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 

Abstract— A simple composite analytic expression has been 

developed to approximate the electron range in materials.  The 

expression is applicable over more than six orders of magnitude 

in energy (<10 eV to >10 MeV) and range (10
-9

 m to 10
-2

 m), with 

uncertainty of ≤20% for most conducting, semiconducting and 

insulating materials.  This is accomplished by fitting data from 

two standard NIST databases [ESTAR for the higher energy 

range and the electron IMFP (inelastic mean free path) for the 

lower energies]. In turn, these data have been fit with well-

established semi-empirical models for range and IMFP that are 

related to standard materials properties (e.g., density, atomic 

number, atomic weight, stoichiometry, band gap energy). A 

single free parameter, the effective number of valence electrons 

per atom Nv, is used to predict the range over the entire energy 

span. 

 
Index Terms—range, inelastic mean free path, spacecraft 

charging 

I. INTRODUCTION 

HE range, R, or maximum distance an electron of a given 

incident energy can penetrate through a material before all 

kinetic energy is lost and the electron comes to rest, is a 

common way to parameterize electron interactions with 

materials.  The range is used in spacecraft charging 

calculations to predict the charge distribution of deposited 

electrons in materials and to model secondary and 

backscattered electron emission.  It is also used to predict the 

distribution of energy deposited by incident electrons as they 

traverse a material; this distribution is further used to model 

radiation induced conductivity.  It is therefore important for 

spacecraft charging models to have a realistic, reasonably 

accurate, and efficient expression to predict the approximate 

range of electron energies commonly encountered in space 

plasma fluxes, from ~10 eV to ~10 MeV.  This expression 

needs to be readily implemented for a wide array of 

conducting, semiconducting and insulating spacecraft 

materials with a minimal number of fitting parameters. 

 Figure 1 offers dramatic visual evidence of the validity of 

the range of electrons in a material.  The white line seen at the 
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center of the side view results from melting of the plastic 

target during discharge, as electrons deposited in a narrow 

distribution at a depth of R≈3 mm by a monoenergetic ~1 

MeV electron beam are released. 

II. THEORY 

The desired range expression can be developed by merging 

well known semi-empirical models for the interaction of 

electrons with materials in different energy regimes by 

employing the continuous-slowing-down approximation 

(CSDA). In the CSDA, the rate of energy loss (or total 

stopping power) at every position along the penetration path, 
  

  
, is assumed constant; variations in energy-loss rate with 

energy, E, or penetration depth, z, are neglected. For a given 

incident energy, Eb, the CSDA range is obtained by integrating 

the reciprocal of the total stopping power with respect to 

energy over the full penetration depth such that     ∫
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For a constant energy-loss rate in the CSDA, 
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⁄ is a constant. Here Em is equal to mean 

energy lost per collision occurring at mean free path λm≡ 

λIMFP(Em), and Emim is the energy at the minimum in the 

inelastic mean free path curve at λmin≡ λIMFP(Emin). A 

reasonable approximation for Em is the geometric mean of the 

plasmon energy and the bandgap energy, Eg, times an 

empirically determined factor of 2.8 [3]   
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where the plasmon energy is  
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Nv, is the effective number of valence electrons per atom,   is 

Planck’s constant divided by 2π, ε0 is the permittivity of free 

space, and qe and me are the electron charge and rest mass, 

respectively. 

Tabulated values of the electron ranges at high energies 

using the CSDA can be found in the NIST ESTAR database 

spanning incident energies from EHI~20 keV up to ~1 GeV 

[4].  The CSDA can also be applied to lower energy ranges.  

The NIST electron inelastic mean free path (IMFP) database 

[5] has tabulated values for the IMFP, which is closely related 

to the range as shown below, which are valid for energies 

from ~30 eV to ELO~1 keV.  Thus, in order to create an 
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analytic expression for the full range of energies desired, the 

problem can be broken into three parts according to energy of 

the incident electron: a high energy range for Eb>ELO≡1 keV; 

a mid-energy range for Em<Eb<ELO; and a low energy range 

for energies Eb<Em. 

A. High Energy Range 

A simple power law approximation for the range is used  
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where the term in brackets is a first order relativistic 

correction that becomes significant above ~105 eV.  Figure 2 

shows the fit to tabulated data for Au from the ESTAR 

database, using both a simple power law and a power law with 

the first order relativistic correction.  Figure 3 shows fits to the 

Au data using several range approximation formulas. 

The stopping power exponent n is determined by requiring 

that the expressions for RHE(E) matches the more accurate low 

energy (non-relativistic) Bethe-Joy range expression based on 

the Bethe stopping power formula [6] as extended by Tanuma 

[7] used in conjunction with the NIST ESTAR database [4] ,  
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at two energies ELO and EHI. Here MA is the atomic weight, ZA 

as the atomic number, ρm is the mass density, and k=0.8 is a 

fixed empirical constant.  EHI≡20 keV is the lower energy at 

which data are available for all materials in the ESTAR 

database and ELO≡1 keV is the upper energy at which data are 

available for all materials in the IMFP database.  This leads to 

an expression for the stopping power exponent 
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Note that the only free parameter in this expression is NV, 

along with the electron mass and the fixed empirical constant 

k=0.8. 

The high energy expression for RHE(E) is normalized to the 

mid-energy expression at ELO, as detailed below, by setting  
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Again, note that the only free parameter in this expression is 

NV, along with Em which is expressed above in terms of NV and 

the band gap energy, Egap.  

Figure 1. Front (Left) and side (Right) views of a Lichtenberg discharge 

tree. The white line (Right)indicates the narrow distribution of deposited 

charge from a ~1 MeV electron beam at R≈3 mm.  

 

Figure 2. Comparison between the standard power law and the 

relativistic power law for Au. The relativistic power law allows 

approximations for energies up to 10 MeV with percent errors ~20%.  

 

Figure 3.  Comparison between several range approximations and the 

data from the ESTAR database for Au. The IMFP data for Au are also 

plotted along with the TPP-2M IMFP formula for  λIMFP(E).  
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B. Mid-Energy Range 

Direct extrapolation of the range from the ESTAR data to 

lower energies is not valid for energies comparable to the 

atomic electronic structure, typically a few keV and below, 

because the discrete energy nature of the collisions becomes 

important. However, a simple extension of the CSDA to lower 

energies can relate the range to the electron IMFP, where 
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Here the stopping power is again assumed equal to the total 

energy lost (incident energy, Eb) divided by the total distance 

traveled (range, R). This is set equal to the mean energy lost 

per collision, Em, divided by the mean distance traveled per 

collision all times the probability that a collision occurs, 

(       ⁄ )=(        ⁄ ).  Here, the energy dependence 

in the range is fully contained in the energy dependence of the 

mean free path. For Eb>Em, λIMFP(Eb) is assumed to be given 

by the TPP-2M formula used in conjunction with the NIST 

IMFP database [5]: 
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Once again, by using the proposed equations of Tanuma 

contained in the TPP-2M model, the only free parameter in 

this expression is NV, along with the materials constants Egap 

(through Em) plus MA and ρm.  Because of the shallow core 

levels (generally with binding energies <30 eV) that may 

contribute significant intensity to the energy-loss function, 

there arises an ambiguity in the choice of the value of the 

number of valence electrons [8].  While Egap may be 

considered an additional fitting parameter for insulators, its 

effect on R is minimal causing primarily a small vertical shift 

in the range curve.  

C. Low Energy Range 

To calculate the range for Eb<Em, we assume that the energy 

loss per collision of the low energy collisions is constant and 

equal to the mean excitation energy Em, but that the 

probability that an electron undergoes one such inelastic 

collision falls off as    ⁄ (     ⁄ )=    ⁄ (      ⁄ ), 
while for Eb<Em, the IMFP is constant and equal to the IMFP 

Figure 4.  Graphs showing the variation of the range expression by changing the single fitting parameter Nv. For graphs (a) through (d), Nv = 1, 5, 12 

(best fit) and 20, respectively.  

 

(b) 

 

(c) 

(a) 

(d) 
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at the mean energy loss or λIMFP(Em)=λm.  This simple low 

energy approximation avoids the unusual asymptotic behavior 

exhibited by the TPP-2M expression at energies below Em that 

is evident in the green curves in Fig. 4. 

D. Composite Range Function 

The final result is a continuous composite analytic 

approximation to the range with a single fitting parameter 

spanning from <10 eV to > 10 MeV: 
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Figures 5(a), 5(c) and 5(d) show fits to data for three 

prototypical materials: the conductor Au; the polymeric 

insulator polyimide (Kapton), and the insulating ceramic 

Al2O3.  Table I lists the fitting parameter NV, along with 

materials properties and derived values, for 14 typical 

spacecraft materials.  The residual curve for the fit for Au is 

shown in Fig. 5(b). 

III. APPLICATIONS 

The usefulness of an analytical approximation of the range 

to spacecraft applications can easily be demonstrated by 

considering expressions for the dose rate and the radiation 

induced conductivity; both expressions require an energy 

dependent range expression.  

 The dose rate is defined as the energy deposited by incident 

radiation per unit mass.  The dose rate in the CSDA for a 

homogeneous material is proportional to the volume in which 

radiation energy is deposited, which is equal to the beam cross 

section times R [9]. Thus,  
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The dose rate for Au as a function of incident energy is shown 

in Fig. 6. 

Fig. 5. (a) Comparison of the range formula for Au with Nv = 12.0 . (b) Residual plot of Au range data in Fig 5. (c) Comparison of the range formula for 

Kapton with Nv=4.1.  (d) Comparison of the range formula for Al2O3 with Nv=5.0. 
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Radiation Induced Conductivity (RIC) is the enhanced 

conductivity that results from the energy deposited in this 

volume.  In the CSDA  

 

 

 

with ½<Δ<1 [10].  Figure 7 shows the RIC for Kapton as a 

function of incident energy for three values of Δ.  Notice that 

both  ̇ and ζRIC exhibit energy dependent maxima as a 

consequence of the minimum in the range expression. 

Secondary electron (SE) emission is another extension of 

the range which would be highly beneficial.  In the CSDA, the 

SE yield can be expressed as 
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Work is underway to develop an expression for the SE yield in 

terms of the range expression developed here.  The expression 

would have three independent free parameters; NV and the 

maximum SE yield δmax at energy Emax. 
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Figure 6.  Dose rate as a function of energy in the CSDA for Au. 

 

Table I. Materials Properties and Fitting Parameters  

 
Material Fitting 

Parameter 

NV 

Material Properties Derived Values 

Name Formula ρm 

(gm/cm
3
) 

ZA MA 

(amu) 

Egap 

(eV) 

n b 

(µm/eV
-n

) 

EP 

(eV) 

Em 

(eV) 

λmin 

(nm) 

Graphite C 5.3 1.7 6 12.01 0.1 0.642 0.7143 24.87 69.6 0.793 

Amorphous C C 4.0 2.0 6 12.01 0.1 0.676 0.3877 23.43 65.6 0.614 

Aluminum Al 5.0 2.7 13 26.98 0.0 0.668 0.5075 20.31 56.9 0.467 

Silicon Si 5.0 2.33 14 28.09 1.11 0.676 0.5422 18.49 51.9 0.438 
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Aluminum 

Oxide 
Al2O3 5.0 3.97 10 30.392 9.9 0.628 0.5188 28.33 84.0 0.746 

Silicon 

Dioxide 
SiO2 5.0 2.32 9.98 19.99 8.9 0.653 0.6215 21.87 66.1 0.711 

Glass, Pyrex doped SiO2 6.2 2.32 9.98 19.99 4 0.626 0.8150 24.36 69.1 0.656 

 

Figure 7.  RIC as a function of energy in the CSDA for polyimide. 
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