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Use of Simplex Algorithm for Optimizing Simulation Models 

by 

Majid Ehteshami, Lyman S. Willardson, Richard C. Peralta1 

ABSTRACT 

A methodology and computer model is developed to determine economically 

optimum closed subsurface drainage systems in irrigated areas. The mode 1 

maximizes net benefits, by comparing profit driven by crop yields to drain 

system cost and selects an optimum drain layout. The optimization methodology 

used is the SIMPLEX method (Nelder and Mead, 1965). The SIMPLEX model was linked 

to the subsurface drainage model DRAINMOD (Skaggs, 1982) and to the surface 

hydraulic model KINE (Walker and Skogerboe 1987). The selected optimum drainage 

system maximizes the difference between total revenue, and the total cost of 

installation, operation and management of a particular drainage system. The 

optimization sub-program provides a workable and simple procedure for optimizing 

water management simulation models. 

INTRODUCTION 

To properly design an effective drainage system, the determination of the 

functional requirements to be met by the system is an essential step. In 

agriculture drainage, this step involves the establishment of the drainage 

requirement of the crop to be grown and the characterization of soil properties 

affecting irrigation and drainage. Therefore, the aim of a drainage system is 

to provide a healthy environment for plant growth. This implies that a drainage 

system must be designed with the requirements of the plant to be grown in mind. 

1 
Engineer, Assis. Imperial Irrigation District, Imperial, Ca 92251. Professor, Assoc. Professor, 

respectively; Agricultural and Irrigation Engineering Department; Utah State University, Logan, Utah 84322. 
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Enormous investments in drainage of irrigated areas have already been made 

or are planned. In the Imperial Irrigation District of California, the irrigated 

area increased rapidly at the beginning of this century. By the 1920's 

waterlogging and salinity problems began to appear and by the end of the 1930's 

20,000 hectares temporarily went out of production. In 1922, construction was 

begun on the planned system of open drains. Using the channels of two rivers as 

rna in trunk outlets, the system was extended on a pattern of parallel drains 

approximately a half-mile apart. By 1966, almost 20,000 kilometers of tile 

drains and 2,200 kilometers of deep open outlet drains had been installed to 

maintain or restore the land's productivity (Moore, 1972). 

Development of privately installed tile in the Valley has been remarkable. 

From 1929 through 1960 a total of 12,000 Kilometers has been laid. Most of the 

tile has been installed during the 1950-1960 period. The average yearly 

installation for this period was 800 Kilometers. In 1960, 1,200 Kilometers of 

tile were installed (Molof, 1972). Today almost 60% of the half-million acres 

of productive land in Imperial Valley has adequate tile drainage (Imperial 

Irrigation District, 1987). Figures 1 and 2 illustrates the layout of irrigation 

canals and the open drain systems. 

The selection of an optimum design alternative for a subsurface drainage 

system depends upon the interaction of two conditions. First, maximizing crop 

production by closely spacing laterals, and second minimizing installation cost 

by spacing laterals as widely as possible. In addition, these two conflicting 

conditions must be balanced. There are many other factors i nfl uenc i ng crop 

production. In order to isolate the effect of water in corn yield, it was 

assumed that all other factors such as soil fertility, disease and pest control 
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are properly managed so that any decrease in yield will be a consequence of water 

management alone. Therefore, given a particular soil, climate and crop 

condition, on-farm water management and drainage design decisions can be solved 

.as an optimization problem. 

Maximum yield for corn is achieved when moisture stress is not allowed. 

Managing to obtain zero moisture stress, however, may involve considerable cost 

due to drain installation and control of the amount of water applied and the 

labor and energy used. The greater the cost of installation and operation of 

drainage and irrigation systems and restricted the water limits, the higher the 

unit cost of production becomes. In addition, the operational cost of any 

particular system would be different under different water management practices 

(Ehteshami et al ., 1988). The question then becomes if and by how much yield 

should be sacrificed in order to obtain maximum profit per unit of land. 

The need to make an economic evaluation of agricultural drainage systems 

is well recognized among numerous researchers. Among them Menz (1964), has 

presented an incremental analysis of the benefit-cost ratio. He noted that in 

some cases overall benefit cost ratios for several project scales may be greater 

than one, but the optimum project scale is that at which the excess of net income 

over net cost is greatest and this can be determined by incremental analysis. 

The method used by Wiser et al. (1974) gives an estimation of the effect 

of water table changes on crop response. The criterion for final system choice 

is maximization of net benefits. The change in water table height was calculated 

using an equation developed by Van Schilfgaarde (1965) which estimates the water 

table height at any time due to an assumed pulse input which is uniform over the 

period. The water table height is a function of the drain spacing, depth and 

input to the water table. 



6 

A water balance approach for subsurface drainage design has been proposed 

by Bhattacharya et al. (1977). In this approach the system installation cost and 

the market value of the harvested crop were compared for drainage system designs 

with different drainage rates. These distributions were used to find the crop 

losses. A drainage system was considered inadequate, and crop loss was assumed 

if the water table remained within 30 em of the surface for more than two 

successive days. In another study, Bhattacharya and Broughton (1979) developed 

a procedure to compute crop loss for corn. Different depths and durations of 

high water table conditions, based on available data and probability concepts, 

were used to calculate the revenue increases from a subsurface drainage system 

design with different spacings in various soil types. 

Durnford et al. (1982) presented a procedure which can be used to identify 

economically optimum subsurface drainage system designs in an irrigated area. 

She assumed that crop growth and yield are directly related to a minimum water 

table depth and found a unique least cost combination. She defined an optimum 

drain system, which maximizes the difference between the value of increased crop 

yield attributing to drain installation and the cost of the drains. 

PROCEDURE 

The following procedure was adapted for maximization of the net benefit. 

The objective function (Obj), for optimizing the net benefit can be formulated 

as follows: 

Obj = maximize net benefit (1) 

To compute the objective function practical, acceptable limits must be set, such 

that: 



and, 

min. spacing < drain spacing < max. spacing 
min. depth < drain depth < max. depth 
min. diam < drain diameter < max. diam 
min. Q < furrow inflow Q < max. Q 
min. Lf < furrow length < max. Lf 
min. Zn < depth applied at end of furrow< max. Zn 
min. F < irrigation frequency F < max. F 

Net Benefit = Total Benefit - Total Costs 
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(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

(9) 

where Total Benefit in this case is the income to the farmer from crop production 

(yield), and Total Cost includes drainage system costs plus irrigation system 

costs plus production costs. 

Drainage Costs 

The total cost of drainage system is a function several variables as 
follows: 

or, 

and, 

Toted = CMN + CMA + CTU + CIN + COU + CFI 

Toted = ( C5 I L~ + ( i x C6 x Ddepthc7 1 L ) + 
( i x CB x ddi am 9 IL) + ( i x C10 I MANL x L ) 

+ ( i X C11 I LX OUTL) + (i X C21 I L 

C21 = C14 X .00164 x ddiam·86 

(10) 

( 11) 

(12) 

where Toted is total drainage cost per unit area, CMN is cost of drain 

maintenance per unit area, CMA is cost of drain installation per unit area, CTU 

is cost of tubing per unit area, CIN is cost of man holes per unit area, COU is 

cost of outlets per unit area, CFI is cost of envelope per unit area, L is drain 

spacing (m), Ddepth is drain depth (m), i is the annualized economic factor, 

MANL is distance between each manhole (m), OUTL is distance between each outlet 

(m), C5, C6, C7, CB, C9, C10, C11 are cost coefficients. C21 is cost per linear 

meter of envelop material, C21 could be approximated by a simple power function, 

(Equation 12); where ddiam is drain diameter (mm), and C14 is a cost coefficient. 



Irrigation Costs 

or, 

and, 

Total cost of the irrigation system is: 
Totci = Nise ( Cotlb + Cotwt ) + Cothd 

Totci = Nise {( 1160 X C2 x C4 X Tirr ) + 
( C1 x Nf x Teo ) I Effc )} + C3 x Wf 

Noset = NfiNfs 
Nfs = Qmax I Qin 
Tirr = Teo x Noset 
Nf = 10,000ILf x Fs 
Wf = Nf x Fs 
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(13) 

(14) 

(15) 
(16) 
(17) 
(18) 
(19) 

where Totci is total cost of the irrigation system, Niseis number of irrigations 

per season, Cotlb is cost of labor per unit area, Cotwt is water cost, Cothd is 

cost of head ditch construction per unit area, Tirr is time of irrigation, Noset 

is number of irrigation sets, Nf is number of furrows, Nfs is number of furrows 

per set, Qmax is maximum volume of available water, Qin is volume of inflow to 

one furrow, Teo is time of inflow cutoff to furrow, Lf is furrow length, Fs is 

furrow spacing, Wf is head ditch length, Effc is conveyance efficiency, C1, C2,C3 

are cost coefficients, and C4 is fraction of time. The surface irrigation 

hydrulic performance was simulated using the KINE model (Walker and Skogerboe 

1987). 

Production Cost 

Cp is the agronomic production cost per ha, excluding the cost of drainage 

and irrigation system construction and operation. A production cost of $500lha 

is assumed. 

Benefit or Unit Income 

Total Benefit can be described as: 

Beft = Ry x Py X Cl (20) 

where Beft is the total benefit ($per unit area or $1ha), Ry is relative yield 
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(%). The relative yield has computed using DRAINMOD (Skaggs, et al. 1982). Py 

is potential yield (kg/ha) and, Cl is price of the corn crop ($/Kg). 

Solution to the Optimization Problem 

Maximization of net benefit is more comprehensive than minimization of cost 

in that it incorporates a decision about the desired level of system performance. 

In this study, benefit will be measured in terms of crop yield value, and the net 

benefit is defined as that income derived by the farmer from any additional crop 

yield attributable to installation of a drain system minus the cost of that 

system. Maximization of net benefits further implies that differing levels of 

system performance are compared. Assuming that the level of performance as a 

function of maximizing net benefit can be quantified satisfactorily, then for 

each performance level there is a consequent minimum system and operation cost 

at which that performance level is achieved. The relationship between benefits, 

cost and system performance level can be visualized as shown in Figure 3. 

In this figure, 

benefits and costs are 

plotted. The net benefit is 

the distance between the two 

curves. In general, it is 

expected that as the 

performance level of the 

system increases, the benefit 

or yield increases, at least 

co~t 

' ! i i i i! i!!! i! iii i\ i: 

Draln 8paclng m, 

to a point. But, the cost Figure 3. Example Curve Showing Relationships between Cost, 
Benefit and Net Benefit, for One System Performance level. 

must also increase to obtain 
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the additional performance. In the example curve shown, it is assumed that some 

benefit is derived from the land with no artificial drainage. In addition, 

benefits are shown as leveling off as the crop yields approach some minimum 

.level. Finally, the derived net benefits level off as the crop yield approaches 

some maximum attainable level and may even decline beyond this point i.e. extra 

contribution of the cost which is due to additional crop protection. In the 

economic consideration of a particular drainage system, the level of protection 

should not be increased if the total cost exceeds the total benefit. Therefore, 

theoretically, the point where marginal cost equal marginal benefit or, in 

another word, where the slope of the cost function and the benefit function are 

equal represents an optimum point. 

The problem, then is to define the best system and develop a feasible 

procedure for finding this system. As indicated above, in this study, it is 

assumed that the best system is the one which maximizes net benefits on the farm 

level. The general procedure commonly used to find a solution for the best 

system can be classified as two types: 1. simulation and 2. optimization. Using 

the first approach, the simulation method, possible drain spacings and depths and 

surface irrigation parameters and their effects on crop yield can be determined 

realistically. The second approach, optimization requires more detailed analysis 

than the simulation model, but it is capable of including most of the 

interdependencies inherent in irrigation and drainage systems. A simplified 

optimization routine which provides most of the advantage of the optimization 

method, can be employed. 

Spendley et al. (1962) introduced a clever idea for tracking optimum 

function conditions by evaluating, from the output form a set of points forming 

a simplex in the space and called it "SIMPLEX". The procedure was modified by 
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Nelder and Mead (1965). The name simplex is derived from its shape in space. 

The Spendley method employs a regular sequential pattern search of points in the 

design space while maintaining efficiency compared to the simple direct method. 

The idea is to pick a base point and, rather than attempting to cover the entire 

range of the variables, to evaluate the design parameters in some pattern about 

the base point. For example, in two dimensions, a triangular pattern which the 

best of them (the node with the lowest value of the objective function) would be 

selected as the next base point around, which to locate the next pattern of 

points. If none of the corner points is better than the base point, the scale 

of the grid is reduced and the search continues. 

In this method the 

search to optimize the 

objective function, trail x 

vectors (Figure 4) can be 

selected at a point in space 

located at the vertices of 

the simplex. The objective 

function can be evaluated at 

each of the vertices of the 

Figure 4. An Outlook of the Simplex Method with Sequence of simplex, and a projection 
Simplexes Obtained in Maximization of the Objective Function. 

made from the point yielding 

the highest value of the objective function ( point x1 in Figure 4 ) through the 

centroid of the simplex. Point x1 is deleted and a new simplex is formed by 

reflection, expansion or contraction. The simplex is then composed of remaining 

old points and the one new point, and then the procedure continues until a 

prescribed error tolerance is met and optimization reaches final convergence. 
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Some definitions are as follows from (Nelder and Mead, 1965): 

reflection: The reflection of Ph is denoted by p* and its coordinates are 

defined by the relation; 

p* = ( 1 + •) Pb - Ph (21) 

where • is positive constant, the reflection coefficient, 

Ph is centered of simplex, and Ph is value of vertex with function in highest 

value (the suffix of h,l are to define high and low respectively). 

If y* is less than y1 i.e. if reflection produced a new minimum, then we 

• •• expand P to P by the relation; 

** * p = s p + ( 1 - s) pb (22) 

where s is expansion coefficient, which is greater than unity and finally if on 

reflecting P to p* it is found that y* is bigger than y1 for all i # h, i.e. 

that replacing P by p* leaves y* the maximum, (Y is function value at P;) then 

we define a new Ph to be either the old Ph or p*, whichever has the lower 

function value and form; 

p** = B Ph + ( 1 - B) Pb ( 23) 

where B is contraction coefficient which lies between 0 to 1. The final point 

of concern is halting the procedure which is concerned with the variation in the 

y values over the simplex. The form chosen is to compare the standard error of 

y's in the form of; 

Err = J { ~ ( yi - h )2 I n } (24) 

where yb is mean value of y, n is number of vertices that are compared to a 

preset value (Err) or to so-called error tolerances and to stop when the value 

falls below this value. Figure 5 shows a brief outline of the procedure used in 

the optimization subroutine. 
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RESULTS 

The Simplex 

method is a usefull 

technique for 
~ aeloulah !aU. PI and Yl 

d•~•ralne h, oaould• pb 
lroa p~l+ot.ipha)pb-alpt..•pb 
ca.lcul•~• '/ 

optimizing simulation 

models. The method 

I 
~ 

II y• I 71 1 h r• 1 rL 1 I_ 7•• ,J ,. y• ' '"' 1 , .. M I , .. 
fro• p••>:(L ... a .... )p•-a•- pb rep. ph by p• 

o•loult•~• r•• 

was used to optimize 

interaction between 
I h yoo ' 71 1 I~ 

Ire• p••"'bela"ph+{ I ala)pb 
oeou\al• '/ .. , .. 

irrigation and 
l II y•• > '"' ~· 

replace pb by p•• 
~ 

drainnage requirement 
reph ephb'Jp" 

replace by p•• 

rapleca all p by (pi '+pl}i' 

of the crop. The 

drainage system 

l bu opt 1- b<oen roaobod 
, .. 8 ~ 

optimization model 

could be used for 
figure 5. Flow Dia,gram of Simplex Method {From Nelder and Mead, 1965 ). 

comparing a wide range of design parameter values and to produce a series of 

graphs that will allow practicing drainage engineers and farmers to select a 

subsurface drainage system optimized for a given set of conditions. 

The estimated costs of drain installation and materials are shown in Table 

1 and a summary of input data and the values of parameters used are shown in 

Table 2. The drain design computed by the drainage optimization model is the 

least cost system for the highest level of yield that would be achieved based on 

the input cost data, soil conditions, crop production, and one particular 

irrigation layout. The computational procedure, as described, is an iterative 

process. For example, for a field situation where a single corn crop is planted 

each year, and the costs for a closed drain system are shown in Table 1. By 

using these values and an initial trial drain spacing of, for example, 60 meters 



Tab 1 e I. Costs assumed for Closed orJi\1, 
Systems and Irrigation Water Management Practices. 

(Table 3), a relative yield of 82% would 

be determined using the drainage system 
Variable Cost Assumed Units Explanation 

$1m3 water cost 

design results with the yield model. The 

.net benefit from this particular system 

was determined to be $170/ha/year. The 

C1 
C2 
C3 

C4 
C5 
C6 
C7 

0.0100 
4.0000 
3.1000 

I. 0000 
0.0311 
0.2770 
2.1800 
0.0200 
0.7600 
175.00 
100.00 
8.7600 
0.1200 
0.1320 

$/hr labor cost 
$/m annual cost of 

ditch construction 
fraction of time 

$/m/year maint. cost 
$/m inst. cost 
$/m inst. cost 

C8 
optimization model then eval-uates a 

second alternative spacing of 69 meters 

C9 
C10 
Cll 
C14 
Price/Kg 
Rate 

$/m tubing cost 
$/m tubing cost 
$/unit manhole cost 
$/u~it outlet cost 
$/m envelope cost 
$/kg price of crop 

and determines a corresponding relative 

Table II. sunroary of the Input Data Used in yield of 68% and net benefit of 
Drainage Design and Optimization Model. 

Input parameters 

Years of simulation 
Rainfall station (#) 
Temperature station (#) 
Crop type 
Planting date (julian day) 
Growing season (days) 
Drain depth (em) 
Drain spacing {em) 
Profile depth (em) 
drain tubing (mm) 
Soil layers 

values 

1982' 1983 

corn 
105 

130,142 
180,200,220 
4000,5000 

230 
104 

Saturated hydrau 1 ic conduc . . ( cm/hr) 
Infiltration parameters A and B 

2 
2,3,4,5 
3.3,1.0 
6.0,1.0 
9.2,1.0 

Length of furrow (m) 200,300 
Furrow spacing (m) 1.00 
Roughness coefficient 0.04 
Field slop (m/m) 0.014 
Hydraulic section parameters 0.66,2.87 
Furrow geometry parameter 0.96,.604 
Kostiakov-lewis infiltration parameters 

.0088,0.212, .00017 
Flow rate (1/s) 0.5-2.5 
Water applied at end of furrow (m) 0.05-0.07 
Maximum flow available (m3/sec) 10.00 
Potential yield (kg/ha) 10000.00 
Distance between each manhole (m) 500.00 
Distance between each outlet (m) 500.00 
Irrigation frequencies (days) 10-20 

$3/ha/year. Therefore, the net benefit 

gradient is negative and the net benefit 

wi 11 decrease if the spacing is 

increased. Since a higher net benefit 

is required, the optimization sub-model 

decreases the spacing to 58 meters and 

re-evaluates the corresponding costs and 

benefits, and the gradient for the new 

results is determined. Table 3 shows 

the sequence of data obtained by 

following this iteration method of 

optimization. When the change in the 

net benefit is less than a per-defined 

tolerance, the optimization sub-model will end the procedure and the chosen 

system would be the system giving the highest annual net return, using the 

current input data. Convergence occurs fairly quickly in a few iterations. 

The numerical values of net benefit for different combinations of hydraulic 



Table Ill Sequence for Optimization rr;l.!i 
in one Particular Case. 

conductivity and for one interest rate, 
# Spacing Relative Yle ld Net benefit 

one amortization period and one (m) (%) ($/ha) 

installation cost are shown in Figure 6 1 60 82 170 
2 69 68 3 
3 58 86 213 

for different soil permeabi lit i es. Of all 4 53 92 270 
5 47 97 325 

the various hydraulic parameters 6 34 100 314 
7 43 98 334 
8 53 92 270 

considered in the economic analyses, soil 9 38 99 333 
10 33 100 315 

hydraulic conductivity has the greatest 11 41 99 335 

400~---------------------------. 

350 -
~ 200 

z 
150 

Qin=:2: 1/aeo. 
u =250 :m.. 

>t Ks...-.2 Cm/Hr 
o Ka=4 Cm/.Hr 
0 Ks=6 Cm/Hr 

100+---.--.---.---.--.---.--.r-~ 
10 BO 30 40 60 60 ?0 BO 90 

Drain Spacing m. 

influence on drain spacing and net 

benefit. Figure 6 indicates the drain 

spacing needed to achieve the maximum 

annual net benefit from subsurface 

drainage for various values of 

hydraulic conductivity increases with 

hydraulic conductivity. 

The sensitivity of model as a 

Figure 6. Net Benefit Due to subsurface Drainage function of drain spacing was evaluated 
for Various Soil Hydraulic Conductivity Values. 

by varying the unit price of crop 

production, and varying the unit cost of installation using different interest 

rates and system life times (Figures 7, 8). In each case, one input cost was 

tested while keeping the other parameters constant. Figure 7 shows the effect 

of capital recovery factors on net benefit for different drain spacings. Figure 

8 shows the effect of crop prices on the net benefit for different drain 

spacings. Figure 8 indicates that the crop prices are a major influence on the 

net benefit. It is obvious from Figures 7 and 8 that changes in the cost of 

the system components and crop price would influence the net benefit, while not 

significantly affecting the drain spacing. 
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Fiugre 7. Net Benefit Due to Subsurface Drainage 
for Different Capital Cost Recovery Factor. 

A comprehensive procedure is presented which uses available information on 

weather, soil, water and plant properties and related cost parameters to 

establish rational guidelines to enable the investor or engineer to select an 

appropriate design alternatives which will result in increased maximum average 

annual net benefit. The procedure conducted in this study introduces the use of 

state-of-the-art computer simulation techniques to optimize water management 

models. The Simplex algorithm was linked together with the surface irrigation 

and subsurface drainage mode 1 to optimize water management decisions in irrigated 

agriculture. The optimization routine is based on net benefit maximization in 

which the benefits are crop yields, and the cost components are installation and 

rna i ntenance of drainage system costs, p 1 us costs associ a ted with surface 

irrigation, and the seasonal production cost. The optimization routine is proven 

to be an effective methodology. 
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Use of Simplex Algorithm for Optimizing Simulation Models 

by 

Majid Ehteshami, Lyman S. Willardson, Richard C. Peralta1 

ABSTRACT 

A methodology and computer model is developed to determine economically .. 

·to the subsurface drainage model DRAINMOD (""';~:>..L~~~~~F-t6~J;f:!~eo::_ 

hydraulic model KINE (Walker and S 

system maximizes the difference between total revenue, and the total cost of 

installation, 

~/?« 
~,UV"" 

INTRODUCTION Lf~j 
~NP"P"~~ '':,"''" ''~ :::::,;:••::::' tho ~ q _funcbn~\lli't:illelfts, t.o be~ t . ·~ 11 1 . In ~ ;;j_-

agriculture drainage, this .steP'i nvol ves the establishment of the drainage i"' . 
- ,!)>'? 

W · requirement of the c~ to be grown and the characterization of soil properties d 
]!:/ t e aim of a drainage system is 

to provide a healthy environment for plant growth. his impl1es that a drain"'Je 

system must be designed 11it~ t~e requirements of the plant to be grm•m in mind. 

1 
Engineer, Assis~ Imperial Irrigation District, Imperial, Ca 92251. Professa·r, Assoc. Professor, 

respectively; Agricultural and Irrigation Engineering Department; Utah State University, logan, Utah 84322. 
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Enormous investments in drainage of irrigated areas have already been made 

or are planned. In the Imperial Irrigation District of California, the irrigated 

area increased rapidly at the beginning of this century. By the 1920's 

.waterlogging and salinity problems began to appear and by the end of the 1930's 

20,000 hectares temporarily went out of production. In 1922, construction was 

begun on the planned system of open drains. Using the channels of two rivers as 

main trunk outlets, the system was extended on a pattern of parallel drains 

approximately a half-mile apart. By 1966, almost 20,000 kilometers of tile 

drains and 2,200 kilometers of deep open outlet drains had been installed to 

maintain or restore the land's productivity (Moore, 1972). 

Development of privately installed tile in the Valley has been remarkable. 

From 1929 through 1960 a total of 12,000 Kilometers has been laid. Most of the 

tile has been installed during the 1950-1960 period. The average yearly 

installation for this period was 800 Kilometers. In 1960, 1,200 Kilometers of 

tile were installed (Molof, 1972). Today almost 60% of the half-million acres 

of productive land in Imperial Valley has adequate tile drainage (Imperial 

Irrigation District, 1987). Figures I and 2 illustrates the layout of irrigation 

canals and the open drain systems. 

The selection of an optimum design alternartive-f r a.subsurface drainage 
s;u..b- ... ~., 

system depends upon the interaction of two ccd · . 'IR1@ l!o, maximizing crop 

production by closely spacing laterals, and ~minimizing installation cost 

by spacing laterals as widely as possible. ~;"~two ctmfl icl;ittg 

~ "" L b1 L;'a"e"d."'"" <fllii•e <ITe/YJany ~factors influenc~crop 
production. In order to isolate the effect of water in corn yield, it~ J, 
assumed that all other factors such as soil fertility, disease and pest ·control 
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figure 1. Imperial Irrigation District. Hap of the Imperial Unit Irrigation System Showing Concrete Lined and 
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are properly managed so that any decrease in yield will 

management alone. Therefore, ~a particular 

be a consequence of water 

soil, climate and crop 

condition, on-farm water management and drainage design decisions can be solved 

.as an optimization problem. 

Maximum yield for corn is achieved when moisture stress is not allowed. 

should be sacrificed in order to obtain maximum profit per unit of land. 

The need to make an economic evaluation of agricultural drainage systems 

is well recognized among numerous researchers. Among them Menz (1964), ~ 

presented an incremental analysis of the benefit-cost ratio. He noted that in 
~ some cases overall benef~~t ratios for several project scales may be greater 

than one, but the optimum project scale is that at which the excess of net income 
0 pl>~ o-u-t-d -' -ffi 

over net cost is greatest a ' I It canu b(( detennined by incremental analysis. . ~~ 
l'lie method asi!d<$y Wiser et al. (1974) gj,o;u &A estimation 

of water table changes on crop response. The criterion for final 

of the effect 
~ 

system cheiee ~ 

is maximization of net benefits. The change in water table height was calculated 

using an equation developed by Van Schilfgaarde (1965) which estimates the water 

table height at any time due to an assumed pulse input which is uniform over the 

period. The water table height is a function of the drain spacing, depth and 

input to the water table. 
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A water balance approach for subsurface drainage design hij I; m1 proposed 

by Bhattacharya et a 1. ( 1977). In thrifapproach the system i nsta 11 at ion cost and 

the market value of the harvested crop were d for inage system designs 
- . ---~ 

with different drainage rates. 'These ' w e used to find the crop 

losses. A drainage system was considered inadequate, and crop loss was assumed 

if the water tab 1 e remained within 30 em of the surface for more than two 

successive days. In another study, Bhattacharya and Broughton (1979) developed 

a procedure to compute crop loss for corn. Different depths and durations of 

high water table conditions, based on available data and probability concepts, 

were used to calculate the revenue increases from a subsurface drainage system 

design with different spacings in various soil types. 

Durnford et al. (1982) presented a procedure which can be used to identify 

economically optimum subsurface drainage system designs in an irrigated ~a. 
WI~~~ 

She assumed that croll rowth and yield are directly related to a mi~inn:tm water 

r;;~~~t;;a:;;b~l ·• ~ .. and f und a unique least cost ::rnbination. ~efined an optimum 

dra1n system, which maximizes the difference between the value of increased crop 

yield attributing to drain installation and the cost of the drains. 

PROCEDURE T fo ~ ~ /(/-'-. .. : > 

"' ,,;;:\li!!!i::::~~::;;;:,~~.::,::,,:,:.::::::::"' 
"' as fo I I ows: ..\ 

2 ~ = maximize net benefit (1) 



and, 

min. 
min. 
min. 
miii. 

. min. 
min. 
min. 

spacing < drain spacing < max. spacing 
depth < drain depth < max. depth 
diam < drain diameter < max. diam 
Q < furrow inflow Q < max. Q 
lf < furrow length < max. lf 
Zn <depth applied at end of furrow< max. Zn 
F < irrigation frequency F < max. F 

Net Benefit = Total Benefit - Total Costs 

7 

(2) 
(3) 
(4) 
( 5) 
(6) 
(7) 
(8) 

(9) 

where Total Benefit in this case is the income to the farmer from crop production 

(yield), and Total Cost includes drainage system costs plus irrigation system 

costs plus production costs. 

Drainage Costs ~ 

~~- "'' of~''"'' ''''" h • foootloo """' 

Toted = CMN + CMA + CTU + CIN + COU + CFI 
or, 

and, 

Toted = ( C5 I LJ + ( i x C6 x Ddepthc7 I l ) + 
( i x CB x ddiam 9 ll) + (i x C10 I MANL x l ) 

+ ( i X C11 I l X OUTL) + (i X C21 I l ) 

C21 = C14 X .00164 X ddiam·M 

' variables,_ 

(10) 

(11) 

(1 

.r where Toted is total drainage cost per unit area, CMN is cost of drain 

maintenanc er unit~rea, CMA is cost of drain installation per unit area, CTU 
iV.Jv'- . 

is cost o tubin per unit area, CIN is cost of man holes per unit area, COU is 

cost of outlets per unit area, CFI is cost of envelope per unit area, l is drain 

spacing (m), Ddepth is drain depth (m), i is the annualized economic factor, 

MANL is distance between each manhole (m), OUTL is distance between each outlet 

(m), C5, C6, C7, CB, C9, C10, C11 are cost coefficients. C21 is cost per linear 
0 ~b . 

meter of envelop~~~aterial r:1/J uld q,e approximated by a simple power function, 

(E::;; wh~;;+?~ d~~(t:nd ~ c~ef~ie;fol· 
(' I -

-. -
,..; 



-ito·~···~ -to l, ~w ~· 
F~ ~~ Y.(fro) ~ ~ 1-v, ~ ~ 
~ -{;t v~~~ • As L:;i 0 1 fl ~,htl/J 
~ 4 :s~h~ ~ 'lD w ~ ~ l)!r'-'~ 

Irrigation Costs ~ doUJ iMJ/-~ ~ If tnJ ~ ~ 
~~tbust of the irrigation system is: 

or, 
vr y V1 Totci = Nise ( Cotlb + Cotwt ) + Cothd (13) 

Totci = Nise {( 1160 X C2 X C4 X Tirr ) + 
( C1 x Nf x Teo ) I Effc )} + C3 x Wf (14) 

and, 
Noset = NfiNfs (15) 
Nfs = Qmax I Qin (16) 
Tirr = Teo x Noset (17) 
Nf = lO,OOOILf x Fs (18) 
Wf = Nf x Fs rlfi") (19) 

where Totci is~ cost of~ irrigat~~~. Nise is number of irrigations 

per season, Cotlb is cost of labor per u~~~~~~ Cotwt is water cost, Cothd is 

cost of head ditch construction per unit area, Tirr is time of irrigation, Noset 

is number of irrigation sets, Nf is number of furrows, Nfs is number of furrows 

per set, Qmax is maximum volume of available water, Qin is volume of inflow to 

one furrow, Teo is time of inflow cutoff to furrow, Lf is furrow length, Fs is 

furrow spacing, Wf is head ditch length, Effc is conveyance efficiency, C1, C2,C3 

are cost coefficients~ and C4 i~ fraction of time. ~~rface irrigation 
'0 

hyd~l i c performance ~ simulated using the KINE model (Wa 1 ker- and Skogerboe 

1987)-

Production Cost 

Cp is the agronomic production cost per ha, excluding the cost of drainage 

and irrigation system construction and operation. A production cost of $500iha 

is assumed. 

Benefit or Unit Income 

~Benefit can be described as: 

Beft = Ry x Py x Cl (20) 

where Beft is the ~'benefit($ per unit area or $lha), Ry is relative yield 
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(%}. The relative yield~ computed using DRAINMOD (Skaggs, et al. 1982}. Py 

is potential yield (kg/ha} and, Cl is price of the corn crop ($/Kg} . 

. Solution to the Optimization Problem 

MaxJmlZat ion-of net benefit is more rompreheAsh'e thaA mi r:~imi zat ion of cost 

.in that it ~rates a decisi.9Jl.-ille~t the aeswed level of systeilrperfgrmaflce. 

In this study, benefit W'ill b""1!1ea~ t~ o~ yield value, and the net 

benefit is defined as that income derived ~from any ~ional~crop ~ 
yield attributable to installation of a drain system minus the cost of that ,:r_~ 

'1 \~ 
Maximization of net benefits further implies that differing levels of ~ 

system performance are compared. Assuming that the level of performance as a ~6-
function of maximizing net benefit can be quantified satisfactorily, then for ~~ 

each performance level there is a consequent minimum system and operation cost~' 

at which that performance level is achieved. The relationship between benefits, ~ 
can be visualized as shown in Figure 3. 

figure, 

~ and costs are 

-l plotted. The net benefit is 

J ~ ~ the distance between the two 

~ ~" In general, it is 

~ expected that as the 

1~ :;:,":,:: ... ~:~·:".:£ 
'~1~ or yield increases, at least 

~~ to a point. But, the cost 

must also increase to obtain 

() <b CfJ L 

Figure 3. Example curve Showing Relationshi s ~tween Cost, 
Benefit and Net Benefit, for qn-~Horman e_ . t 

-r jl ?Lb ;;, u 11M ~ t 
<J_/p I I ~ A/1 I 5 D 0 

/vo J ~-{?t0 I ~ :L__ V ~ 
r;:::r.-- ~~ 



introduced a clever ide a for tracking optimum 

function onditions by evaluating, from the output form a et of points forming 

a simplex in the space and called it "SIMPLEX". The proce 

~};t o~ ~ lcr4D 5. 77~ ~ /~ 
.J ~J. ~~ MPL~X rv- rAA J vA 

5~,,5~ 

re was modified by 

,;···" 



.. 11 

Nelder and Mead (1965). The name simplex is derived from its shape in space. 

The Spendley method employs a regular sequential pattern search of points in the 

design space while maintaining efficiency compared to the simple direct method . 

. The idea is to pick a base point and, rather than attempting to cover the entire 

range of the variables, to evaluate the design parameters in some pattern about 

the base point. For example, in two dimensions, a triangular pattern which the 

best of them (the node with the lowest value of the objective function) would be 

selected as the next base point around, which to locate the next pattern of 

points. If none of the corner points is better than the base point, the scale 

of the grid is reduced and the search continues. 

In this method the 

search to optimize the 

objective function, trail x 

vectors (Figure 4) can be 

selected at a point in space 

1 ocated at the vertices of 

the simplex. The objective 
x, function can be evaluated at 

each of the vertices of the 

igUre 4. An Outlook of the Simplex Method with Sequence of SimpleX, and a projection 
implexes Obtained in Maximization of the Objective Function. 

made from the point yielding 

he highest value of the objective function ( point x1 in Figure 4 ) through the 

entroid of the simplex. Point x1 is deleted and a new simplex is formed by 

eflection, expansion or contraction. The simplex is then composed of remaining 

ld points and the one new point, and then the procedure continues until a 

rescribed error tolerance is met and optimization reaches final convergence. 
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Some definitions are as follows from (Nelder and Mead, 1965): 

reflection: The reflection of Ph is denoted by p* and its coordinates are 

defined by the relation; 

p* = (1 + a) Pb - Ph (21) 

where a is positive constant, the reflection coefficient, 

Pb is centered of simplex, and Ph is value of vertex with function in highest 

value (the suffix of h,l are to define high and low respectively). 

If y* is less than Yt i.e. if reflection produced a new minimum, then we 
• •• expand P to P by the relation; 

p** = 0 p* + ( 1 - 0) pb (22) 

where o is expansion coefficient, which is greater than unity and finally if on 

reflecting P to p* it is found that y* is bigger than Yt for all i # h, i.e. 

that replacing P by p* leaves y* the maximum, (y is function value at P;) then 

we define a new Ph to be either the old Ph or p*, whichever has the lower 

function value and form;· 

p** = B Ph + (1 - B) Pb (23) 

where B is contraction coefficient which lies between 0 to 1. The final point 

of concern is halting the procedure which is concerned with the variation in the 

y values over the simplex. The form chosen is to compare the standard error of 

y's in the form of; 

Err = • { E ( yi - yb )2 I n } (24) 

where yb is mean value of y, n is number of vertices that are compared to a 

preset value (Err) or to so-called error tolerances and to stop when the value 

falls below this value. Figure 5 shows a brief outline of the procedure used in 

the optimization subroutine. 



RESULTS 

The Simplex 

method is a usefull 

technique for 

optimizing simulation 

models. The method 

was used to optimize 

interaction between 

irrigation and 

drain{age requirement 

of the crop. The 

drainage system 

optimization model 

could be used for 

••lav.tato lal\, PJ , ... Yt 
olator•llll II, llllllllllllla\o ~ 
lr .. p""(l-klpbt.)plt..,.lpblo•pb 
••l111utde 7 
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OllllfiUldlll JU 

r----L----, • •• ,...c,,, 

... 

.... , .... pb \7 ... 
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Figure 5. Flow Dia9ram ot Simplex Method (From Helder and Mead~ 1965). 

comparing a wide range of design parameter values and to produce a series of 

graphs that will allow practicing drainage engineers and farmers to select 

subsurface~ ~!~ :rstem optimized for a given set of conditions. ~ 

Th~sts of drain installation and materials are shown in Table 

1 and a summary of input data and the values of parameters used are shown in 

Table 2. The drain design computed by the drainage optimization model is the 

least cost system for the highest level of yield that would be achieved based on 

the input cost data, soil conditions, crop production, and one particular 

irrigation layout. The computational procedure, as described, is an iterative 

process. For example, for a field situation where a single corn crop is planted 

each year, and the costs for a closed drain system are shown in Table 1. By 

"B:M~"" d.;,;;~~,,~'';';""'''·"~. 
~~~' ~ ~Ctz>b ;!_//~ f #di:::zJ!'~ 

how ~l~ ~~4';/~~ HJo/IQ~<e..,L 



design results The 

'-net 

determine The 

Tab 1 e I . Costs assuned for Closed orJi4. 
Systems and Irrigation Yater Management Practices~ 

2 
3 

4 
5 
6 
7 

Cost Assumed Units Explanation 

0.0100 
4.0000 
3.1000 

$1m3 water cost 
$/hr labor cost 
$/m annual cost of 

ditch construction 
fraction of time 

$/m/year maint. cost 
$/m inst. cost 
$/m inst. cost 

optimization evalhua es a 
8 
9 
10 

1.0000 
o. 0311 
0.2770 
2 .!BOO 
0.0200 
0.7600 
175.00 
100.00 
8.7600 
0.1200 
0.1320 

$/m tubing cost 
$/m tubing cost 
$/unit manhole cost 
$/u~it outlet cost 
$/m envelope cost 
$/kg price of crop 

second alternat· pacing of 69 meters 

?ti '"' '"'""' "" "''""""' "' """" "')j· ~ab 1 e I I. Slllmary of the Input Data Used in yi e 1 d 

11 
14 
rice/Kg 

~ Drainage Design and Optimization Hodel~ 

Input parameters 

Years of simulation 
Rainfall station (#) 
Temperature station (#) 

values 

1982,1983 

Crop type corn 
Planting date (julian day) 105 

Drain depth (em) <:~~> 
Growing season (days) .~ 

Drain spacing (em) 0 
Profile depth (em) 23D 
drain tubing (mm) 104 
Soil layers 2 

.,.__,,.,...,_Saturated hydraulic conduc .. (cm/hr) 2,3,4,5 
"-Infiltration parameters A and B 3.3,1.0 
~ 6.0,1.0 

9.2,1.0 
Length of furrow (m) 200,300 
Furrow spacing (m) 1.00 
Roughness coefficient 0.04 
Field slop (m/m) 0.014 
Hydraulic section parameters 0.66,2.87 
Furrow geometry parameter 0.96,.604 
Kostiakov-lewis infiltration parameters 

.0088, 0. 212 •. 00017 
Flow rate (1/s) 0.5-2.5 

1 
• '"''"'-..,Water applied at end of furrow (m} 0.05-0.07 

"'' Maximum flow available (m3/sec) 10.00 

I Potential yield (kg/ha) 10000.00 

. ~ Distance between each outlet (m) 500.00 

Rate 

of 

ar. Therefore, the net benefit 

gr aient is negative and 

ill decrease 

increased. 

is 

o 58 meters and 

espond i ng costs and 

radient for the new 

re ults is determined. Tab 1 e 3 shows 

the sequence of data obtained 

follow g this iteration method 

opt i mi za t i u"'...._..!'W~h~en~t~h..:e~c~ha~n!.\0 in the \, () ~ Distance between each manhole (m) 500.00 

Irrigation frequencies (days) 10-20 
net benefit is less than a per-defined 

tolerance, the optimization sub-model will end the procedure and the chosen 

system would be the system giving the highest annual net return, using the 

current input data. Convergence occurs fairly quickly in a few iterations. 

The numerical values of net benefit for different combinations of hydraulic 



conductivity an for one interest rate, 
ftJZJ one amortization period and one 

Spacing Relative Yield Net benefit 
(m) (%) ($/hal 

installation cost are shown in Figure 6 -"V I 60 82 170 ~ 
2 69 68 3 
3 58 86 213 '· J 
4 53 92 . 270 ll.R.rl for different soil permeabilities. Of all 
5 47 97 325 ( 1 _ /J 
6 34 100 314 ~--~ the various hydraulic parameters 7 43 98 334 

considered in the economic analyses, soil 

hydraulic conductivity has the greatest 

8 53 92 270 ~ 
9 38 99 333 OZ0j 

10 33 100 315 rt ' 
--~1·1--·4·1------99 _________ 33_5 ....... · ~ 

1( 
~· 

•oo~--------------~---------. 

350 -~ 300 

'El 
~zoo 

P=l 

"""'"'200 z 
100 

influence on drain spacing and net 

benefit. Figure 6 indicates the drain 

spacing needed to achieve the maximum 

annual net benefit from subsurface 

drainage for various values of 

hydraulic conductivity increases with 

hydraulic conductivity. 

Figure 6. Net Benefit Due to Subsurface Draina e 
for Various Soil Hydraulic Conductivity Values. 

The sensitivity of model as a 

function of drain spacing was evaluated 

by varying the unit price of crop 

production, and varying the unit cost o installation using different interest 

tested while keeping the other parameters constant. Figure 7 shows the effect 

of capital recovery factors on net benefit for different drain spacings. Figure 

8 shows the effect of crop prices on e net benefit for different drain 

spacings. Figure 8 indicates that the cro prices are a major influence on the 

net benefit. It is obvious from Figures 7 and 8 that changes in the cost of 

nfluence the net benefit, while not 

~ 

the system components and crop price would 

significantly affecting the drain spacing. ~~~~ 
at 0. 
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Figure 8 .. Net Benefit Due to Subsurface Drainage 
for Various Prices of Corn. 
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20 uo 40 an so 7D 
Drain spacing m. 

Fiugre 7. Net Benefit Due to Subsurface Drainage 
for Different Capital Cost Recovery Factor. 

A comprehensive procedure is presented which uses available information on 

weather, soil, water and plant- properties and related cost parameters to 

establish rational guidelines to enable the investor or engineer_to select an 

appropriate design alternatives which will result in increased maximum average 

annual net benefit. The procedure conducted in this study introduces the use of 

state-of-the-art comp.uter simulation techniques to optimize water management 

models. The Simplex algorithm was linked together with the surface irrigation 

and subsurface drainage mode 1 to optimize water management decisions in irrigated 

agriculture. The optimization routine is based on net benefit maximization in 

which the benefits are crop yields, and the cost components are installation and 

maintenance of drainage system costs, plus costs associ a ted with surface 

irrigation, and the seasonal production cost. The optimization routine is proven 

to be an effective methodology. 
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