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Abstract 
The species-area relationship (SAR) plays a central role in biodiversity research, and recent work 
has increased awareness of its temporal analog, the species-time relationship (STR).  Here we 
provide evidence for a general species-time-area-relationship (STAR), in which species number 
is a function of the area and time span of sampling, as well as their interaction.  For eight 
assemblages ranging from lake zooplankton to desert rodents, this model outperformed a 
sampling-based model and two simpler models in which area and time had independent effects.  
In every case the interaction term was negative, meaning that rates of species accumulation in 
space decreased with the time span of sampling, while species accumulation rates in time 
decreased with area sampled.  Although questions remain about its precise functional form, the 
STAR provides a tool for scaling species richness across time and space, for comparing the 
relative rates of species turnover in space and time at different scales of sampling, and for 
rigorous testing of mechanisms proposed to drive community dynamics. Our results show that 
the SAR and STR are not separate relationships but two dimensions of one unified pattern. 
Keywords: community dynamics, spatiotemporal scaling, species diversity, turnover, species-
area relationship, species-time relationship 
 

INTRODUCTION 
The species-area relationship (SAR) provides a classic example of scale dependence: 

species richness depends on the size of the area sampled.  The characteristic form of this 
relationship has motivated basic research (May 1975, Harner and Harper 1976, Shmida and 
Wilson 1985, Harte et al. 1999a) and proven valuable in conservation applications (Pimm and 
Askins 1995, Myers et al. 2000).  Although first proposed by Preston (1960), only recently has 
considerable evidence been compiled for a temporal analogue of the SAR, the species-time 
relationship (STR; e.g. Rosenzweig 1995, Hadley and Maurer 2001, Adler and Lauenroth 2003, 
White 2004, White et al. in review). For the assemblages analyzed in these studies, species 
richness increased regularly with the time period of sampling.   
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Despite extensive work on the SAR, and a rapidly growing literature on the STR, we 
have yet to establish a firm understanding of how rates of species accumulation in space and time 
are related. Adler and Lauenroth (2003) took a first step in this direction by constructing a 
species-time-area-relationship (STAR) with data for tallgrass prairie plants in Kansas, modeling 
species number as a function of the area and time-span of sampling as well as their interaction.  
The interaction term was negative, meaning that the scaling exponent or “slope” of the STR 
decreased as the spatial scale of sampling increased, and similarly, the slope of the SAR 
decreased as the temporal period of observation increased. Equating species accumulation with 
species turnover (Harte and Kinzig 1997, Lennon et al. 2001), this means that the rate of spatial 
turnover decreases as the time span of sampling increases, and vice versa. Although sampling 
effects undoubtedly play some role in generating this pattern (more individuals are censused as 
spatial and temporal scales increase), sampling processes alone cannot explain the SAR 
(Rosenzweig 1995, Plotkin et al. 2000, Green et al. 2003) or the STR (Rosenzweig 1995, Adler 
and Lauenroth 2003, White 2004, White et al. in review), pointing to the importance of spatial 
and temporal heterogeneity in the distribution of species. 

We believe the STAR has the potential to be an important tool in both applied and basic 
ecology.  By showing how species number scales across time as well as space, and allowing 
comparison of rates of spatial and temporal turnover at different scales, it will improve 
biodiversity assessment and help researchers choose appropriate sampling scales. Furthermore, 
the STAR permits more rigorous testing of underlying processes than use of the SAR alone 
(Adler 2004, Maurer and McGill 2004).  However, before this tool can be applied broadly, we 
must demonstrate its generality.  We analyzed 8 datasets representing a variety of ecosystems 
and taxa to address three questions.  First, does the general form of the STAR from the KS plant 
assemblage (Adler and Lauenroth 2003) hold for the additional datasets, or are simpler models 
superior?  Second, at what sampling scales are rates of spatial and temporal turnover equivalent?  
Finally, can differences in methodology, environmental variability, or life-history explain 
variation among datasets in the values of the STAR parameters and relative rates of species 
turnover in space and time? 

METHODS 
Computational and statistical approach  
 A true STAR would require sampling at a series of spatial scales over many consecutive 
years.  The datasets we collected provide continuous sampling through time, but in most cases 
sampled at only one spatial scale, such as the 10-m2 plots for the KS plants.  To represent 
increasingly large spatial scales, we aggregated these non-contiguous plots (details below).  Such 
aggregation compresses environmental gradients and overestimates the influence of area on 
species number (Adler and Lauenroth 2003).  Until multiscale, long-term data become available, 
this approach is the only way to explore the STAR. 
 After deciding on a method for spatial aggregation, we counted the number of species 
occurring in each spatial replicate, ranging from individual plots to aggregations of many plots, 
at a series of increasing time spans of observation.  We used a temporal moving window 
approach, calculating species number in every possible one-year time span (20 one-year 
windows in a 20 year time series), then every possible time span of two consecutive years (19 
windows), and so on, up to the time span of the entire time series (only one window).  For every 
combination of area and time span sampled, we then calculated the mean species number (Adler 
and Lauenroth 2003).   
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 We fit these data to four alternative models.  The first is a random sampling model, 
designed to test the null hypothesis that increases in species richness with time and area are 
simply a product of sampling more individuals at broader scales, and not a result of spatial and 
temporal heterogeneity in the distribution of species.  This approach requires appropriate density 
data, which only two of our datasets (AZ rodents and KS small mammals) offered.  To simulate 
random occurrence of individuals, we first created a species-abundance distribution (SAD) by 
summing the observed number of individuals of each species across the entire record.  Next, we 
calculated the number of individuals occurring in each plot in each year.  We then drew 
individuals at random without replacement from the SAD, filling up each plot in each year with 
the observed number of individuals.  We repeated this simulation 500 times, then compared the 
simulated and observed means to calculate residual sums of squares and Akaike’s Information 
Criteria (AIC), which penalizes models with extra parameters (Burnham and Anderson 1998). 
 The three other models represent power law based STARs of increasing complexity 
(Table 1).  The “simplest model” treats species number as a power function of the product of 
time span and area sampled, with species number determined solely by this volume.  This model 
assumes that time and area have equivalent and non-interactive effects on species number. The 
“no-interaction model” allows time and area to have different effects (species number can 
change at different rates for time span and area), but does not allow an interaction.  As a result, 
STRs and SARs will not change with spatial or temporal scale, respectively (Rosenzweig 1998).  
The “full model,” proposed by Adler and Lauenroth (2003), has parameters for time and area as 
well as a time-by-area interaction, allowing the effect of time span to vary with the spatial scale 
of sampling, and vice versa.  For each dataset, we fit the models to the mean species number 
observed at each combination of time and area using linear regression on log-transformed 
variables (Table 1).  Model parameters were similar when we used weighted linear regressions 
based on all individual observations (not shown).  We compared the fit of the four candidate 
models using AIC. Because counts of species number at nested spatial and temporal scales are 
not independent, estimates of the standard errors of the regression parameters are invalid, 
preventing hypothesis testing. However, estimates of the regression parameters themselves are 
unbiased.  The lack of independence does change the theoretical interpretation of AIC; in this 
case AIC serves only as an ad hoc penalty for the inclusion of additional parameters. 
Comparing species turnover in space and time 
 Since species accumulation is equivalent to species turnover in many cases (Harte and 
Kinzig 1997, Harte et al. 1999b), one way to compare relative rates of species turnover in space 
and time is to compare the spatial and temporal scaling exponents of the STAR. If the full model 
best describes the data, however, the interaction term will complicate the interpretation of these 
exponents because temporal turnover will change as a function of spatial scale, and spatial 
turnover will change with temporal scale.   
 In order to compare rates of spatial and temporal turnover across multiple scales, we 
introduce the concept of “scales of time-area equivalence.”  The scales of equivalence are the 
particular combinations of sampled area and time-span at which measured rates of turnover in 
time and space will be equal. If we know the slope of a SAR based on one year of sampling, we 
can use the STAR to calculate the spatial scale that we would have to sample through time to 
produce an STR with the same slope. Solving the full model for these scales results in a constant 
proportional relationship between spatial and temporal scale (Appendix A). Therefore, these 
scales of equivalence are given by the ratio 
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where A is the area sampled to calculate a STR, T is the time span sampled to produce a SAR, z1 
is the scaling exponent of the SAR at the unit time scale, w1 is the scaling exponent of the STR at 
the unit spatial scale, and u is the fitted interaction parameter. Any combination of sampling 
scales that correspond to this ratio will produce an STR and SAR with identical scaling 
exponents. For example, a ratio of 2-m2 /1-yr means that the rate of temporal turnover measured 
on a 4-m2 plot will equal the rate of spatial turnover calculated using data collected over a 2-year 
period.   
Dataset descriptions 
 The KS plant composition dataset comes from tallgrass prairie at the Konza Prairie 
Biological Station, Kansas (Knapp et al. 1998), part of the Long-Term Ecological Research 
(LTER) network.  We used 18 consecutive years of canopy cover data collected in 10-m2 circular 
permanent plots.  To represent larger sampling scales, we aggregated these plots by transect (5 
plots), soil type (20 plots), watershed (40 plots), and study area (all 120 plots combined).  Adler 
and Lauenroth (2003) provide more details on this approach, as well as results for a STAR based 
on natural log transformed mean species numbers.  Here we re-fit the relationship using log base 
10 and fit the three alternative models. 

An additional dataset from the Konza LTER draws on 20 years of data for small 
mammals (rodents and insectivores; Kaufman et al. 2000). Twenty live-trapping stations are 
distributed systematically along each 285-m line transect, with two traps set at each station for 4 
nights each sampling period.  We estimated that one transect samples an approximately 50x315-
m2 belt (16,750-m2), with two transects located within each prescribed fire-grazing treatment.  
We used 14 permanent transects from seven treatments that were arranged in a relatively linear 
fashion, and aggregated at 4 levels: two transects within each treatment, all possible nearest-
neighbor pairs of treatments (4 transects), all possible nearest-neighbor triplets of treatments (6 
transects), and all treatments (14 transects). 
 Long-term experiments in Chihuahuan desert scrub at Portal, AZ provide data on both 
rodents and vascular plants (Brown 1998).  Treatments at Portal are assigned to 50x50-m2 plots.  
For both the rodents and plants, we used data from the 8 control plots.  Rodent density is 
estimated by deploying a fixed-location grid of 49 traps within each plot one night each month 
(1978 through 2002). We represented larger spatial scales by aggregating the 50x50-m2 
treatment plots as follows: pairs of nearest-neighbor plots (2 plots total), nearest quadruplets (4 
plots), and all 8 plots combined. Two distinct plant guilds, corresponding to winter and summer 
annuals, have been censused for plant species composition on a grid of 16 permanent 0.25-m2 
quadrats within each 50x50-m2 treatment block (1988 through 2002).  We aggregated these 
quadrats at 5 levels: groups of 4 neighboring individual quadrats, all 16 quadrats in each 
treatment plot, pairs of nearest-neighbor plots (32 quadrats), plot quadruplets (64 quadrats), and 
all quadrats at the site combined. 
 The intertidal algae and invertebrate datasets were collected at 3 sites along the central 
California coast (Schiel et al. 2004).  Each site has two 30 m transects at different tidal elevations 
(+0.3 m and +0.9 m mean lower low water).  Within each tidal height, 10 1-m2 permanent 
quadrats have been sampled annually for 27 years (1976 – 2002), with all species present being 
recorded.  We aggregated these data at 4 levels: half of each transect (5 individual quadrats), 
whole transects (10 quadrats), individual sites (20 quadrats), and all quadrats at all sites (60 
quadrats). 
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 The Northern Temperate Lakes LTER site has monitored zooplankton assemblages in a 
series of lakes in Wisconsin for 21 years (Magnuson and Bowser 1990).  For zooplankton 
species, five modified Schindler-Patalas trap samples per year (2 from the summer, 1 each from 
all other seasons) are identified and counted from one permanent station of maximum depth on 
each lake.  We used pelagic species, removing all occurrences of littoral species. Arnott et al. 
(1998) showed that this sampling methodology effectively estimated whole lake pelagic 
zooplankton species richness. In contrast to the other datasets, we did not need to aggregate plots 
to represent increasingly large spatial scales.  The lakes represent a range of sizes, so we could 
construct SARs for species numbers across lake size.  Because the lakes are independent, these 
relationships will be more variable than the SARs based on non-independent, nested 
aggregations of plots.   

RESULTS 
 Comparison of AIC values identified the full model, which included independent effects 
of time and area as well as an interaction term, as the best model for all eight datasets (Appendix 
B).  The importance of including the interaction term is emphasized by the strong relationships 
between the time exponent and spatial scale, and between the area exponent and temporal scale 
(Fig. 1).  The random sampling model, estimated only for the KS small mammals and AZ rodent 
datasets, was the worst model in both cases, with AIC values much less negative than even the 
simplest version of the STAR (Appendix B).   
 For the full model STARs based on mean species numbers, values of z1, the slope of the 
linearized SAR given one year of sampling, ranged from 0.08 for NTL zooplankton to 0.42 for 
AZ summer annuals (Table 2, mean species numbers shown in Appendix C).  Except for the 
zooplankton, all values were greater than 0.22.  Values of w1, the slope of the STR given a 
spatial sample of 1-m2, were higher, ranging from 0.20 (CA intertidal algae) to 1.0 (KS small 
mammals).  The other six datasets had values of w1 between 0.35 and 0.50.  All interaction 
parameters were negative (Fig. 1): values ranged from -0.02 for intertidal algae to -0.18 for AZ 
summer annuals (Table 2).   
 From these STARs, we calculated the ratios that specify the scales of time-area 
equivalence, pairs of spatial and temporal sampling scales at which STRs and SARs, 
respectively, have equal slopes. The ratios spanned 12 orders of magnitude. CA intertidal algae 
had ratios of equivalence of 0.05-m2 /1-yr1, the only value less than 1-m2 /1-yr1.  CA intertidal 
invertebrates, and both groups of AZ annual plants had values between 2 and 6-m2 /1-yr1, KS 
plants reached equivalence at about 50 (Fig. 2), AZ rodents at 8,000, and KS small mammals at 
14,000-m2 /yr, whereas NTL zooplankton did not reach equivalence until 460,000-ha/yr (Table 
2). 

DISCUSSION 
Evidence for a general STAR 
 The 7 new STARs that we constructed for taxa ranging from lake zooplankton to desert 
rodents were all qualitatively consistent with the previously published STAR for KS tallgrass 
plants (Adler and Lauenroth 2003).  In every case, a model with independent parameters for 
time-span, area, and an interaction term was superior to simpler models.  The time-by-area 
interaction was always negative, meaning that the slope of the SAR decreased as the temporal 
scale of sampling increased, and the slope of the STR decreased as area sampled increased (Fig. 
1).  If one of the simpler models, which contained no interaction term, had provided the best fit, 
it would suggest that time and area have independent effects on species number. The existence of 
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a strong time-by-area interaction indicates that SARs and STRs represent two axes of one unified 
STAR, and suggests that similar underlying processes may operate in space and time.  
 While the full interaction models outperformed simpler models, a number of questions 
remain about the specific functional form of the STAR. Both power law and logarithmic forms 
of the model give good fits for most datasets (not shown), consistent with the results of analyses 
for STRs (Rosenzweig 1995, White 2004, White et al. in review) and for SARs (Connor and 
McCoy 1979, Lennon et al. 2001).  More importantly, our STAR model assumes a linear 
relationship between w and log area, and between z and log time-span. In the extreme we know 
this to be incorrect because it would allow w and z to take negative values at very broad spatial 
or temporal scales. As more appropriate data become available, future research should address 
such questions about the precise functional form of the STAR. 
Rates of species turnover in space and time 

The simplest way to compare relative rates of species accumulation, or turnover, in space 
and time is to compare the values of the time slope, w1, and the area slope, z1.  In every dataset 
except the intertidal algae, w1 was greater than z1, meaning that for a 1-m2 sample, increasing the 
time span of observation from 1 to 10 years resulted in the addition of more new species than 
increasing the area of sampling from 1 to 10-m2.  This is a critical result, since much field 
ecology is conducted at these fine scales, often with little consideration of temporal variability. 

Under the full STAR model, this simple comparison of w1 and z1 is complicated by the 
interaction term. To compare rates of spatial and temporal turnover at multiple scales, we 
estimated the sampling scales at which spatial and temporal turnover are equal. For the AZ 
annuals and intertidal invertebrates, the ratio determining these scales of time-area equivalence 
was in the single digits, meaning that spatial turnover collected on the scale of years is very 
similar to temporal turnover collected on the scale of meters. For the KS plants, the ratio was an 
order of magnitude larger (approximately 50-m2/yr1), so for every year sampled while estimating 
spatial turnover, we must repeatedly sample 50-m2 to find a similar rate of temporal turnover 
(illustrated in Fig. 2). The small mammals had ratios on the order of 103 or approximately 1ha/yr 
and the zooplankton had ratios several orders of magnitude larger. Three potential sources of this 
variability are methodological differences among datasets, differences in the environmental 
variability of each ecosystem, and contrasts in life history of the focal taxa. 
Explaining variability among datasets 

Methodological differences among our datasets create one source of variability in 
parameter values and scales of equivalence. Sampling methods for the plant and intertidal 
datasets are similar, based on fixed quadrats of similar size. The small mammal datasets, in 
contrast, rely on trapping, making determination of area sampled more uncertain. However, the 
most important methodological difference concerns the zooplankton data, for which broader 
scales correspond to larger whole lakes, analogous to an SAR for islands, while in other datasets 
we represented broader scales by aggregating subplots.  The zooplankton’s low z1 , which in turn 
contributes to a high ratio of equivalence, may reflect this difference.  

A more interesting explanation of variability among datasets invokes ecosystem 
differences in patterns of environmental variability. The expectation is that variability in species 
composition is associated with variability in the environment. For example, the larger ratio for 
KS plants compared to AZ desert plants may reflect the greater fine scale spatial heterogeneity in 
the desert, where bare ground is extensive and plant cover patchy. Differences in temporal 
variability may also be important. In seasonally variable environments, such as deserts and 
grasslands, a key environmental variable such as soil moisture might vary more from year-to-
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year than from one 1-m2 plot to another during one year.  The marine environment represented 
by the intertidal datasets, in contrast, may be more stable in time, but highly variable in space 
due to the importance of depth. This difference could explain why the intertidal algae had a 
much lower w1 and ratio of equivalence than the desert and grassland plants.  

Life history differences offer an intriguing but poorly understood source of variability. 
Unlike the slope of the power-law SAR or STR (Rosenzweig 1995), w1 and z1 in the full model 
of the STAR are inherently dependent on the choice of units. Therefore, we should expect 
organisms operating at different characteristic scales to exhibit different scales of equivalence. 
For example, while 1-m2 may contain many individuals and species of herbaceous plants, for 
small mammals, which have much larger home ranges and lower population density, a 1-m2 
sample means something quite different. From this perspective, many of the differences among 
datasets in the ratios of equivalence (Table 2) appear to make intuitive sense: ratios were much 
larger for the mobile vertebrates and zooplankton than for plants, algae, or intertidal 
invertebrates, presumably because the vertebrates and zooplankton are more mobile or widely 
dispersed, and sample the spatial environment at a coarser resolution.  
 If we wished to remove these life history influences, one possibility would be to rescale 
area by home range size. Re-fitting the STAR model to the KS small mammals data using a 
spatial unit of 0.5 ha, a reasonable estimate of average home range size for this species 
assemblage, gives a w1 of 0.40 and a z1 of 0.33, similar to the values from plant datasets, and the 
ratio of equivalence falls from 14,000- 12 yrm −⋅  to 2.9 “home range units” per yr. Rescaling the 
AZ small mammals by the same factor results in a similar rescaled ratio of 1.6.  Similar rescaling 
in time would be possible based on traits such as generation time, perhaps standardizing 
comparisons of organisms as disparate as annual plants and forest trees.  However, rescaling will 
only be appropriate to the extent that life history traits among species within a community are 
homogeneous, and it is unclear how rescaling could be applied to taxonomic groups without 
easily defined home ranges. More importantly, appealing as these rescaling exercises may be, 
their utility will be limited until we gain a theoretical understanding of how life history traits 
should influence the parameters of the STAR. We see great potential for modeling to generate 
testable hypotheses about the influence of traits such as mobility and longevity or dispersal and 
dormancy. Neutral models may provide an appropriate framework, as they have already 
demonstrated the influence of dispersal on the slope of the SAR in a homogeneous environment 
(Bell 2001, Hubbell 2001).  
Conclusion 
 The general pattern described by the STAR is not the product of spatiotemporal 
environmental variation alone, but of demographic processes and ecological interactions played 
out on a template of environmental variation (Storch et al. 2003, Tuomisto et al. 2003).  Teasing 
apart the role of these different factors and processes in generating macroscopic patterns is a 
central but stubborn problem in ecology (Levin 1992).  We are optimistic that quantifying rates 
of spatial and temporal turnover at different scales will improve our ability to identify the most 
important underlying processes (e.g. Adler 2004).   
 The most important result from this and earlier work (Adler and Lauenroth 2003) is the 
recognition that the SAR and STR are not independent relationships but rather two components 
of a single species-time-area relationship (STAR). The parameters of the STAR allow scaling of 
species number across space and time as well as calculation of scales of time-area equivalence, 
the sampling scales at which spatial and temporal rates of species turnover are equal.  The 
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STAR, along with derived metrics such as the scales of equivalence, offers an essential tool for 
understanding, describing, and comparing the spatiotemporal dynamics of ecological systems. 
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Table 1.  Alternative models for the species-time-area relationship (STAR). S is species number, A is area, T is time 
span, z is the scaling exponent or “slope” of the SAR, w is the slope of the STR, u is the interaction parameter, and c 
is a constant.  In the full model, we use z1 rather than z, the traditional, time-independent SAR slope, to emphasize 
that this is the slope of the SAR calculated using a temporal scale of one-year; similarly, w1 is the slope of the STR 
given a spatial scale of 1-m2.  Data were fit to the log-transformed models (log base 10). 
Description Power law form Log transformation 
Simplest model zATcS )(=  )log(log ATzcS +=  
No interaction 
model 

wzTcAS =  TwAzcS logloglog ++=  

Full model 
)log

2
()log

2
( 11 AuwTuz

TcAS
++

= TAuTwAzcS logloglogloglog 11 +++=

 
 
Table 2.  Parameters for the full model of the species-time-area relationship, fit to mean species number at each 
spatial and temporal scale of sampling. The R2 shows percent of the variation in mean species number at each 
area and time span explained by the model; the model does not explain variation in species number among 
replicate observations within each scale of sampling. The “Ratio of scales of equivalence” specifies 
combinations of sampling scales at which the slope of the species-time and species-area relationships are equal, 
and has units 12 yrm −⋅ . 

Dataset c z1 w1 u 
Multiple 

R2 
Ratio of scales of

equivalence  
KS plants  1.169 0.273 0.370 -0.056 0.977 52
AZ winter annual plants 1.031 0.324 0.423 -0.134 0.971 5.5
AZ summer annual plants 0.865 0.425 0.495 -0.178 0.983 2.5
Intertidal (CA) algae 1.120 0.235 0.204 -0.024 0.966 0.05
Intertidal (CA) invertebrates 0.991 0.309 0.353 -0.072 0.961 4.1
KS small mammals -0.792 0.330 1.004 -0.162 0.970 14,000
AZ rodents 0.120 0.215 0.374 -0.041 0.989 8,000
NTL zooplankton 0.989 0.084 0.489 -0.042 0.919 4.6 x 109



Species-time-area relationships 10

 

 
FIG. 1.  (a) Decreases in w, the slope of the species-time relationship (STR), with increasing spatial scale of 
sampling.  Symbols give the value of w produced by subsetting the full dataset for a given value of area sampled, 
then regressing log species number on log time-span.  (b) Decreases in z, the slope of the species-area relationship, 
with increases in the temporal scale of sampling.  Symbols give the value of z produced by subsetting the full dataset 
for a given value of time-span, then regressing log species number on log area.  In both panels, the dashed lines 
running through each set of points show w and z predicted by the full interaction form of the STAR (formula in 
Table 1, parameters in Table 2).   
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FIG. 2. Sampling scales that yield equivalent rates of species accumulation in space and time for the Konza plant 
community. The x-axis shows the time span sampled for a species-area relationship (SAR), while the y-axis 
shows the area sampled for a species-time relationship (STR).  The line shows combinations of scales that 
produce SARs and STRs with identical scaling exponents. Below the line, the STR will have a steeper slope than 
the SAR, indicating higher relative turnover in time than in space. Above the line, the opposite occurs.  The slope 
of the line (52 in this case), which also can be represented as a ratio (see Table 2), determines the “scales of time-
area equivalence” for this dataset.  
 


