National Aeronautics and Space Administration

Passive Space Radiation Shielding: Mass and Volume Optimization of Tungsten-Doped PolyPhenolic and Polyethylene Resins

Benjamin Klamm – NASA Ames Research Center

8/11/15

• Small Sats are volume constrained

Minimal space between boards

BioSentinel -

- Small Sats are volume constrained
- Desire to use COTS components
 - COTS components vs Rad Hard vs Rad Tolerant
 - COTS are SotA, therefore most efficient and effective at any given task
 - Rad Hard = ③ => wildly expensive vs. equivalent COTS, often based on decade old technology (inefficient or large or both), require minimum buys and long lead times
 - Rad Tolerant are COTS with inherent rad hardness qualities that have been tested. Good option (if available...not much testing to date but getting better!)

- Small Sats are volume constrained
- Desire to use COTS components
- Classic desire for more/better insulation
 - Initiated material trade study
 - Examined shield materials based on volumetric atomic stopping power $\begin{bmatrix} 1 & 2m_e c^2 \beta^2 \gamma^2 T_{max} & c^2 \end{bmatrix}$

$$-\frac{dE}{dx} = Kz^{2}\frac{Z}{A}\frac{1}{\beta^{2}} \left| \frac{\frac{-1}{2}}{2}\frac{-\beta^{2}}{I^{2}} - \frac{\beta^{2}}{I^{2}} - \frac{\beta^{2}}$$

- Small Sats are volume constrained
- Desire to use COTS components
- Classic desire for more/better insulation
 - Initiated material trade study
 - Examined shield materials based on volumetric atomic stopping power $\int 1 - 2m c^2 \beta^2 \gamma^2 T$

Proportional to average of each elements electron/nucleon ratio $\frac{dE}{dx} = Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left| \frac{\frac{1}{2} \ln \frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{max}}{I^{2}} - \beta^{2} - . \frac{\delta(\beta\gamma)}{2} + \frac{C(\beta)}{Z} + zL_{1}(\beta) + ... \frac{z^{2}L_{2}(\beta)}{Z} + \frac{C(\beta)}{Z} + \frac{$

Small Sat 2015

Element or Molecule	Density [g/cm3]	Avg. A	Avg. Z	Z/A	Z^2/A	Density*(Z/A)	Density* (Z^2/A)
tungsten	19.25	183.80	74.00	0.40	29.79	7.75	573.52
tantalum	16.69	180.94	73.00	0.40	29.45	6.73	491.55
lead	11.34	207.20	82.00	0.40	32.45	4.49	368.00
gadolinium	7.90	157.25	64.00	0.41	26.05	3.22	205.78
aluminum oxide	3.95	20.39	10.00	0.49	4.91	1.95	19.38
diamond	3.50	12.00	6.00	0.50	3.00	1.75	10.50
aluminum	2.70	26.98	13.00	0.48	6.26	1.30	16.91
boron carbide	2.52	11.05	5.20	0.47	2.45	1.18	6.17
sucrose	1.59	7.60	4.04	0.74	2.27	1.18	3.60
phenolic novolac	1.36	5.68	3.14	0.80	1.86	1.08	2.53
graphite	2.15	12.00	6.00	0.50	3.00	1.08	6.45
glycerol	1.26	6.57	3.57	0.79	2.07	0.99	2.61
Aramid fiber	1.44	8.50	4.43	0.68	2.39	0.98	3.45
lithium oxide	2.01	10.00	4.67	0.45	2.19	0.91	4.41
PEEK	1.32	8.47	4.41	0.68	2.38	0.89	3.14
polycarbonate	1.21	4.06	4.06	0.71	2.24	0.86	2.71
water	1.00	6.00	3.33	0.83	2.00	0.83	2.00
HDPE	0.97	4.67	2.67	0.83	1.67	0.81	1.62
liquid hydrogen	0.71	1.00	1.00	1.00	1.00	0.71	0.71
lithium nitride	1.27	8.75	4.00	0.45	1.84	0.57	2.34

Discovery

Innovations
Solutions

- Requirements
 - Low Cost
 - Easy to manufacture in house
 - High availability
 - Space Qualifiable (Outgassing, thermal stability, etc.)

Shields Protons/lons

Element or Molecule	Density [g/cm3]	Avg. A	Avg. Z	Z/A	Z^2/A	Density*(Z/A))ensity* (Z^2/A)
tungsten	19.25	183.80	74.00	0.40	29.79	7.75	573.52
tantalum	16.69	180.94	73.00	0.40	29.45	6.73	491.55
lead	11.34	207.20	82.00	0.40	32.45	4.49	368.00
gadolinium	7.90	157.25	64.00	0.41	26.05	3.22	205.78
aluminum oxide	3.95	20.39	10.00	0.49	4.91	1.95	19.38
diamond	3.50	12.00	6.00	0.50	3.00	1.75	10.50
aluminum	2.70	26.98	13.00	0.48	6.26	1.30	16.91
boron carbide	2.52	11.05	5.20	0.47	2.45	1.18	6.17
sucrose	1.59	7.60	4.04	0.74	2.27	1.18	3.60
phenolic novolac	1.36	5.68	3.14	0.80	1.86	1.08	2.53
graphite	2.15	12.00	6.00	0.50	3.00	1.08	6.45
glycerol	1.26	6.57	3.57	0.79	2.07	0.99	2.61
Aramid fiber	1.44	8.50	4.43	0.68	2.39	0.98	3.45
lithium oxide	2.01	10.00	4.67	0.45	2.19	0.91	4.41
PEEK	1.32	8.47	4.41	0.68	2.38	0.89	3.14
polycarbonate	1.21	4.06	4.06	0.71	2.24	0.86	2.71
water	1.00	6.00	3.33	0.83	2.00	0.83	2.00
HDPE	0.97	4.67	2.67	0.83	1.67	0.81	1.62
liquid hydrogen	0.71	1.00	1.00	1.00	1.00	0.71	0.71
lithium nitride	1.27	8.75	4.00	0.45	1.84	0.57	2.34

Discovery

Innovations

Solution

Shields Electrons/Photons

Element or Molecule	Density [g/cm3]	Avg. A	Avg. Z	Z/A	Z^2/A	Density*(Z/A	Density* (Z^2/A)
tungsten	19.25	183.80	74.00	0.40	29.79	7.75	573.52
tantalum	16.69	180.94	73.00	0.40	29.45	6.73	491.55
lead	11.34	207.20	82.00	0.40	32.45	4.49	368.00
gadolinium	7.90	157.25	64.00	0.41	26.05	3.22	205.78
aluminum oxide	3.95	20.39	10.00	0.49	4.91	1.95	19.38
diamond	3.50	12.00	6.00	0.50	3.00	1.75	10.50
aluminum	2.70	26.98	13.00	0.48	6.26	1.30	16.91
boron carbide	2.52	11.05	5.20	0.47	2.45	1.18	6.17
sucrose	1.59	7.60	4.04	0.74	2.27	1.18	3.60
phenolic novolac	1.36	5.68	3.14	0.80	1.86	1.08	2.53
graphite	2.15	12.00	6.00	0.50	3.00	1.08	6.45
glycerol	1.26	6.57	3.57	0.79	2.07	0.99	2.61
Aramid fiber	1.44	8.50	4.43	0.68	2.39	0.98	3.45
lithium oxide	2.01	10.00	4.67	0.45	2.19	0.91	4.41
PEEK	1.32	8.47	4.41	0.68	2.38	0.89	3.14
polycarbonate	1.21	4.06	4.06	0.71	2.24	0.86	2.71
water	1.00	6.00	3.33	0.83	2.00	0.83	2.00
HDPE	0.97	4.67	2.67	0.83	1.67	0.81	1.62
liquid hydrogen	0.71	1.00	1.00	1.00	1.00	0.71	0.71
lithium nitride	1.27	8.75	4.00	0.45	1.84	0.57	2.34

Discovery
Innovations
Solutions

- Study focuses on three trades/variables
 - 1. Graded-Z versus Composite-Z layering

- Two configuration options
 - 1. "Graded-Z"
 - Discrete material layers
 - Usually low-high-low Z configuration
 - 2. "Composite-Z" or "Doped-Z"
 - Semi-homogenous blend of materials in single layer due to microparticle dopant in resin matrix
 - Usually low Z resin with high Z dopant powder

- Study focuses on three trades/variables
 - 1. Graded-Z versus Composite-Z layering
 - 2. AND Phenolic versus HDPE low-Z resins _
 - 3. Increasing percentages of Tungsten microparticle doping in all cases

4 Cases

- Three model environments
 - 1. Sun Sync
 - Common higher dose LEO orbit -> spends some time in lower proton belt
 - 2. GPS
 - Very nearly worst case Earth orbit for total dose -> high electron flux
 - 3. Interplanetary
 - Worst case for high energy particles -> protons/ions

- MULASSIS Setup
 - Omni-directional particle beam impinging on

Slab ->	Composite-Z		Graded-Z 12%	W avg.	Graded-Z 35% W avg.		
	Al chassis	1 mm	Al chassis	1 mm	Al chassis	1 mm	
	Resin+%W	1 mm	Resin	1 mm	Resin	0.6 mm	
	Resin+%W	1 mm	Resin+35% W	1 mm	Resin+58% W	1.8 mm	
	Resin+%W	1 mm	Resin	1 mm	Resin	0.6 mm	
	Si sensor	2 mm	Si sensor	2 mm	Si sensor	2 mm	

 3 mm shield thickness was assumed and held constant for all cases

- MULASSIS Setup
 - Coefficient for direct comparison of effectiveness both within and between environments

Shielding mass coef.
$$\sigma_m = \frac{1}{mD}$$
 $[(rad/day)^{-1}(g/cm^2)^{-1}]$ Shielding density coef. $\sigma_v = \frac{1}{tD}$ $[(rad/day)^{-1}(cm)^{-1}]$

- MULASSIS Results
 - GPS

Discovery

Innovations

- MULASSIS Results
 - Sun Sync

Discovery

Innovations

- MULASSIS Results
 - Interplanetary

Innovations

Major Take-Aways

Space Administratio

- More tungsten == higher volume shielding efficiency
- More tungsten == lower mass shielding efficiency for protons/ions
- More tungsten == both higher mass & volume electron shielding efficiency
- Phenolic better in GPS (electron-rich) than HDPE
- HDPE very slightly better than Phenolic for proton/ion shielding
- Composite-Z universally better than Graded-Z option, as examined

Generated by: Joshua Davis, Aerospace Corporation 2012