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ABSTRACT 
 
 

Improving Surrogate Monitoring Techniques for Suspended Sediment 
 
 

by 
 
 

Brant R. Whiting, Master of Science 
 

Utah State University, 2013 
 
 
Major Professor:  Dr. Jeffery S. Horsburgh 
Department:  Civil and Environmental Engineering 
 
 
 In the United States, suspended sediment is cited as the most common impairment 

to water quality.  In addition to suspended sediment being a primary pollutant of concern, 

many other contaminants and nutrients are associated with suspended sediment particles.  

Suspended sediment has significant ecological impacts stemming from changes in 

physical, chemical and biological characteristics of surface waters and the benthic 

environment.  The ability to accurately quantify suspended sediment concentrations and 

fluxes at appropriate temporal and spatial scales is critical in assessing whether streams 

are meeting their designated beneficial uses and in implementing and evaluating 

watershed management and mitigation plans and restoration efforts.  Currently, new 

methods for quantifying suspended sediment concentrations and fluxes use least squares 

regression between turbidity and TSS (total suspended solids) and have been shown to be 

site-specific and are affected by several factors, including the size and characteristics of 

suspended sediment particles; and a single in situ sensor and grab samples of TSS may 
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not be representative of conditions throughout the entire stream cross section.  In this 

research we used turbidity as a surrogate for TSS at six locations in the Little Bear River, 

Utah, U.S.A.  We also examined the variability in discrete versus width and depth 

integrated TSS sampling at two sites to develop methods for accounting for these within 

the surrogate relationships and improve resulting estimates of TSS and fluxes.  TSS 

concentration quantiles were used to assess—in probabilistic terms—the duration and 

magnitude of potential water quality criteria exceedance.  Findings highlight that among 

some monitoring locations with wide spatial distribution, turbidity-TSS relationships are 

not site-specific for the more frequent (90th percentile) but lower (<50 NTU) turbidity 

values.  Comparisons of area-weighted point measures of turbidity and width and depth 

integrated TSS samples revealed that suspended sediment flux is homogenous at their 

respective stream cross sections for 90% and 99% of the time at sites 2 and 6, 

respectively.  The results are applicable in the determination of attainment or exceedance 

of a given water quality criterion. 

 
(162 pages) 
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PUBLIC ABSTRACT 
 
 

Improving Surrogate Monitoring Techniques for Suspended Sediment 
 
 

Brant R. Whiting 
 

 
 The quality of water of our nation’s rivers and streams is important to many vital 

uses including drinking water treatment, recreation, and the natural environment.  Water 

quality can be severely impacted by  the quantity and type of suspended sediment found 

therein.  Because suspended sediment can be associated with many other contaminants 

that degrade water quality, it is noted as the most common impairment to water quality in 

the United States.  Suspended sediment can cause significant ecological impacts to the 

chemical and biological characteristics of surface waters.  The ability to accurately 

quantify suspended sediment concentrations at the appropriate time(s) and location(s) is 

critical in assessing whether streams are meeting their designated beneficial uses and in 

implementing and evaluating watershed management and mitigation plans and restoration 

efforts.  Currently, new methods for quantifying suspended sediment concentrations use 

mathematical and statistical techniques to relate turbidity and suspended sediment and 

have been shown to be affected by several factors, including the size and characteristics 

of suspended sediment particles.  In this research we used turbidity as a surrogate 

(substitute) for suspended sediment at six locations in the Little Bear River, Utah, U.S.A.  

We also examined the differences between single-point and width and depth integrated 

suspended sediment sampling at two sites.  This was used  to develop a method to 

account for the differences and improve the resulting estimates of suspended sediment 
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concentrations.  Statistical techniques were used to assess—in probabilistic terms—the 

duration and magnitude of potential water quality criteria exceedance.  Findings highlight 

that among some monitoring locations with wide geographic distances, turbidity-

suspended sediment relationships are not site-specific for the more frequent (90th 

percentile) but lower (<50 NTU) turbidity values.  Comparisons of point measures of 

turbidity and width and depth integrated suspended sediment samples revealed that 

suspended sediment is homogenous at their respective stream cross sections for 90% and 

99% of the time at sites 2 and 6, respectively.  The results are applicable to water 

managers who are charged with the determination of attainment or exceedance of water 

quality standards. 

 
Brant R. Whiting 
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CHAPTER 1 

INTRODUCTION 

As of 2009, only five states within the United States had numeric water quality 

criteria for suspended sediment in the nation’s surface waters.  Despite the lack of 

established numeric water quality criteria for suspended sediment in the United States, 

suspended sediment (including other solid-phase particulates) is cited as the most 

common impairment to water quality (U.S. EPA, 2008).  Indeed, suspended sediment has 

significant ecological impacts stemming from changes in physical, chemical and 

biological characteristics of surface waters and the benthic environment (Rubin, 1995; 

Henley et al., 2000; Owens et al., 2001; Soulsby et al., 2001; Carter et al., 2006; 

Schoellhamer et al., 2007). Furthermore, suspended sediment is not only a primary 

pollutant of concern, but it can also be associated with many other contaminants and 

nutrients including phosphorus (Kronvang et al., 1997; Schoellhamer et al., 2007; 

Horowitz, 2008).  The ability to accurately quantify suspended sediment concentrations 

and fluxes at appropriate temporal and spatial scales is critical to assessing whether 

streams are meeting their designated beneficial uses and in implementing and evaluating 

watershed management and mitigation plans.    

Techniques for quantifying suspended sediment concentration  have typically 

included traditional grab sampling methods, which lack sufficient temporal frequency to 

capture daily, weekly and monthly fluctuations in these concentrations and fluxes 

(Christensen et al., 2002; Tomlinson and De Carlo, 2003; Kirchner, 2004; Horsburgh et 

al., 2010; Jones et al., 2010).  Currently, new methods for quantifying suspended 

sediment concentrations and fluxes are being used throughout the United States that 
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convert high frequency, in situ measurements of surrogates such as turbidity into high 

frequency estimates of suspended sediment concentration using statistical regression 

techniques that relate in situ turbidity measurements and much lower frequency grab 

samples of suspended sediment (Schoellhamer and Wright, 2003; Rasumussen et al., 

2009; Jastram et al., 2010).  One potential application of the large, continuous datasets 

that result is assessing whether water quality criteria are being exceeded.  Doing so 

requires an examination of the uncertainty associated with the predicted suspended 

sediment concentrations. 

Although the use of surrogate methods is becoming more widespread, there are 

some limitations to the approach.  Turbidity-based suspended sediment concentration 

estimates are affected by two major factors (1) particle characteristics such as size, 

density, organic/mineral composition, and sediment and water color that affect the 

measured turbidity response and (2) point based sampling compared to width and depth-

integrated sampling techniques (Jastram et al., 2010).  Because turbidity is an optical 

measurement of the scattering of light as it passes through a given water sample, particle 

size, color and density have direct influence on turbidity and it’s correlation with 

suspended sediment.  Turbidity sensor output has been shown to vary by a factor of four 

for samples with identical suspended sediment concentrations but different particle 

characteristics (Gippel, 1995; Schoellhamer et al., 2003).  It is hypothesized that this is 

one of the main reasons that relationships between turbidity and suspended sediment 

concentration are site specific.  Additionally, in most applications surface-grab sampling 

methods and in situ turbidity measurements are made at a single sensor location in the 
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stream channel.  While it is known that a single-point measurement of turbidity and 

suspended sediment may vary significantly from width and depth-integrated sampling 

methods (Martin et al., 1992; Horowitz, 2008; Jastram, 2010), it may be possible to 

account for these differences by developing a correction factor that can be used in 

regression model equations to account for this variability at a particular site. 

This research sought to improve surrogate methods for estimating suspended 

sediment concentrations by: 1) investigating and suggesting ways to account for the 

impacts of sediment characteristics on turbidity measurements and subsequent 

concentrations estimated from turbidity; and 2) investigating the variability in 

concentrations between point and cross sectional sampling methods as well as methods 

for mitigating differences in estimation of concentrations and loads. 

This research sought to identify the physical properties of suspended sediment 

that contribute to the site specific nature of relationships between turbidity and suspended 

sediment concentration and investigated their quantification and inclusion in regression 

models.  This was done in effort to understand the effects of sediment particle 

characteristics on turbidity and improve the precision and accuracy of suspended 

sediment concentration and flux estimates derived from turbidity.  

This research also investigated the appropriateness of using single-point samples 

of turbidity and suspended sediment concentration as representative of the entire stream 

cross section, as opposed to using depth and width-integrated methods.  Examining the 

differences between the single-point measurements and the more integrative, cross 

sectional methods for measuring suspended sediment concentration enabled us to develop 
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a method for correcting estimates of concentration and load derived from a single 

turbidity sensor to be more representative of conditions across the entire channel. 

Because of the existing continuous monitoring infrastructure and available water 

quality and environmental data, the Little Bear River watershed of northern Utah, USA, 

offered an ideal environmental observatory in which the proposed research could be 

tested over a range of spatial conditions and time scales.  This research demonstrated 

improvements to the methodology for quantifying high frequency measures of suspended 

sediment concentrations using surrogate techniques by accounting for the effects of 

particle characteristics on measurements of turbidity.  This research allowed us to 

examine differences between discrete and cross section integrated suspended sediment 

concentrations and to develop a correction factor to account for differences between the 

discrete-based regression computed suspended sediment concentrations and the cross 

section integrated concentrations.  Finally, this research demonstrated how quantification 

of the uncertainty associated with high frequency estimates of suspended sediment 

concentration can be useful in the determination of attainment or exceedance of a water 

quality criterion.  These results are of interest to both management and policy based 

practices and programs. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Study Site Description 

The Little Bear River watershed is located in the south end of Cache Valley, Utah 

and encompasses roughly 740 km2.  The headwaters form in the Bear River Mountain 

Range, and the river drains to Cutler Reservoir on the west side of Cache Valley.  

Elevations within the watershed range from 2865 m to 1345 m.  Land use within the 

upper watershed is comprised of mostly forest and grazing, while the lower portion of the 

watershed is made up primarily of agriculture with irrigated crop lands and some urban 

development.  Hydrology of the watershed is dominated by spring snowmelt, with water 

in the upper watershed being stored within two reservoirs, Porcupine Reservoir in the 

upper East Fork and Hyrum Reservoir near Paradise, Utah (Figure 2.1), before being 

released and diverted into agricultural irrigation canals for use during the irrigation 

season. 

Since 2005, research conducted by the Utah Water Research Laboratory at Utah 

State University has facilitated the installation of seven continuous water quality 

monitoring stations (Figure 2.1).  Table 2.1 summarizes the locations and descriptions of 

the seven water quality monitoring sites located in the watershed along with the dates 

from which the respective measured parameters are available. 

Five of these stations (sites 1-5) are located above Hyrum reservoir where land 

use is dominated by open range grazing with some urban and agriculture use and stream 

channels have higher slopes and velocities.  The lower portion of the watershed includes 
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two monitoring sites (one below Hyrum Dam and one at the terminus of the watershed 

near the confluence with Cutler Reservoir) where the land use near the river is dominated 

by agriculture.  Additionally, within this lower section of the river soils are 

predominantly fine grained lacustrine sediments, and one regulated point source 

(Wellsville municipal wastewater treatment facility) contributes to the river.  The lower 

portion of the river also exhibits lower channel slopes with meandering planform and 

slower flows. 

The Little Bear watershed is interesting for research purposes because it has been 

affected by many anthropogenic influences such as a wide mix of land uses (forest, 

grazing, agriculture, urban), hydrologic modifications (reservoir dam releases, diversions 

canals), nonpoint sources (agriculture, animal feed lots) and point sources (Wellsville 

WWTP) that have caused elevated levels of sediment and nutrients.  The Little Bear was 

listed on Utah’s 303(d) list for impaired water bodies due to phosphorus and stream 

channel alteration.  Many improvements have been completed in the Little Bear 

watershed as a result of a Total Maximum Daily Load (TMDL) implementation starting 

in 2000 (Utah DEQ, 2006).  Because of the continuous water quality monitoring 

infrastructure in the Little Bear, the combined impact of these anthropogenic influences, 

varying climate conditions and watershed behavior can be examined. 

2.2 Existing Data Collection Infrastructure 

 The Little Bear River monitoring system was established as one of ten test bed 

sites as part of the WATERS network (http://www.watersnet.org) project funded by the 

National Science Foundation.  The Little Bear River was instrumented at seven locations 
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between the years of 2005 and 2007 with water quality monitoring equipment operating 

continuously.  See Figure 2.1 for map for location of sites and Table 2.1 for summary of 

water quality monitoring sensors. 

Water quality and stream flow data are collected on the Little Bear River using 

the sensors that are summarized in Table 2.2.  A Hydrolab MS5 water quality sonde, 

Forest Technologies DTS 12 turbidity sensor, and ACData Solutions SPXD-600 pressure 

transducer.  The Hydrolab sondes record measurements of water temperature, dissolved 

oxygen, specific conductance and pH; the turbidity sensor measures turbidity values and 

water temperature; and the pressure transducer records stage.  Campbell Scientific 

dataloggers (e.g., CR200 and CR800) are programmed to initiate measurements every 

five minutes (turbidity sensor every 30 minutes).  These measurements are averaged over 

30 minutes and reported as 30 minute average values. 

Meteorological monitoring is continuously conducted at four weather stations in 

the Little Bear watershed.  Each station is equipped with a CS 215 temperature and 

relative humidity probe, CS100 barometric pressure sensor, TE525 tipping bucket rain 

gage, CS300 pyranometer, 03001 R.M. Young Wind Sentry set, CS SR50A Sonic 

Ranging Sensor and soil moisture probes. See Table 2.3 for a summary of 

instrumentation at the weather stations. 

Continuous data from each of the seven water quality monitoring sites and four 

weather stations are transmitted daily via radio telemetry and TCP/IP networks to the 

Utah Water Research Laboratory where they are uploaded to a central database.  This 

data can be queried and downloaded through http://littlebearriver.usu.edu. 
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Data from the Paradise and Mendon sites have been used to develop high 

frequency estimates of total suspended solids (TSS) and total phosphorus (TP) 

concentrations using turbidity as a surrogate (Jones et al., 2010).  Preliminary work has 

also been done to develop estimates of TSS concentrations and related loadings from 

turbidity data at the remaining five sites (Horsburgh et al., 2010).  Differences in 

relationships developed at each site were observed in this preliminary work, but the 

reasons for these differences were not investigated in depth.  The continuance of data 

collection over the past several years has contributed to a rich database of high resolution 

water quality and environmental data for the Little Bear watershed.  Because of the 

existing infrastructure and available data, the Little Bear River is an ideal environmental 

observatory in which the proposed research may be tested over a wide range of spatial 

conditions and time scales. 

2.3 Fluvial Suspended Sediment 

In 2008 the U.S Environmental Protection Agency (U.S. EPA) reported that 

sediments (and other solid-phase particulate) are the most common pollutant to U.S 

surface waters (U.S. EPA, 2008).  This is also true in Utah, where 1,517 out of 2,975 

stream miles (51 %) listed as impaired on the State’s 303(d) list are listed for sediment 

related impairments (Utah DEQ, 2006).  Indeed, sediment-related problems in North 

America are causing physical, chemical and biological degradation to water quality and 

are estimated to cost $20 - $50 billion each year (Pimentel et al., 1995; Osterkamp et al., 

1998).  Problems associated with sediment include potential impacts to:  drinking water 

treatment processes (AWWA, 1990), fate and transport of heavy metals (Carter et al., 
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2006; Schoellhamer et al., 2007), recreational uses, reservoir storage and hydraulic 

operations (Pruitt, 2003), barge transportation and navigation lanes (U.S. Army Corps of 

Engineers, 2011), light suppression effects on stream bed vegetation, ecological function 

of aquatic habitat (Henley et al., 2000), food webs, and fish spawning beds (Rubin, 1995; 

Soulsby et al., 2001).  Sediments can also determine the transport and fate of pollutants as 

they are carried through the river system and are deposited and resuspended over time 

(Owens et al., 2001). 

Fluvial suspended sediment is the solid particulate matter suspended in the water 

column and ranging in size from 1μm – 1 mm (Chapra, 1997), though the actual range 

observed at any site is a subset of this range.  Suspended sediment is quantified on a mass 

(dry weight) per volume basis commonly in milligrams per liter (mg/L).  Various 

gravimetric methods exist for the determination of suspended sediment concentration in 

surface waters and are usually dependent on the specific laboratory performing the 

analysis (U. S. EPA, 1993; APHA, 1995; ASTM, 2007).  Based on the method used, the 

concentration of suspended sediment is reported as total suspended solids (TSS) or 

suspended sediment concentration (SSC) in mg/L (Gray et al., 2000).  In this proposal, 

“suspended sediment concentration” is used to denote the actual concentration of fluvial 

suspended sediment in the stream, whereas “SSC” is used to denote the suspended 

sediment concentration in a sample as measured using the group of laboratory methods 

that report “SSC.”  Gray et al., (2000) and Schoellhamer et al., (2007) report that SSC 

and TSS measurements of natural waters are not always comparable and that the TSS 

method is unreliable as an estimate of the concentration of fluvial suspended sediment in 
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natural waters when the sand-size (> 63μm) portion of the sample is greater than 25%.  

Preliminary analysis has shown that the majority of fluvial sediment in the Little Bear 

River consists of clays and silts (< 63μm) (Rasmussen et al., 2009; Jones et al., 2010), 

and therefore measurements of SSC and TSS are expected to be similar. 

In most cases, the quantification of suspended sediment concentration involves 

field data collection methods that have been historically limited to traditional grab 

sampling techniques that are too infrequent to capture the temporal variation in 

suspended sediment concentrations and fluxes (Gippel, 1995; Christensen et al., 2002; 

Kirchner et al., 2004; Horsburgh et al., 2010).   Suspended sediment loads are usually 

underestimated because they often miss storm events or other significant events during 

which much of the suspended load is transported (Tomlinson and De Carlo, 2003). 

2.4 Turbidity as a Surrogate for Suspended Sediment Concentration 

According to Ziegler (2002) turbidity is an optical measurement of the 

transparency of a solution due to the scattering, reflecting and attenuation of light by the 

suspended particulates and some dissolved matter.  Higher turbidity values correspond to 

more intense scattering or attenuation.  Turbidity has been well established as a surrogate 

measure of fluvial suspended sediment concentration in rivers throughout the world and 

is the most common surrogate used for measuring suspended sediment concentration in 

the United States (Gippel, 1995; Ziegler, 2002; Gray and Glysson, 2003; Pfannkuche and 

Schmidt, 2003; Carter et al., 2006; Stubblefield et al., 2007; Minella et al., 2008; Jastram 

et al., 2010; Jones et al., 2010).  Turbidity-based TSS concentration estimation models 

have been developed in the Little Bear watershed.  Jones et al., (2010) found significant 
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correlations (R2 = 0.85 and 0.95) between turbidity and TSS at sites in the lower and 

upper portions of the watershed where turbidity was the only significant explanatory 

variable. 

Advances in technology are decreasing the cost of turbidity sensors while 

improving field performance capabilities.  Improvements in sensor technology allow for 

continuous in situ monitoring with fewer site visits for calibration and cleaning and lower 

instrument drift over time.  Gray and Gartner (2009) reported that water quality 

monitoring systems that use turbidity as a surrogate for suspended sediment 

concentration not only provide a higher resolution of the timing and magnitude of 

concentrations and fluxes, but also have the potential to decrease costs and increase the 

safety of field data collection methods while increasing accuracy.  Compared to other 

high frequency surrogate technologies such as laser diffraction or multifrequency 

acoustic backscatter units, Gray and Gartner (2009) stated that turbidity instruments can 

be as little as one sixth the cost of other technologies. 

Furthermore, the viability of turbidity as a surrogate is supported by the interest 

shown by state agencies charged with monitoring water quality.  The U.S. EPA (2002) 

reports that 29 states have established numeric criteria for turbidity and Gray and Glysson 

(2003) report that 32 states use turbidity or water clarity as a metric in the evaluation of 

water quality. 

The characteristics of sediment particles, including size, shape, and composition 

as well as water color can affect turbidity measurements (Gippel, 1989; Foster et al., 

1992; Davies-Colley and Smith, 2001) and their corresponding relationship to suspended 
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sediment concentrations (Jastram et al., 2010).  The most significant factors in turbidity 

sensor response are particle-size distribution, organic matter content, specific surface area 

and particle density (Gippel, 1995; Davies-Colley and Smith, 2001; Jastram et al., 2010). 

Because turbidity is a measure of light scatter, particle size has direct impact on 

sensor response.  Smaller particles scatter light more efficiently because they have more 

reflective surface per unit of mass (Schoellhamer and Wright, 2003).  Gippel (1995) 

found that particle size variations among water samples caused turbidity values to differ 

by a factor of four where the suspended sediment concentration was the same.  Clifford et 

al., (1995) found significant variation in sensor response due to varying particle size 

distributions while testing an infrared turbidity sensor in laboratory and field settings.  

Gippel (1989) found suspended sediment loads that were uniformly composed of fine 

clays and organic colloids reduced variability in sensor response. 

Properties of suspended sediment particles from organic sources (algae, plankton, 

micro-organisms) such as size and density cause light to scatter differently than mineral 

particles (Minella et al., 2008; Jastram et al., 2010).  The portion of the suspended 

sediment that is made up of organic content is thought to contribute to variance in 

turbidity-suspended sediment concentration relationships (Schoellhamer and Wright, 

2003; Pfannkuche and Schmidt, 2003; Minella et al., 2008).  Jastram et al., (2010) found 

that the organic carbon content of SSC from the Roanoke River in southwest Virginia 

could be used as an additional explanatory variable in turbidity-based SSC model to 

improve the precision of SSC estimates.  
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Water color and colored particles also contribute to variance in turbidity response 

by absorbing light beams of the visual range, thus reducing the amount of scattered light 

detected by a turbidity sensor (Gippel, 1989; Anderson, 2005).  Newer turbidity sensor 

models that use infrared light now mitigate the effects of color (Gippel, 1989; Clifford et 

al., 1995). 

Additional sources of variation in turbidity-based estimates of suspended 

sediment concentrations are the sampling procedures that measure turbidity or collect 

grab samples from a single location in the stream channel (Martin et al., 1992; Edwards 

and Glysson, 1999; Horowitz, 2008; Jastram et al., 2010).  Martin et al., (1992) found 

that single-point surface grab samples of SSC at four sites on the Kentucky River 

underrepresented width and depth-integrated samples over a two-year period using fifteen 

samples per site. For particles larger than 62 μm, single-point samples underestimated 

suspended sediment concentration by 51%.  For particles smaller than 62 μm single-point 

samples underestimated suspended sediment concentration by 17%.  These variations 

were attributed to differences in velocity across the stream channel, and incomplete 

mixing of groundwater, point sources, and upstream tributaries.  This is, however, 

dependent on individual site conditions, as Jastram et al., (2010) demonstrated that 

differences in point and cross section-averaged measurements on the Roanoke River in 

Virginia were not statistically different.  

2.5 New Methods for Measuring Fluvial Suspended Sediment  

Use of acoustic doppler current profiler (ADCP) instruments has seen a steady 

rise over the past two decades as their use for measuring stream velocities and discharges 
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has expanded to derive suspended sediment concentrations via interpretation and 

conversion of acoustic backscatter/echo intensities (Reichel and Nachtnebel, 1994; 

Thorne and Hanes, 2001; Gray et al., 2001).  Wall et al., (2006) found a high correlation 

(R2 >0.85) between measured SSC and SSC estimated using ADCP measurements.  They 

developed an empirical model that related SSC measured by point-integrating isokinetic 

samplers to measurements made using a boat-mounted ADCP on the Hudson River in 

New York.   Byrne and Patino (2001) used data from streams in south Florida to generate 

a time series of SSC using acoustic backscatter as a surrogate.  Acoustic backscatter was 

related to SSC at two sites using regression analysis and relationships were significant, 

with R2 =0.91 for a fresh water site and R2=0.87 in a stream with tidal influence (Gray et 

al., 2001). 

2.6 Uncertainty in Fluvial Suspended Sediment Concentrations 

       and Fluxes Derived from Continuous Data Sets 

Suspended sediment concentrations can be quantified using turbidity 

measurements and linear regression analysis (Gippel, 1995; Minella et al., 2008 

Rasmussen et al., 2009; Jastram et al., 2010).  A resulting regression model provides a 

framework for which the quantification of uncertainty in continuous estimates of 

suspended sediment concentrations derived from turbidity can be determined.  This 

generally involves developing prediction intervals that specify a range of values for 

which a future concentration value can be expected to fall within.  Rasumussen et al., 

(2009) developed prediction intervals for estimates of turbidity-based SSC using 68 

concurrent measurements of turbidity and SSC on the Little Arkansas River near 
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Sedgwick, Kansas.  They calculated (with 90-percent confidence) the percentage of SSC 

values that exceeded a given water quality criterion during a period of about six years.  

The 90-percent prediction interval for their dataset was ± 41 percent of the computed 

SSC value. 

2.7 Proposed Research 

 The overall purpose of this work is to improve the use of surrogate monitoring 

techniques in estimating suspended sediment concentrations and fluxes in order to better 

understand watershed response and behavior.  Based on the above literature review, this 

work will first focus on assessing the generality of using turbidity as a surrogate for 

suspended sediment concentration and identifying potential confounding factors by 

investigating sediment particle characteristics that influence turbidity response.  Second, 

it examines the uncertainty in estimates of continuous concentrations derived from 

turbidity and the potential implications for using the estimates to assess compliance with 

water quality criteria.  Finally, this research looks into assessing whether high frequency 

estimates of concentration derived from turbidity, along with high frequency 

measurements of discharge and other water quality variables, can increase understanding 

of watershed function and assist in the development of monitoring and conservation 

practices aimed at managing sediment pollution. 
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Table 2.1.  Summary of continuous water quality monitoring sites in the LBR watershed 
Site 

Number Site Name Date 
Range Latitude Longitude Site Description 

1 Upper 
South Fork 

Oct. 
2007-
Present 

41.4954 -111.818 
Located in the upper 
portion of the watershed 
where land use is primarily 
forest and grazing 

2 Lower 
South Fork 

July 
2007-
Present 

41.5065 -111.8151 
Located below the 
confluence of the Upper 
South Fork and a major 
tributary, Davenport creek 

3 East Fork 
August 
2007-
Present 

41.5292 -111.7993 

Located below Porcupine 
reservoir, during the 
summer flows are 
predominantly from 
groundwater as the entire 
river is diverted to 
irrigation canals below this 
point  

4 Avon/ 
Confluence 

Nov. 
2007-
Present 

41.5361 -111.8305 
Located below the 
confluence of the East fork, 
Lower South fork sites and 
McMurdy Hollow 

5 Paradise 
June 
2005-
Present 

41.5756 -111.8552 
Located a few miles 
upstream of Hyrum 
reservoir 

6 Wellsville 
Nov. 
2007-
Present 

41.6435 -111.9176 

Located a few miles below 
Hyrum Reservoir, flows 
are controlled by dam 
releases and summer flows 
are dominated by 
groundwater flow 

7 Mendon 
August 
2005-
Present 

41.7185 -111.9464 

Located near the boundary 
of the watershed at Cutler 
reservoir. Water quality is 
affected by agriculture 
return flows and the 
Wellsville WWTP  
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Table 2.2.  Summary of water quality sensor specifications 

Variable Sensor Specifications 
Turbidity DTS-12 turbidity sensor 

Forest Technology Systems, 
Inc. 

Accuracy: ± 2% 0-500 NTU and ± 4% 
501-1600 NTU 

Stage SPXD-600 Pressure 
Transducer KWK 
Techologies, Inc. 

Accuracy: ± 1% of the full 
measurement span 

Water Temperature Hydrolab MiniSonde5 
Thermistor Hach 
Environmental, Inc. 

Accuracy: ± 0.1 oC, resolution: 0.01 
oC 

pH Hydrolab MiniSonde5 
reference electrode Hach 
Environmental, Inc. 

Accuracy: ± 0.2 pH units, resolution: 
0.01 pH units 

Dissolved oxygen 
concentration Hydrolab MiniSonde5 optical 

LDO sensor Hach 
Environmental, Inc. 

Accuracy: ± 0.1 mg L-1 at < 8mg L-1 
and  ± 0.2mg L-1 at > 8mg L-1, 
resolution: 0.01 mg L-1 

Specific 
conductance 

Hydrolab MiniSonde5 4-
electrode, temperature 
compensated conductivity 
sensor Hach Environmental, 
Inc. 

Accuracy: ± 0.5%, resolution: 0.001 
mS cm-1 

 
Table 2.3.  Summary of meteorological instrumentation specifications 

Variable Sensor Specifications 

Air Temperature 
CS215 temperature and relative 
humidity sensor Campbell 
Scientific, Inc. 

Accuracy: ± 0.4 oC from +5 to 
+40 oC, and ± 0.90C from -400C 
to +700C 

Relative Humidity 
CS215 temperature and relative 
humidity sensor Campbell 
Scientific, Inc. 

Accuracy: ± 2% at 25 oC in the 
10-90% range and ± 4% in the 0-
100% range 

Precipitation 
TE25 tipping bucket rain gage 
with 20.32 cm orifice Texas 
Electronics 

Accuracy: ± 1% up to 2.54 cm h-

1, resolution: 0.254 mm 

Wind speed R. M. Young Wind Sentry Set Accuracy: ± 0.5 m s-1  

Wind direction R. M. Young Wind Sentry Set Accuracy: ± 0.5o 

Solar radiation PYR-P Silicon Pyranometer 
Apogee Instruments, Inc. 

Accuracy: 5% for daily total 
radiation 

Barometric pressure Setro 278 Barometric Pressure 
Sensor Accuracy: ± 0.5 mb at +20 oC 

Snow Depth CS SR50A Sonic Ranging 
Sensor 

± 1 cm or 0.4% of distance to 
target (whichever is greatest) 

Soil Moisture  Stevens Hydra Probe ±0.01 WFV for most soils and 
±0.03 for textured soils 
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Figure 2.1.  Little Bear River Watershed map with water quality monitoring sites 
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CHAPTER 3  

INCORPORATING SEDIMENT PARTICLE CHARACTERISTICS IN 

TURBIDITY-BASED TSS ESTIMATION MODELS 

Abstract 

In the United States, suspended sediment is cited as the most common impairment 

to water quality.  In addition to suspended sediment being a primary pollutant of concern, 

many other contaminants and nutrients can be associated with suspended sediment 

particles.  Suspended sediment has significant ecological impacts, and the ability to 

accurately quantify suspended sediment concentrations and fluxes at appropriate 

temporal and spatial scales is critical in assessing whether streams are meeting their 

designated beneficial uses and in implementing and evaluating watershed management 

and mitigation plans and restoration efforts.  In this study, turbidity was used as a 

surrogate for estimating total suspended solids (TSS) concentration at six locations in the 

Little Bear River Watershed, Utah, U.S.A, using linear regression techniques.  At three 

sites, the potential effects of sediment particle characteristics on the relationships between 

turbidity and TSS were investigated in efforts to determine why these relationships are 

site specific.  Findings highlight that at some monitoring locations with wide spatial 

distribution, the turbidity-TSS relationships are similar for more frequent (90th percentile) 

but lower (<45 NTU) turbidity values.  Results from the particle characteristic analysis 

were able to inform the development of regression equations and added predictive power 

to the regression estimated TSS concentrations.  Results showed that particle size was a 



27 
 
statistically significant (p-value<0.004) predictor of TSS and reduced overall model error 

from 17% to 11%. 

3.1 Introduction 

 Monitoring programs for suspended sediment loads and concentrations are 

experiencing a growing need as water quality becomes an increasingly important element 

in the management of water resources.  Although only five states in the U.S.A have 

established numeric water quality criteria, suspended sediment (including all solid-phase 

particulates) is cited as the most common impairment to water quality (U.S. EPA, 2008).  

Problems associated with sediment include potential impacts to:  drinking water 

treatment processes (AWWA, 1990); fate and transport of heavy metals (Carter et al., 

2006; Schoellhamer et al., 2007); recreational uses, reservoir storage and hydraulic 

operations (Pruitt, 2003); barge transportation and navigation lanes (U.S. Army Corps of 

Engineers, 2011); light suppression effects on stream bed vegetation; ecological function 

of aquatic habitat (Henley et al., 2000); and food webs and fish spawning beds (Rubin, 

1995; Soulsby et al., 2001).  Other sediment-associated impacts include the transport and 

fate of metals and nutrients as they are carried through river systems and are deposited 

and resuspended over time (Owens et al., 2001; Horowitz, 2008). 

 The ability to accurately quantify suspended sediment concentrations and fluxes 

at appropriate temporal and spatial scales is critical to assessing whether streams are 

meeting their designated beneficial uses and in implementing and evaluating watershed 

management and pollution mitigation plans.  Techniques for quantifying suspended 

sediment concentrations have typically relied on traditional grab sampling methods, 
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which lack sufficient temporal frequency to capture daily, weekly and monthly 

fluctuations in these concentrations and fluxes (Christensen et al., 2002; Tomlinson and 

De Carlo, 2003; Kirchner et al., 2004; Horsburgh et al., 2010; Jones et al., 2010).  More 

recently, methods for quantifying suspended sediment concentrations and fluxes have 

been developed that use high frequency, in situ measurements of surrogates such as 

turbidity to make high frequency estimates of suspended sediment concentration.  

Statistical regression techniques are used to relate the in situ turbidity measurements and 

much lower frequency grab samples of suspended sediment (Schoellhamer and Wright, 

2003; Rasumussen et al., 2009; Jastram et al., 2010), and a resulting model is used to 

transform high-frequency surrogate measurements into high-frequency estimates of 

suspended sediment concentrations. 

 Turbidity has been well established as a surrogate measure of fluvial suspended 

sediment concentration in rivers throughout the world and is the most common surrogate 

used for measuring suspended sediment concentration in the United States (Gippel, 1995; 

Ziegler, 2002; Gray and Glysson, 2003; Pfannkuche and Schmidt, 2003; Carter et al., 

2006; Stubblefield et al., 2007; Minella et al., 2008; Jastram et al., 2010; Jones et al., 

2010).  Although the use of surrogate methods is becoming more widespread, there are 

some limitations to the approach.  Because turbidity is an optical measurement of the 

scattering of light as it passes through a given water sample, turbidity-based suspended 

sediment concentration estimates can be affected by particle characteristics such as size,  

density, organic composition, and water color that affect the measured turbidity response 

and its correlation with suspended sediment concentration (Gray and Gartner, 2009; 
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Jastram et al., 2010).  Turbidity sensor output has been shown to vary by a factor of four 

for samples with identical suspended sediment concentrations but different particle 

characteristics (Gippel, 1995; Schoellhamer and Wright, 2003).  It is hypothesized that 

this is one of the main reasons that relationships between turbidity and suspended 

sediment concentration are site specific.  Accordingly, in this study we investigated the 

relationships between particle characteristics (i.e., size, concentration and surface area) 

and turbidity and suspended sediment concentration at three continuous monitoring sites 

in the Little Bear River, Utah U.S.A. 

 The objectives of this study were to assess the generality of using turbidity as a 

surrogate for suspended sediment concentration at several sites within a single watershed 

and to identify the physical properties of suspended sediment that contribute to the site 

specific nature of relationships between turbidity and suspended sediment concentration.  

Another objective was to investigate whether accounting for particle characteristics in the 

regression equations improves estimates of suspended sediment concentrations.   

Improved quantification of the magnitude and timing of suspended sediment loading will 

better inform scientific understanding of watershed response and aid in watershed 

management efforts such as targeting implementation of conservation and restoration 

efforts. 

 Section 3.2 of this paper provides a description of the Little Bear River watershed 

and water quality monitoring network.  Section 3.3 describes the data collection 

procedures, the instrumentation for sediment particle analysis and the statistical methods 

used to develop surrogate relationships at six locations in the watershed.  Section 3.4 
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describes the final surrogate equations and identifies similarities among the different sites 

in the watershed.  Section 3.4 also demonstrates how sediment particle properties, such as 

size and volumetric concentration contribute to the site specificity between two sites with 

vast differences in spatial proximity, hydrology and water quality; and how the 

incorporation of these sediment properties in the regression equations improve regression 

estimates of suspended sediment concentration. 

3.2 Study Area 

 The Little Bear River watershed is located in the south end of Cache Valley, Utah 

and encompasses roughly 740 km2.   The headwaters form in the Bear River Mountain 

Range, and the river drains to Cutler Reservoir on the west side of Cache Valley.  

Elevations within the watershed range from 2865 m to 1345 m.  Land use within the 

upper watershed is comprised mostly of forest and range (grazing) lands while the lower 

portion of the watershed is made up primarily of agricultural lands and some urban 

development.  Hydrology of the watershed is dominated by spring snowmelt, with water 

in the upper watershed being stored within two reservoirs, Porcupine Reservoir in the 

upper East Fork and Hyrum Reservoir on the mainstem, before being released and 

diverted into irrigation canals for agricultural use during the irrigation season. 

 Since 2005, research conducted by the Utah Water Research Laboratory at Utah 

State University has facilitated the installation of seven continuous water quality 

monitoring sites (Figure 3.1).  Table 3.1 summarizes the locations and descriptions of the 

seven water quality monitoring sites located in the watershed, along with the dates from 

which the respective measured variables are available.  Five of these sites (sites 1-5) are 
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located in the upper watershed, above Hyrum reservoir, where stream channels are 

relatively steeper and sometimes have velocities as high as 2.0 m/s.  The lower portion of 

the watershed includes two monitoring sites, one below Hyrum Dam and one at the outlet 

of the watershed near the confluence with Cutler Reservoir.  In this lower section of the 

river, channel slopes are lower and velocities are almost always <0.7 m/s.  The river 

exhibits a more meandering planform, and soils are predominantly fine-grained lacustrine 

sediments. 

3.3 Methods 

3.3.1 Instrumentation and Data Acquisition 

Turbidity, water temperature and gage height were measured using permanently 

installed, in situ sensors every 30 minutes in the Little Bear River.  Turbidity and water 

temperature were measured using a Forest Technology Systems DTS-12 turbidity sensor.  

The DTS-12 uses a laser diode with a wavelength in the near-infrared (780 nm) spectrum 

and measures light scatter at 90 degrees to the incident beam (Forest Technology Systems 

Ltd., 2010).  This geometry results in measurement units of Nephelometric Turbidity 

Units (NTU), and the probe has a range from 0-1600 NTU.  Each turbidity measurement 

consists of 100 instantaneous observations made over a five second time interval, after 

which summary statistics are output.  The median turbidity values output from the sensor 

were used in this study.  Temperature was measured with the DTS-12 from an internal 

encapsulated thermistor and used to compensate turbidity measurements. 

In situ turbidity values were paired by date and time with grab samples of TSS 

and particle size distribution (PSD).  Where turbidity measurements did not coincide in 
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time with sample collection, a turbidity estimate for the time of the TSS sample was 

generated by interpolating between the two turbidity measurements bracketing the sample 

in time.  In some instances, lower turbidity values (<40 NTU) corresponded with higher 

TSS concentrations (>100 mg/L) or vice versa.  Such anomalous values occurred in less 

than 5% of the total samples per site and were removed prior to developing the regression 

equations. Table 3.3 gives a summary of the full dataset for paired turbidity and TSS 

data. 

Grab samples of TSS and PSD were collected at sites 2, 4 and 6 (Figure 1) 

because their locations represent hydrologic and water quality conditions that are of 

interest (i.e., they are influenced by distinct watershed characteristics described above).  

Generally, grab samples were collected during routine sensor cleaning and calibration 

visits by dipping a sample bottle or bucket approximately 30 cm below the surface of the 

water adjacent to the fixed turbidity sensor.  Grab samples were also collected during 

times of elevated turbidity in order to increase the number of paired turbidity-TSS 

samples across a more complete turbidity range.  Total suspended solids (TSS) grab 

samples were analyzed at the Environmental Quality Lab at the Utah Water Research 

Laboratory using Standard Methods 2540D, Total Suspended Solids Dried at 103-105o C 

(APHA, 1995).  Where laboratory duplicates of TSS samples were performed, the 

average value of the two results was used. 

Particle size and concentration were measured using a LISST-Portable (Laser In-

Situ Scattering and Transmissometry) from Sequoia Scientific, which employs laser 

diffraction (small-angle forward laser light scattering) techniques described in AWWA 
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Standard No. 2560D and ISO-13320-1 (Sequoia Scientific, 2010).  The particle size 

range of the LISST-Portable (Type C) is 1.9 – 381 μm using the randomly shaped particle 

inversion method (Agrawal and Pottsmith, 2000).  With this model of the LISST, there 

are 32 size ranges logarithmically placed from 1.9 – 381 μm in which each particle is 

classified.  The LISST-Portable outputs metrics such as volumetric particle concentration 

(μL/L) for each of the 32 size classes, total particle concentration (μL/L), total surface 

area (cm2), mean particle diameter (μm), standard deviation and optical transmission (%). 

The times at which grab samples were collected did not always correspond to 

elevated turbidity levels that were needed to analyze for particle characteristics with the 

LISST-Portable.  A sufficient supply of sediment was needed for the LISST-Portable to 

distinguish between background noise and actual suspended sediment.  Prior experiments 

revealed that a grab sample of 1000 mL required turbidity levels to be at least 20-30 NTU 

before reliable results could be obtained.  For classification of particles into clay, silt and 

sand fractions, this research used standard particle size classifications where approximate 

size breaks were based on nominal diameters as follows: clay particles are <4 μm, silt 4-

63 μm and sand 63-381 μm (Chapra, 1997).  Additional details on sample collection and 

preparation and laboratory analysis can be found in Appendix A. 

3.3.2 Model Development and Statistical Methods 

The first procedure in model development was to determine which predictor 

variables would be used to model TSS concentration.  Each of the potential predictor 

variables were plotted against the response variable (TSS) and visually examined in a 

scatter plot matrix to identify potential relationships, linearity and unusual or extreme 



34 
 
values. To accompany these plots, the Pearson’s r statistic was used to report the strength 

of a linear relationship between two variables.  The Pearson’s r is between -1 and 1 with 

negative one being a perfect negative correlation and a positive one being a perfect 

positive correlation. 

 Regression models developed in this research followed the general form: 

𝑦𝑖 = 𝛼0 + 𝛼1𝑥𝑖 + 𝑒𝑖      Eqn. 3.1 

where y is the response variable, xi is the predictor variable, αo, and α1 are regression 

parameters estimated by the regression analysis, e is the error associated with each 

estimate of y, and i is an index for the number of observations where i = 1,2,…n.  The 

optimum values of the parameter estimates were estimated using the ordinary least 

squares (OLS) method within the R statistical computing software (http://www.r-

project.org/).  All parameters used in the regression equations were tested for significance 

by comparing the regression computed p-value to α=0.05.   If the p-value was less than 

0.05 the parameter estimate was considered to be a significant predictor of TSS and was 

used in the regression equation.  The predictor variables evaluated in this study were 

turbidity, turbidity squared, discharge and a categorical variable.  Equation 3.2 modifies 

the general form of Equation 3.1 to demonstrate the regression model used with a 

categorical variable where Z is 1 when a specific condition has been met and 0 otherwise. 

𝑦𝑖 =  𝛼0 + 𝑏0𝑍 + 𝛼1𝑥𝑖 + 𝑏1𝑍𝑥𝑖 + 𝑒𝑖    Eqn. 3.2 

This form of the regression equation was used to simultaneously fit a model to the data in 

both categories (1 and 0) and test whether their intercepts and slopes were actually 

different enough to justify the addition of the categorical variable (Berthouex and Brown, 
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2002).  The conditions for which the categorical variable was investigated at sites 1- 4 

were determined using the scatter plots of turbidity and TSS which revealed where a 

general group of points showed a change in slope relative to the other.  The categorical 

variable was considered in the regression analysis in order to verify that this was indeed a 

point of significant change in the turbidity-TSS relationship.  After the general area of the 

slope change was identified using the scatter plot, the actual value of turbidity used as the 

categorical breakpoint (slope change) was found by trial and error.  Again the statistical 

significance of the categorical parameters was evaluated using the p-value.  Other 

categorical variables such as time of year and day, spring runoff versus baseflow and 

storm event versus no storm were previously investigated using subsets of the Little Bear 

River data by Jones et al., (2010), and were not found to be significant predictors for TSS. 

 Turbidity squared was tested in the regression equations because sometimes 

categorical variables can cause large, abrupt shifts in estimated TSS concentration for 

small changes in turbidity.  These dramatic shifts in estimated TSS are not likely to occur 

for such minute changes in turbidity and the effect of replacing the categorical variable 

with the turbidity squared term brought a smoothing, curvilinear fit to the data.  Although 

in general, models were selected based on the lowest error (Eqn. 3.3), the smoothing 

effects of the turbidity squared term when compared to the categorical variable were also 

taken into consideration if the respective parameter estimate was below the significance 

threshold of α=0.05. 

 In linear regression, model fit is generally contingent upon the following four 

assumptions about the response variable yi : errors are independent, normally distributed, 
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have constant variance, and that the true relationship between the response and predictor 

variables is linear.  These assumptions were validated by inspecting graphical plots of the 

residual (observed – predicted TSS) values.  These plots demonstrated that because the 

residuals were normally distributed, independent, have constant variance and a mean of 

zero, the assumptions of linear regression were met and the corresponding model fit is a 

valid representation of the data.  Although the results of the residual analysis are not 

formally discussed here, Appendix B provides the residual analysis for each site.  

Appendix B also demonstrates the results of using variety of transformations and 

weighted least squares (site 4). Both of these techniques, however, were not successful at 

improving the characteristics of normality, independence, linearity and homoscedasticity 

(constant variance). 

 Alternate models were evaluated based on the root mean square error (RMSE), 

(Equation 3.3), which is a measure of the overall error associated with a given model. 

𝑅𝑀𝑆𝐸 =  �∑𝑒𝑖
𝜈

      Eqn. 3.3 

The error term ei is the difference between the observed TSS and the model predicted 

TSS for each observation (i), and ν is the degrees of freedom from the regression model.  

The lower the RMSE, the closer the predicted response will be (on average) to the 

observed TSS value.  The RMSE can also be expressed as a percentage interval using 

Equation 3.4: 

𝑆𝑃𝐸 = ± 𝑅𝑀𝑆𝐸
𝑦�

∗ 100      Eqn. 3.4 

where 𝑦� is the mean observed TSS concentration.  This standardized percentage error 

(SPE) was also used because it expresses model uncertainty in terms of an interval and a 
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percent that is comparable across models and monitoring sites.  In general, the model 

with the lowest RMSE was selected as the final model.  F-tests were conducted to 

compare the variance in regression-computed TSS concentrations between selected sites.  

The test statistic is a ratio of the variance of the estimated TSS concentrations from one 

site to a second as shown in the following equation: 

  𝐹 = 𝑆𝑎2

𝑆𝑏
2       Eqn. 3.5 

where Sa is the variance of site a and Sb is the variance of site b.  Equation 3.6 shows the 

calculation used for variance 

  𝑆2 =  1
𝑛−1

∑ (𝑋𝑖 − 𝑋�)2𝑛
𝑖=1      Eqn. 3.6 

where X is estimated TSS concentration,  x̄  is the average observed TSS concentration 

and n is the number of observations with n-1 degrees of freedom.  The null hypothesis is 

that the variances are equal.  The null hypothesis is rejected when the F-ratio is greater 

than the critical value in the F-table, for the given degrees of freedom and a significance 

level of α = 0.05.  

The second procedure in model development (for sites 2, 4 and 6) was to use a 

subset of the full turbidity and TSS data (Table 3.3) to investigate which sediment 

particle characteristics might be significant predictors of TSS.  For this analysis, the 

subset of data included only paired TSS, turbidity and particle characteristics samples 

collected from January to May 2012.  The subset of data contained 11-12 data values, 

while the full set of data, which was specific to each site, contained the count values 

found in Table 3.3.  Particle characteristics investigated included total sample volumetric 
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particle concentration (μL/L), particle surface area (cm2) and volumetric particle 

concentration (as μL/L and as a percent of total concentration) in each of the 32 size 

classes.  Additionally, specific groups of particle size bins were determined and analyzed 

as individual predictors.  These groups included size ranges for clay, silt and sand as well 

as a group for the portion <63 μm and a group for the portion >63 μm.  The groups above 

and below 63 μm were investigated because others have noted that simple linear 

regression of turbidity and TSS is most suited for situations where the sand-size (> 63 

μm) portion of the samples is less than 20% (Rasmussen et al., 2009). 

 Once a particular particle characteristic was found to be a statistically significant 

(p-value <0.05) predictor of TSS for the subset of data, additional values of those particle 

characteristics were then modeled using the regression techniques described with stream 

discharge as the predictor so that values of the particle characteristic could be computed 

and augmented to the full set of data.  This made it possible to test the significance of 

particle characteristics on the same scale as other continuously monitored variables such 

as turbidity. 

3.4 Results and Discussion 

3.4.1 Model Development 

 A summary of the TSS, turbidity and discharge data used to develop the 

correlation matrices and surrogate relationships is shown in Table 3.3.  Figures C3.1 

through C3.6 in Appendix C show correlation matrix plots for each site that had four or 

more of the following variables: TSS, turbidity, discharge, turbidity squared, categorical 

variable (Z) and particle size.  The correlation matrices show a high correlation between 
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TSS and turbidity where the Pearson’s r correlation coefficient is greater than or equal to 

0.86 for each of the six sites.  The correlation coefficients between TSS and discharge are 

lower ranging from 0.29-0.66.  For TSS and turbidity squared, the correlation coefficient 

is 0.94 and greater for sites 1, 2, 3, and 4.  The correlation coefficients for turbidity 

squared term at sites 5 and 6 were 0.85 and 0.61, respectively. 

 The categorical variable was found to be a significant predictor of TSS 

concentration at sites 1-4 with all p-values <0.0006 as shown in Table 3.4.  The 

categorical breakpoint for turbidity at sites 1, 2, and 3 was 40 NTU.  For site 4, the 

categorical breakpoint for turbidity was 600 NTU.  For sites 1-4, the categorical variable 

introduced an artificial shift in the estimated TSS concentration for small changes in 

turbidity.  When turbidity increases by 1 NTU at the categorical breakpoints, estimated 

TSS concentrations shift by -3.4, +1.3, -12.0, and -279 mg/L for sites 1-4, respectively. 

 The turbidity squared term—along with turbidity—was a significant (all p-values 

<0.001) predictor of TSS for sites 1-4, but the model containing the categorical variable 

for these sites gave a better fit with a greater reduction in overall model error.  For site 4, 

the reduction in overall error from the model with turbidity only to the model with 

turbidity and the categorical variable was from 63 mg/L to 48 mg/L, with the 

standardized percentage error being reduced from ±34% to ±26%.  As previously stated, 

a change of 1 NTU at the categorical breakpoint of 600 NTU at site 4 causes an artificial 

drop in estimated TSS concentration of 279 mg/L (1015mg/L to 736mg/L) or 27%, but 

because the model with the categorical variable causes a significant reduction in model 

error, it was selected as the final model.  For site 5, turbidity was the only significant 
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predictor in the regression equation (Table 3.4) for which data included TSS values up to 

27 mg/L.  Sediment sample data for this site was limited because events that cause higher 

suspended sediment concentrations are controlled by dam releases from Hyrum reservoir.  

These events are difficult to anticipate because they do not always correspond with 

conditions at other sites in the watershed.  For site 6, TSS concentration was modeled 

best using turbidity and turbidity squared (p-value <<0.001) where the RMSE of the 

turbidity only model was reduced from 10.04 to 8.40 mg/L (SPE reduction of 5%).  For 

each site, the respective parameter estimates, p-values, RMSE and SPE for final models 

are shown in Table 3.4. 

Additionally, discharge was tested for significance as a predictor in each of the 

models.  For sites 1-4, discharge—along with turbidity—was a significant (p-value 

<0.05) predictor of TSS, but the categorical variable proved to be a better (lower p-value 

and RMSE) predictor of TSS than discharge when discharge and the categorical variable 

were tested separately. When tested together discharge provided no significant reduction 

in error (RSME) and the simpler model was preferred.  For sites 5 and 6, discharge was 

not a significant predictor with turbidity (or turbidity and turbidity squared for site 6) in 

estimating TSS concentration. 

3.4.2 Comparison of Regression Equations  

 Figure 3.2 shows individual scatter plots of TSS and turbidity for each site with 

their respective modeled regression lines.  The four upper watershed sites (panels A-D) 

exhibit regressions that are linear and steep, with slopes greater than one (Table 3.4).  

Sites 1 and 2 display the regression models for turbidities up to ~560 NTU and sites 3 
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and 4 up to 92 NTU and 1407 NTU, respectively.  Slopes greater than one suggest higher 

concentrations of TSS per unit of turbidity resulting from larger and/or denser particles.  

Site 5 in the lower watershed had a slope slightly greater than 1 that follows closely the 

1:1 relationship shown in Figure 3.2 (panel E) for values of turbidity up to 27 NTU.  

Panel F for site 6 shows a curvilinear fit for the data where TSS and turbidity increase 

almost equally until ~100 NTU where the slope decreases significantly with TSS as 

turbidity continues to increase reaching 166 NTU.  The curvilinear fit appears to be 

greatly influenced by the two high (139 and 166 NTU) turbidity values that seem 

anomalous when compared to the grouping of the remaining 239 paired turbidity-TSS 

values.  These two turbidity values are indeed rare, as less than 0.1% of all turbidity 

values measured at this site are greater than 100 NTU.  The curvilinear fit however, is 

still suggested by the data (and by particle characteristics yet to be discussed) because the 

turbidity squared term is statistically significant (p-value <<0.001) and the overall error is 

reduced compared to the turbidity only model even when those two points are removed 

from the regression analysis.  The turbidity squared however is limited as turbidity values 

greater than 149 NTU would cause the TSS estimate to decrease.  Although this model is 

only valid for turbidities equal or less than 149 NTU, 149 NTU is the 99.95th percentile 

of more than 114,000 observed turbidity values.  

 While it is generally accepted that turbidity-TSS relationships must be developed 

uniquely for each particular location (Riley, 1998; Gray et al., 2003; Schoellhamer and 

Wright, 2003; Rasmussen et al., 2009), this research shows that several turbidity-TSS 

relationships in the Little Bear River watershed are quite similar (e.g., for a turbidity of 
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30 NTU their equations give very similar TSS concentrations) in their ability to estimate 

TSS concentration for the more frequent but lower turbidity values.  Figure 3.3 shows 

each of the regression lines at the six sites for turbidity values 0-200 NTU.  Similarity 

among the surrogate relationships at sites 2-6 is observed as each of these regression lines 

lay close together above the 1:1 line until ~40 NTU, the categorical breakpoint for sites 

1-3.  Sites 2 and 3 are very similar in this range with maximum differences in estimated 

TSS being ~5 mg/L.  Sites 2 and 6 are also very much the same in this range with 

maximum differences in estimated TSS being <5 mg/L before the regression line of site 6 

dramatically decreases in slope, diverging from sites 2, 3, and 4 starting at ~60 NTU.  

Sites 2 and 4 are also very similar in estimated TSS where the difference between the two 

is a maximum of 22 mg/L when turbidity reaches 200 NTU.  The turbidity-TSS model 

for site 5 was developed for turbidity values up to 27 NTU.  In this range, site 5 is similar 

to sites 2, 3, and 6 and nearly the same as site 4 with a max difference of <13mg/L.  As 

shown in Figure 3.3, the regression line for site 1 is the most withdrawn from the others 

with a slope distinctly less than 1 until it reaches its categorical breakpoint of 40 NTU, 

where it increases and begins a steep climb crossing the 1:1, but maintaining a clear 

separation (but similar slope) of >30mg/L from all other sites up to 200 NTU. 

The similarity in TSS concentrations (for turbidities <40 NTU) at sites 2, 4, and 6 

are further demonstrated in Table 3.7.  The F-ratios are 1.8 for Site 4 / Site 2, 1.2 for Site 

6 / Site 2, and 1.5 for Site 4 / Site 6 and all are less than the critical value, which for all 

cases is 1.9.  Because the ratios of the variances are less than the critical F values, there is 

no evidence to reject the null hypothesis in any of the cases tested. 
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The ranges of turbidity for which the sites have been compared is important to 

highlight because the 1-40 NTU range comprises 90% of the >77,000 observed turbidity 

values for which sites 2-6 are similar; the 1-200 NTU range covers ~99% of the ~84,500 

and ~95% of the >118,000 observed turbidity values for sites 2 and 4, respectively.  

These results suggest that for the majority of turbidity measurements made throughout 

the year at sites 2-6, a single, general TSS regression model could be used to estimate 

TSS concentrations and fluxes. 

 Similarities among these regression equations are marked by their ability to 

predict TSS for a given range of turbidity.  Differences in predicted TSS concentrations 

between the aforementioned sites were small enough that they were within the expected 

measurement error.  This is based on the level of precision reported with the laboratory 

results of TSS on duplicate samples at the Utah Water Research Laboratory and the level 

of precision reported by Standard Methods 2540 D, total suspended solids determination 

(APHA, 1995).  Laboratory results reported standard deviations of 2-14 mg/L for a TSS 

range of 10-90 mg/L and standard deviations of 25-35 mg/L for TSS values in the range 

of 120-720 mg/L.  Standard Methods 2540 D gives a standard deviation of 5.2 mg/L of 

TSS for a known level of 15 mg/L and a standard deviation of 24 mg/L of TSS for a 

known level of 242 mg/L.  The levels of precision reported by both sources agree with 

one another for their respective TSS ranges. 

3.4.3 Contribution of Sediment Particle Characteristics 

 As shown in figure 3.3, the regression computed TSS concentrations for sites 2, 4 

and 6 would be similar up to the 40-60 NTU range, where site 6 diverges from sites 2 and 
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4.  The reason for the departure of site 6 is found within an analysis of the particle size 

distributions and particle concentrations conducted at these sites.   As shown in Figure 

3.3, the regression line for site 6 lays very close to the regression lines for sites 2-4 until 

about ~60 NTU where the slope begins to decrease causing turbidity to rise 

disproportionately more than TSS, resulting in a wide separation from the regression 

lines of sites 2 and 4.  Figure 3.4 demonstrates how particle size distributions at site 6 

take on a distinct change at the higher turbidity levels.  In Figure 3.4 the particle size 

distributions for site 6 are displayed with percent total volumetric concentration on the y-

axis and a log scale of particle size (1-350 μm) on the x-axis.  The solid black and grey 

lines represent the particle distributions for turbidity values of 139 and 166 NTU and the 

dashed lines represent turbidity values of 38 and 41 NTU.  The solid dark lines mark a 

very distinct and different pattern from the size distributions of the lower turbidities, 

demonstrating that not only were the particles smaller (on average), but there were 

greater numbers of particles overall (increased particle concentrations), particularly in the 

smaller (1-20 μm) sized bins.  This shift toward the smaller particles for higher turbidities 

demonstrated in Figure 3.4 is believed to be the cause of the decreasing slope of the 

curvilinear regression equation because the smaller particles at this site would have less 

mass while still increasing turbidity.  It is true that even if each particle has less mass, if 

there are more particles the overall mass could still be higher.  But because the particle 

mass at site 6 does not increase with turbidity as the other sites do, the curvilinear 

regression equation is suggested. 
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 This logic is reasonable for several reasons.  First, the location of site 6 is below 

Hyrum Reservoir, which prevents larger sediment particles in the upper watershed from 

reaching the lower watershed site.  Sediment sources contributing to site 6 are limited to 

the surrounding land, which is made up of finer silts and clays.  Second, lower channel 

gradients cause water velocities to be low enough that even when discharge is at its 

height, stream velocities are not high enough to carry larger, denser particles in the water 

column.  These factors may explain the decrease in slope for the curvilinear regression 

equation that causes the turbidity-TSS relationship at site 6 to deviate from the upper 

watershed sites. 

 The particle size distributions for sites 2, 4, and 6 also provide insight into why 

the regression estimated TSS concentrations are similar for the lower turbidity values.  

Figure 3.5 demonstrates two particle size distributions for each of the three sites where 

turbidities are between 35 and 49 NTU.  The quantity of particles for a given distribution 

is tabulated in Table 3.5 (as particle concentration) and as a table within the plot.  At 

these low turbidity values, their respective particle size distributions are very similar.  

The distribution for site 6 varies slightly from the other distributions as it has more 

particles in the 10-20 μm range and fewer particles in the 50-300 μm range when 

compared to site 2 and 4.  Although particle quantities vary among sites, the shape of the 

particle size distributions follow the same general pattern.  Because particle concentration 

varies greatly among these distributions for the same turbidity values, it is believed that 

particle size has the greater impact on turbidity, causing the similarities between these 

sites. 
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 In contrast with site 6, where particle size, quantity, and density influenced the 

turbidity-TSS relationship at higher turbidities, the particle size distributions at site 2 for 

higher turbidities suggested particle concentration influences the turbidity-TSS 

relationship more.  Figure 3.6 shows four particle size distributions for site 2 at low (24-

46 NTU) and high (82 and 143 NTU) turbidities.  The particle size distributions have the 

same patterns for both low and high turbidity values.  This distribution is in stark contrast 

to site 6 where particle size was more variable as turbidity increases, especially in the 

smaller (1-10 μm) particle size range.  The more consistent distributions at site 2 suggest 

that the turbidity-TSS relationship is influenced more by particle concentration than size.  

This is shown by the higher turbidity levels also having significantly higher particle 

concentrations (88-90%) and particle mass (44-92%).  Looking back at site 6, the particle 

concentrations also increased by a similar (56-76%) amount when turbidities changed 

from low to high.  This suggests that when both sites increase to similar levels of 

turbidity and particle concentration (still considering their respective particle size 

distributions), the major factors affecting the surrogate relationships are particle 

concentrations (quantity) at site 2 and particle size at site 6.  For reasons given earlier of 

why particle densities at site 6 would remain low at higher turbidities, the opposite is true 

at site 2 for larger particles during higher turbidity levels.  At site 2, channel gradients 

have steeper slopes resulting in higher water velocities that enable the stream to suspend 

larger, and potentially heavier particles in the water column. 

 Finally, an attempt was made to correlate sediment particle characteristics and 

turbidity with TSS.  For sites 2, 4, and 6 a subset of 12 paired turbidity and TSS values 
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was created and matched with percent of total (volumetric) concentration (PTC) for each 

of the 32 size bins, overall sample (volumetric) concentration and particle surface area.  

For sites 4 and 6, several of the smaller particle size bins of PTC—along with turbidity—

were statistically significant (p-value <0.05) predictors of TSS.  For site 2, only the 

smallest PTC size bin of 1.9-2.25 μm showed a significant correlation to TSS 

concentration.  This size bin represented, on average (across samples), approximately 

1.1% of the overall sample volumetric concentration of particles and was a statistically 

significant (p-value <0.01 level) predictor with turbidity in estimating TSS concentration 

for the subset of data at site 2.   

 At sites 4 and 6, discharge was a statistically significant (p-value<0.05) predictor 

of some of the smaller PTC size bins, but once the resulting PTC values—calculated 

from the discharge-PTC regression—for these size bins were augmented to the full 

dataset, their respective PTC size bins were not statistically significant predictors with 

turbidity to model TSS concentration.  At site 2, discharge was a statistically significant 

(p-value <0.01) predictor for the 1.9-2.25 μm PTC size bin.  Using the full data set at site 

2, turbidity and the PTC of the 1.9-2.25 μm size bin were found to be statistically 

significant (p-value <<0.001) predictors of TSS concentration. 

 The discharge-PTC regression equation used to calculate the PTC values at site 2 

for the 1.9-2.25 μm size bin is shown in Table 3.6.  Also shown in Table 3.6 are the 

summary statistics for the model that used turbidity and the PTC size bin of 1.9-2.25 μm 

to estimate TSS concentration as well as the turbidity only model.   When compared to 

the turbidity only model, the RMSE was reduced from 14.6 to 13.5 mg/L with overall 
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error being reduced by 1.7% as shown in Table 3.6.  Although the PTC size bin of 1.9-

2.25 μm was less significant when compared to the categorical variable of the model 

shown in Table 3.4, the significance of this particle characteristic as a predictor in the 

regression analysis and the reduction in error demonstrate that accounting for particle 

characteristics in the regression equations has the potential to improve estimates of TSS 

concentration. 

 The results indicate that sediment particle characteristics can provide two benefits 

to water quality monitoring programs that use turbidity as a surrogate for suspended 

sediment concentrations.  First, sediment particle characteristics can inform the 

development of regression equations and are helpful in explaining why some sites have 

regression models that are significantly different than others.  Specifically, this 

understanding informs the development of the surrogate relationship at site 6.  For 

example, one could build the regression by omitting the two highest turbidity values 

(calling them anomalous) and complete the regression with a simple straight line through 

the data points.  This, however, would assume an constant rate of change for TSS and 

might severely overestimate TSS concentrations at this location when turbidities 

exceed100 NTU.  However, the particle characteristic data suggest that TSS 

concentrations do not increase in a 1:1 fashion.  Second, the sediment particle 

characteristic data are also able to improve the surrogate relationships at some sites by 

adding predictive power to the estimates of TSS concentration.  This was demonstrated at 

site 2 where the percent of particles within the smallest particle size range was a 
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significant predictor with turbidity in estimating TSS concentration and reducing overall 

model error. 

3.5 Conclusions 

 Regression models to predict TSS concentrations were developed at six locations 

in the Little Bear River watershed.  Turbidity and a categorical variable indicating 

whether turbidity was above or below 40 NTU were found to be significant predictors for 

TSS concentration at the four locations (sites 1-4) in the upper watershed.  Of the two 

sites (5 and 6) in the lower watershed, turbidity and turbidity squared were significant 

predictors of TSS concentration at site 6, but at site 5 only turbidity was significant.  The 

results show that for the overall turbidity range at each site, the regression equations are 

site specific.  The results, however, also show that for sites 2 and 4-6 the regression 

equations are very similar for the lower (<40 NTU) turbidity range.  At these lower levels 

of turbidity the differences between estimated TSS concentrations among the four sites is 

negligible. 

 Particle size analysis demonstrated that turbidity values less than 40 NTU resulted 

in similar particle size distributions among sites, even though particle concentrations 

were not similar.  Particle size analysis also showed that as turbidities surpassed ~40-60 

NTU, particle size distributions where distinctly different among the sites.  These results 

suggest that the dominate particle property influencing the turbidity-TSS relationship 

changes among sites. 

 The physical attributes (steeper channel gradients and higher stream velocities at 

site 2; low-slope channel gradients and lower stream velocities at site 6, aide in this 
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evaluation), and related particle characteristics demonstrated in these results, also 

suggested a connection to the regression model developed at site 6 where the turbidity 

squared term was found to be a significant predictor with turbidity of TSS concentration.  

These results suggest that sediment particle analysis can provide valuable information in 

the development of the site specific regression equations. 

 Results from the particle characteristic analysis show that the quantity of particles 

in the smallest size bin (1.9-2.25 μm) can be incorporated into regression models to 

reduce the RMSE.  The results show that because fewer, smaller particles pass through 

site 2, percent concentration (PTC) values for the 1.9-2.25 μm size bin were significant 

with turbidity in predicting TSS concentration on the full data set. 

 This research has important application to sediment monitoring programs in rivers 

and streams where sediment related impairments occur.  Surrogate relationships can be 

enhanced with the use of particle characteristics data to improve estimates of TSS 

concentrations, which can then be used to assess exceedance of water quality criteria and 

help better understand the magnitude and timing of sediment loads. This information can 

help in determining whether rivers and stream are meeting their beneficial use and in 

targeting the implementation of conservation and restoration efforts. 
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Table 3.1.  Summary of water quality monitoring sites in the LBR watershed 

Site   Site Name Date 
Range Latitude Longitude Site Description 

1 Upper South Fork Oct. 2007-
Present 

41.4954 -111.818 Located in the upper 
portion of the 
watershed where 
land use is primarily 
forest and grazing 

2 Lower South Fork July 2007-
Present 

41.5065 -111.8151 Located below the 
confluence of the 
Upper South Fork 
and a major 
tributary, Davenport 
Creek 

3 Avon/Confluence Nov. 2007-
Present 

41.5361 -111.8305 Located below the 
confluence of the 
East Fork and 
Lower South Fork 
sites 

4 Paradise June 2005-
Present 

41.5756 -111.8552 Located a few miles 
upstream of Hyrum 
Reservoir 

5 Wellsville Nov. 2007-
Present 

41.6435 -111.9176 Located a few miles 
below Hyrum 
Reservoir, flows are 
controlled by dam 
releases and 
summer flows are 
dominated by 
groundwater flow 
 

6 Mendon August 2005-
Present 

41.7185 -111.9464 Located near the 
boundary of the 
watershed at Cutler 
Reservoir. Water 
quality is affected 
by agriculture return 
flows and the 
Wellsville WWTP  
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Table 3.2.  Summary of water quality sensor specifications 

Variable Sensor Specifications 

Turbidity DTS-12 turbidity sensor, Forest 
Technology Systems, Inc. 

Accuracy: ± 2% 0-500 NTU and ± 4% 
501-1600 NTU 

Temperature Encapsulated Thermistor sensor, 
Forest Technology Systems, Inc. Accuracy: ±0.2oC 

Stage SPXD-600 Pressure Transducer, 
KWK Technologies, Inc. 

Accuracy: ± 1% of the full measurement 
span 

 

Table 3.3.  Summary statistics for field variables used to develop surrogate relationships 
for turbidity and total suspended solids (TSS) concentration at each of the six sites 

Site Variable Median Mean Standard 
Deviation Range Count 

1 Turbidity (NTU) 9.78 55.0 108 1 - 560 91 

 TSS (mg/L) 10.0 79.0 181 1 - 960 91 

 Discharge (m3/s) 0.66 0.82 0.6 0.2-2.3 91 

2 Turbidity (NTU) 9.13 39 88 1 - 556 138 

 TSS (mg/L) 14.2 67 162 2 - 1110 138 

 Discharge (m3/s) 1.56 3.36 3.49 0.3-16.3 138 

3 Turbidity (NTU) 4.98 12 17 1 - 92 68 

 
TSS (mg/L) 8.7 17 24 2 - 146 68 

 
Discharge (m3/s) 0.93 2.79 3.27 0.1-12.2 68 

4 Turbidity (NTU) 8.4 115 266 1 - 1407 136 

 

TSS (mg/L) 14.75 186 435 1.2 - 
2450 136 

 
Discharge (m3/s) 1.76 3.82 3.44 0.4-12.5 136 

5 Turbidity (NTU) 2.98 5.0 5.0 0.3 - 27 80 

 
TSS (mg/L) 6.86 8.0 6.9 0.2 - 35 80 

 
Discharge (m3/s) 1.44 2.8 3.3 0.01-13 80 

6 Turbidity (NTU) 22.45 23.29 16.7 3.7 - 166 241 

 
TSS (mg/L) 30.0 31.2 19.6 3.3 - 92 241 

  Discharge (m3/s) 2.26 3.83 2.9 1.0-11 241 
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Table 3.4.  Little Bear River watershed regression equations with summary statistics. The 
regression equations were developed using empirical field data from a continuously 
monitored sensor network.  A summary of variables measured is tabulated in Table 3.3.  
Regression equations are plotted in Figure 3.3 

Site Equation p-value Standard 
Error 

RMSE 
(mg/L) 

% 
Error (±) 

1 TSS= 0.57*Turb-
52.74* Z + 
1.22*Z*Turb 

< 0.0004 
Turb: 0.15 
Z: 3.7 
Z*Turb: 0.15 

10.3 13.0 

2 TSS= 1.28*Turb-
25.31*Z +0.63 
*Z*Turb < 0.0006 

Turb: 0.18 
Z: 3.9 
Z*Turb: 0.18 

12.9 19.2 

3 TSS= 
3.24+1.073*Turb- 
55.88 
*Z+1.070*Z* 
Turb 

< 2e-07 
Turb: 0.09 
Z: 9.5 
Z*Turb: 0.17 

6.1 35.5 

4 TSS= 1.70*Turb-
516.12*Z+ 
0.39*Z*Turb 

< 2e-08 
Turb: 0.04 
Z: 53.8 
Z*Turb:0.06 

48.2 25.9 

5 TSS= 2.69 + 1.12* 
Turb < 8e-07 Turb: 0.067 3.2 40.6 

6 TSS=1.60*Turb -
0.005* Turb2  < 2e-16 

Turb: 0.07 
Turb2: 5.1e-
04 

8.4 26.7 

Variable                  
Description 

    TSS Total Suspended Solids (mg/L) 
Turb Turbidity (NTU) 
Z Sites 1, 2 and 3  Z=1 when Turb  ≥ 40 NTU; Site 4  Z=1 when Turb ≥ 600 

NTU; otherwise Z=0 
Turb2 Curvilinear term for turbidity (NTU) 

Parameter              Description 
    p-value A probability; represents all variables used in the equation 

RMSE Root mean square error (mg/L) 
%Error Standardized percent error (SPE) (±) for the given model 
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Table 3.5.  Summary of turbidity, total suspended solids (TSS) concentration and 
volumetric particle concentration at three sites on the Little Bear River.  TSS and particle 
concentrations are shown for low (35-46 NTU) and high (143-702 NTU) turbidity values 

Site Date Turbidity 
(NTU) 

TSS 
(mg/L) 

Particle 
Concentration 

(uL/L) 

2 20-Jan-12 82 126 555 

2 12-Mar-12 46 70 54 

2 23-Mar-12 143 246 605 

2 23-Apr-12 24 19 66 

4 20-Jan-12 702 720 683 

4 12-Mar-12 190 657 249 

4 13-Apr-12 37 83 162 

4 26-Apr-12 35 49 398 

6 19-Jan-12 166 137 520 

6 20-Jan-12 139 99 551 

6 23-Mar-12 41 66 130 

6 25-Mar-12 38 54 220 
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Table 3.6.  Comparison of regression models that incorporate sediment particle 
characteristics for a subset of data at site 2 in the Little Bear River Watershed with a 
summary of the regression statistics.  The first model estimates the PTC of 1.9-2.25 μm 
size bin using discharge (m3/s). In the second model PTC is used as a predictor with 
turbidity to predict TSS concentration. The third model uses turbidity only as a predictor 

Site Equation p-value Standard 
Error RMSE Standardized 

% Error (±) 
        2 PTC1 = 0.148 * Q <0.01 Q: 0.045 0.51 0.74 

 TSS  =  1.9 * Turb -
13.02 * PTC1 

<<0.001 Turb: 0.015 
PTC: 2.6 

13.5 20.0 

  TSS = -4.7 + 1.8 * 
Turb 

<<0.001 Turb: 0.014 14.6 21.7 

Variable Description     
TSS Total Suspended Solids (mg/L) 

Turb Turbidity (NTU) 

PTC1 Percent Total Concentration of the particles in the 1.9-2.25μm particle size 
bin 

Q Discharge (m3/s)     

Parameter Description     
p-value Represents all variables used in the equation   
RMSE Root mean square error in units of the dependent variable 
Std. % 
Error 

Percent error (±) for the given model       

 

 

Table 3.7.  F-ratios for comparison of model variance 
Sites Compared F-Ratio F-Critical 
Site 4 /Site 2 1.8 1.9 
Site 6/ Site 2 1.2 1.9 
Site 4/ Site 6 1.5 1.9 
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Figure 3.1.  Little Bear River watershed water quality monitoring sites 
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Figure 3.2.  Scatter plots of total suspended solids (TSS) concentration and turbidity for 
each of the six monitoring sites.  The diagonal dashed line represents what would be a 1:1 
relationship between turbidity and total suspended solids (TSS) and is included as a 
reference against which the steepness of the slopes among sites can be compared.  The 
solid line represents the regression computed (model fit) TSS concentrations 
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Figure 3.3.  Model fit regression lines for each of the six sites in the Little Bear River.  
The grey dashed line represents what would be a 1:1 relationship between turbidity and 
total suspended solids (TSS) and is included as a reference against which the steepness of 
the slopes among sites can be compared.  Each of the regression lines represents the 
estimated TSS concentration (up to 200 NTU) at their respecitve loctions in the 
watershed (Figure 1).  The range of turbidity for which each of the regressions are valid 
varies among sites and is tabulated in Table 3.3 and illustrated in Figure 3.2  
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Figure 3.4.  Particle size distribution at site 6 for four particle size distributions where 
Turb=Turbidity (NTU), TSS=total suspended solids (mg/L) and TC=total volumetric 
concentration (ul/L).  The sample dates represent two with high (140-166 NTU) turbidity 
readings and two with low (38-41) turbidity readings with their respective TSS and total 
volumetric particle concentrations 
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Figure 3.5.  Particle size distributions at sites 2, 4 and 6, each having two particle size 
distributions where Turb=Turbidity (NTU), TSS=total suspended solids (mg/L) and 
TC=total volumetric concentration (ul/L).  The sample dates represent low (35-49 NTU) 
turbidity readings.  Their respective TSS and total volumetric particle concentrations are 
also given 
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Figure 3.6.  Particle size distributions for site 2 where Turb=Turbidity (NTU), TSS=total 
suspended solids (mg/L) and TC=total volumetric concentration (ul/L).  Distributions 
represent both high (82 and 143 NTU) and low (39 and 46 NTU) turbidities 
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CHAPTER 4  

COMPARISON OF POINT-BASED TURBIDITY MEASUREMENTS TO  

CROSS SECTION INTEGRATED MEASURES OF SUSPENDED  

SOLIDS CONCENTRATION 

Abstract 

The water quality of streams and rivers is most commonly assessed using single 

or fixed-point instrument measurements or grab samples that may vary significantly from 

a cross-section integrated approach.  Of particular interest in water quality monitoring is 

the concentration of suspended sediment, which has many potential negative impacts to a 

wide variety of beneficial uses.  Suspended sediment is most commonly monitored using 

grab samples, but continuous estimates of suspended sediment derived from turbidity as a 

surrogate are becoming more common.  When using surrogate methods, point-based grab 

samples of total suspended solids (TSS) concentration are usually correlated with in situ 

turbidity measurements made from a fixed location in the stream channel, and the 

resulting relationship is used to make high frequency estimates of TSS concentrations.  

Uncertainty exists, however, in whether grab samples of TSS or turbidity observations 

collected at a single-point in a stream are representative of the entire steam cross section.  

The purpose of this study was to investigate differences between point-based and cross-

section integrated TSS concentrations and turbidity measurements and to determine 

whether a method for accounting for these differences in surrogate relationships between 

TSS and turbidity is needed. 
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4.1 Introduction 

 The water quality of streams and rivers is most commonly assessed using single-

point measurements or single-point grab samples of water quality variables. In many 

cases, it is assumed that the stream is a homogeneous mixture of chemical, biological and 

physical parameters, with similar conditions across the channel cross-section.  Of 

particular interest in water quality monitoring is the concentration and flux of suspended 

sediment and its associated contaminants.  Suspended sediment (including other solid-

phase particulates) is cited as the most common impairment to water quality in the United 

States.  Numerous water quality problems are associated with sediment and include 

potential impacts on nearly all uses of water (AWWA, 1990; Rubin, 1995; Henley et al., 

2000; Owens et al., 2001; Soulsby et al., 2001; Pruitt, 2003; Carter et al., 2006; 

Schoellhamer et al., 2007; Horowitz, 2008; U.S. Army Corps of Engineers, 2011).  

 The ability to accurately quantify suspended sediment concentrations and fluxes 

at appropriate temporal and spatial scales is critical to assessing whether streams are 

meeting their designated beneficial uses and in implementing and evaluating watershed 

management and mitigation plans.  Techniques for quantifying suspended sediment 

concentration have typically included traditional grab (point-based) sampling methods, 

which lack sufficient temporal frequency to capture daily, weekly and monthly 

fluctuations in these concentrations and fluxes (Christensen et al., 2002; Tomlinson and 

De Carlo, 2003; Kirchner et al., 2004; Horsburgh et al., 2010; Jones et al., 2010).  

Accurate quantification of suspended sediment concentration and flux at a stream cross 
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section requires characterizing both the spatial (e.g., across the stream cross section) and 

temporal variability in suspended sediment concentrations. 

 One method for quantifying suspended sediment concentrations is to convert high 

frequency, in situ measurements of a surrogate like turbidity into high frequency 

estimates of suspended sediment concentration using statistical regression techniques that 

relate in situ turbidity measurements and much lower frequency grab samples of 

suspended sediment (Schoellhamer and Wright, 2003; Rasumussen et al., 2009; Jastram 

et al., 2010).  In most surrogate applications, empirical (surface-grab) sampling methods 

and in situ turbidity measurements are made at a single point location in the stream 

channel.  One potential issue with this is that a single turbidity sensor installed at a 

monitoring site may not be representative of conditions across the entire stream channel.  

It can be prohibitively expensive to have multiple turbidity sensors at any one site and 

logistically impossible to install a sensor in a way that it moves across a stream profile 

and up and down in the water column. 

Others have shown that a single-point measurement of turbidity and suspended 

sediment may vary significantly from measurements made using width and depth 

integrated sampling methods (Martin et al., 1992; Horowitz, 2008; Jastram, 2010).  

Variability in cross-sectional suspended sediment concentrations is typically due to 

differences in water velocities within the stream channel (also influencing particle 

settling velocities), incomplete mixing of groundwater inflow, point sources, and 

upstream tributaries and channel geometry.  In some cases, however, it may be possible 

to develop a correction factor to account for this variability in surrogate regression 
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equations developed for a particular site.  The objective of this study was to investigate 

the degree to which differences between point and cross-sectionally integrated 

measurements of turbidity and total suspended solids (TSS) concentration were 

significant at two water quality monitoring sites in the Little Bear River watershed, Utah, 

U.S.A. and to investigate methods for mitigating the effect of this potential variability on 

estimated concentrations and fluxes. 

Since turbidity-TSS relationships have already been developed at multiple 

locations in the Little Bear River watershed (Chapter 3), this study continues efforts to 

identify factors that can improve the surrogate method for estimating concentrations of 

suspended sediment using fixed-point turbidity measurements. Data from a single 

turbidity sensor along with point-based and depth-and-width-integrated grab samples of 

TSS were compared to assess the spatial distribution of turbidity response and suspended 

sediment concentration.  At sites where a single TSS concentration measurement was not 

representative of the conditions across the entire stream channel, a correction factor was 

developed and used to compensate for the difference between a single-point estimate of 

TSS concentration and an integrated cross-section measurement.  

4.2 Study Area 

 The Little Bear River watershed is located in the south end of Cache Valley, Utah 

and encompasses roughly 740 km2.  The headwaters form in the Bear River Mountain 

Range, and the river drains to Cutler Reservoir on the west side of Cache Valley.  

Elevations within the watershed range from 2865 m to 1345 m.  Land use within the 

upper watershed is comprised mostly of forest and range (grazing) lands while the lower 
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portion of the watershed is made up primarily of agricultural lands and some urban 

development.  Hydrology of the watershed is dominated by spring snowmelt, with water 

in the upper watershed being stored within two reservoirs, Porcupine Reservoir in the 

upper East Fork and Hyrum Reservoir on the mainstem, before being released and 

diverted into irrigation canals for agricultural use during the irrigation season. 

 Since 2005, research conducted by the Utah Water Research Laboratory at Utah 

State University has facilitated the installation of multiple continuous water quality 

monitoring stations.  Two of these sites were used in this study, the locations of which are 

shown in Figure 1 with descriptions in Table 4.1.  One of these stations (site 1) is located 

in the upper watershed above Hyrum reservoir, where stream channels are steeper and 

sometimes have velocities as high as 2.0 m/s.  The lower portion of the watershed 

includes the second monitoring site at the outlet of the watershed near the confluence 

with Cutler Reservoir.  In this lower section of the river, channel slopes are lower and 

velocities are almost always <0.7 m/s.  The river exhibits a more meandering planform, 

and soils are predominantly fine grained lacustrine sediments. 

 The two sites were selected because accessibility to perform width and depth 

integrated measurements was facilitated by low-lying bridges that allowed for the 

specified procedures to be carried out under a full range of flow conditions.  Also, these 

two sites represent hydrologic and water quality conditions that are of interest because 

they are influenced by distinct watershed characteristics described above. 
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4.3 Methods 

4.3.1 Instrumentation and Data Acquisition 

 Turbidity, water temperature and gage height were measured using permanently 

installed, in situ sensors every 30 minutes in the Little Bear River.  Turbidity and water 

temperature were measured using a Forest Technology Systems DTS-12 turbidity sensor.  

The DTS-12 uses a laser diode with a wavelength in the near-infrared (780 nm) spectrum 

and measures light scatter at 90 degrees to the incident beam (Forest Technologies Ltd, 

2010).  This geometry results in measurement units of Nephelometric Turbidity Units 

(NTU), and the probe has a range from 0-1600 NTU.  Accuracy of the probe is ± 2% for 

turbidity values between 0-399 NTU and ±4% for values of between 400-1600 NTU 

(Forest Technology Systems Ltd., 2007).  Each turbidity measurement consists of 100 

instantaneous observations made over a five second time interval, after which summary 

statistics are output.  From the 100 instantaneous observations, the median turbidity value 

was used throughout this study.  Water temperature was measured with the DTS-12 from 

an internal encapsulated thermistor and used to compensate turbidity measurements.  

Gage height was measured using a KWK Technologies SPXD-600 Pressure Transducer 

and was correlated with routine discharge measurements to develop a stage-discharge 

relationship for each site. 

4.3.2 Point/Fixed Location Measurements 

 Point measures of turbidity were made using the above described turbidity sensor 

at the monitoring sites, with the sensors installed as close as physically possible to being 

in the main flow of the stream channel (Figures 4.2 and 4.3).  For site 1, the sensor is 
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installed inside a vertical PVC housing that is mounted to a bridge abutment on the up-

stream side of the river as shown in Figure 4.2.  A rugged metal screen is attached at the 

submerged end of the housing to protect the protruded sensor face from debris.  At site 2, 

the sensor is also deployed in PVC housing, but its location is in the middle of the up-

stream side of the channel on the center concrete abutment of a dual culvert-spanned 

bridge (Figure 4.3).  Both sensors sit ~0.43 m from the bottom of the stream bed.  

Surface-grab samples for TSS concentration were collected at both sites adjacent to the 

existing fixed-sensors by either lowering an open wide-mouth bottle approximately 0.3 m 

below the surface of the water or using a bucket on a rope to retrieve a volume of water 

for subsequent filling of sample bottles.  The bucket on a rope was used at site 2 to 

collect grab samples of TSS because the bridge is too high above the stream to reach by 

hand. 

4.3.3 Cross Section Measurements 

 The stream channel cross-sections that were used to perform the width and depth 

integrated measurements for TSS and turbidity were inline with either the existing fixed 

turbidity sensor or at the established cross-section where discharge measurements were 

made.  For site 1, the width and depth integrated samples and discharge measurements 

were taken along the same cross-section, which is ~2 m downstream of the fixed-location 

turbidity sensor.  At site 2, the width and depth integrated samples were collected along 

the same transect as the fixed turbidity sensor, with discharge measured at a different 

cross section on the downstream side of the bridge, ~9 m away. 
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Width and depth integrated TSS measurements followed the equal-width-

increment (EWI) method described in Edwards and Glysson (1999).  This method 

specifies that a depth-integrated TSS sample or turbidity measurement should be 

collected from a minimum of ten equally spaced positions (verticals) along the cross 

section for streams greater than 1.5 m wide.  TSS samples (or turbidity measurements) 

from each vertical represent the average over the entire depth of the vertical, which spans 

from the water surface to within 0.09 m of the streambed.  The EWI method was 

preferred over other methods, such as the equal-discharge-increment method (samples 

taken from centroids of equal-discharge increments), because knowledge of the cross-

sectional flow distribution was not required in the field.  Because a greater number of 

verticals are required with the EWI method, variability in the distribution of sediment 

concentration (and turbidity response) across the cross section could be better defined. 

For each site, the wetted width of the stream was determined by spanning a 

fiberglass tape across the respective cross section.  This width was divided into at least 

ten equally spaced verticals.  Using a graduated steel strut, the depth at the horizontal 

midpoint of each vertical was measured to the nearest 0.003 m.  Area near the water’s 

edge where the water depth was less than ~0.15 m or where water velocity was <0.3 m/s 

or negative (due to stream eddy), was not sampled due to requirements of the suspended 

sediment sampler.  These unsampled areas, however, were included in the gross cross-

sectional area calculation. 

Prior to making width and depth integrated TSS measurements, stream discharge 

was determined using a StreamPro acoustic doppler current profiler (ADCP) (Teledyne 
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RD Instruments Inc., 2006), which measures both water depth and velocities.  Maximum 

depth and velocity were noted for each vertical and were used to calculate the transit rate 

for the suspended sediment sampler. 

A DH-48, depth-integrated, isokinetic (90-110% inflow efficiency) suspended 

sediment sampler was used for depth-integrated suspended sediment sampling.  The DH-

48 sampler collects flow-weighted samples and is designed for streams with velocities 

from 0.3-2.7 m/s and depths up to 2.7 m.  The DH-48 samples to within ~0.09 m of the 

stream bed.  The sampler was used at both sites using the manufacturer-supplied 

extension rods, which allowed it to be lowered and raised from a bridge in the sampling 

vertical at a specified speed called the transit rate.  The transit rate was the same for each 

vertical and even though the resulting sample volumes from each vertical varied, they 

were proportional to the discharge of that vertical, resulting in a discharge-weighted 

suspended sediment sample.  The transit rate was determined by the time it takes to 

traverse the distance from the water surface to the streambed and back in the vertical of 

maximum discharge that produces a sample volume between 300 and 420 mL. 

Depth-and-width-integrated turbidity measurements were made using a DTS-12 

turbidity sensor.  The sensor was fastened to the graduated steel strut so that it could be 

lowered from a bridge to the desired depth in each vertical across the stream channel.  

The sensor was lowered to no less than 0.15 m above the channel bottom with the optical 

face of the sensor oriented upward and facing upstream.  This was done to avoid contact 

with and potential interferences from stream bed material.  Once the sensor was lowered 
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to the specified depth, measurements were made by the sensor via commands from a 

laptop computer. 

It was not possible to operate the turbidity sensor and the DH-48 at the same time 

in the same vertical.  The internal programming and operation of the DTS-12 sensor 

requires a single measurement to last ~35seconds, making it impossible to make 

measurements frequent enough that a continual transit rate for the turbidity sensor in each 

vertical was feasible.  Because of this, turbidity measurements within a vertical followed 

the sediment sampling, but both were completed within approximately one minute of 

each other for a given vertical.  Additionally, test runs in which turbidity measurements 

were made at many vertical positions within several verticals showed that turbidity 

measurements made at 60% of the vertical depth for waters <0.61 m or turbidity 

measurements made at 20% and 80% of the vertical depth for waters >0.61 m, were 

sufficient to capture the variability of turbidity within a single vertical.  This is similar to 

the area-velocity method used to compute stream discharge (Chapra, 1997), which 

requires measurements of velocity at similar intervals within verticals to capture the 

average velocity representative of the vertical.  Since the DH-48 sediment sampler 

represents an integrated or composite sample for a single vertical, the turbidity 

measurements were made to reflect the average turbidity of that vertical. 

Data collection for a single width and depth integrated TSS and turbidity 

measurement for a cross section was completed within 30 minutes.  To ensure that no 

significant differences existed between the mobile and fixed turbidity sensors, turbidity 

measurements made with the mobile sensor were compared to measurements made by the 
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fixed-point sensor by placing the mobile sensor in near proximity to the fixed-sensor and 

making measurements over the time periods that the fixed sensor is programmed to 

operate.  This was done for each sampling event before and after width and depth 

integrated TSS and turbidity measurements were made. 

Total suspended solids (TSS) grab samples and depth-integrated samples were 

analyzed at the Environmental Quality Lab at the Utah Water Research Laboratory using 

Standard Method 2540D, Total Suspended Solids Dried at 103-105o C (APHA, 1995). 

Sample bottles collected from each of the verticals were individually analyzed for TSS 

concentration.  Laboratory duplicates for TSS samples were performed on samples 

collected from the fixed-sensor location and on multiple verticals for a given sampling 

date. 

4.3.4 Comparison of Discrete and Integrated Measurements 

 Each recorded turbidity measurement is derived from a sample of 100 

instantaneous observations.  The resulting median and variance (calculated by the sensor) 

were used for conducting hypothesis tests.  The hypothesis tests were used to compare 

the values of the cross-sectionally integrated measurements with the mean of two discrete 

measurements that bracket the time window over which the integrated measurements 

occurred.  Hypothesis testing was used to determine if there was a significant statistical 

difference between the discrete and integrated measurements with a given level of 

significance of α=0.05 (5%).  The null hypothesis was that the difference between the 

discrete and integrated turbidity values is zero (H0: μ1-μ2=0).  A p-value less than 0.05 
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would show statistical reason to reject the null hypothesis and conclude that the discrete 

and integrated measurements are not statistically the same. 

 Comparison between discrete and integrated TSS samples was based on the 

percent differences between duplicate samples that were analyzed in the lab.  Percent 

differences were calculated by dividing the difference between the discrete and integrated 

samples by the cross-section average TSS concentration and then multiplying by 100. 

 A correction factor for differences between discrete and integrated TSS 

concentration samples was developed at site 1 using least squares regression techniques 

described in Section 3.3.2.  Site 1 was chosen for the correction factor development 

because The data used for the regression analysis was obtained from four sampling 

events in February – April 2012 where paired discrete (single point grab samples) and 

integrated (cross section averaged) TSS samples were acquired.  These values are listed 

in Table 4.5.  The regression was performed using the four paired data values and the 

resulting regression equation was used to convert half-hourly regression-computed (based 

on discrete samples) TSS concentrations to cross section averages.  The correction factor 

developed for use in this study applied a two step adjustment to half-hourly regression-

computed TSS concentrations at site 1 for the water years (WY) 2008 and 2011.  For the 

first step, the regression equation was applied to all TSS concentrations less than 246 

mg/L.  For TSS concentrations greater than 246 mg/L, each value was increased by 7% 

of the given TSS concentration. 

 Suspended sediment loads were calculated for water years 2008 and 2011 at site 1 

using the following equation: 
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  𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑎𝑑 =  ∑ 𝑄𝑖𝑛
𝑖=1 𝐶𝑖𝑓     Eqn. 4.1 

where annual load is in metric tons, Qi are the half-hourly computed discharge values, Ci 

are the half-hourly, regression-computed TSS concentrations, f is a conversion factor 

used to convert the product of discharge (cubic feet per second) and concentration (mg/L) 

to metric tons per year and i is an index for each of half-hourly values where i = 1,2,…n.  

Load calculations were based on 17,564 and 17,240 paired discharge and TSS 

concentration values for water years 2008 and 2011, respectively. 

4.4 Results and Discussion 

 A total of six paired width and depth integrated turbidity and TSS measurements 

were collected from the two monitoring locations from February 2012 to April 2012, four 

at site 1 and two at site 2.  An additional two width and depth integrated samples of 

turbidity were collected within the same time period, one at each site.  Low snow pack in 

the watershed reduced peak discharges and limited high flow/turbidity conditions, 

resulting in relatively few opportunities for sampling of turbidity and TSS at elevated 

levels.  This has limited the application of these results to a range of conditions that does 

not fully represent the varying conditions at these two sites. Table 4.3 gives a summary of 

the number of the turbidity measurements made and the number of TSS samples that 

were collected and analyzed. 

4.4.1 Comparison of Turbidity at Sites 1 and 2 

 Table 4.4 compares the discrete and integrated measurements of turbidity for the 

sampling events at both sites.  The lower (<15 NTU) turbidity values have small 

differences between paired measurements, but the difference grows with increasing 
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turbidity.  Also listed in Table 4.4 and illustrated in Figures 4.10 and 4.12 is that the 

integrated turbidity values for all sample events are higher than the discrete turbidity 

values. For site 1, percent differences between the paired turbidity measurements are 

between 17% and 43%.  Each of the paired measurements at site 1 were found to be 

statistically different, with p-values well below the significance threshold of α=0.05.  

Although the statistical assurance that the two numbers are different is strong, differences 

between paired turbidity values is less than 2 NTU when turbidity is 15 NTU or less.  In 

the context of estimating TSS concentration using turbidity as a surrogate, the difference 

is not significant at this scale.  This is because turbidity-TSS data from this site have 

shown that turbidity values within ±2 NTU of each other can correlate with TSS grab 

samples of the same concentration.  

 The difference between discrete and integrated turbidity measurements may be 

more important, however, for the higher (>40 NTU) turbidity values because that is 

where the difference between the paired measurements begins to increase.  Figure 4.4 

illustrates that not only are the cross-section integrated measurements consistently higher, 

but the gap between the paired measurements widens as turbidities increase.  At the 

highest paired turbidity values of 149 and 191 NTU for the discrete and integrated values 

respectively, the percent difference is 22%.  The range of turbidity values measured 

throughout the cross-section for the integrated sample ranged from 167-200 NTU and 

does not include the discrete measurement.  This is the case for the remaining sample 

events at site 1, where there is no overlap of turbidity in the paired measurements.  The 

variability in higher turbidity measurements is also illustrated in Figures 4.6 and 4.10.  



79 
 
Figure 4.6 shows cross-section spatial distribution plots for each sample event.  The 

sample events show the average turbidity value for each vertical in the cross section as a 

shaded area based on the scale of the respective turbidity values.  The wide range of 

turbidities across the stream profile for sample event 3/23/2012 is 140-210 NTU as 

shown in Figure 4.6.  Figure 4.10 shows a comparison of the discrete turbidity 

measurement and each individual vertical for all turbidity sampling events at site 1.  This 

demonstrates the variability between verticals as turbidity increases. 

Because there is not overlap of turbidity in the paired measurements, this would 

indicate that the fixed sensor is biased lower than cross-section integrated measurements 

of turbidity up to ~150 NTU.  The difference between the paired measurements is 

thought to be related to the fact that the integrated measurements were made at a position 

2 m downstream of the discrete sensor location. The difference between the discrete and 

integrated measurements is not thought to be instrument related because the mobile 

sensor that was used to make the integrated measurements was also used to make side-

by-side turbidity comparisons with the discrete sensor. On average the measured turbidity 

values between the two sensors was no more than 10% different. 

 For site 2, percent differences (Table 4.4) between the paired turbidity 

measurements were much lower compared to site 1, where each difference was <5%.  

Paralleling this, the p-values are all greater than 0.9, well above the threshold of α=0.05, 

which demonstrates a lack of evidence to reject H0: μ1-μ2=0.  Additionally, side-by-side 

comparisons with the mobile and fixed turbidity sensors were made during the field 

campaigns to identify differences, if any, in turbidity sensor response.  Differences 
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between the sensors were less than 2% for turbidities 0-399 NTU which is in line with the 

accuracy published in the manufacture’s specifications. It is believed that turbidity is 

more consistent across the stream cross section at this site because the channel is wider, 

deeper and has a lower slope.  The lower and more uniform velocities lead to a more 

homogenous distribution of turbidity across the channel, and the particles are smaller at 

this site and more likely to remain suspended. 

The cross-section spatial distributions of turbidity at site 2 are shown in Figure 

4.8.  The range of measured turbidities throughout the cross section were within 4 NTU 

of each other during all sampling events, with little variation throughout the stream cross-

section.  Turbidity measurements at the discrete point within the cross section were 

representative of the entire stream cross-section because all differences between the 

paired samples were less than 2 NTU.  Figure 4.12 shows a comparison of the discrete 

turbidity measurement with each individual vertical for each of the three sampling events.  

4.4.2 Comparison of Total Suspended Solids at Sites 1 and 2 

 Table 4.5 lists the discrete and integrated samples of TSS for the sampling events 

at sites 1 and 2.  The discrete and integrated concentrations and respective standard 

deviations for TSS are shown as well as the percent differences between paired samples.  

The “Lab Precision” column lists the error associated with laboratory duplicate samples.  

The percent differences between discrete and integrated TSS samples for both sites are 

generally 10% or less.  Sampling event 2/16/2012 at site 1 shows a percent difference of 

26% for TSS values (2.4 and 3.25 mg/L), but the values of these samples are below 

method detection limits of 10 mg/L (U. S. EPA, 1999).  Each of the percent differences 
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between paired samples for both sites are less than their respective laboratory duplicate 

percent differences.  This indicates that the difference in TSS concentration between 

paired samples is within the error of the analytical procedures carried out in the lab.  

Therefore differences between the TSS concentrations of the paired samples are not large 

enough to conclude that surface grab samples are not representative of the cross-sectional 

average at these two sites and in the range of turbidities sampled.   

Differences between discrete and integrated TSS concentrations at site 1 did 

increase with increasing TSS concentration, but not to the same degree as turbidity.  This 

is illustrated in Figure 4.5, where sample event 3/23/2012 shows that the largest percent 

difference between paired TSS samples was 7% (the TSS concentrations for the discrete 

and integrated samples were 246 and 264 mg/L respectively). 

Figures 4.7 and 4.11 show the spatial distribution of TSS concentration 

throughout the verticals for each sample event at site 1.  Also illustrated in Figures 4.7 

and 4.11 is the location in the stream cross-section where the discrete grab sample was 

taken, with its size relative to the opening of the sample bottle.  Sample events 2/16/2012 

and 3/8/2012 had very little variation among sampled verticals, with TSS concentration 

ranges from 2-6 mg/L and 13-18 mg/L, respectively.  The range of TSS concentrations 

for sample event 3/23/2012 was 200-400 mg/L.  Although this represents a large 

difference of ~100% for concentrations throughout the cross-section, the difference 

between the discrete grab sample (246 mg/L) and the integrated sample (264 mg/L) was 

7%.  This demonstrates that at site 1 single-point grab samples could, under certain 

conditions, approximate the cross-section average of suspended sediment concentration 
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for values of turbidity <150 NTU.  Although turbidity values sometimes exceed 1500 

NTU at site 1, the turbidity range of 0-150 NTU is important because it comprises 99% 

of all measured turbidity values.  Other sample events at site 1 also demonstrated small 

differences between paired samples, as shown in Table 4.5. 

However, Figures 4.7 and 4.11 also demonstrate that TSS concentrations from a 

single vertical could overestimate the measured cross-section average by as much as 122 

mg/L where the relative percent difference between the vertical with the highest 

concentration (386 mg/L) and the overall cross section average (264 mg/L) is ~37%. This 

observed variability within the cross-section highlights the importance of sensor position 

and of conducting integrated measurements for use in determining compliance with water 

quality criteria.  Although not captured in this study, grab samples at site 1 with TSS 

concentrations as high as 1000 mg/L have been collected, and it is expected that at higher 

TSS concentrations the variability in TSS concentration within the cross section would be 

larger.  This increasing variability among sampled verticals for higher TSS values is 

illustrated in Figures 4.11. 

 At site 2, two sampling events for TSS concentration were conducted where 

percent differences between paired samples were <7% (Table 4.5).  As with site 1, the 

spatial distributions for TSS concentration of site 2 (Figures 4.9 and 4.13) showed 

variability among verticals.  The largest difference from sample event 3/8/2012 was 

~70% and was heavily influenced by one vertical that had a concentration of ~50 mg/L.  

However, TSS concentrations did vary significantly within the cross-section, with TSS 

concentrations ranging from 14-26 mg/L (~46%) during sample event 2/16/2012 and 
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from 14-50 mg/L (~112%) during sample event 3/8/2012.  Despite the variability within 

the cross section, the discrete (22.48 mg/L) and integrated (24.28 mg/L) TSS 

concentrations were within 7% of each other (Table 4.5). 

The results have shown that differences between paired discrete and integrated 

TSS samples are small (~7%) for both sites.  While this may indicate—that for a 

specified range of TSS concentrations—a single discrete sample may sometimes 

approximate the cross-section average, the impact of these differences on the full range of 

TSS values for determining annual sediment loads is also of interest.  At site 1, this 

impact was estimated by developing the following correction equation, y* = 1.0762(x), 

where y* is the regression-computed TSS concentration adjusted by the correction factor 

equation and x is the original regression-computed TSS concentration.  This correction 

equation was used to adjust discrete-based regression computed TSS concentrations 

(<246 mg/L) so they would be more representative of the integrated cross section 

average. 

Figure 4.14 shows the estimated annual TSS loads at site 1 for the water years 

2008 and 2011 based on discrete and integrated (using the correction equation) TSS 

sample concentrations.  For WY 2008 the estimated annual TSS load based on discrete 

and integrated TSS concentrations was 1,828 MT and 1,967 MT, respectively.  For WY 

2011, the estimated annual load based on discrete and integrated TSS sampling was 9,742 

MT and 10,484 MT, respectively.  For both years, the difference between the discrete-

based and integrated-based loading estimates was ~7.3%. 
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For WY 2008, the percentage of annual TSS load that was from TSS 

concentrations greater than 246 mg/L was 31% for the annual TSS load based on the 

integrated sample.  The percentage of the 2011 annual TSS load that was from TSS 

concentrations greater than 246 mg/L was 21%.  These percentages represent a 

potentially significant portion of the total annual TSS load for which a correction of 7% 

was applied.  It is believed, however, that the difference between discrete and integrated 

TSS concentrations would likely increase beyond 7% if TSS concentrations rise, and the 

percentage of total annual TSS load from these higher levels might accumulate more of 

the total annual TSS load. 

4.5 Conclusions 

 The purpose of this study was to investigate whether discrete, point-based 

measures of turbidity and TSS concentration are representative of integrated cross-section 

averages and to develop a correction factor that accounts for potential differences.  

Comparisons between measurements of discrete and cross-section integrated turbidity 

and TSS concentrations were made at two locations in the Little Bear River watershed.  

At site 1, differences in turbidity between discrete and integrated turbidity values 

increased to 22% as turbidity increased, whereas at site 2 differences in turbidity between 

the two measures remained <5%.  When turbidity is used as a surrogate for estimating 

TSS concentration, differences in turbidity between the two methods may be less 

important because the parameter of concern is TSS concentration.  Correcting for 

differences between discrete measures and integrated measures of turbidity was not 

necessary for TSS estimation in this study. 
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 Both monitoring sites demonstrated that for some conditions, a single-point grab 

sample of TSS can be sufficient to represent the cross-sectional average TSS 

concentration even though many of the sampling periods (Figure 4.7, sample event 

3/23/2012; Figure 4.9, sample events 2/16/2012 and 3/8/2012) showed a high degree 

variability among verticals. For site 1 small differences (~7%) between discrete and 

integrated TSS samples were found for high (246 mg/L) levels of TSS.  This level of TSS 

concentration is significant because it represents the 99th percentile of all observed 

turbidities.  Because of the high spatial variability among verticals, the location of the 

sensors in the cross section was a key element to the resulting small differences between 

discrete and integrated TSS samples.  If a sensor had been located in a vertical where 

differences between discrete and integrated samples were large, then discrete samples of 

TSS could severely misrepresent the cross section average.  A correction factor was 

developed and used to convert discrete TSS concentrations to TSS concentrations that 

more closely represent integrated cross section averages. 

 Total annual TSS loads were estimated using the corrected TSS concentrations 

and the small differences (~7.3%) between annual TSS loads for both water years does 

not produce strong reason to use a correction factor for lower (<246 mg/L) TSS 

concentrations.  Above this concentration, however, these results show that a correction 

factor may be most useful for the higher (>246 mg/L) TSS values because a significant 

portion (21-31%) of the annual TSS load is derived from these higher TSS 

concentrations.  A correction factor for these higher TSS concentrations may be useful to 

improve quantification of TSS loads in the Little Bear River. 
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 The implications of these results are applicable to water managers by providing 

insight to answering key questions like:  Where along the stream channel cross section 

should one retrieve a discrete grab sample for suspended sediment determination that can 

represent the cross section average?  How accurate is a discrete measure of suspended 

sediment concentration compared to the integrated cross section average?  And how can 

one account for differences between the two measurements?  The results show that the 

methodologies followed in this study can provide direction to answering these questions.  

These answers can aid water managers in determining how suspended sediment fluxes 

impact a streams beneficial use. 
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Table 4.1.  Summary of water quality monitoring sites in the Little Bear River watershed.  
The date range reflects the time period over which continuous monitoring has been 
conducted 

Site 
Number Site Name Date 

Range Latitude Longitude Site Description 

1 Lower South 
Fork 

July 2007-
Present 

41.5065 -111.8151 Located below the 
confluence of the 
Upper South Fork and 
a major tributary, 
Davenport creek. Land 
use is dominantly 
forest and grazing 

2 Mendon August 
2005-
Present 

41.7185 -111.9464 Located near the outlet 
of the watershed at 
Cutler reservoir. Water 
quality is affected by 
agriculture return 
flows and the 
Wellsville WWTP  

 

 

Table 4.2.  Summary of water quality sensor specifications 
Variable Sensor Specifications 

Turbidity 
DTS-12 turbidity sensor, 
Forest Technology Systems, 
Inc. 

Accuracy: ± 2% 0-399 NTU and ± 4% 
400-1600 NTU 

Water Temperature 
Encapsulated thermistor 
sensor, Forest Technology 
Systems, Inc. 

Accuracy: ±0.2oC 

Stage 
SPXD-600 pressure 
transducer, KWK 
Technologies, Inc. 

Accuracy: ± 1% of the full 
measurement span 
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Table 4.3.  Summary of the number of turbidity measurements and number of TSS 
samples collected and analyzed for each sampling event and for each site.  Discrete 
turbidity measurements represent the average of the two median turbidity values (each 
one based on 100 instantaneous observations) that bracketed the time period over which 
the integrated measurements were made.  Discrete TSS samples are laboratory duplicates 

Site Sampling 
Event 

Discrete 
Turbidity 

Measurements 

Integrated 
Turbidity 

Measurements 
Discrete 

TSS Samples 
Integrated 

 TSS Samples 

1 2/14/2012 2 20 - - 

 2/16/2012 2 22 2 11 

 3/8/2012 2 22 2 9 

 3/23/2012 2 19 2 10 

  4/26/2012 2 18 2 11 

2 2/8/2012 2 22 - - 

 2/16/2012 2 29 2 12 

  3/8/2012 2 22 2 12 
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Table 4.4.  Comparison of discrete and integrated turbidity measurements for the two 
monitoring sites.  Percent differences between paired measurements are shown.  The p-
value indicates a statistical significance that the difference between the paired 
measurements is not zero.  The threshold for significance is α=0.05 

Site Sampling 
Event 

Discrete 
Turbidity 

(NTU) 

Discrete 
Std. Dev. 

(NTU) 

Integrated 
Turbidity 

(NTU) 

Integrated 
Std. Dev. 

(NTU) 
Diff. p-value 

1 2/14/2012 1.9 0.83 2.97 0.25 35% <<0.001 

 2/16/2012 1.5 0.65 2.52 0.13 43% <<0.001 

 3/8/2012 11.5 1.2 13.73 0.74 17% <<0.001 

 3/23/2012 149.4 6.6 191.3 14.5 22% <<0.001 

  4/26/2012 39.8 2.6 48.5 2.8 18% <<0.001 

2 2/8/2012 21.9 2.0 21.7 1.8 <1% 0.93 

 2/16/2012 14.3 1.2 13.9 0.95 <3% 1.8 

  3/8/2012 17.6 1.6 16.8 1.1 4.7% 1.9 

 

 

Table 4.5.   Comparison of TSS between point-based and cross-sectional integrated 
samples for the two monitoring sites.  Percent differences between paired samples are 
shown with the percent difference of laboratory duplicates also shown 

Site Sampling 
Event 

Discrete 
TSS (mg/L) 

Discrete 
Std. Dev. 
(mg/L) 

Integrated 
TSS (mg/L) 

Integrated 
Std. Dev. 
(mg/L) 

Difference Lab 
precision 

1 2/16/2012 2.40 0.57 3.3 1.3 26% 33% 

 3/8/2012 15.6 1.1 14.2 1.6 10% 10% 

 3/23/2012 246 41.1 264 34.8 7% 24% 

  4/26/2012 57.1 3.50 61.4 5.67 7% 28% 

2 2/16/2012 18.8 1.14 18.5 3.1 1% 9% 

  3/8/2012 22.5 0.67 24.3 9.3 7% 4% 
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Figure 4.1.  Little Bear River watershed water quality monitoring sites 1 and 2 
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Figure 4.2.  Photograph of the fixed-location turbidity sensor relative to dominant stream 
flow pathway for Site 1.  Sensor housings are the black vertical columns located 
underneath the bridge on the right-hand side of the photograph 
 

 

 
Figure 4.3.  Photograph of the fixed-location turbidity sensor relative to channel cross-
section for Site 2.  Sensor housings are the black vertical columns in the upper center of 
the photograph 
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Figure 4.4.  Difference between paired discrete and integrated turbidity measurements at 
site 1.  At sample event 3/23/2012 the percent difference is 22%.  For the discrete 
measurements, error bars represent the standard deviation of a turbidity measurement 
made by the in situ sensor.  For the integrated turbidity measurements, the error bars 
represent the standard deviation of the integrated measurements 
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Figure 4.5.  Difference between paired discrete and integrated total suspended solids 
concentrations at site 1.  At sample event 03/23/12 the percent difference is 7%.  For the 
discrete measurements, error bars represent the standard deviation of duplicate TSS 
samples.  For the integrated TSS measurements, the error bars represent the standard 
deviation of the integrated measurements 

2.4 
15.6 

246.0 

57.1 
3.3 

14.2 

263.5 

61.4 

0

50

100

150

200

250

300

2/14/2012 2/16/2012 3/8/2012 3/23/2012

To
ta

l S
us

pe
nd

ed
  S

ol
id

s,
  m

g/
L 

Sample Event 

Discrete
Integrated



96 
 

 

Figure 4.6.  Spatial distribution of the average turbidity for each vertical for each of the 
five sampling events at site 1.  The legend scale on the right-hand side represents the 
range of turbidity values throughout the cross section for the respective sample event.  
The white circles represent the location of the fixed turbidity sensor and the location at 
which discrete measurements were made.  Its size represents the approximate area 
measured by the sensor 
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Figure 4.7.  Spatial distribution of the average total suspended solids (TSS) concentration 
for each vertical for each of the four sampling events at site 1.  The legend scale on the 
right-hand side represents the range of TSS values throughout the cross section for the 
respective sample event.  The white circles represent the approximate location where the 
grab samples were taken and the location.  Its size represents the approximate area 
sampled by the bottle
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Figure 4.8.  Spatial distribution of the average turbidity for each vertical for each of the 
three sampling events at site 2.  The legend scale on the right-hand side represents the 
range of turbidity values throughout the cross section for the respective sample event.  
The white circles represent the location of the fixed turbidity sensor and the location at 
which discrete measurements were made.  Its size represents the approximate area 
measured by the sensor 
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Figure 4.9.  Spatial distribution of the average total suspended solids (TSS) concentration 
for each vertical for each of the two sampling events at site 2.  The legend scale on the 
right-hand side represents the range of TSS values throughout the cross section for the 
respective sample event.  The white circles represent the approximate location where the 
grab samples were taken and the location of the sensor.  Its size represents the 
approximate area sampled by the bottle 
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Figure 4.10.  Comparison of discrete turbidity measurements to each sampled vertical 
across the cross section for site 1 
 

 

Figure 4.11.  Comparison of discrete TSS samples to each sampled vertical across the 
cross section for site 1 
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Figure 4.12.  Comparison of discrete turbidity measurements to each sampled vertical 
across the cross section for site 2 
 

 

 

Figure 4.13.  Comparison of discrete TSS samples to each sampled vertical across the 
cross section for site 2 
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Figure 4.14.   Annual total suspended solids (TSS) loading estimates in metric tons for 
the water years (WY) 2008 and 2011 at site 1.  For WY 2008 and 2011 noted with an “*” 
a correction factor has been applied to the estimated TSS concentrations that were used to 
calculate the TSS loads.  The lighter shaded bars represent the portion of the TSS load 
that is from TSS concentrations greater than 246 mg/L 
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CHAPTER 5  

ASSESSING UNCERTAINTY IN CONTINUOUS 

 CONCENTRATIONS OF TOTAL SUSPENDED SOLIDS DERIVED 

FROM TURBIDITY  

Abstract 

Continuous estimates of suspended sediment concentration derived from 

surrogate measures such as turbidity have the potential to aid in better understanding the 

timing and magnitude of suspended sediment concentrations and loads and in 

determining whether streams are attaining or exceeding established water quality criteria.  

The high temporal resolution of continuous measurements of turbidity is better able to 

capture the timing and magnitude of concentrations and fluxes than more traditional grab 

sampling techniques.  However, uncertainty in continuous suspended sediment estimates 

derived from turbidity must be estimated to provide proper context for their 

interpretation.  This study quantified the uncertainty associated with turbidity 

measurements, analytical measurements of suspended sediment concentration (TSS) and 

regression computed TSS concentrations at two sites in the Little Bear River, Utah, USA.  

A regression model was used to compute continuous time series of TSS, and then a 90 % 

prediction interval that incorporates this uncertainty was calculated and used to assess 

compliance with a water quality criterion value for suspended sediment that was 

established during a total maximum daily load (TMDL) study of the Little Bear River.  

The percent of estimated TSS concentrations exceeding the water quality criterion was 
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estimated with statistical confidence while accounting for uncertainty introduced from 

measurement and regression techniques. 

5.1 Introduction 

 A potential use for high frequency estimates of suspended sediment 

concentrations derived from surrogates such as turbidity using regression techniques is in 

determining whether streams are attaining or exceeding an established water quality 

standard or water quality criteria developed for a special purpose such as a total 

maximum daily load (TMDL).  Due to the high temporal resolution that is gained from 

continuous measurements of turbidity, sediment concentration estimates derived from 

continuous turbidity measurements can reveal critical information related to the timing 

and magnitude of concentrations and loads, which may play a key role in assessing 

compliance with water quality standards. However, uncertainty in the estimates must be 

quantified to provide the proper context for their interpretation and aid in determining the 

confidence with which these estimates can be used for assessing compliance with water 

quality criteria. 

A number of authors have computed high frequency estimates of suspended 

sediment concentration from empirical relationships using turbidity and least squares 

regression analysis (Gippel, 1995; Minella et al., 2008; Rasmussen et al., 2009; Jastram et 

al., 2010; Jones et al., 2010). Regression models provide a framework for which the 

quantification of uncertainty in continuous estimates of suspended sediment 

concentration can be determined.  One approach involves computing prediction intervals 

that specify a range of values within which a predicted concentration can be expected to 
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fall. Because the prediction intervals express a range of concentrations within which the 

actual concentration is expected to fall (rather than a single value), the bounds of the 

prediction interval can be used to estimate a probable range of percentage values within 

which the actual percent exceedance of a water quality criterion (WQC) value is expected 

to fall (rather than a single value). 

Prediction intervals, however, have the potential to overstate the confidence in 

estimated suspended sediment concentrations if the errors in the analytical and regression 

procedures are not considered.  Uncertainty in suspended sediment concentrations 

estimated using surrogate methods arises from (1) error in the measurements of the 

regression variables (i.e., turbidity and suspended sediment concentration); and (2) 

statistical uncertainty in the regression relationship.  If unaccounted for, the error with 

which turbidity and suspended sediment concentration are measured can increase chances 

for erroneous regression model outcomes (Bertrand-Krajewski, 2006) and increase the 

uncertainty in determining compliance with water quality standards using regression 

computed concentration estimates. 

Turbidity measurements are affected by instrument drift, fouling and sensor 

malfunction, each of which can be minimized with maintenance practices.  The precision 

with which turbidity can be measured is quantifiable because instrument technology 

allows for rapid, consistent measurements that can be repeated for a wide range of 

turbidity values.  Manufacturer specifications often provide information related to sensor 

accuracy, which can be used to adjust in stream measurements. 
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Suspended sediment concentration measurements are affected by a variety of 

procedures that occur in the collection, preservation and storage of samples as well as 

laboratory materials, handling, equipment and methods.  The careful and consistent 

handling and processing of suspended sediment samples following methods outlined by 

established analytical procedures can reduce much of the error associated with suspended 

sediment concentration determination and can yield uncertainties of approximately 25-30 

% (Bertrand-Krajewski, 2006).  Bertrand-Krajewski (2006), and Rasmussen et al., (2009) 

cite the necessity of collecting a representative suspended sediment sample that is 

descriptive of the entire stream cross section.  They note that point samples may under or 

over estimate cross-section averages by as much as 50 % and that this single measure 

may be the greatest source of uncertainty in developing a turbidity-suspended sediment 

estimation model. 

 Quantifying uncertainty in the measurements of water quality parameters such as 

TSS provides a necessary context to which water managers and regulators may make 

decisions that have significant implications.  For example, language from a TMDL study 

of the Little Bear River in northern Utah, USA states that, after the implementation of 

several management practices recommended by the TMDL at a monitoring location near 

the watershed outlet, the number of samples exceeding the newly-established WQC of 35 

mg/L decreased from 71 % to 40 % (Utah DEQ, 1998).  There remains, however, 

uncertainty in this single value of percent exceedance (i.e., 40 %) since no statement of 

measurement error was given.  Additionally little information was provided about the 

number of samples associated with the new exceedance percentage or the time period 
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over which they were collected, leading to uncertainty about the representativeness of the 

samples from which the 40 % exceedance was derived. 

 The purpose of this study was to quantify uncertainty associated with in-stream 

continuous turbidity measurements, analytical methods of total suspended solids (TSS) 

concentration determination and uncertainty associated with the regression between 

turbidity and TSS.  The combined uncertainty was then applied to regression-computed 

TSS concentrations to calculate prediction intervals that provide context for using the 

continuous TSS estimates in determining compliance with the WQC set forth by the 

TMDL study that established a target TSS concentration of 35 mg/L in sections of the 

Little Bear River. 

5.2 Study Area 

 The Little Bear River watershed is located in the south end of Cache Valley, Utah 

and encompasses roughly 740 km2.   The headwaters form in the Bear River Mountain 

Range, and the river drains to Cutler Reservoir on the west side of Cache Valley.  

Elevations within the watershed range from 1,345 m to 2,865 m.  Land use within the 

upper watershed is comprised mostly of forest and range (grazing) lands, while the lower 

portion of the watershed is made up primarily of agricultural lands and some urban 

development.  Hydrology of the watershed is dominated by spring snowmelt, with water 

in the upper watershed being stored within two reservoirs, Porcupine Reservoir in the 

upper East Fork and Hyrum Reservoir on the mainstem, before being released and 

diverted into irrigation canals for agricultural use during the irrigation season. 
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 Since 2005, research conducted by the Utah Water Research Laboratory at Utah 

State University has facilitated the installation of two continuous water quality 

monitoring stations (Figure 5.1).  Table 5.1 summarizes the locations and descriptions of 

the water quality monitoring sites located in the watershed along with the dates from 

which the respective measured parameters are available.  One of these stations (site 1) is 

located in the upper watershed above Hyrum reservoir, where stream channels are 

relatively steeper and sometimes have velocities as high as 2.0 m/s.   The lower portion of 

the watershed includes the second monitoring site at the terminus of the watershed near 

the confluence with Cutler Reservoir.  In this lower section of the river, channel slopes 

are lower and velocities are almost always < 0.7 m/s.  The river also exhibits a more 

meandering planform, and soils are predominantly fine grained lacustrine sediments.  

 A numeric WQC for the Little Bear River was established in a TMDL study that 

identified two reaches of the river where concentrations of total suspended solids (TSS) 

were to be lowered to be no greater than 35 mg/L.  The first reach is in the lower 

watershed, covering the 45 km reach from monitoring site 1 upstream to Hyrum 

Reservoir.  The second reach, covering 11 km and containing site 2, is from Hyrum 

Reservoir upstream to the confluence with the East and South Forks near the town of 

Avon as shown in Figure 5.1 (Utah DEQ, 1998). 

5.3 Methods 

 Turbidity, water temperature and gage height were measured using permanently 

installed, in situ sensors every 30 minutes at both sites in the Little Bear River.  Turbidity 

and water temperature were measured using a Forest Technology Systems DTS-12 



109 
 
turbidity sensor.  The DTS-12 uses a laser diode with a wavelength in the near-infrared 

(780 nm) spectrum and measures light scatter at 90 degrees to the incident beam (Forest 

Technologies Ltd, 2007).  This geometry results in measurement units of Nephelometric 

Turbidity Units (NTU), and the probe has a range from 0-1600 NTU.  Accuracy of the 

probe is ± 2 % for turbidity values 0-399 NTU and ± 4 % for values of 400-1600 (Forest 

Technology Systems Ltd., 2007).  Each turbidity measurement consists of 100 

instantaneous observations made over a five second time interval, after which summary 

statistics are output and recorded every 30 minutes.  From the 100 observations, the 

median was used as the “observed” turbidity value throughout this study.  Temperature 

was measured with the DTS-12 from an internal encapsulated thermistor and used to 

compensate turbidity measurements.  The uncertainty in turbidity measurements was 

identified from manufacturer accuracy specifications.  However, because the uncertainty 

associated with the accuracy of the turbidity measurement that corresponds to the WQC 

(35 mg/L) was judged to be negligible (±0.5 NTU), it was not accounted for in the 

calculation of the 90 % prediction intervals for regression computed TSS concentrations 

or in estimates of percent exceedance of the WQC value. 

A total of 136 and 241 surface grab samples were collected from August 2005 to 

May 2012 and October 2007 to May 2012 for sites 1 and 2 respectively.  Total suspended 

solids concentrations in stream grab samples were determined using Standard Methods 

2540D, Total Suspended Solids Dried at 103-105o C (APHA, 1995) and EPA method 

340.2, Total Suspended Solids, Mass Balance or EPA method 160.2 Residue 

Nonfilterable Total Suspended Solids.  Laboratory duplicates were performed on at least 
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10 percent of the samples collected in the field.  Analytical uncertainty in TSS 

concentration was estimated based on the percent differences between duplicate samples 

that were analyzed in the lab.  Percent differences were calculated by dividing the 

difference between TSS concentrations for a pair laboratory duplicates by the average of 

the two samples and then multiplying by 100.  The overall analytical error for each site 

was calculated by averaging all of the percent difference values determined from the 

laboratory duplicate measurements of TSS. 

Procedures for development of regression relationships between turbidity and 

TSS are described in Section 3.3.2 of this thesis.  Uncertainty associated with regression 

computed TSS concentrations was determined using prediction intervals.  These 

prediction intervals were calculated for each value in the estimated TSS time series using 

the following equation (Helsel and Hirsch, 2002):  

 𝐸(𝑦𝑖) ±  𝑡(𝛼/2,𝑛−1) × 𝑠�1 + 1
𝑛

+ (𝑥𝑖−�̅�)
∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

    Eqn. 5.1 

where E(yi) is the estimated TSS concentration, t is the t-statistic from the student’s t 

distribution where α = 0.10 for 90 % confidence, s is the standard error of the regression 

or RMSE, n is the number of paired turbidity-TSS observations, xi is the observed 

turbidity, �̅� the is the mean of the observed turbidity values and i is an index for the 

number of paired observations where i = 1,2,…n. 

 Each of the prediction interval values calculated using Equation 5.1 was then 

converted to a percent by dividing them by the mean observed TSS concentration.  This 

was done to scale the error over the large (observed) TSS range (1-2450 mg/L).  The 
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analytical uncertainty of TSS determination was added to the 90 % prediction interval, 

and the sum was used as the combined uncertainty for regression computed TSS values. 

5.4 Results and Discussion 

 Results presented in this section are in the context of the WQC established by the 

Little Bear River TMDL (Utah DEQ, 1998).  The continuous time series of regression 

computed TSS concentrations were compared to the WQC of 35 mg/L to show how the 

techniques presented in this study can be applied.  Summary statistics for the regression 

computed TSS concentrations from the two continuous water quality monitoring sites in 

the Little Bear River watershed are shown in Tables 5.2 and 5.3.  The summaries include 

yearly totals for the number of data points (n), the mean, median, standard deviation, 

maximum and minimum for half-hourly regression-computed TSS concentrations for six 

years, with each site having greater than 90000 regression-computed TSS values. 

 The average uncertainty in analytical TSS determination was 9.9 % and 8.2 % for 

sites 1 and 2 respectively.  The uncertainty associated with the least squares regression 

development of turbidity and TSS was determined by the 90 % prediction intervals that 

are 43 % (± 48.2 mg/L) for site 1 and 44 % (±13.8 mg/L) for site 2 for each of their 

respective predicted TSS concentrations.  The combined uncertainty—from analytical 

and regression procedures—was ±52.7 % and ±52.2 % of a given estimated TSS 

concentration for sites 1 and 2, respectively. 

 Tables 5.4 and 5.5 list the percent exceedance values for both the regression 

computed TSS concentrations and the upper and lower limits of the 90 % prediction 

intervals (percent exceedance ranges) for the years 2006-2011 for both sites.  For all 
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years combined, 20 % of all regression-computed TSS concentrations at site 1 were 

greater than the WQC.  However, after incorporating the combined uncertainty, it can be 

stated with 90 % confidence that 11-29 % of all regression computed TSS values 

exceeded the WQC at site 1.  For site 2, 44 % of all regression computed TSS 

concentrations were greater than the WQC.  After incorporating the combined 

uncertainty, it can be stated with 90 % confidence that 1-68 % of all regression computed 

TSS values exceeded the WQC at site 2. 

 The estimated percent exceedance ranges are very different across the two sites. 

Percent exceedance values at site 2 were greater than those at site 1; however, site 2 

demonstrated significantly more uncertainty in the estimation the exceedance of the 

WQC, as demonstrated by the much wider range of percent exceedance values 

represented by the upper and lower limits of the 90 % prediction intervals.  This is 

demonstrated graphically in Figures 5.2 and 5.3, which show TSS concentration duration 

curves, along with their respective prediction intervals, for the year 2009 for both sites.  

These figures show that estimated TSS values reach much higher levels at site 1 (e.g., > 

1000 mg/L) but for short durations, whereas estimated TSS concentrations at site 2 

remain in the range surrounding the 35 mg/L criterion value (e.g., between 20 and 50 

mg/L) for much of the year. 

 Interannual variability in percent exceedance values was also significant at both 

sites.  Tables 5.4 and 5.5 show percent exceedance values for regression computed TSS 

concentrations as high as 41 % in 2011 and as low as 9 % in 2007 at site 1 and as high as 

53 % in 2010 and as low as 32 % in 2011 at site 2.  Figures 5.4 and 5.5 show TSS 
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concentration duration curves with corresponding prediction intervals for the year 2011 

for sites 1 and 2, respectively.  For site 1 it is estimated that 28-49 % of all TSS 

concentrations were greater than WQC in 2011.  The percent exceedance interval shifted 

significantly to higher percent exceedance values compared to year 2009 (Figure 5.2).  

This is because the 2010-2011 winter season brought deeper snow pack in the mountains 

resulting in higher stream flows and sediment fluxes during the spring snow melt.  The 

maximum discharge rates at site 1 were 19 and 64 m3/s for the years 2009 and 2011 

respectively.  At site 2, it is estimated that 0.5-63 % of all TSS concentrations were 

greater than the WQC.  The maximum discharge rate at site 2 was slightly higher in 2011  

than 2009 (11 compared to 13 m3/s), but the resulting TSS concentrations were lower 

than 2009 as shown in Tables 5.4 and 5.5. 

 Table 5.6 compares percent exceedance values of traditional monitoring 

techniques (grab samples) and regression computed TSS concentrations.  For the year 

2008 at site 1, TSS concentrations from 80 grab samples collected throughout the year 

were determined.  The percent of grab samples exceeding the WQC was 36 % while the 

percent exceedance of the regression computed TSS concentrations was only 16 % (9-24 

% based on the prediction intervals).  For site 2, a similar difference was observed in the 

year 2006, where 58 % of the grab samples (52 samples analyzed) exceeded the WQC, 

but only 36 % of the regression computed TSS concentrations (0.3-67% based on the 

prediction intervals) exceeded the criteria.  At site 2, the percent exceedance of the grab 

samples falls within the range of percent exceedances given by the 90 % prediction 

intervals, but at site 1 the percent exceedance calculated from the grab samples lies 
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significantly outside the range of percent exceedances given by the 90 % prediction 

intervals. 

5.5 Conclusions 

 High frequency estimates of TSS concentrations derived from turbidity can aid in 

determining compliance with a WQC or whether water quality goals are being met at a 

particular site.  In this paper, this was demonstrated by quantifying the uncertainty 

associated with continuous, regression computed TSS concentration estimates, and then 

determining how that uncertainty translates into a range of potential percent exceedances 

of the WQC.  Results varied at the two sites, with much wider percent exceedance ranges 

at the lower watershed site versus the upper watershed site.  When compared with percent 

exceedance values computed from grab samples, results from the continuous TSS 

estimates made over the same time period of the grab samples were significantly 

different, although the percent exceedance of grab samples at site 2 did fall within the 

relatively wide range of potential percent exceedance values given by the limits of the 90 

% prediction intervals. 

A significant advantage of using continuous TSS estimates to assess compliance 

is that, because continuous TSS concentration estimates can cover a wide time range with 

high temporal resolution, they are better able to capture the full range and timing of TSS 

concentrations than sporadic grab samples.  However, because there is error in both 

measurement of the regression variables (i.e., turbidity and TSS) and in the regression 

itself, it is necessary to quantify the uncertainty in the estimated TSS values and translate 

it into a subsequent uncertainty in the estimate of the percent of time that a given criterion 
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value is exceeded.  The results above show how the percent exceedance can be expressed 

as a range of potential exceedance percentages that account for the combined uncertainty 

in the continuous TSS estimates.  By doing so, a range of potential percent exceedance 

values can be presented that reflects the full range of conditions at a site and accounts for 

uncertainty introduced through the use of surrogate methods. 
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Table 5.1.  Summary of water quality monitoring sites in the LBR watershed.  The date 
range reflects the time period from which the continuous monitoring began 

Site Site Name Date Range Latitude Longitude Site Description 

1 Paradise June 2005-
Present 41.5756 -111.8552 

Located a few miles 
upstream of Hyrum 

reservoir 

2 Mendon August 2005-
Present 41.7185 -111.9464 

Located near the boundary 
of the watershed at Cutler 

reservoir 
 

 

Table 5.2.  Summary statistics for regression computed TSS concentrations (mg/L) for 
years 2006 - 2011 and all years aggregated at site 1.  n is the number of half-hourly 
computed TSS concentrations and SD is the standard deviation 

Year (Jan-Dec) n Mean Median SD Max. Min. 

2006 17519 45.7 13 146.3 2962 2.6 
2007 17411 22.9 10.6 67.4 2150 3 
2008 17143 31.9 12.7 85.2 2419 2.5 
2009 17257 27.5 10.6 69.5 1770 1.7 
2010 16505 28.7 11.4 79.1 2064 1.7 
2011 16457 79.7 21.9 172.7 2784 2.1 

All Years 102283 39.1 12.5 112.1 2962 1.7 
 

 

Table 5.3.  Summary statistics for regression computed TSS concentrations (mg/L) for 
years 2006 - 2011 and all years aggregated at site 2.  n is the number of half-hourly 
computed TSS concentrations and SD is the standard deviation 

Year (Jan-Dec) n Mean Median SD Max. Min. 
2006 17519 29.2 30.5 13.4 96.6 3.8 
2007 17147 34.7 34.4 18.6 89.5 3.6 
2008 17240 33.5 31.7 18.5 91.1 4.4 
2009 17289 31.8 32.9 16.5 86.7 5.6 
2010 16402 35.9 36.1 17.7 101.6 4.4 
2011 14294 28.9 26.5 14.3 84.5 5.2 

All Years 99883 32.4 31.9 16.9 101.6 3.6 
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Table 5.4.  Percent exceedance values and 90% prediction interval (percent exceedance) 
ranges for TSS concentration at site 1 

Year (Jan-Dec) 
% Exceeding 35 mg/L 

% Exceedance Upper P.I. Lower P.I. 
2006 23.0 32.6 11.6 
2007 8.9 18.7 3.9 
2008 16.3 24.2 8.5 
2009 15.1 24.2 6.7 
2010 16.6 25.9 6.4 
2011 41.3 48.8 27.9 

All Years 20.0 28.9 10.7 
 

 

Table 5.5.  Percent exceedance values and 90% prediction interval (percent exceedance) 
ranges for TSS concentration at site 2 

Year (Jan-Dec) 
% Exceeding 35 mg/L 

% Exceedance Upper P.I. Lower P.I. 
2006 35.5 68.9 0.3 
2007 49.0 70.5 2.0 
2008 44.2 66 1.2 
2009 46.1 66.2 0.1 
2010 53.0 73.3 1.7 
2011 32.1 62.9 0.5 

All Years 43.5 68.1 1.0 
 

 

Table 5.6.  Comparison of percent exceedance between grab samples and continuous 
estimates of TSS concentration for sites 1 and 2 

Site Type Year % Exceed Count 
1 Grab Sample 2008 36.3 80 
1 Continuous 2008 16.3 >17,000 
2 Grab Sample 2006 57.7 52 
2 Continuous 2006 35.5 >17,000 
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Figure 5.1.  Location of Little Bear River watershed water quality monitoring sites
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Figure 5.2.  TSS concentration duration curve showing the upper and lower 90% 
prediction intervals for the year 2009 at site 1.  The solid, dark horizontal line represents 
the WQC of 35mg/L.  The dashed vertical lines intersect the x-axis at points that 
represent the percent exceedance of the WQC with 90% confidence 
 

Figure 5.3.  TSS concentration duration curve showing the upper and lower 90% 
prediction intervals for the year 2009 at site 2.  The solid, dark horizontal line represents 
the WQC of 35mg/L.  The dashed vertical lines intersect the x-axis at points that 
represent the percent exceedance of the WQC with 90% confidence 
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Figure 5.4.  TSS concentration duration curve showing the upper and lower 90% 
prediction intervals for the year 2011 at site 1.  The solid, dark horizontal line represents 
the WQC of 35mg/L.  The dashed vertical lines intersect the x-axis at points that 
represent the percent exceedance of the WQC with 90% confidence 

Figure 5.5.  TSS concentration duration curve showing the upper and lower 90% 
prediction intervals for the year 2011 at site 2.  The solid, dark horizontal line represents 
the WQC of 35mg/L.  The dashed vertical lines intersect the x-axis at points that 
represent the percent exceedance of the WQC with 90% confidence 
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CHAPTER 6  

SUMMARY AND CONCLUSIONS  

 Regression models to predict TSS concentrations were developed at 6 locations in 

the Little Bear River watershed.  Turbidity and a categorical variable indicating whether 

turbidity was above or below 40 NTU were found to be significant predictors for TSS 

concentration at the four locations (sites 1-4) in the upper watershed.  Of the two sites (5 

and 6) in the lower watershed, turbidity and turbidity squared were significant predictors 

of TSS concentration at site 6, but at site 5 only turbidity was significant.  Four of the six 

regression equations (sites 2 and 4-6) were very similar when turbidity was less than 40 

NTU.  While the slope of the regression lines at sites 1-4 continue a steep incline (i.e., 

slopes >1.1) up to 200 NTU, site 6 in the lower watershed had a decrease in slope. 

Particle size analysis demonstrated that turbidity values less than 40 NTU resulted 

in similar particle size distributions among sites, even though particle concentrations 

were not similar.  Particle size analysis also showed that as turbidities surpassed ~40-60 

NTU, particle size distributions at site 6 displayed a distinct shift in the distribution 

toward smaller particles while the distributions at site 2 showed very little difference 

from those of the lower turbidity values.  Both sites showed similar increases in particle 

concentration as turbidity increased.  This suggests that particle density is the dominate 

particle property influencing the turbidity-TSS relationship at site 2, while particle size is 

the dominate property at site 6.  Physical attributes related to these two sites, such as 

steeper channel gradients and higher stream velocities at site 2 and sediment transfer 
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from upper watershed to lower watershed prevented by Hyrum reservoir, low-slope 

channel gradients and lower stream velocities at site 6, aide in this evaluation. 

These physical attributes, and related particle characteristics, also suggested a 

connection to the regression model developed at site 6 where the turbidity squared term 

was found to be a significant predictor with turbidity of TSS concentration.  These—

along with the regression results—also suggest that the two high turbidity values (139 

and 166 NTU) and corresponding TSS concentrations (99 and 137 mg/L)  may cause a 

decrease in slope of turbidity-TSS relationship may have a decreasing slope as suggested 

by the regression line in Figure 3.2 panel F.  The decreasing slope at site 6 was also 

demonstrated by a comparison with site 2 where the respective TSS concentrations at 

sites 2 and 6 of 246 and 99 mg/L, (difference of 85%) occurred for similar levels of 

turbidity (143 and 139 NTU). 

 Particle size was incorporated into the regression analysis at sites 2, 4 and 6, 

where it was found to be a significant predictor of TSS on a reduced subset of data for 

each of these sites.  Because fewer, smaller particles pass through site 2, percent 

concentration (PTC) values for the 1.9-2.25 μm size bin were significant with turbidity in 

predicting TSS concentration on the full data set. 

 This research has important application to sediment monitoring programs in rivers 

and streams where sediment related impairments occur.  Surrogate relationships can be 

used to generate high-frequency estimates of TSS concentrations and loads, which can 

then be used to assess exceedance of water quality criteria and help better understand the 
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magnitude and timing of sediment loads. This information can help in targeting the 

implementation of conservation and restoration efforts. 

 A second potential way to improved surrogate measures of TSS concentrations is 

to investigate whether discrete, point-based measures of turbidity and TSS concentration 

are representative of integrated cross-section averages and to develop a correction factor 

that accounts for differences.  Comparisons between measurements of discrete and cross-

section integrated turbidity and TSS concentrations were made at two locations in the 

Little Bear River watershed.  At site 1, differences in turbidity between discrete and 

integrated turbidity values increased to 22% as turbidity increased, whereas at site 2 

differences in turbidity between the two measures remained <5%.  When turbidity is used 

as a surrogate for estimating TSS concentration, differences in turbidity between the two 

methods may be less important because the parameter of concern is TSS concentration.  

Correcting for differences between discrete measures and integrated measures of turbidity 

was not necessary for TSS estimation in this study. 

 Both monitoring sites demonstrated that for some conditions, a single-point grab 

sample of TSS can be sufficient to represent the cross-sectional average TSS 

concentration even though many of the sampling periods (Figure 4.7, sample event 

3/23/2012; Figure 4.9, sample events 2/16/2012 and 3/8/2012) showed a high degree 

variability among verticals. For site 1 the small differences (~7%) between discrete and 

integrated TSS samples were found for high (246 mg/L) levels of TSS.  This level of TSS 

is significant because it represents the 99th percentile of all observed turbidities.  A 
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correction factor was developed and used to convert discrete TSS concentrations to TSS 

concentrations that more closely represent integrated cross section averages. 

Total annual TSS loads were estimated using the corrected TSS concentrations 

and the small differences (~7.3%) between annual TSS loads for both water years does 

not produce strong reason to use a correction factor for lower (<246 mg/L) TSS 

concentrations.  Above this concentration, however, these results show that a correction 

factor may be most useful for the higher (>246 mg/L) TSS values because a significant 

portion (21-31%) of the annual TSS load is derived from these higher TSS 

concentrations.  A correction factor for these higher TSS concentrations may be useful to 

improve quantification of TSS loads in the Little Bear River. 

 A potential application of the high frequency estimates of TSS concentrations is 

in determining whether streams are meeting the designated beneficial use or an establish 

water quality standard.  However, uncertainty in the estimates must be quantified to 

provide the proper context for interpreting the estimates. 

 Uncertainty in TSS concentrations computed from surrogate measures of turbidity 

was quantified with statistical confidence.  The uncertainty in estimated TSS 

concentrations was quantified with 90 % confidence from two major sources: analytical 

TSS determination and least squares regression procedures.  The uncertainty in turbidity 

measurements was identified from manufacture accuracy specifications.  However, 

because the uncertainty associated with the accuracy of the turbidity measurement that 

corresponds to the WQC (35 mg/L) was judged to be negligible (±0.5 NTU), it was not 

accounted for in the calculation of the 90 % prediction intervals for regression computed 
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TSS concentrations or in estimates of percent exceedance of the water quality criterion 

(WQC). 

 High frequency estimates of TSS concentrations derived from turbidity can aid in 

determining compliance with a WQC or whether water quality goals are being met at a 

particular site.  This was demonstrated by quantifying the uncertainty associated with 

continuous, regression computed TSS concentration estimates, and then determining how 

that uncertainty translates into a range of potential percent exceedances of the WQC.  

Results varied at the two sites, with much wider percent exceedance ranges at the lower 

watershed site versus the upper watershed site.  When compared with percent exceedance 

values computed from grab samples, results from the continuous TSS estimates made 

over the same time period of the grab samples were significantly different, although the 

percent exceedance of grab samples at site 2 did fall within the relatively wide range of 

potential percent exceedance values given by the limits of the 90 % prediction intervals. 

A significant advantage of using continuous TSS estimates to assess compliance 

is that, because continuous TSS concentration estimates can cover a wide time range with 

high temporal resolution, they are better able to capture the full range and timing of TSS 

concentrations than sporadic grab samples.  However, because there is error in both 

measurement of the regression variables (i.e., turbidity and TSS) and in the regression 

itself, it is necessary to quantify the uncertainty in the estimated TSS values and translate 

it into a subsequent uncertainty in the estimate of the percent of time that a given criterion 

value is exceeded.  The results above show how the percent exceedance can be expressed 

as a range of potential exceedance percentages that account for the combined uncertainty 
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in the continuous TSS estimates.  By doing so, a range of potential percent exceedance 

values can be presented that reflects the full range of conditions at a site and accounts for 

uncertainty introduced through the use of surrogate methods. 
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CHAPTER 7  

ENGINEERING SIGNIFICANCE 

 It is recognized that suspended sediment plays a critical role in the water quality 

of rivers and streams.  Suspended sediment and its associated pollutants have the 

potential to negatively impact water for human use and the environment.  Improved 

quantification of suspended sediment concentrations and fluxes at appropriate temporal 

and spatial scales has important considerations for scientific and engineering related 

applications which are designed to address current water quality management challenges. 

The overall goal of this study was to improve surrogate measures of suspended 

sediment concentration in order to increase the accuracy and precision of suspended 

sediment concentrations and fluxes.  Improved quantification of surrogate monitoring 

practices have implications for determining compliance with water quality standards, 

improved inputs to water quality models and can provide improved understanding of 

watershed and hydrologic processes for water quality studies. 

 Increased precision and accuracy of suspended sediment budgets is important to 

water use, watershed management and policy related decisions because sediment related 

issues directly impact water quality.  Significant resources are dedicated to minimizing 

pollutant loads/transport and restoring watersheds, and assessing the effectiveness of 

these efforts is dependent on the accuracy of the field measurements and contextual data 

analysis.  Although fluvial suspended sediment is a natural constituent of steam 

ecosystems, anthropogenic influences greatly alter natural sediment transport regimes and 

resulting water quality.  Investigation of sediment sources, delivery and transport 
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processes requires an understanding of dynamic hydrologic processes that vary over 

space and time scale.  The long term, continuous datasets and measurements performed 

in this research provide a unique opportunity to better inform our understanding of 

sediment flux in a way that would be impossible with more traditional, low-frequency 

datasets. 

This research also demonstrates the value of quantifying the uncertainty 

associated with regression computed TSS concentrations and how the uncertainty can be 

used to provide a more complete approach for assessing compliance with water quality 

criteria.  Quantification of uncertainty in the measurement of water quality parameters is 

of particular importance given that determination of attainment or exceedance of water 

quality criteria can have significant economic impacts as policy and regulation of the 

nation’s water resources move and more toward restoring and enhancing water quality.  It 

also serves to reduce the risk associated with compliance decisions that often involves 

substantial economic investment.  This research demonstrates how the quantification of 

uncertainty in TSS concentrations can be applied to current challenges described in the 

Little Bear River TMDL study. 

 This research has important application to sediment monitoring programs in rivers 

and streams where sediment related impairments occur.  This information can help in 

targeting the implementation of conservation and restoration efforts. 
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CHAPTER 8  

RECOMMENDATIONS FOR FUTURE RESEARCH  

 The following items were selected as areas for future research in the Little Bear 

watershed that are aimed at improving estimates of TSS concentration and loads.  These 

areas include ideas to improve the regression analysis performed on existing turbidity and 

TSS data as well as specific field methods that would validate assumptions of grab 

samples and to reprove some the conclusion herein to include a more full range of 

observed data values.  

1. Validation of regression models for sites in the little bear river.  Many of the sites 

have over 100 paired turbidity-TSS samples.  This number of observations would 

allow the data set to be split into a training and test portions so that the developed 

models could be validated.  This would be helpful because it could verify the 

goodness of fit of the model and better quantify the actual error of the predictions. 

2. Conduct additional cross section integrated sampling to see if the discrete measures at 

other sites are representative of the cross section average.  This is important because 

it tests a major assumption of continuous monitoring and grab sample methodologies.  

There are four other locations in the watershed where this could be carried out.  Site 5 

(Wellsville is the most logistically feasible location because access to a low-lying 

bridge is at the location of the existing monitoring station and the stream bed cross 

section is not obstructed.  Perhaps the next most interesting location for conducting 

discrete vs. cross-section sampling is site 4 (Paradise) since this location experiences 

the highest discharge (>2000cfs) of all the other sites and it is the last monitoring 
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station before the contact with Hyrum reservoir.   This location presents some 

difficulty to conduct cross-section integrated sampling, however.  This is because the 

height of the bridge (~25 feet) precludes the use of existing equipment that is not 

designed or able to collect suspended sediment samples from such heights.  Second, 

and perhaps more limiting, is that on either side of the bridge, the channel cross-

section is very much obstructed with large (6 foot diameter) boulders that prevent an 

accurate measure of water depth across the cross-section.  This also inhibits one’s 

ability to distinguish a cross-section that is measureable.   A possible option at this 

site however, is to use an existing cable line that is used by the U.S Geological 

Survey to make discharge measurements.  The cable-reel setup is approximately ~35 

feet up stream of the bridge where the U.S.G.S maintains a current stage discharge 

relationship.  Using this cable-reel setup would require a sediment sampler capable of 

being suspended from a cableway in depths up to 10-12 feet and water velocities up 

to ~7 ft/s.  The DH-59 or DH-95 are potential options to collect the necessary depth-

integrated suspended sediment samples.  These samplers may cost $700 to $2,200 

respectively.   More info: 

http://water.usgs.gov/osw/pubs/OFR_2005_1087/index.html 

3. Conduct further depth-and-width-integrated sampling campaigns at various sites in 

the Little Bear river watershed when elevated levels of suspended sediment 

concentration are present.  The 2012 spring snowmelt resulted in very low and 

infrequent elevated turbidity/TSS levels. Although turbidity levels can reach the 

sensor’s maximum at 1600 NTU at site 2 (Lower South Fork), integrated cross-
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section averaged measurements have only taken place up to 200 NTU.  At site 6 

(Mendon) cross-section measurements have been made up to ~20 NTU where the 

maximum turbidity levels at this site have reached 250 NTU.  Depth and width 

integrated samples should be collected at the higher suspended sediment 

concentrations in order to verify the appropriateness of the single point grab sample. 

4. Compare depth-and-width integrated TSS samples with TSS concentrations estimated 

from ADCP measurements.  During this research, measurements with the ADCP have 

been made in conjunction with the collection of discrete and width-and-depth-

integrated TSS samples at sites 1 and 2 (Lower South Fork and Mendon).  It is 

believe that the necessary data has been collected in order to convert the 

corresponding acoustic backscatter intensities to TSS concentration for at least two 

sampling campaigns at each site.  Estimating TSS concentration from the ADCP 

measurements may provide an additional technique that can be used to compare point 

vs. cross-section averages and to estimate TSS concentrations at a wider range of 

discharge levels.   

5. Carbon analysis on water samples to determine amount of organic matter in TSS 

samples.  Due to laboratory instrument failure, carbon analysis could not be 

conducted on samples that were analyzed for particle characteristics, i.e., size and 

concentration.  Additional samples could be collected for organic carbon analysis and 

paired with samples analyzed for TSS and particle size and concentration as these are 

contributors to turbidity response that is measured in the stream and the specific 

organic matter content may be a significant factor in predicting TSS concentration. 
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Appendix A.  Explanation on the procedure for particle size analysis. 
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 Grab samples for sediment analysis were collected with the purpose of 

incorporating sediment particle characteristics into turbidity based suspended sediment 

estimation models in order to reduce variance and improve predictability. 

Field Techniques 

 Depending on sediment loads (determined visually and by turbidity readings) 

various quantities of stream water were collected from a given site.  During high 

turbidities (>50 NTU), 500 mL to 1000 mL were sufficient for particle characteristic 

analysis.  During times of lower turbidity, 2000 mL or more were necessary.  Water 

samples were collected by dipping an open bottle 8-20 cm below the surface of the water 

adjacent to existing continuous monitoring turbidity instruments.  Sample bottles were 

kept on ice while in the field and were then refrigerated at 40 C for 4-5 days while 

sediment was allowed to settle.   

Instrument Specifications 

 Particle size and concentration were measured using the LISST-Portable (Laser 

In-Situ Scattering and Transmissometry) from Sequoia Scientific, which employs laser 

diffraction techniques and light scattering methods described in AWWA Standard No. 

2560D and ISO-13320-1 (Sequoia Scientific, 2010).  The range of the LISST-Portable 

(Type C) is 1.9 - 381μm using the randomly shaped particle inversion method (Agrawal, 

et. al., 2008).  Sample volumes were measured using a graduated cylinder and poured 

into the 175 mL mixing chamber through a small opening.  Once the water level had 

reached the chamber’s capacity, a rubber stopper was inserted into the hole so as to not 
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allow air bubbles to form inside the chamber.  Air bubbles can cause interference with 

particle sizing and counts as the instrument cannot differentiate between the air bubbles 

and sediment particles and consequently the bubbles are counted as sediment particles 

(Sequoia Scientific, 2010).  A pump facilitated the continuous mixing of the sample as 

measurements were taken.  Air bubbles can form inside the chamber once the mixer is 

started.  These were removed by turning off the mixer, removing the rubber stopper, 

reinserting the stopper and starting the mixer again.  This process was repeated until air 

bubbles were no longer visible. 

 Generally, the LISST-Portable was programmed to measure particle 

characteristics with a five-second averaging duration.  For samples with low sediment 

concentration, an averaging duration of one minute was used in order to reduce random 

noise.  The LISST-Portable requires the sample to have an optical transmission between 

30-90%.  The optical transmission is the fraction of laser light that is passing undisturbed 

through the sample medium (Sequoia Scientific, 2010).  Low transmissions prevent the 

instrument from distinguishing between sediment and random noise.  Transmissions 

greater than 90% inhibit distinction between individual particles.  If the optical 

transmission was lower than 30%, the sample was diluted by removing a given volume 

(while being mixed) of the solution and adding filtered, deionized water of the same 

volume until the optical transmission was in the required range.  Because of the 

difficultly in concentrating a sample beyond the initial procedures described above, 

samples whose optical transmission was at or near 90% were measured with an averaging 

duration of one minute as recommended by the manufacturer (Sequoia Scientific, 2010).   
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The LISST-Portable literature explains that when there are particles outside of the 

measureable range, it will be manifested by a rising tail of particle concentration in the 

smallest and/or largest size ranges.   

Laboratory Procedure 

 All samples were initially concentrated from the collection bottles (500-2000mL) 

to 100-500mL by allowing the samples to settle over a period of 4-5 days.  In the lab, 

sample bottles (for a single site) were combined after pouring off the top ~70-80% of the 

sample volume.  Below this level and after the holding time mentioned, it was assumed 

that all the particles in the measureable range of the LISST were contained.  This was 

tested by retaining the top portion and processing it on the LISST.  In these cases, it was 

found that the optical transmission was too high to be reliable because of the lack of 

particles present.  

 Then it was necessary to rinse lingering sediment from the samples bottles using 

small aliquots of filtered deionized water in order to minimize sediment loss.  A 

volumetric portion of this concentrated sample was then measured and added to the 175 

mL LISST sample chamber.  Generally, the volume of the concentrated sample added to 

the chamber was less than 175 mL.  This allowed the rinse water from the measuring 

device to fill the camber to capacity.  All aliquots of rinse water were quantified so that 

the appropriate concentration and dilution adjustments could be made. 

Example Data 

 As an example, a field grab sample of 2020 mL was collected on April 18, 2012 

at the Lower South Fork site and was processed in the following way.  The 2020 mL 
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sample was concentrated into a 280 mL sample by allowing it to settle for four days and 

then pouring it off.  The 280 mL sample was then diluted with 110 mL of filtered 

deionized water in order to rinse lingering particles from the original sample bottle(s).  

The concentrated sample (280+110) of 390 mL was homogenized and then split into 

sample A and sample B, 160mL and 230mL, respectively.  The 160 mL sample was then 

diluted to 175 mL in order to run the analysis on the LISST-Portable.  The 230 mL 

sample was concentrated a second time to 150 mL and then diluted to 175 mL.  The 

LISST analysis gives concentrations of 66.2 μl/L for sample A and 88.5 μl/L for sample 

B.  In order to account for these concentrations and dilutions and present the results in 

context of each other, the following equations were used. 

  



139 
 
Sample A: Starting concentration = 66.2 μl/L, Volume = 175mL, diluted from 160mL 

Applying Equation 1 

  𝐶1 ∗ 𝑉1 =  𝐶2 ∗ 𝑉2        Eqn. 1 

 
where C1=66.2 μl/L, V1=175 mL and V2=160 mL.  Rearranging and solving for C2 

 
   66.2 𝜇𝑙

𝐿
∗ 175 𝑚𝐿 = 𝐶2 ∗ 160 𝑚𝐿     Eqn. 2 

 

   𝐶2 =  
66.2 𝜇𝑙𝐿 ∗175 𝑚𝐿

160 𝑚𝐿
= 72.4 𝜇𝑙/𝐿     Eqn. 3 

 
gives the resulting concentration of 72.4 μl/L which was corrected for the last dilution. 

Applying Equation 1 for the first dilution where volume, V2, is 114.9 mL. 

   𝐶2 =
72.4 𝜇𝑙𝐿 ∗160 𝑚𝐿

114.9 𝑚𝐿
= 100.9 𝜇𝑙/𝐿     Eqn. 4 

V2 was calculated by first determining the amount of DI water added to the original 280 

mL sample that actually went to Sample A (160 mL) and then subtracting this from the 

160 mL sample.  This was done using Equation 5  

   160 𝑚𝐿 − 160 𝑚𝐿
390 𝑚𝐿

∗ 110 𝑚𝐿 = 114.9 𝑚𝐿    Eqn. 5 

The final concentration was corrected by dividing the ending concentration (100.9 μl/L) 

by the total amount of sample collected. 

   
100.9 𝜇𝑙𝐿
2.02 𝐿

= 49.95 𝜇𝑙
𝐿

       Eqn. 6 

 

 



140 
 
 

Sample B: Starting concentration = 88.5 μl/L, Volume = 175 mL, diluted from 150 mL 

Applying equation 1 from above with data from sample B gives 

   88.5 𝜇𝑙
𝐿
∗ 175 𝑚𝐿 = 𝐶2 ∗ 150 𝑚𝐿     Eqn. 7 

where C1=88.5 μl/L, V1=175 mL, V2=150 mL 

   𝐶2 =  
88.5 𝜇𝑙𝐿 ∗175 𝑚𝐿

150 𝑚𝐿
= 103.3 𝜇𝑙

𝐿
    Eqn. 8 

The resulting concentration, correcting for the last dilution gives 103.3 μl/L.  Applying 

the next dilution using Equation 9 

   𝐶2 =
103.3𝜇𝑙𝐿 ∗150𝑚𝐿

230𝑚𝐿
= 67.3𝜇𝑙

𝐿
     Eqn. 9 

where volume V2 is 230 mL.  This is the measured amount for sample B. 

The next dilution was calculated by first determining the amount of DI water added to the 

original 280 mL sample that actually went to Sample B (230 mL) and then subtracting 

this from the 230 mL sample.  This was done using equation 10  

  230 𝑚𝐿 − 230 𝑚𝐿
390 𝑚𝐿

∗ 110 𝑚𝐿 = 165.1 𝑚𝐿   Eqn. 10 

The next concentration was calculated using equation 11: 

  𝐶2 =
67.3 𝜇𝑙𝐿 ∗230 𝑚𝐿

165.1 𝑚𝐿
= 93.8 𝜇𝑙/𝐿    Eqn. 11 

The final concentration was corrected by dividing the ending concentration (93.8 μl/L) by 

the total amount of sample collected. 

  
93.8 𝜇𝑙𝐿
2.02 𝐿

= 46.43 𝜇𝑙
𝐿

      Eqn. 12 
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Sample B: Surface Area 

Surface area was given in cm2 as the total surface area for all particles in the 175 mL 

sample. To convert this quantity to a per liter basis, Equation 14 was used.  For sample A, 

the total surface area is 61.6 cm2 per 175 mL of sample. 

  66.6 𝑐𝑚2

175 𝑚𝐿
∗ 1000 𝑚𝐿

1 𝐿
= 380.57 𝑐𝑚2

𝐿
    Eqn. 13 

Since a total of 2.02 L were collected in the field, the actual per one Liter basis would be 

188.4 cm2/L as given by Equation 14. 

  
380.57 cm2

L
2.02 L

= 188.4 cm2

L
      Eqn. 14 

 
  



142 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B.  Residual plots of regression equations developed at each site. 
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Figure B-1.  Residual plots for site 1.  The red line is a moving average 
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Figure B-2.  Comparison of transformations for site 1.  The top panel shows the residuals 
plotted against the fitted (TSS, mg/L) values.  The middle panel shows the transformation 
of y^0.3 and the bottom panel shows a Log transformation of y 
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Figure B-3.  Residual plots for site 2 
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Figure B-4.  Comparison of transformations for site 2.  The top panel shows the residuals 
plotted against the fitted (TSS, mg/L) values.  The middle panel shows the transformation 
of y^0.4 and the bottom panel shows a Log transformation of y  
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Figure B-5.  Residual plots for site 3  
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Figure B-6.  Comparison of transformations for site 3.  The top panel shows the residuals 
plotted against the fitted (TSS, mg/L) values.  The middle panel shows the transformation 
of y^0.3 and the bottom panel shows a Log transformation of y 
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Figure B-7.  Residual plots for site 4  
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Figure B-8.  Comparison of transformations for site 4.  The top panel shows the residuals 
plotted against the fitted (TSS, mg/L) values.  The middle panel shows the transformation 
of y^0.4 and the bottom panel shows a Log transformation 
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Figure B-9.  Comparison of weighted least squares for site 4.  Panel A shows the 
residuals of the regression performed as reported in Table 3.4.  Panel B shows the 
residuals for the regression model using 1/residual^2 as the weight.  Panel C shows the 
regression with 1/turbidity as the weight and Panel D shows the residuals from the 
regression with 1/TSS as the weight.  The index is the order in time 
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Figure B-10.  Residual plots for site 5 
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Figure B-11.  Comparison of transformations for site 5.  The top panel shows the 
residuals plotted against the fitted (TSS, mg/L) values.  The middle panel shows the 
transformation of y^0.6 and the bottom panel shows a Log transformation of y   
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Figure B-12.  Residual plots for site 6  
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Figure B-13.  Comparison of transformations for site 6.  The top panel shows the 
residuals plotted against the fitted (TSS, mg/L) values.  The middle panel shows the 
transformation of y^0.6 and the bottom panel shows a Log transformation of y 
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Appendix C.  Correlation matrices. 
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Figure C-1.  Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU), categorical variable when turbidity is >= 40 NTU and discharge (m3/s) at site 1 
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Figure C3.2. Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU), categorical variable when turbidity is >= 40 NTU, particle size (1.9-2.25 μm) % 
of total volume and discharge (m3/s) at site 2 
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Figure C-3.  Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU), categorical variable when turbidity is >= 40 NTU and discharge (m3/s) at site 3 
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Figure C-4.  Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU), categorical variable when turbidity is >= 600 NTU and discharge (m3/s) at site 4 



161 
 

Figure C-5.  Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU) and discharge (m3/s) at site 5 
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Figure C-6.  Correlation matrix for TSS (mg/L), turbidity (NTU), turbidity squared 
(NTU) and discharge (m3/s) at site 6 
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