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 Attitude determination and control systems (ADACS) are responsible for 

establishing desired satellite orientations. Proper satellite orientation is necessary for many 

science instruments and communication systems. Popular sensors include magnetometers, 

sun sensors, and rate gyros, and popular actuators include reaction wheels and 

magnetorquers. This paper investigates an ADACS design using these sensors and actuators 

that could feasibly be implemented on a CubeSat. The B-Dot law is used for satellite de-

tumbling, and a linear inverse dynamics PD controller is utilized for steady state pointing, 

allowing for the analytical estimation of optimal controller gains. The inverse dynamics 

controller calculates desired satellite angular accelerations and then calculates the torques 

required to achieve these angular accelerations. This makes controller performance 

independent of initial conditions or system inertia properties. This system uses the 

magnetorquers to dump reaction wheel momentum and analyzes the satellite’s kinematic 

response to applied torques in order to calibrate the rate gyros and estimate system 

moments of inertia. Simulation results corresponded well to the analytical predictions. 

Often, an oscillating equilibrium would occur when controller gains were low, but this 

oscillation could be mitigated by selecting large controller gains such that the system was 

heavily overdamped and scaling down large commanded angular acceleration values to 

within system capabilities. 

 

 

Nomenclature 
A = Area of magnetorquer 

𝐵⃑  =  Magnetic field vector 

𝐻⃑⃑   =  Angular momentum vector 

I  =  Moment of inertia, Electrical current 

k  =  Constant value 

kd, kp  =  Derivative and proportional controller gains 

𝑛̂   =  Rotation vector of quaternion 

N  =  Number of turns in magnetorquer coil 

qd, qm, qe  =  Desired, measured, and error quaternions 

s  =  Laplace transform variable 

𝑠  =  Sun vector 

T  =  Torque 

t  =  Time 

w  =  Width of PSD detector area 

α  =  Angular acceleration 

θ  =  Angle 

μ  =  Magnetic moment 

ω  =  Angular velocity 
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I. Introduction 
 Attitude Determination and Control Systems 

(ADACS) are important components of many 

modern satellites and enable these spacecraft to 

maintain desired orientations in space. This is 

important for the functioning of many science 

instruments and communication systems. The advent 

of the CubeSat form factor (10 x 10 x (10-30) cm 

cubic satellites) has demanded cheaper and smaller 

yet more effective technologies, including ADACS 

systems, than have been used in the past. This study 

details the design of such an ADACS, including 

explanations of the attitude determination and 

attitude control algorithms. Also discussed is a means 

of calibrating rate gyros and estimating satellite 

inertia properties in space. An ADACS system based 

on these design principles will be implemented on the 

AubieSat II CubeSat. 

 This ADACS will consist of reaction wheels 

and magnetorquers as actuators and magnetometers, 

rate gyros, and position sensitive detectors (PSDs) as 

sensors. In order to de-tumble the satellite, the 

ADACS will implement the “B-Dot” de-tumble 

control law using only the magnetometer and 

magnetorquers. For steady state pointing, the 

ADACS will first extract a magnetic field vector and 

a sun vector in the body-fixed reference frame from 

the magnetometer and PSDs respectively. The 

components of these vectors in the orbital frame 

(origin on satellite center of mass, z-axis toward 

Earth, and x-axis along the velocity vector) will then 

be determined by the satellite based on known 

satellite position and the IGRF magnetic field lookup 

tables and an Earth-Sun orbit propagator. Running 

the Triad algorithm with these vectors will provide a 

direction cosine matrix and a quaternion relating the 

body and orbital frames. Additionally, satellite 

angular velocities and moments of inertia will be 

estimated based on the satellite’s kinematic response 

to torques applied by the magnetorquers or reactions 

wheels. These angular velocity estimates will be 

used, in addition to changes in the measured 

quaternion over time, to calibrate the rate gyros 

which can then be utilized to calibrate the other 

sensors.  

 From the measured quaternion and a desired 

quaternion (relating the orbital and body frames) 

supplied by the satellite operator or onboard 

computer, an error quaternion will be calculated 

relating the current orientation to the desired 

orientation. Components of this error quaternion 

along with satellite angular velocity values (about the 

body axes) will be plugged into a PD control 

algorithm to determine the satellite angular 

accelerations required to slew to a correct attitude. 

This PD control algorithm is easily linearized, 

allowing for a preliminary analytical stability 

analysis and a characterization of system behavior for 

various controller gains. Based on a dynamic model 

of the satellite, the reaction wheel torques required to 

achieve these angular accelerations will be 

determined and the proper currents will be sent to the 

motors. The magnetorquers will constantly act to 

remove residual angular momentum from the system 

to prevent wheel saturation. By calculating desired 

angular accelerations with the PD algorithm instead 

of calculating desired motor torques directly as has 

been done in the past, the accuracy and stability of 

the control system can be greatly improved. 

 
II. Existing Literature and Expected 

Contributions 

 Attitude determination and control systems 

have been designed and built since the early days of 

the space age. Thus, many books
6,12,13,15

 and research 

papers have been written on the topics of spacecraft 

attitude determination and control. Due to the 

advancement and miniaturization of technology, an 

increasing number of satellites, including small ones, 

contain ADACS systems
4,5,7,11

. The B-Dot de-tumble 

law is commonly used to reduce initial satellite 

angular velocity
3
. The TRIAD algorithm is also 

common for complete attitude determination when 

the components of two vectors are known in two 

reference frames
9
. Quaternions are commonly used in 

feedback loops for satellite attitude control 

systems
7,10,11,13

 as they do not exhibit the gimbal lock 

phenomenon that can result with Euler angles. PD 

and PID controllers are among the most common for 

satellite attitude control
12,13

. Other control algorithms 

have been theorized, but many would be too difficult 

or risky to implement in reality.  

 Perhaps the greatest contribution of this 

work is the introduction of what is called an inverse 

dynamics control algorithm. This control algorithm 

uses a linear PD controller to calculate the desired 

satellite angular acceleration vector based on an error 

quaternion and satellite angular velocity vector. The 

equations of rotational motion along with wheel and 

satellite angular velocities and moments of inertia are 

analyzed to calculate the reaction wheel motor 

torques required to achieve these angular 

accelerations. This is in contrast to legacy quaternion 

feedback PD control algorithms
13

 where motor 

torques are calculated directly by the PD algorithm. 

In the legacy algorithms, neither wheel angular 
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velocities nor the couplings between the rotational 

degrees of freedom are taken into account. This 

causes such controllers to behave differently, and 

sometimes undesirably, when wheel or satellite 

angular momentum is large. Because the inverse 

dynamics controller analyzes the equations of 

rotational motion, the commanded angular 

accelerations are achieved regardless of satellite and 

wheel moments of inertia, stored angular momentum, 

or initial conditions. This ensures predictable 

controller behavior in any situation and minimizes 

the need for extensive simulation to determine ranges 

of system stability. Furthermore, because the PD 

control algorithm calculates angular accelerations 

instead of torques, only one proportional gain and 

one derivative gain are needed and these gains will 

remain constant regardless of system inertia 

properties. Because the PD controller itself is linear, 

stable gain values can be estimated analytically. This 

greatly reduces simulation requirements and is a 

significant improvement over legacy PD control 

algorithms where six gain values are required that are 

all dependent on the moments of inertia of the 

specific system at hand. 

 Additionally, a means of actively reducing 

reaction wheel angular momentum using 

magnetorquers is discussed, along with a way of 

accurately estimating system moments of inertia 

based on kinematic responses to applied torques. This 

paper also provides a way to estimate satellite 

angular velocities based on these kinematic responses 

and the coupling between the equations of rotational 

motion about each axis. These estimates can be used 

to calibrate the rate gyros for bias error. 

   

III. De-Tumble 
 When the satellite is initially deployed or if 

control is temporarily lost, the satellite will be in a 

state of tumble (random angular velocity about the 

body axes). In this case, the B-Dot controller can be 

utilized to de-tumble the satellite and reduce the total 

angular momentum. B-Dot is an algorithm that has 

been used on many satellite missions and whose 

stability has been demonstrated
3
. The B-Dot control 

law involves only the magnetorquers and 

magnetometer and does not require complete 

knowledge of satellite attitude. Running B-Dot will 

serve to reduce the angular velocity of the satellite (in 

the body frame), but will not cause the satellite to 

point in any specific direction. The B-Dot controller 

does this by applying a torque to reduce the 

magnitude of the satellite’s angular velocity. The 

desired magnetic moment  id  for the B-Dot 

algorithm is illustrated in Fig. 1 and is given by the 

equation 

 
2 1( )

*( ) *tot

B B
k B k B k

t
 

 
   



 

(1) 

where k is a constant negative gain value,   is the 

spacecraft angular velocity about the body axes, B  is 

measured magnetic field value (in the body axes), B


is the time rate of change of the magnetic field, and t 

is time. The total magnetic torque generated by the 

magnetorquers ( )T  given this magnetic moment is 

calculated by 

 
totT B    (2) 

where the   generated by each magnetorquer is 

given by  

 ˆ( )IAN n   (3) 

where I is the applied current, A is the area of the 

magnetorquer, N is the number of turns of wire in the 

coil, and n̂  is the unit vector normal to the 

magnetorquer face given by the right hand rule based 

on the direction of the current in the magnetorquer. 

This torque works to reduce the magnitude of the 

satellite’s angular velocity. Based on the value of 

tot , the currents that must be applied to each 

magnetorquers can be calculated.  

 

IV. Complete Attitude Determination 
 After de-tumble, the attitude of the satellite 

must be determined completely if three-axis attitude 

control is desired. Complete attitude determination is 

defined as the calculation of a direction cosine matrix 

relating the satellite body-fixed reference frame to the 

orbital reference frame (origin on satellite center of 

mass, x-axis parallel to velocity, and z-axis towards 

 

Figure 1. Torque and Magnetic Moment Vectors 

Associated with the B-Dot De-Tumble Law 
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Earth’s center). Deriving this matrix requires 

knowledge of the components of two linearly 

independent vectors in each frame. The sun vector 

( )s  and magnetic field vector ( )B  are two such 

vectors. B can be determined in the orbital frame 

from the International Geomagnetic Reference Field 

(IGRF) lookup tables based on the satellite’s position 

relative to Earth. s can be determined in the orbital 

frame based on known satellite position relative to 

Earth and the position of the Earth relative to the sun.  

The B  vector in the body frame can be measured 

directly from a standard 3-axis magnetometer 

onboard the satellite. s in the body frame can be 

determined from position sensitive detectors (PSDs). 

When the satellite is in eclipse and s cannot be 

calculated, the rate gyros can be utilized to provide a 

second vector for attitude determination by 

propagating satellite attitude.  

 A PSD (Fig. 2) provides the x and y 

coordinates of a point of light shining on the PSD. 

Four currents  1 2 3 4, , ,I I I I  corresponding to the 

location of the light spot on the detector face are 

produced by the PSD
1
. The Cartesian position of the 

light spot relative to the PSD coordinate system 

( , )p px y  can be calculated based on these current 

values by the equations 

 
4 3

4 32
p

I Iw
x

I I

 
  

 
 (4) 

 
2 1

2 12
p

I Iw
y

I I

 
  

 
 (5) 

where w  is the width of the square PSD. By 

directing light onto the PSD through a pinhole and 

measuring the resulting x and y coordinates of the 

light spot, the orientation of the sun vector relative to 

the plane of the PSD can be determined. If the 

location of the pinhole in the PSD frame is given by 

( , , )h h hx y z , the sun vector (relative to the PSD) can 

be calculated as  

 
1

2

3 0
psd h s

s x x

s y y

s z

     
     

 
     
          

 (6) 

The sun vector can then be determined in the satellite 

body frame by multiplying the sun vector in the PSD 

frame by the direction cosine matrix relating the PSD 

and body frames. 

 After both vectors are determined in the 

orbital and body frames, the TRIAD algorithm can be 

utilized to determine a direction cosine matrix 

relating the frames. The triad algorithm hinges on the 

relation 

 1 2 1 2 1 2 1 2( ) ( )R R R R A r r r r       
 (7) 

where the R  and r  are column vectors in each of 

the two frames and [A] is the direction cosine matrix 

relating the two frames. If we substitute s in the 

orbital and body frames for 1R and 1r respectively 

and B̂  for 
2R and 2r , we can solve for [A] by 

multiplying both sides of Eq. (7) by the inverse of the 

matrix on the right hand side of the equation. The 

calculation of [A] constitutes full attitude 

determination. A quaternion relating the body and 

orbital frames ( )mq  can extracted from [A] for use in 

the attitude control algorithm. Quaternions are based 

on Euler’s theorem which states that a coordinate 

frame can be transformed into any desired orientation 

by a rotation of angle   about a vector n̂ as shown in 

Figure 3. 

 

 

 

 

 

 

 

 

 

A quaternion is defined based on n̂  and   as 
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 (8) 

If a direction cosine matrix [A] is defined as follows 

 

 

2 11 12 13 1

2 21 22 23 1

2 31 32 33 1

2 1

x x

y y

z z

r a a a r

r a a a r

r a a a r

r A r

     
     


     
          

      

 (9) 

 
Figure 2. Position Sensitive Detector (PSD) Diagram2 
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Figure 3. Coordinate Frame Rotation about Vector 𝒏̂ 



   
 

Omar 5 29
th

 Annual AIAA/USU 

  Conference on Small Satellites 

The quaternion associated with [A] can be calculated 

using Eq. (10). 

 
2 11 22 33

0

32 23

1

0

13 31

2

0

21 12
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q
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q
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








 (10) 

 

V. 3-Axis Attitude Control 
A. PD Inverse Dynamics Control Algorithm 

 The attitude control algorithm is dependent 

on three parameters: A measured quaternion ( )mq  

relating the body frame in the current orientation to 

the orbital frame, a desired quaternion ( )dq  relating 

the body frame in the desired orientation to the 

orbital frame, and the spacecraft angular velocity 

vector about the body axes ( )sc . Quaternions are 

preferable to a direction cosine matrix for the attitude 

control algorithm for several reasons. A quaternion 

not only contains four terms instead of nine but also 

specifies the line of rotation necessary to get from 

one frame to another, a valuable parameter for 

attitude control. Quaternions are also preferable to 

Euler angles because they do not exhibit the 

mathematical singularities or discontinuities such as 

gimbal lock that plague Euler angles.  

 The first step in the attitude control 

algorithm is to calculate the error quaternion ( )eq  

relating the satellite orientations specified by qm and 

qd. qe quantifies the rotation the satellite must make 

in order for it to get from its current orientation to the 

desired orientation. qe is calculated by the following 

equation 

 
e d m

q L q  (11) 

where 

 
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

d d d d

d d d d

d d d d

d d d d

d

q q q q

q q q q
L

q q q q

q q q q

 
 
  

   
 
   

 (12) 

The angular velocity vector can be extracted from the 

change in the measured quaternion over time using a 

similar procedure. If q1 is the measured quaternion at 

time t1 and q2 is the measured quaternion at time t2, 

then the quaternion q12 that gives the rotation from q1 

to q2 can be calculated by the equation 

 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

12 2 1

0 1 2 3

1 0 3 2

2

2 3 0 1

3 2 1 0

q L q

q q q q

q q q q
L

q q q q

q q q q



 
 
  

   
 
   

 (13) 

The angle of rotation associated with q12 can be 

calculated based on the first quaternion. 

  
12

1

02cos q   (14) 

Dividing this angle by the time required for the 

satellite to go from q1 to q2 gives the magnitude of 

the angular velocity of the satellite, provided that    

is small. 

 

2 1

sc
t t


 


 (15) 

The orientation of the angular velocity vector will be 

about the rotation vector ( )n  associated with 
12 .q  

Thus, sc  can be calculated by the equations 

 

 

12

12

12

1

2

3

1
ˆ

sin
2

q

n q

q


 
 

  
 
  

 (16) 

 ˆ
sc scn   (17) 

sc can also be provided by the rate gyros. Rate 

gyros must be calibrated before use to correct for bias 

errors. Rate gyros can be calibrated based on other 

sensors or based on the equations of rotational 

motion and the response of the satellite to applied 

torques. Once calculated, 
eq  and sc  can be used 

with a simple, linear PD control algorithm (Eq. (18)) 

to calculate desired satellite angular accelerations.  

 
1

2

3

x e x

y p e d y

z e zsc sc

q

k q k

q

 

 

 

     
     

 
     
          

 (18) 

The k values in Eq. (18) are constant controller gains 

and can be selected based on simulations and through 

an analytical stability analysis. kd will be negative (to 

reduce the angular velocity) and kp will be positive to 

bring the satellite closer to the desired orientation. It 

is suboptimal to calculate the desired reaction wheel 

torques directly from the PD control algorithm. This 

is because the effects of a given set of applied torques 

on a satellite’s rotational motion will vary depending 

on the angular momentum of the satellite and wheels. 

Thus, more precise control can be achieved by 

calculating the desired angular accelerations and then 

determining the torques required to realize these 

angular accelerations based on Euler’s equation of 

rotational motion 
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 d H
M T H

dt
     (19) 

where T  represents the applied external torques, H  

represents the system angular momentum, and   

represents the angular velocity of the frame in which 

H is measured (the satellite body frame in this case). 

This type of control system is called an inverse 

dynamics controller. Eq. (19) essentially states that 

the summation of moments acting on the satellite is 

equal to the total change in the angular momentum of 

the satellite. Because no external torques are applied 

with a reaction wheel control system, the summation 

of external moments will be zero and the total 

angular momentum of the satellite (relative to inertia) 

will remain constant. The total angular momentum of 

a spacecraft with wheels with symmetric tops is 

given by the equation 

 3

1

sc sc w w

i

H I I 


   (20) 

where 
scI and sc  are the moments of inertia and 

angular velocities of the spacecraft and 
wI and w are 

the moments of inertia and angular velocities of the 

wheels. Substituting Eq. (20) into Eq. (19) and setting 

0T   yields 

 3

1

3

1

0 sc sc w w

i

sc sc w w sc

i

d
I I

dt

I I

 

  





 
   

 

 
  

 





 (21) 

Re-arranging Eq. (21) gives the equation for the 

required wheel angular accelerations and motor 

torques 

1 1
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   
      
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      

      
            

     
     

 
     
          

 (22) 

In Eq. (22), I values represent moment of inertia 

components, ω values represent angular velocity 

components, and 𝛼 values represent angular 

acceleration components. The subscript “sc” denotes 

a spacecraft property while the subscript “w” denotes 

a wheel property. An index of 1 indicates the wheel 

aligned with the x body-axis while indices of 2 and 3 

refer to the wheels aligned with the y and z body axes 

respectively. Wheel angular velocity and angular 

acceleration values are given about the wheels’ axes 

of rotation. All wheels are assumed to have the same 

moment of inertia (Iw) about the rotation axis. The T 

values represent the reaction wheel motor torques 

required to achieve the calculated wheel angular 

accelerations. Note that these are not externally 

applied torques and do not change the total angular 

momentum of the satellite.  

 
B. Active Angular Momentum Dumping using 

Magnetorquers 

 The magnetorquers can be utilized during 

the steady state pointing operation to reduce the 

angular momentum stored in the reaction wheels. 

This will reduce the power consumption of the 

ADACS and will make the system last longer. By 

exerting a magnetic torque that is as close as possible 

to anti-parallel with the total wheel angular 

momentum vector (
wH ), the total wheel angular 

momentum can be reduced without perturbing the 

satellite’s attitude.  

wH  can be calculated by 

 
1

2

3

w wH I







 
 


 
  

 (23) 

Magnetorquers can only generate torques 

perpendicular to the magnetic field vector as 

evidenced by Eq. (2). Thus, to calculate the ideal 

magnetic moment of the magnetorquers we perform 

the operation 

  *id wk H B    (24) 

where k is a scaling factor chosen to ensure that 
id  

does not exceed the capabilities of the 

magnetorquers. Producing this magnetic moment 

yields a magnetic torque of  

  *id wT B k H B B       (25) 

This torque vector will be perpendicular to B  and 

will be at an angle greater than 90
o
 from wH  as 

shown in Figure 4.  
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Thus T  will work to decrease the total angular 

momentum of the system. The satellite must, 

however, maintain a constant angular momentum if it 

is to maintain a desired attitude. The only way to 

maintain a constant total satellite angular momentum 

( sH ) in the presence of T  is for the wheels to 

decelerate. This wheel deceleration will increase sH

and decrease .wH If the change in wheel angular 

momentum is planned such that  

 wH T t    (26) 
The total angular momentum of the satellite will 

remain unchanged while the total wheel angular 

momentum will be reduced.  

 

C. Moment of Inertia Estimation and Rate Gyro 

Calibration 

 System moments of inertia must be known 

in order to properly implement the inverse dynamics 

control algorithm. Reaction wheel moments of inertia 

are generally provided by the manufacturer, but 

satellite moments of inertia are often difficult to 

calculate. Once in space, the moment of inertia of the 

satellite about each axis can be easily calculated after 

the satellite has been de-tumbled using B-Dot. If the 

satellite is assumed to initially be irrotational, 

accelerating one wheel will result in an equal and 

opposite change in satellite angular momentum about 

the wheel axis such that 

 s s w w

w w

s

s

I I

I
I

 





 




 (27) 

Angular accelerations can be accurately measured by 

the rate gyros even before calibration as their 

measurement is unaffected by bias error. After 

calculating Is about one axis, the satellite can be de-

tumbled again and the moment of inertia about the 

other two principal axes can be calculated in a similar 

manner. 

 Once wheel and satellite moments of inertia 

are known, the satellite angular velocities can be 

determined based on the satellite’s kinematic 

response to applied torques. These angular velocities 

are necessary to calibrate the rate gyros which will 

generally have some bias error due to thermal 

fluctuations, launch vibrations, and manufacturing 

errors. This bias error will cause the gyros’ angular 

velocity estimates to always be off by a constant 

amount but will not affect angular acceleration 

measurements. Carrying out the matrix multiplication 

in Eq. (22) yields the scalar equations 

 
1

3 2

(I )

( ) 0

xx x w zz yy y z

w y z

I I I

I

   

   

  

  
 (28) 

 
2

1 3

(I )

( ) 0

y y w xx zz z x

w z x

I I I

I

   

   

  

  

 (29) 

 
3

3 1

(I )

( ) 0

zz z w yy xx x y

w x y

I I I

I

   

   

  

  
 (30) 

solving these equations for the x, y, and z components 

of 
sc  yields 

 

 
31

3

zw y w zz

x

yy xx y w

I I I

I I I

   


 

 


 
 (31) 

 

 

23

1

yw x w yy

z

xx zz x w

I I I

I I I

   


 

 


 
 (32) 

 

 
12

3

xw z w xx

y

zz yy z w

I I I

I I I

   


 

 


 
 (33) 

From these equations, it is possible to solve for   by 

substituting Eq. (31) into Eq. (32) and Eq. (32) into 

Eq. (33) and solving numerically. Note that all terms 

in these equations are known except for satellite 

angular velocities. Recognizing that  

 d dt   (34) 

sc  can be solved for at various points in time for 

more accurate gyro calibration.  
 

D. Analytical Stability Analysis 

 Using a linear controller is advantageous 

because it allows for an analytical stability analysis 

and characterization of controller behavior for 

various gains. The simplest analysis is for the case of 

zero initial satellite angular velocity and a desired 

rotation angle   about the x body-axis. For this 

simple case, the integral of the x angular acceleration 

will give the x angular velocity and the integral of the 

x angular velocity will yield the change in rotation 

angle .  In reality, angular velocity values in the y 

and z axes will have an effect on the required rotation 

about the x axis. However, for the scenario of a 

satellite rotating about only one axis, it is easy to 
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Figure 4. Magnetic Torque Vector for Active 

Momentum Dumping 
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draw a block diagram and calculate a corresponding 

transfer function. A stability analysis based on this 

transfer function gives a reasonable first order 

approximation of how the system will behave based 

on selected gains and certain inputs and outputs. 

After estimating ideal gains analytically, a numerical 

simulation can be utilized to optimize the gains and 

ensure system stability.  

 For small values of ,  the  sin / 2  terms 

in 
eq  can be replaced by / 2 . For the purpose of 

creating an input-output model, we can assume that 

the input is 2.des  Based on the PD control 

equation, the input-output model becomes 

 

2 2

des

p dk k
 

 
 

   
 

 (35) 

where 
des  denotes the desired angle. The difference 

between the measured and desired rotation angles 

about the x-axis represents the x-component of the 

error quaternion in this scenario. From Eq. (35) the 

block diagram in Figure 5 can be constructed. 

Based on this block diagram and Eq. (35), the 

transfer function in the Laplace Domain relating the 

output ( ) to the input ( / 2des  ) of the controller is 

 

2

/ 2
(s)

2

p

p

d

k
T

k
s sk



 

 
(36) 

From basic control theory, it is known that a system 

will be stable when the poles of its transfer function 

(roots of the denominator) have negative real 

components. If the poles have unreal components, the 

system will oscillate about an equilibrium. The poles 

of this transfer function can be written as 

 2

1 2

2
,

2

d d pk k k
s s

 
  (37) 

As we see from Eq. (37), kd must be negative and kp 

must be positive for the system to be stable. If the 

term in the square root in Eq. (37) is positive, the 

system is overdamped and the satellite will converge 

to the desired orientation more slowly than optimal. 

If the term in the square root is negative, the system 

is underdamped and the satellite will oscillate about 

the equilibrium position before stabilizing. If the term 

within the square root is zero, the system is critically 

damped and will converge to the desired orientation 

as quickly as possible without any oscillations. A 

critically damped system is ideal. According to Eq. 

(37), controller gains for such a system must be 

chosen such that 

 2

, 0
2

d
p d

k
k k   (38) 

As will be shown in the simulation however, the 

analytically calculated gains for critical damping will 

not always result in ideal system behavior. This is 

because the analytical analysis assumes that the 

derivative term is simply the derivative of the 

proportional term, but this is not the case. The 

derivative term, a three-dimensional angular velocity 

vector, is not the derivative of the proportional term, 

a four-dimensional quaternion. However, these 

analytical solutions serve as good first order 

approximations of system behavior given a set of 

controller gains. 

 

E. Simulation Results 

 A numerical simulation makes few, if any, 

simplifying assumptions and most accurately depicts 

the way a system will behave in real life. MSC 

Software’s Adams multi-body dynamics simulator 

was utilized to model the case of a 1.5U (10x10x15 

cm) CubeSat with three orthogonally mounted 

reaction wheels. The inverse dynamics PD control 

algorithm given in Eq. (18) was implemented in 

Adams based on specified kp and kd values and a 

given desired quaternion relative to an inertial 

“ground” reference frame representing the orbital 

frame. When integrator error was accounted for, 

actual satellite angular accelerations matched the 

desired angular accelerations calculated using Eq. 

(22) almost perfectly. However, simulations with 

analytically calculated gains did not always behave 

exactly the way the analytical analysis predicted. 

Often, the satellite would oscillate about an 

equilibrium position in the steady state but the 

magnitude of the oscillations would neither increase 

nor decrease. This oscillation was technically a stable 

solution (just as the analytical solutions indicated), 

but not the kind of steady state solution one would 

want for a satellite. The frequency and amplitude of 

this oscillation could be minimized by making the 

system over-damped by simply increasing the 

magnitude of kd. Regardless of the initial conditions, 

the system would always stabilize to the same 

constant amplitude oscillation for given gain values. 

However, for small initial angular momentum values, 

the system took longer to reach the oscillatory mode. 
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Figure 5. Block Diagram for PD Control Algorithm 
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In simulations with zero initial angular momentum, 

the satellite would first reach the desired attitude and 

would start oscillating only after the simulation was 

allowed to keep running for a long time. For 

example, a system that converged to the desired 

attitude in 10 seconds would start oscillating if the 

simulation was allowed to run for another 100 

seconds. A system with an initial angular momentum 

would reach the oscillatory mode more quickly. 

Increasing the time step would also cause the system 

to reach the oscillatory mode more quickly. This led 

to the conclusion that the oscillatory mode was a 

stable equilibrium while the precise pointing mode 

was an unstable equilibrium. When the satellite was 

pointing precisely where it should be, a small 

disturbance, such as integrator error due to a large 

time step or large angular momentum, would trip it to 

the oscillatory mode where it would remain 

indefinitely.    

 Simulations were run with a CubeSat model 

where the system moments of inertia were 0.06 

kg*m
2
 about each axis and each wheel had a moment 

of inertia of 0.0523 kg*m
3
 about its axis of rotation. 

Wheel moment of inertia was large to reduce the 

required wheel angular velocities and minimize 

integrator error. Due to the nature of the inverse 

dynamics controller however, the system would 

behave the same regardless of wheel moment of 

inertia. Figures (6-8) contain simulation results for 

critically damped, underdamped, and overdamped 

systems respectively with the aforementioned 

characteristics and zero initial angular velocity. This 

would correspond to a case where the steady state 

pointing control began after de-tumble was complete. 

Simulations were run with gain values corresponding 

to an underdamped, overdamped, and critically 

damped system. As expected, the underdamped 

system overshot the equilibrium before converging, 

and the overdamped system took longer to stabilize 

than did the critically damped system. When these 

same simulations were run with finite initial satellite 

angular velocity values however, the satellite did not 

completely stabilize at an equilibrium position but 

rather oscillated about the equilibrium. The same 

thing happened for systems with zero initial angular 

velocity when simulations were allowed to run for a 

long period of time. Figures (9-11) are graphs of 

simulation runs with an initial satellite angular 

velocity of  .5,1,.7sc   rad/s. As seen in Figures 

(9-11), making the system over-damped by 

increasing the magnitude of the derivative gain 

(making it more negative) decreased the amplitude 

and frequency of the oscillations.  

 

 
Figure 7. System with kp = 1, kd = -.5, and 

0
(0,0,0)   

 
Figure 8. System with kp = 1, kd = -4, and 

0
(0,0,0)   

 
Figure 6. System with kp = 1, kd = -1.4, and 

0
(0,0,0)   
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Figure 9. System with kp = 1, kd = -1.4, and 

0
(.5,1, .7)   

 
Figure 10. System with kp = 1, kd = -4, and 

0
(.5,1, .7)   

 
Figure 11. System with kp = 1, kd = -20, and 

0
(.5,1, .7)   

 

As can be seen in Fig. 11, a heavily overdamped 

system, while more stable, requires longer to reach 

equilibrium. For a real satellite, it may be impractical 

to increase the derivative gain to a point where the 

satellite takes several minutes to change orientation. 

Increasing both the proportional and derivative gains, 

however, makes the satellite reach equilibrium more 

quickly for a given damping configuration. For 

example, a critically damped system with kp = 200 

and kd = -20 (Fig. 12) will reach equilibrium far more 

quickly than a system with kp = 1, kd = -1.4. If kp is 

maintained at 200 and the magnitude of kd is 

increased to, say, -500, the system will be very 

heavily overdamped and will experience very small 

steady state oscillations while still reaching 

equilibrium relatively rapidly (Fig. 13).  

 

 
Figure 12. System with kp = 200, kd = -20, and

0
(0,0,0)   

 

 
Figure 13. System with kp = 200, kd = -500, and

0
(.5,1, .7)   
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With such high gains, if the system experiences any 

perturbation or has some initial undesirable angular 

velocity, the commanded angular acceleration may 

exceed the capabilities of the reaction wheels. In this 

case, the commanded angular acceleration can be 

scaled down (Eq. (39)) such that it is less than a 

predetermined maximum achievable satellite angular 

acceleration 
max

.sc   

 
max

' sc

sc sc

sc


 



 
 
 
 

 (39) 

 

VI. Conclusions 
 It is indeed possible to build a 

straightforward yet capable attitude determination 

and control system for a CubeSat or other small 

satellite. A magnetometer, rate gyros, and position 

sensitive detectors (PSDs) are adequate to provide 3-

axis attitude determination. A magnetometer will 

give the local magnetic field vector in the satellite 

body frame and the PSDs will give the sun vector in 

the body frame. By comparing these values to the 

magnetic field vector and sun vector in the orbital 

frame given by IGRF lookup tables and a Keplarian 

Earth-Sun orbit propagator, a direction cosine matrix 

can be derived relating the orbital and body frames. 

An attitude quaternion can then be derived from this 

direction cosine matrix that specifies a line of 

rotation and a rotation angle to align the body frame 

with the orbital frame.  

 Based on a desired quaternion between the 

orbital and body frames and the measured quaternion, 

an error quaternion can be calculated that relates the 

current orientation to the desired orientation. This 

quaternion along with satellite angular velocity 

measurements can serve as inputs to a PD control 

algorithm that calculates the satellite angular 

accelerations required to slew the satellite to the 

correct attitude. Based on Euler’s equation of 

rotational motion and system inertia properties, the 

reaction wheel angular accelerations and 

corresponding motor torques required to achieve 

these satellite angular accelerations can be 

determined. The PD control algorithm can be 

linearized and optimal proportional and derivative 

gain values can be estimated analytically. These gain 

estimates can then be refined using a numerical 

simulation.  

 According to simulation results using MSC 

Software’s Adams multi-body dynamics simulator, 

the satellite will oscillate about an equilibrium 

position for gain combinations that are stable based 

on the analytical solutions. These oscillations 

eventually stabilize to a constant amplitude and 

frequency. The amplitude and frequency of these 

oscillations can be decreased by overdamping the 

system by increasing the magnitude of the derivative 

gain, but the system will take longer to reach a 

desired orientation. Increasing both the proportional 

and derivative gains will results in a heavily 

overdamped system with minimal steady-state 

oscillations that stabilizes to the desired orientation 

relatively quickly. Large gain values will result in 

larger commanded accelerations in the presence of 

perturbations. If a commanded angular acceleration 

exceeds the maximum capability of the spacecraft, it 

can be scaled down to a more reasonable value.  
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