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Abstract: Power-law frequency distributions characterize a wide array of natural phenomena. In 

ecology, biology, and many physical and social sciences, the exponents of these power-laws are 

estimated to draw inference about the processes underlying the phenomenon, to test theoretical 

models, and to scale up from local observations to global patterns. Therefore, it is essential that 

these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally 

utilized in ecology and other disciplines perform quite poorly. Here we discuss more 

sophisticated methods for fitting these exponents based on cumulative distribution functions and 

maximum likelihood estimation. We illustrate their superior performance at estimating known 

exponents and provide details on how and when ecologists should use them. Our results confirm 

that maximum likelihood estimation out-performs other methods in both accuracy and precision. 

Because of the use of biased statistical methods for estimating the exponent, the conclusions of 

several recently published papers should be revisited. 
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Power-laws have a long history in ecology and other disciplines (Bak 1996, Brown et al. 

2002, Newman 2005). Power-law relationships appear in a wide variety of physical, social, and 

biological systems and are often cited as evidence for fundamental processes that underlie the 

dynamics structuring these systems (Bak 1996, Brown et al. 2002, Newman 2005). There are two 

major classes of power-laws commonly reported in the ecological literature. The first are bi-

variate relationships between two variables. Examples of this type of relationship include the 

species-area relationship and body-size allometries. Standard approaches to analyzing this type 

of data are generally reasonable and discussions of statistical issues related to this kind of data 

are presented elsewhere (e.g., Warton et al. 2006). The second type of power-law, and the focus 

of this paper, is the frequency distribution, where the frequency of some event (e.g., the number 

of individuals) is related to the size, or magnitude, of that event (e.g., the size of the individual).  

Frequency distributions of a wide variety of ecological phenomena tend to be, at least 

approximately, power-law distributed. These phenomena include distributions of species body 

sizes (Morse et al. 1985), individual body sizes (Enquist and Niklas 2001), colony sizes (Jovani 

and Tella 2007), abundance among species (Pueyo 2006), trends in abundance of species through 

time (Keitt and Stanley 1998), step lengths in animal search patterns (i.e., Levy flights; Reynolds 

et al. 2007), fire magnitude (Turcotte et al. 2002), island size (White and Brown 2005), lake size 

(Wetzel 1991), flood magnitude (Malamud and Turcotte 2006), landslide magnitude (Guzzetti et 

al. 2002), vegetation patch size (Kefi et al. 2007), and fluctuations in metabolic rate (Labra et al. 

2007). Frequency distributions are usually displayed as simple histograms of the quantity of 

interest. If a distribution is well characterized by a power-law then the frequency of an event 

(e.g., the number of individuals with mass between 10 and 20 grams), f, is related to the size of 
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that event, x, by a function of the form, 1 

  ( )f x cxλ= ,       (1)  2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

where c and λ are constants, and λ is called the exponent and is typically negative (i.e., λ < 0). 

Because f(x) is a probability density function (PDF) the value of c is a simple function of λ and 

the minimum and maximum values of x (Table 1). The specific form of the PDF depends on 

whether the data are continuous or discrete, on the presence of minimum and maximum values, 

and on whether λ is  or . The different forms are often given distinct names for clarity 

(see Table 1). 

1< − 1> −

There is substantial interest in using the parameters of these power-laws distributions to 

make inferences about the processes underlying the distributions, to test mechanistic models, and 

to estimate and predict patterns and processes operating beyond the scope of the observed data. 

For example, power-law species abundance distributions with 1λ ≈ − are considered to represent 

evidence for the primary role of stochastic birth-death processes, combined with species input, in 

community assembly (Pueyo 2006, Zillio and Condit 2007); quantitative models of tree size 

distributions make specific predictions (e.g., λ = –2; Enquist and Niklas 2001) that can be used to 

test these models (Coomes et al. 2003, Muller-Landau et al. 2006); and power-law frequency 

distributions of individual size have been used to scale up from individual observations to 

estimate ecosystem level processes (Enquist et al. 2003, Kerkhoff and Enquist 2006). 
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One concern when interpreting the exponents of these distributions is that there are a wide 

variety of different approaches currently being used to estimate the exponents (Sims et al. 2007, 

White et al. 2007). These include techniques based on: 1) binning (e.g., Enquist and Niklas 2001, 

Meehan 2006, Kefi et al. 2007); 2) the cumulative distribution function (e.g., Rinaldo et al. 

2002); and 3) maximum likelihood estimation (e.g., Muller-Landau et al. 2006, Zillio and Condit 
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2007, Edwards et al. 2007). There has been little discussion in the ecological literature of how 

the choice of methodology influences the parameter estimates, and methods other than binning 

are rarely used. If different methods produce different results this could have important 

consequences for the conclusions drawn about the ecology of the system (Edwards et al. 2007, 

Sims et al. 2007).  
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Here we: 1) describe the different approaches used to quantify the exponents of power-law 

frequency distributions; 2) show that some of these approaches give biased estimates; 3) 

illustrate the superior performance of some approaches using Monte Carlo methods; 4) make 

recommendations for best estimating parameters of power-law distributed data; and 5) show that 

some of the conclusions of recent studies are effected by the use of biased statistical techniques. 

METHODS FOR ESTIMATING THE EXPONENT 

Linear Binning 

Perhaps the most intuitive way to quantify an empirical frequency distribution is to bin the 

observed data using bins of constant linear width. This generates the familiar histogram. 

Specifically, linear binning entails choosing a bin i of constant width (w = xi+1 – xi), counting the 

number of observations in each bin (i.e., with values of x between xi and xi + w), and plotting this 

count against the value of x at the center of the bin (xi/2 + xi+1/2). If the counts are divided by the 

sum of all the counts, this plot is an estimate of the probability density function, f(x). The 

traditional approach to estimating the power-law exponent is to fit a linear regression to log 

transformed values of f(x) and x, with the slope of the line giving an estimate of the exponent, λ. 

Bins with 0 observations are excluded (because log(0) is undefined) and sometimes bins with 

low counts are also excluded (e.g., Enquist and Niklas 2001). While in practice the choice of bin 

width is normally arbitrary, this choice represents a tradeoff between the number of bins 
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analyzed (i.e., the resolution of the frequency distribution) and the accuracy with which each 

value of f(x) is estimated (fewer observations/bin provide a poorer density estimate; Pickering et 

al. 1995). 
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Logarithmic Binning 

Simple logarithmic binning – This approach is similar to linear binning, except that instead of 

the bins having constant linear width, they have constant logarithmic width, b = log(xi+1)-log(xi). 

The estimate of λ is obtained by log-transforming the values of x and following the procedure 

described above. Since the x data are transformed to begin with, it is not necessary to transform 

the bin centers again prior to fitting the regression. For power-law like distributions, an 

advantage of logarithmic binning is the reduction of the number of zero and low count bins at 

larger values x because the linear width of a bin increases linearly with x; i.e. . 

However, this means that the number of observations within each bin is determined not only by 

x, but also by the linear width of the bin. Therefore, the slope of the regression will give an 

estimate of λ+1, not λ  (Appendix A, Han and Straskraba 1998, Bonnet et al. 2001, Sims et al. 

2007).  

( 1b
i iw x e= −

Normalized logarithmic binning – The problem of increasing linear width of logarthimic bins 

can be dealt with by normalizing the number of observations in each bin by the linear width of 

the bin, w. This converts the counts into densities (number of observations per unit of x) (Bonnet 

et al. 2001, Christensen and Moloney 2005). The linear width of a logarithmic bin can be 

calculated as  (Appendix A). This normalization approach is typically used in the 

characterization of aquatic size-spectra and power-law distributions in physics (Kerr and Dickie 

2001, Christensen and Moloney 2005). It removes the artifact from traditional logarithmic 

binning while maintaining the advantage of using larger bins where there are fewer values of x. 

( 1b
ix e −
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An alternative approach is to use simple logarithmic binning and subtract one from the estimated 

exponent (Han and Straskraba 1998, Bonnet et al. 2001). 

Fitting the Cumulative Distribution Function 

 An alternative to binning methods is to work with the cumulative distribution function 

(CDF): 

( ) ( )Pr ( )
x

F x X x f x dx
−∞

= ≤ = ∫  

The CDF describes the probability that a random variable, X, drawn from f(x) is < x. The CDF is 

straightforward to construct for a set of observed data – and no binning is required. To construct 

the CDF, first rank the n observed values (x
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i) from smallest to largest (i = 1…n). The probability 

that an observation is less than or equal to xi (the CDF) is then estimated as i/n (this is the 

Kaplan-Meier estimate, Evans et al. 2000). Analyzing the CDF avoids the subjective influence of 

the choice of bin width and the problem of empty bins. Having determined the CDF for a power-

law distribution, the exponent, λ, of the PDF can be estimated using regression. The traditional 

approach is to transform the equation for the CDF such that the slope of a linear equation is a 

function of λ. The linearized equation differs among distributions (Appendix A). The slope of the 

regression will be equal to λ+1, making it necessary to subtract 1 to obtain λ (Bonnet et al. 2001, 

Rinaldo et al. 2002). 

Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is one of the preferred approaches for estimating 

frequency distribution parameters (e.g., Rice 1994). MLE determines the parameter values that 

maximize the likelihood of the model (in this case, a power-law with an unknown exponent) 

given the observed data. Specifically, MLE finds the value of λ that maximizes the product of the 

probabilities of each observed value of x (i.e., the product of f(x) evaluated at each data point; see 
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Rice (1994) for a good introduction to maximum likelihood methods). The specific solution for 

the maximum likelihood estimate of λ and whether the solution is closed form or requires 

numerical methods to solve depends on the minimum and maximum values of x and on the value 

of λ (Table 1). Alternatively, the likelihood can be maximized directly using numerical methods 

(Clauset et al. 2007, Zillio and Condit 2007). While MLE does not provide an opportunity for 

visual inspection of the distribution to determine if the assumption of the power-law functional 

form is reasonable, the validity of this assumption can be assessed using simple goodness of fit 

tests such as the Chi-square on binned data (Clark et al. 1999, Clauset et al. 2007, Edwards et al. 

2007), or by visually assessing the linearity of binned data, or the CDF (Benhamou 2007), under 

the appropriate transformation. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

COMPARING THE METHODS 

While uncorrected simple logarithmic binning clearly provides incorrect estimates of λ, the 

alternative approaches discussed above all seem reasonable and intuitive. However, the different 

approaches do not perform equally well, and some produce biased estimates of the exponent 

(e.g., Pickering et al. 1995, Clark et al. 1999, Sims et al. 2007). We applied Monte Carlo 

methods to illustrate the advantages and disadvantages of the various approaches and to explore 

cases relevant to ecology that have not been previously addressed. Monte Carlo methods 

generate data that are, by definition, power-law distributed with known exponents, making it 

possible to compare the performance of the different techniques in estimating the value of λ. 

We generated power-law distributed random numbers using the inverse transformation 

method for the Pareto distribution (Ross 2006), and using the rejection method for the discrete 

Pareto distribution (Devroye 1986). Each analysis consisted of the following: 1) generating 

10,000 Monte Carlo datasets for each point in the analysis (e.g., for each sample size), 2) 
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estimating the exponent for each dataset using the methods described above, 3) evaluating the 

distribution of exponents generated by each method, and, 4) comparing the performance of the 

methods based on bias (i.e., accuracy) and on the variance in the estimate (i.e., precision). We 

report on simulated distributions generated using λ = –2 and a = 1. The results for other 

combinations of parameters are qualitatively similar. We also evaluated the influence of sample 

size on the various estimation techniques, and for binning-based approaches we evaluated the 

effect of bin width on the analysis. 
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GENERAL RULES 

Uncorrected simple logarithmic binning gives the wrong exponent – Non-normalized 

logarithmic binning does not estimate λ; it estimates λ+1 (Han and Straskraba 1998, Bonnet et al. 

2001, Sims et al. 2007). Therefore if simple logarithmic binning is used, and an estimate of λ is 

the desired result, then it is necessary to subtract one from the slope of the logarithmically binned 

data. Not doing so will give the wrong value for the exponent. 

Binning-based approaches perform poorly – Linear binning performs poorly by practically 

any measure. In most cases it produces biased estimates of the exponent and its estimates are 

highly variable (Figs. 1 and 2). In addition, the estimated exponent is highly dependent on the 

choice of bin width, and this dependency varies as a function of sample size (Fig. 3). While 

normalized logarithmic binning performs better than linear binning, its estimates are also 

dependent on the choice of bin width and are more variable than alternate approaches. Our 

results are based on recommended practices in binning analyses (following Pickering et al. 

1995). Many alternative approaches to constructing bins and performing regressions on binned 

data are conceivable, and it is possible that some of these may improve the performance of the 

estimates. However, this highlights the fact that binning-based methods are sensitive to a variety 
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of decisions, and it appears that no amount of tweaking will be able to produce a consistent 

binning-based method for estimating the exponent. In general, binning results in a loss of 

information about the distributions of points within a bin and is thus expected to perform poorly 

(Clauset et al. 2007, Edwards et al. 2007). Therefore, while binning is useful for visualizing the 

frequency distribution, and normalized logarithmic binning performs well at this task, binning-

based approaches should be avoided for parameter estimation (Clauset et al. 2007). 
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Maximum likelihood estimation performs best – While fitting the CDF generally produces 

good results, estimates of λ using the CDF approach are often biased at small sample sizes and 

are consistently more variable than those using MLE (Fig. 2; Clark et al. 1999, Newman 2005). 

This probably results because the logarithmic transformation used in fitting the CDF weights a 

small number of points more heavily, and because the points in the CDF are not independent 

thus violating regression assumptions (see Clauset et al. 2007 for other issues with regression 

based approaches). While alternative approaches to fitting the CDF (e.g., non-linear regression) 

could improve the performance of this estimator, MLE has been shown mathematically to be the 

single best approach for estimating power-law exponents (i.e., it is the minimum variance 

unbiased estimator, Johnson et al. 1994, Clark et al. 1999, Newman 2005). In addition, MLE 

produces valid confidence intervals for the estimated exponent (Appendix A), which the other 

methods do not (Clark et al. 1999, Newman 2005, Clauset et al. 2007). 

COMPLICATIONS 

Minimum and maximum values – Minimum and maximum attainable values of ecological 

quantities can result either from natural limits on the quantity being measured (e.g., trees cannot 

grow above some maximum size), or from methodological limits on the values that can be 

observed (e.g., fires <1 ha are not recorded). In addition, the power-law form of the distribution 
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may not hold over the entire range of x, making it necessary to select a restricted range of x on 

which to estimate the exponent. While binning-based approaches do not assume particular limits 

on x (but see Pickering et al. 1995), CDF and MLE approaches assume the minimum and 

maximum attainable values of x given in Table 1. In some cases these limits may be known, but 

if not it may be necessary to estimate them (e.g., Kijko 2004, Clauset et al. 2007). Because 

maximum likelihood estimation for the truncated Pareto requires numerical methods, it has been 

suggested that in some cases with both a minimum and maximum value that the error introduced 

by assuming that there is no maximum is small enough that it is reasonable to estimate the 

exponent using the maximum likelihood estimate for the Pareto distribution. Clark et al. (1999) 

suggest this approximation in cases where the maximum value is at least two orders of 

magnitude greater than the minimum, i.e., 
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Deviations from the power-law – Empirical data are rarely perfectly power-law distributed 

over the entire range of x (Brown et al. 2002, Newman 2005). MLE and CDF approaches 

respond to deviations differently because the traditional MLE analysis implicitly weights data on 

a linear scale while the traditional CDF approach weights it on a logarithmic scale (McGill 

2003). The CDF approach will therefore respond more strongly to deviations from the power-law 

at large values of x  (such as those observed in individual size distributions; e.g., Coomes et al. 

2003) than the MLE approach, whereas MLE will respond more strongly to deviations at small 

values of x (commonly observed in many power-law distributions; e.g., Newman 2005). It is 

common to truncate data in the tails that exhibits deviations from the power-law before fitting 

the exponent (e.g., Newman 2005). However, these deviations should also not be ignored, as 

they may help identify important biological processes (e.g., Coomes et al. 2003). In some cases 

deviations may suggest that the power-law is in fact not the appropriate model for the data. This 
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can be evaluated using goodness of fit tests on binned data (Clark et al. 1999, Clauset et al. 2007, 

Edwards et al. 2007) or by using model selection techniques (e.g., Burnham and Anderson 2002) 

to compare the power-law to alternative distributions (Muller-Landau et al. 2006, Clauset et al. 

2007, Edwards et al. 2007). 

Discrete data – Most of the MLE and CDF methods presented here assume that the data are 

continuously distributed, as is often the case (e.g., body size). However, some ecological patterns 

(e.g., species-abundance distributions) are comprised of discrete observations (e.g., it is 

impossible to census 4.3 individuals). It is therefore necessary to use analogous discrete 

distributions. In the case of the Pareto distribution a discrete analog exists in the form of the aptly 

named discrete Pareto distribution (Johnson et al. 2005, Newman 2005) (Table 1; also called the 

Zipf or Riemann-zeta distribution). In some cases continuous distributions can reasonably 

approximate discrete data; but in the case of the Pareto, using the continuous maximum 

likelihood estimate instead of that derived from the discrete distribution produces strongly biased 

results and should be avoided (Appendix C, Clauset et al. 2007). 

IMPLICATIONS FOR PUBLISHED RESULTS 

One of the most important implications for published results is that studies that estimated 

exponents using uncorrected simple logarithmic binning (e.g., Morse et al. 1988, Meehan 2006) 

have reported the wrong exponent. This is particularly important in cases where the exponent is 

used to test quantitative predictions. For example, an analysis in Meehan (2006) evaluates 

whether observed individual size distribution exponents were consistent with those predicted, 

using simple logarithmic binning. Meehan concluded that the empirical data matched the 

predictions (Fig. 4a). However, since the reported exponents are equal to 1λ + , the analysis 

suggests that the size distribution is substantially steeper than expected, thus refuting rather than 

22 

23 
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supporting the hypothesized mechanism (Fig. 4a; Appendix B). 1 
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 Analyses based on linearly binned data should also be revisited due to the potential for 

biased estimates and the strong influence of bin-width on the estimated exponent. In particular, 

studies that have used linear binning to test the predictions of theoretical models or compare 

exponents from different datasets (e.g., Enquist and Niklas 2001, Coomes et al. 2003, Niklas et 

al. 2003, Kefi et al. 2007) may have reached incorrect conclusions. We reanalyzed the original 

data from Enquist and Niklas (2001) and found that while the original linear binning analyses 

suggested that observed diameter distribution exponents were near the theoretical prediction of -

2, MLE suggests that the observed exponents are actually closer, on average, to -2.5 (Fig. 4b; 

Appendix B). Our reanalysis indicates that the size-frequency distributions in Gentry’s plots are 

not, in general, adequately represented by a power law with an exponent of -2, as originally 

claimed by Enquist and Niklas (2001) (see Appendix B for an important caveat). 

While normalized logarithmic binning performs better than linear binning, it can still 

introduce biases of ~10% depending on the bin width. While many analyses based on normalized 

logarithmic binning are probably reasonable, the recent suggestion that normalized logarithmic 

binning is the best approach for fitting exponents (Sims et al. 2007) is unwarranted, and MLE 

should be used whenever possible (Clark et al. 1999, Clauset et al. 2007). 

Compared to binning-based approaches, results from fitting the CDF are probably 

reasonable. In cases with low sample sizes, where small errors in the estimated exponent could 

influence the conclusions of the study, or where minimum or maximum attainable values of x 

have been ignored (see Pickering et al. 1995), it may be worth checking the results using MLE. 

Regardless, MLE is the single best method for estimating exponents and should be used in future 

studies. 
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The vast majority of ecological studies that estimate exponents for power-law like 

distributions use approaches based on binning the empirical data (e.g., Morse et al. 1988, Enquist 

and Niklas 2001, Coomes et al. 2003, Niklas et al. 2003, Meehan 2006, Jovani and Tella 2007, 

Kefi et al. 2007, Reynolds et al. 2007, Sims et al. 2007). These binning based methods tend to 

produce results that are biased, have high variance, and are contingent on the choice of bin 

width. Instead of binning, maximum likelihood estimation should be used when fitting power-

law exponents to empirical data (Clark et al. 1999, Newman 2005, Edwards et al. 2007). 

 We have focused on power-laws because they, at least approximately, characterize a 

number of distributions of interest to ecologists. The issues raised here, and the conclusions 

discussed, should apply broadly to frequency distributions in general, and in particular to other 

distributions with heavy tails. Paying careful attention to fitting methodologies and consultation 

of statistical references (e.g., Johnson et al. 1994) should help improve the estimation of 

distributional parameters. 
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Table 1. Descriptions of different power-law frequency distributions, including the name of the distribution, the range of data and 

parameter values over which it applies, its probability density function (or probability mass function), f(x), its cumulative distribution 

function, F(x), and the maximum likelihood estimate (MLE) for λ based on the PDF1. The minimum value of x for which a 

distribution is valid is given by a, which is defined to be greater than 0. The maximum value of x for which a distribution is valid is 

given by b, which is defined to be less than infinity. 

Distribution f(x) F(x) MLE for λ 

(1) Pareto 

        Range  a x≤ < ∞

        Parameters 1, 0aλ < − >  
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(3) Discrete Pareto2,3
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(4) Power Function4 

        Range 0 x b≤ ≤  

        Parameters 1, 0bλ > − >  

( ) ( )11 b xλ λλ − ++  ( ) 1x b  ( ) ( )
1

1ˆ log log 1
n

ib xλ
−

⎡ ⎤

1in =

= − −⎢ ⎥∑
⎣ ⎦

 λ+

2The MLE equations for these distributions cannot be solved analytically for λ̂ , so they must be solved using numerical methods such 

as bracketing and bisection. 

4The Power Function distribution is often ignored in discussions of power-law distributions because it rarely occurs in natural systems 

(Newman 2005, Clauset et al. 2007). We include it here for completeness and because it has been suggested that in some groups 

individual size distributions based on mass may be approximately power-law distributed with 1λ > −  (e.g., Enquist and Niklas  2001).

1Sources: Pareto (Johnson et al. 1994); Truncated Pareto (Page 1968); Discrete Pareto (Clauset et al. 2007); Power Function (Evans et 

al. 2000). There is an error in the MLE solution given by Evans et al. (2000) that has been corrected. Note that MLEs are only 

guaranteed to be minimum variance unbiased estimators in the limit of large n. If n is small, corrections to the MLE are available 

(Johnson et al. 1994, Clark et al. 1999, Clauset et al. 2007). All solutions assume that a and b are known. 

3 ( ) ( )
0

,
k

a k a λζ λ
∞

−

=

= +∑ is the generalized zeta function and ( ),aζ λ′  is its derivative with respect to λ . 
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Fig. 1. Example of Monte Carlo results for the different methods of fitting the power-law 

exponent. (a) A single Monte Carlo sample from a Pareto distribution plotted as one minus the 

cumulative distribution. Data are plotted as gray circles along with the fits to the data using the 

four different methods: linear binning (red; Linear), normalized logarithmic binning (blue; 

Nlog), cumulative distribution function fitting (black; CDF), and maximum likelihood estimation 

(green; MLE). (b) Kernel density estimates of the distribution of exponents from 10,000 Monte 

Carlo runs. Line colors are the same as for (a) and the value of λ used to generate the data is 

indicated by the dashed line. Parameter values were n = 500, λ = –2, 1 x≤ < ∞ , linear bin width 

= 3, logarithmic bin width = 0.3, and the binning analyses utilized a minimum value of x and 

excluded the last bin and bins containing < 1 individual. Exclusion of the last bin is not 

necessary, but improves the performance of binning based approaches and is thus conservative in 

the context of our conclusions. The single sample for (a) was chosen to illustrate the general 

results shown in (b). Binning methods generate biased estimates of the exponent and result in 

more variable estimates than MLE and CDF based approaches. 

Fig. 2. Effect of sample size on the mean estimated exponent (a) and the variance of that 

exponent (b), for the four estimation methods: linear binning (red), normalized logarithmic 

binning (blue), cumulative distribution function fitting (black solid), and maximum likelihood 

estimation (green). Values for each sample size were generated using 10,000 Monte Carlo runs 

from the Pareto distribution with parameter values: λ = –2 (black dashed), 1 , linear bin 

width = 7.5, logarithmic bin width = 0.75. Other binning methods as in Figure 1. Linear binning 

fails to converge to the correct estimate. While the other methods all appear to converge at large 

sample sizes, maximum likelihood estimation always yields the lowest variance in the estimated 

exponent. 

x≤ < ∞
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Fig. 3. Effect of bin width on the estimated exponents for linear (a) and normalized logarithmic 

(b) binning for three different sample sizes: n = 200 (solid black line), n = 500 (dashed gray line) 

and n = 1000 (dotted black line); based on 1000 Monte Carlo runs from the Pareto distribution 

per point. Parameter values were λ = –2 (dashed black line) and 1 x≤ < ∞ . Error bars are + 2 

SEs. Other binning methods as in Figure 1. Changing bin width changes the estimated exponent 

for all sample sizes. 

Fig. 4. Reanalysis of individual size distribution data from (a) Meehan (2006) and (b) Enquist 

and Niklas (2001) using less biased methods. Plots are probability densities of the estimated 

exponents using the studies original methodology (dashed line; simple logarithmic binning in 

Meehan, linear binning in Enquist and Niklas), and using less biased methods (sold line; 

normalized logarithmic binning for Meehan, MLE for Enquist and Niklas). Both studies 

purported to support a theoretically derived exponent (dotted line). However, when the data are 

reanalyzed using a more accurate estimator of the exponent it becomes clear that the observed 

data deviate significantly from the theoretical prediction. 
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