tie up DSN resource.
 - A "COTS" vehicle for payload developers (~1.5U space); no need to worry about getting there or transmitting telemetry.
- Enables a multitude of mission profiles.
 - Lunar, NEO, inner planet, low-flying Earth Observation.
- Has been selected as part of the 2018 SLS EM-1 CubeSat mission under the "Lunar IceCube" name (NASA NextSTEP).
 - IR spectrometer science payload and trajectory support will be provided by NASA Goddard Space Flight Center.
 - EM-1 already has 6 out of 11 CubeSat slots filled: Lunar Flashlight (JPL), NEA Scout (Marshall), BioSentinel (Ames), Lunar IceCube (Morehead/Busek/Goddard), SkyFire (Lockheed), and CuSPP+ (SwRI).

Preliminary Design of LunarCube with Example Science Payload

The Upcoming "Lunar IceCube" Mission is Based on the 6U LunarCube Platform

Preliminary Design of 6U LunarCube

- Initial design completed with standard 6U volume envelope (10×20×30cm); 1.3U/1.2kg payload.
- Propulsion system will receive 65W max at PPU input (sans iodine heater power), producing 1.1mN thrust, 2500sec total Isp and max 3.2km/s delta-V.

LunarCube 6U S/C Baseline Design Spec

Parameter	Value
Launch mass:	12.0 kg
Bus Mass (w/o Payload or Propulsion)	7.6 kg
Propulsion Dry Mass	1.7 kg
Propellant Mass (Iodine)	1.5 kg
Payload Mass Capability	1.2 kg
Payload Volume	1.3 U
Pointing Accuracy	±.002°
Orbit Knowledge	10m, 0.15m/s
Maneuver Rate	10°/s
Payload Power Capability	5W (peak), 3.8 W
Prime Power Generated	84W nominal
Voltages Available	12V, 5V, 3.3V
Propulsion Max Delta-V Capability	3.2 km/s
Propulsion Total Impulse	37,000 N-sec
Downlink Data Rate	12 kbps
Spacecraft Op Lifetime	>2 years

Note: design and spec are being matured under the Lunar IceCube flight program and therefore subject to change

LunarCube Propulsion: Iodine BIT-3 RF Ion Thruster

- BIT-3 thruster was designed for nominal 60W operation & targets 6U CubeSat as initial platform. Nominal 1.4mN thrust at 3500sec Isp. With lab cathode total Isp ~3050sec.
- At 60W the thrust efficiency is 42% on Xe (thruster only); ~30% if counting PPU & neutralizer.
- Successfully demonstrated BIT-3 on both Xe and I_2 ; verified that I_2 can be a drop-in replacement for Xe based on thrust-to-power ratio (22.5mN/kW for I_2 vs. 24mN/kW for Xe).
- I_2 flow is controlled by varying reservoir temperature and measured in real-time by injector pressure reading, based on choked flow condition. Feed line kept higher temp than reservoir.

Distribution Statement A: Distribution Unlimited.

LunarCube Propulsion: Why Use Iodine

- Iodine is stored as a solid at room temperature.
 - This allows for lightweight and highly configurable tanks (not constrained to high pressure tanks shapes).
 - No need for launch waivers as there is min. stored energy & no pressure vessel (important for secondary payloads).
 - Simple to operate: sublimes with minimal heat input to form iodine vapor which is then fed to the EP device.
- Busek has shown with HETs that iodine provides almost identical performance as with xenon (legacy EP fuel) – very much a drop-in replacement.
- Iodine costs only 1/5 compared to xenon at today's rate – could be even less in quantity or at lower purity.
- Iodine's low vapor pressure suggests that plume condensation should not be a concern on s/c.
- Traditional high-Isp, gridded ion thrusters difficult to run on iodine due to chamber material incompatibility. Busek's induction-type RF ion thrusters don't have such issue so it can take advantage of iodine's benefits while providing very high Isp (important for DS missions).

BIT-3, World's First Iodine-Fueled Gridded Ion Thruster, Baselined for LunarCube Propulsion

LunarCube Propulsion: BIT-3 Thruster Performance with I₂

- BIT-3 has demo'd wide throttleability with I_2 .
- For LunarCube, max 65W propulsion system power at PPU input = max 50W thruster head power (converter efficiency & neutralizer).
- BIT-3 will likely be limited to ~1.1mN thrust and 2800sec Isp (2500sec total system Isp when counting neutralizer consumption).
- With a ~2.5U package, including 1.5kg solid iodine propellant, the BIT-3 system can provide <u>3.2km/s delta-V to the 6U/12kg LunarCube</u>.

BIT-3 System Block Diagram

BIT-3 Performance with Iodine, 42µg/s Flow is Nominal

LunarCube Propulsion: BIT-3 Thruster Demo w/ CubeSat Tank

- Demonstrated firing with a CubeSat-style, lightweight plastic iodine tank and micro feed.
- The storage feed system requires ~10W to reach operating temp (3W tank & 7W line), but after steady state that requirement drops to ~5W (2W tank & 3W line).
- Completed 550hrs initial endurance test; grid burn-in mostly completed in 10hrs.

LunarCube Propulsion: BIT-3 PPU Development

- Electronics is a critical component of any EP system; miniaturizing PPU can be challenging.
- A CubeSat-style breadboard PPU has been developed for the smaller BIT-1 system.
 - Approximately 1.25U size and rated for 30W (10W RF + 20W DC).
 - Microcontroller-based DCIU that requires only comm and bus voltage.
 - Grid's HV circuit topology has heritage from Busek's CubeSat electrospray thruster systems.
 - Features an innovative RF generator board capable of auto matching. DC-to-RF conversion efficiency 75-80%. Integrated RF load power sensor.
- Feasibility study completed for scaling up to a BIT-3 compatible PPU; development pending.
 - Size can be reduced to 3/4U volume while power can be increased to max 124W (40W RF + 84W DC). Integrated heat sink.
 - Efficiency of both DC and RF boards will increase to ~83% due to higher power outputs.

BIT-1 System PPU Prototype with DC Components Shown on Top and RF Generator/Amplifier Board at Bottom

CubeSat Form Factor, Innovative RF Power Board for the BIT Series RF Ion Thrusters

LunarCube Propulsion: Preliminary Packaging

CubeSat Compatible Ion Propulsion PPU; (from top) DCIU, Housekeeping, Cathode/Valve, Grid HV, RF Generator & Power Amplifier

> 2-Axis Stage for Thrust Vectoring (Mainly for RWA De-Sat). Ongoing Work for Ball-Bearing Type Gimbal with Piezoelectric Actuator.

I₂-Compatible Subminiature Hollow Cathode as Ion Beam Neutralizer; Heaterless, 5W Nominal

320cc lodine Propellant Stored as Solid Crystals

LunarCube Bus: ADCS and Navigation

- ADCS & GNC is based on a 4-wheel Reaction Wheels Assembly (RWA), star tracker, sun senor and IMU. There are 4 modes of operation:
 - *Sun Acquisition Mode* : initially at deployment for power positive control; will use RWA and sun sensors.
 - Observing Mode : during science data taking and cruise operations; will use RWA, star trackers, and IMU to provide inertial, sun, and nadir attitude control as well as slew maneuvers.
 - Delta-V Mode : utilizes a gimbaled primary thruster to provide trajectory and orbit maneuvers.
 - *Delta-H Mode* : utilizes the gimbaled thruster on an infrequent basis for RWA momentum dumping.
- Gimbaled thruster can de-sat pitch & yaw axis wheels easily, simplifying ACS hardware req.
 - Roll momentum de-sat is doable with 3-burn maneuver, not very efficient but is infrequent.
 - Could carry redundant wheel for the roll axis to mitigate RPM limit (delay to saturation).

Blue Canyon Technologies (BCT) XACT Highly Integrated ADCS Module (0.5U); Customizable by Replacing Torque Rods with Redundant Roll Axis Wheel.

LunarCube Bus: Command & Data Handling

- C&DH architecture is distributed among 3 subsystems for redundancy and risk mitigation.
- Flight Computer: Space Micro Proton Lite 200k.
 - Rad tolerant processor.
 - Can send unprocessed data to ground if payload processor fails.
- Avionics Controller: Blue Canyon XB1 C&DH module.
 - Compact and integrated into ADCS unit (BCT XACT).
 - Reconfigurable on-orbit and responsible for ADCS and GNC, but can also control basic spacecraft functions (i.e. real-time command processing).
- Payload Processor: Honeywell-MSU Dependable Multiprocessor (DM).
 - Low cost, rad tolerant & high speed.
 - Can preprocess raw science data (minimizing downlink rate) and host spacecraft functions if necessary.
 - Fault tolerant Middleware + 8 processors mitigate highcurrent SEFIs and will be resilient to total radiation doses expected in the lunar environment.

Proton200k Lite DSP Processor Board

Honeywell-MSU DM

LunarCube Bus: Communication

- Requirement for lunar mission:
 - Close link at Lunar distances with 3dB of margin.
 - Command rate of 9.6k bps and telemetry downlink at 115k bps.
 - Security protocol and data encryption on the uplink side is required.
- Baselined with JPL Iris X-band radio
 - CubeSat compatible: 0.4U + antennas, 400g, ~10W DC.
 - DSN compatible: full duplex Doppler, ranging.
 - Telecom rates 62.5 256k bps telemetry; 1000 bps command.
 - Software defined radio; reconfigurable in flight.
 - SPI interface to C&DH handles standard coding.
 - First flight on INSPIRE "First CubeSat to Deep Space"; launch expected in 2015.

JPL Iris Prototype X-Band Stack

Frequency X-band	7.1-7.6 GHz
RF Transmit Power	1 Watt (minimum)
Transmit Antenna Gain	6 dBi nominal (X-band patch antenna)
Transmit Distance	Lunar to Earth (410,000 km, nominal)
Receive Antenna	21 meter dish
Receive Antenna G/T	38.7 dB/k
Receive Antenna Gain	62 dBi
Link Margin	3 dB
Data Rate	12 kbps nominal

Comm Link Model between JPL Iris Radio and MSU 21m Dish

LunarCube Bus: Power Generation and Management

LunarCube Electrical Power System (EPS):

- Flight proven MMA eHaWK deployable solar panel array, 72W nominal at BOL.
 - Two Honeybee Robotics solar array actuators (one-axis gimbals).
 - Optional fixed solar panels for additional 12W.
- Currently working with MMA to develop a modified deployable array capable of 90-100W prime power generation.
- 8x Molicel 18650 Li ion batteries for storage; LEO flight heritage.
- MSU Power Management and Distribution (PMAD) System with LEO flight heritage.
 - High energy rad-tolerant TI MCU (100 kRad TID).
 - Under-voltage & over-voltage protection.
 - 100W capacity, 17 output channels with 93% measured output efficiency.
 - Reprogrammable in flight.

Systems

MMA eHaWK Solar Array in Flight Configuration

MSU LEO CubeSat EPS

Generation	PMAD
 2x deployable solar panels array 	 Direct Energy Transfer
wings	system
 Deployable arrays point to 	 Shunt regulation for charging
illumination with one-axis gimbals	
 ~72 W continuous after sun 	 3.3V, 5V, and 12V available
acquisition at BOL	
 Optional fixed solar panel for added 	 Raw battery voltage available
~12W at BOL (for 84W total)	
Power Storage	 Up to 9 power ports available
 8x Molicel Lithium Ion 18650 	 RBF and Deployment Switch
batteries	circuitry
 2S4P configuration: 16.8V @ 4400 	 Dedicated microcontroller
mAh	(MSP-430)
 18 mm dia. X 65 mm long 	
 Battery protection circuitry 	

LunarCube EPS including Generation, Storage and PMAD

Example Mission 1: 6U CubeSat to the Moon

- With 3km/s delta-V capability, a 6U/12kg CubeSat can reach lunar orbit from GEO using the iodine BIT-3 propulsion system alone.
 - Transfer takes 258 days to complete.
 - GTO departure is possible with additional propellant or a more lightweight bus.
 - Starting from L1 transfer trajectory (e.g. recent Falcon9 mission) is possible.
 - Starting from SLS/EM-1 drop-off will result in excess delta-V margins (not a bad thing).
- The ability to get to the moon without a free ride is attractive to NASA and industry users eyeing future lunar missions with small robotic scout vehicles.

Example Mission Scenario Showing GEO-to-Lunar Capture Transfer Orbit of a 6U "LunarCube". Credit: NXTRAC

Example Mission 2: 6U CubeSat to Asteroid Rendezvous

- With 3km/s delta-V capability, a 6U/12kg CubeSat can rendezvous (not just flyby) with Asteroid 2001 GP2 during its next closest approach in October 2020.
 - Example mission scenario using departure from GEO; transfer takes 242 days to complete.
 - 2km/s of delta-V is spent climbing out of Earth's gravity well and re-aligning.
 - The additional 1km/s of delta-V is spent catching up to the asteroid. At rendezvous, both objects would be moving at a rate of ~2.5km/s with velocity vectors aligned. Landing will be possible.
- The 2001 GP2 asteroid rendezvous mission will also be possible by departing from L1 transfer orbit, SLS/EM-1 drop-off or direct injection.

GEO-to-Asteroid

Credit: NXTRAC

Summary and Acknowledgement

- Significant progress has been made toward the 6U LunarCube platform design with ion propulsion. System will fly in the name of "Lunar IceCube" as part of the SLS EM-1 CubeSat mission. NRE of flight system will be paid for.
- Busek's BIT-3 RF ion thruster enables high delta-V (>3 km/s) missions for low cost, tiny spacecraft like 6U CubeSats. Lunar, NEO and interplanetary flights possible.
- Iodine propellant for EP is game changing high density, stored as solid, low cost, near zero pressure with conformal plastic tanks, no typical "secondary payload" and "launch safety" concerns.
- This work was funded by NASA Small Spacecraft Technology Program under Space Technology Mission Directorate (STMD), contract #NND14AA67C.
- The upcoming Lunar IceCube flight program will be funded by NASA Advanced Exploration Systems (AES) under Human Exploration and Operations Mission Directorate (HEOMD).
- Co-authors: John Frongillo and Kurt Hohman of Busek, Dr. Ben Malphrus of Morehead State University.

