Pesticide and Water Management Alternatives

to Mitigate Potential Ground-Water Contamination

for Selected Counties in Utah

Majid Ehteshami Antonio M. Requena Richard C. Peralta Howard M. Deer Robert W. Hill Ahmad Yar Ranjha

.....

(This material is based upon work supported by the Utah State University Extension Service, U. S. Department of Agriculture, under special project No. 89-EWQI-1-9195.)

.....

Agricultural and Irrigation Engineering Department and Cooperative Extension Service Utah State University Logan, Utah May 1990

To convert	Into	Multiply by
m	ft	3.2808
	yd	1.0936
	mm	1000
mm	in	0.0394
	ft	0.0033
ha	ac	2.4710
	m²	10000
l	gal	0.2642
	qt	1.0567
	ml	1000
m ³	ft ³	35.3147
	1	1000
Кд	1b	2.2046
	Oz	35.2740
	a	1000
g	lb	0.0022
	mg	1000
ž u	μġ	1000000
Kg/ha	lb/ac	0.8922

Abbreviation:

ac	= acre
ft	= foot
ft^3	= cubic foot
g	= gram
μ m	= microgram
mg	= milligram
ha	= hectare
in	= inch
Kg	= kilogram
1	= liter

lb		pound
m	=	meter
m²	=	square meter
m³	=	cubic meter
gal		gallon
ml	=	milliliter
mm	=	millimeter
0z	=	once
qt	=	quart
yd	=	yard

.

Pesticide and Water Management Alternatives to Mitigate Potential Ground-Water Contamination for Selected Counties in Utah

A REAL AND A

.

BY

Majid Ehteshami Antonio M. Requena Richard C. Peralta Howard M. Deer Robert W. Hill Ahmad Yar Ranjha

. .

AGRICULTURAL AND IRRIGATION ENGINEERING DEPT. AND COOPERATIVE EXTENSION SERVICE UTAH STATE UNIVERSITY LOGAN, UTAH MAY 1990

ACKNOWLEDGMENTS

We gratefully acknowledge the funding support of the Utah Department of Agriculture and the following offices at Utah State University: The Department of Agricultural and Irrigation Engineering, the International Irrigation Center, the Department of Animal, Dairy and Veterinary Sciences, the Department of Soil Science and Biometerology, and the University Extension Service.

We appreciate the cooperation of Jim Paraskeva and Ken Wyatt of the Utah Department of Agriculture, the compilation by county extension agents of information on pesticide use and cropping areas. We are grateful for the help of the Soil Conservation Service and the U.S. Geological Survey in providing us with soil survey and hydrogeologic information. We acknowledge the software support and advice of Art Hornsby (University of Florida) and Bob Carsel (USEPA). We appreciate the guidance given by Dr. Robert W. Hill and L. Niel Allen in the calculation of crop water requirements and the review of Dr. Richard G. Allen. Valuable help was also provided by Ricardo Melamed with data preparation, with graphic support coming from Grant Johnson, and secretarial support from Jill Hunsaker, Sheridyn Stokes, Cheryl Johnson, and Tammy Griffeth.

TABLE OF CONTENTS

ى قىمىد قەربەر بەيمارىمىيە بەر بەيغارىمى بەر قەربەر قۇرغۇقۇرغۇرغۇرغۇر بار بەر بەر بەر بەر ب

\$

Page
ii
v
vii
x
xiii
1
1 5 6
7
7
7 13 16
17 18
21
21 24 26 27 31 42 48 49

_

TABLE OF CONTENTS

٠

•••

iv

IV. RESULTS AND DISCUSSION	50
Management Practices to Reduce Potential Ground-Water Contamination	50
Alternative Pesticides Alternative Application Dates Alternative Water Management	50 57
Practices	59 62
Sensitivity Analyses	67
Soil Sprinkler Irrigation Furrow Irrigation	67 70 73
V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	75
Summary and Conclusions Recommendations	75 77
REFERENCES	78
APPENDICES	83
Appendix A: CMLS Simulations	84
Appendix B: Pesticide Library	93
Appendix C: Soil Library	104
Appendix D: Irrigation Schedules	108
Appendix E: Seasonal Soil-Water Budget	115
Appendix F: BMSs Graphical Outputs	118
Appendix G: CMLS Analysis	145

.

LIST OF TABLES

Tabl	e	Page
1.	Toxic Organic Chemicals Found in Ground Water Collected in the U.S	4
2.	Cation Exchange Capacity (CEC) and Surface Area for Different Soil Constituents	11
3.	Chemodynamic Properties for Several Pesticides	14
4.	Example of Soil Data	25
5.	Example of Pesticide Data	25
6.	Rooting Depths of Various Crops Used in this Study	26
7.	Zone, County and Weather Station Assignments	28
8.	Crop Coefficients	30
9.	Furrow Simulation Data	35
10.	Distribution Coefficient (H _a) Values Based on a Normal Distribution	40
11.	Example of Pesticide Movement to Selected Depths	48
12.	Pesticide Movement Comparison Under Sprinkler Irrigation	72
13.	Pesticide Movement Comparison Under Surface Irrigation	74
14.	CMLS Simulations: Alternatives Pesticides	85
15.	CMLS Simulations: Furrow Irrigation	87
16.	CMLS Simulations: Sprinkler Irrigation	91
17.	Irrigation Schedules: Alternative Pesticides	109

v

LIST OF TABLES

Tabl	e	Page
18.	Irrigation Schedule: Furrow and Sprinkler Irrigation	112
19.	Seasonal Soil Water Budget	116
20.	Estimated and Simulated Hydrological Data	148
21.	Pesticide Data Used in Simulations	148
22.	Soil Properties Used in Simulations	148
23.	CMLS Analysis: Preferential Flow	156

•--

1

-

vi

•

LIST OF FIGURES

.

Figu	re	Page
1.	Schematic Representation of Processes Influencing Pesticide Movement	8
2.	Schematic Representation of the Procedure to Estimate Potential Pesticide Concentration in Ground Water	23
3.	Relation Between Required Water Application and Actual Moisture Distribution for Three Typical Irrigation Regimes	33
4.	Effect of Various Furrow Inflow Rates and Furrow Lengths on Storage Efficiency (furrow slope = 0.002 m/m)	36
5.	Effect of Various Furrow Inflow Rates and Furrow Lengths on Storage Efficiency (furrow slope = 0.006 m/m)	37
6.	Relation Between Fraction of Area Adequately Irrigated and H _a for a UC of 84%	41
7.	Alternative Alfalfa Herbicides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County	53
8.	Alternative Alfalfa Insecticides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County	54
9.	Alternative Corn Insecticides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County	55
10.	Alternative Small Grains Herbicides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County	56
11.	Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Two Pesticide Application Dates. Assumes 50% Irrigation Efficiency	58

-

LIST OF FIGURES

.

]

Figu	re	Page
12.	Effect on Relative Amount of Atrazine Remaining in the Soil When the Herbicide Reaches a Depth of 2 m for Various Water-Storage Efficiencies	60
13.	Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Various Surface Irrigation Efficiencies	61
14.	Effect of Furrow Lengths on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m	64
15.	Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Various Inflow Rates (Q _{in}) to the Furrow Head	65
16.	Effects of Various Uniformity Coefficients on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m Under a Sprinkler Irrigation System	66
17.	Effect of Various Soil Textures on Relative Amount of Aldicarb Remaining in the Soil When It Reaches a Depth of 2 m	68
18.	Effect of Various Soil Textures on Relative Amount of Carbofuran Remaining in the Soil When It Reaches a Depth of 2 m	69
19.	Effect of Various Infiltrated Water Depths on Relative Amount of Aldicarb Remaining in the Soil When It Reaches a Depth of 2 m	71
20.	Rainfall, Irrigation and Chemical Depth as a Function of Time	149
21.	Estimated Daily Grass Evapotranspiration for Tifton, Georgia	150

LIST OF FIGURES

Figu	re	Page
22.	Total Mass of Atrazine in the Saturate Zone	151
23.	Simulated and Observed Peak Concentrations of Atrazine on Different Dates	152
24.	Simulated and Observed Depths to Peak Concentration of Atrazine on Different Dates	153
25.	Simulated and Observed Concentrations of Alachlor on Different Dates	154
26.	Simulated and Observed Depths to Peak Concentration of Alachlor on Different Dates	155

.

. -

a.

ix

LIST OF SYMBOLS

Symbol	Definition	Units
θ(j)	Volumetric water content of layer j	-
θ'(j)	Volumetric water content of layer j prior to adjustment	-
$\theta_{\rm fc}$	Volumetric water content at field capacity	-
$\theta_{fc}(j)$	Volumetric water content at field capacity of layer j	-
$\theta_{ m pwp}$	Volumetric water content at permanent wilting point	-
$\theta_{pwp}(j)$	Volumetric water content at permanent wilting point of layer j	-
τ	Infiltration opportunity time	min
a	Empirical fitting parameter	-
AC	Air-filled porosity	-
AW(j)	Available water in the layer j	mm
AW_{total}	Total available water in the root zone	mm
BD	Bulk density	g/cm ³
CEC	Cation exchange capacity	m.e./100 g
Cs	Concentration of pesticide in the solid phase	µg∕g
C,	Concentration of pesticide in the solution phase	μ g/ml
d	Infiltrated water depth	mm
d_{ave}	Average infiltrated depth	mm
\mathbf{d}_{\max}	Maximum infiltrated depth	mm
d_{\min}	Minimum infiltrated depth	mm
ds	Solute front depth	mm

x

LIST OF SYMBOLS

Symbol	Definition	Units
d _s '	Solute front prior to adjustment	mm
E _a	On-farm application efficiency	-
E _s	Water storage efficiency	-
ĒT ₀	Grass reference evapotranspiration	mm/day
$\mathbf{ET}_{\mathbf{crop}}$	Crop evapotranspiration	mm/day
f ₀	Basic intake rate	m ³ /m min
H _a	Distribution coefficient	-
I(j)	Infiltrating amount into layer j	mm
k	Empirical fitting parameter	m ³ /m min ^a
K _c	Crop coefficient	-
K _d	Partition coefficient of the chemical in soil	ml/g soil
K _h	Henry's constant	-
K _{oc}	Organic carbon partition coefficient	ml/g OC
L	Distance from soil surface to ground water	m
m	Mean application	mm
n	Number of observations	-
oc	Organic carbon content	-
q	Net recharge	m/day
Q_{in}	Flow discharge at the furrow head	l/s
RF	Retardation factor.	-
RA	Relative amount of pesticide remaining in the soil profile when the chemical reaches a prefixed depth	–
Ra	Extraterrestrial radiation	mm/day

LIST OF SYMBOLS

Symbol	Definition	Units
S	Water solubility	mg/l
swd(j)	Soil-water deficit of layer j	mm
t(j)	Thickness of the layer j	mm
t _{1/2}	Degradation half-life	days
тс	Average daily temperature	°C
\mathbf{T}_{co}	Time of cutoff	min
TD	Temperature difference	°C
tr	Travel time	days
UC	Christiansen uniformity coefficient	%
Va	Total depth applied	mm
Vi	Total depth infiltrated into the soil	mm
V _p	Vapor pressure	Ра
Vs	Total depth storage in root zone	mm
W_p	Amount of water passing the depth d_s	mm
Х	Absolute deviation of individual observation from the mean	mm
Z	Accumulated infiltrated depth per meter of furrow length	m3/m
Z	Individual depth of catch observation from uniformity test	mm
$\mathbf{Z}_{\mathtt{req}}$	Required application depth at the end of the furrow	m³/m

--

ABSTRACT

Effects of Alternative Irrigation Practices on Pesticide Movement in Cropped Areas

Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. Although pesticides are necessary in today's agriculture, they can be a serious problem if they reach and contaminate ground water, especially in places where drinking water needs are supplied from ground water.

The relative reduction of potential ground-water contamination due to agricultural use of pesticides was analyzed for particular sites in Utah. The potential reduction of pesticides in ground water was considered by utilizing alternative irrigation systems, water management practices and pesticides.

A one-dimensional simulation model, CMLS (Chemical Movement in Layered Soils), was utilized to simulate the movement of pesticides through soils. A hydraulic irrigation model (Kinematic-wave) was used to estimate water infiltrating through the soil profile for alternative furrow irrigation system designs and water management practices.

The study indicates that a reduction in the likelihood of ground-water contamination due to agricultural use of pesticides can be achieved with careful use of pesticides, appropriate irrigation system design and water management techniques. (170 pages)

CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. The term pesticide refers to a large number of chemical compounds. Pesticides include acaricides, fungicides, herbicides, insecticides, nematicides, algicides, antiseptics, arboricides and zoocides (Burnside, 1974).

The Environmental Protection Agency (USEPA, 1987) reported that more than 45,000 registered products, manufactured from one or more of 1,400 chemical compounds, are used against weeds, plant diseases and pests attacking wildlife and food crops. Comparing these with earlier numbers, 34,500 registered products were from 900 chemical compounds (USEPA 1972), we see the extraordinary growth of activity in this area.

Pimentel and Levitan (1986) reported that use of pesticides, primarily synthetic organic pesticides, reaches almost 500 million kg in the United States each year. Of the total pesticides used, approximately 60 percent are herbicides, 24 percent insecticides and 16 percent fungicides. About 341 million kg of pesticides are used on agricultural land, 55 million kg on government and industrial lands, 4 million kg on forest lands and 55 million kg on household lands.

Pesticides are an integral and indispensable part of today's agriculture. Pimentel and Levitan (1986) concluded that for every \$3 billion invested in the United States in controlling pests with pesticides about \$12 billion is returned.

The benefits of proper use of pesticides are enormous; however, there are significant risks associated with their widespread and intensive use. Pesticides can be a serious problem if they reach and contaminate ground water. Pimentel and Levitan (1986) reported that the amount of pesticide reaching the target pest is generally very small in relation to the total amount applied. The rest of the pesticide impacts the environment by contaminating soil and water and perhaps affecting nontarget organisms. Zaki et al. (1982) found aldicarb, a carbamate pesticide, in ground water in Suffolk County, New York, in August 1979. The study showed that 13.5 percent of the 8,404 tested wells exceeded the state-recommended guidelines. Sum (1986) reported a USEPA finding that 17 pesticides have been detected in the ground water of 23 states. Concentrations range from a mere trace to several hundred parts per million. Lau and Mink (1987) reported that several essential wells were taken out of service on Oahu, Hawaii because of ground-water contamination by pesticides used in pineapple production and aviation fuels.

Oki and Giambelluca (1987) concluded that the contamination of ground water by pesticides on Oahu is derived from nonpoint and/or point sources related to nematicide use in pineapple cultivation. Pionke et al. (1988) found atrazine contamination at extremely low concentrations in 14 of 20 wells tested in the Mahantango Creek watershed, Pennsylvania.

Table 1 shows toxic organic compounds found at various places in the United States (Rao et al., 1985). Nematicides, herbicides and industrial solvents dominate the list. This fact has brought attention to the environmental hazard associated with pesticide use in crop production and in land disposal of hazardous organic wastes.

Ground-water contamination by pesticides, fertilizers or other organic or inorganic materials can be of great importance, especially in places where an important amount of the drinking water needs are supplied from ground water. Leonard et al. (1988) reported that ground water supplies drinking water for about 50 percent of the U.S. population. Waddell (1987) reported that 63 percent of Utah's population depends on ground water for drinking water supplies. Rural areas are almost totally dependent on ground water for domestic supply.

The risk of potential contamination of ground water by pesticides depends on different factors. Pesticide properties, soil, agricultural practices, plant uptake, hydrology, geology, climate and topography are important

Chemical	State(s)	Concentration range (ppb)
Acetone	ŊJ	3,000
Alachlor	NB	0.04
Aldicarb	AZ, CA, FL, ME, MO, NC, N	J
	NY, OR, TX, VA, WA, WI	1-50
Atrazine	IA,NB,WI	0.3-3.0
α-BHC	CA	6
β -BHC	CA	4
δ -BHC (Lindane)	CA	22
Benzene	CT,NJ,NY	30-330
Bromacil	FL	300
Bromoform	DE	20
Butybenzylphthalate	NY	38
Carbofuran	NY,WI	1-5
Carbontetrachloride	NJ, NY	235-400
Chloroform	NJ,NY	67-490
Chloromethane	MA	44
Cyclohexane	NY	540
Dibromochloromethane	DE,NY	20-55
DBCP	AZ,CA,HI,MD,SC	0.02-137
Di-(n)-butylphthalate		470
1,1-Dichloroethane	NJ	7
1,1-Dichloroethylene	MA, ME, NJ	70-280
1-2-Dichloroethylene	MA, NY	91-323
1,2-Dichloropropene	CA, MD, NY	1-50
Dinoseb	NY	1-5
Dioxane	МА	2,100
Ethylbenzene	NJ	2,000
EDB	CA, FL, HI, GA, SC	0.05-300
Isopropylbenzene	NY	290
Methylene chloride	NJ,NY	47-3,000
Oxamyl	NY	5-65
Parathion	CA	4-6
Simazine	CA	1-2
Tetrachloroethylene	CT, NJ, NY	717-1,500
Toluene	NJ	55-5,440
1,1,1-Trichloroethane		965-5,440
1,1,2-Trichloroethane		20
Trichloroethylene(TCE)		1,530-27,300
Trifluorochloroethane		35-135
Xylene	NJ,NY	59-300

-

TABLE 1. Toxic Organic Chemicals Found in Ground Water Collected in the U.S.

Source: Rao et al. (1985). Adapted from Brumaster, D.E. (1981) and Cohen et al. (1984).

factors affecting pesticide movement and eventually groundwater contamination.

1.2 Objectives

The major objective of this study is to determine the relative reduction of potential ground-water contamination due to agricultural use of pesticides that is achievable for selected sites in Utah. The reduction of pesticides in ground water can be achieved by utilizing alternative pesticides and water management techniques. Considered are the uses of alternative irrigation systems, water management practices and pesticides.

By comparing the potential contamination results from the above, "best management systems" (BMSs) can be selected. If best management systems are implemented, the likelihood of ground-water contamination can be reduced.

1.3 Scope of the Study

The results of the simulation study will allow the relative comparison of potential pesticide contamination of ground water at different sites, pesticides and water management practices. The simulation sites were selected based on the study done by Eisele et al. (1989). These sites have a high risk of ground-water contamination, although contamination does not necessarily have to occur in these areas. The potential for contamination depends on the agricultural practices, pesticide characteristics and application time.

The study does not consider contamination resulting from misuse (application at higher than recommended rates), accidental spill, pesticide contamination of surface water, mixing of surface contaminated water with ground water, or degradation of pesticides to intermediate compounds that are more toxic or more mobile than the parent compound. Other limitations on the scope of this study include the assumptions of the utilized simulation models.

CHAPTER II

LITERATURE REVIEW

2.1 Factors Affecting Pesticide Movement

Many factors influence the transport of agricultural chemicals in soils (Fig. 1). Knowledge of factors that affect the behavior of pesticides after their contact with the soil surface is important in predicting the risk of ground-water contamination. Physical-chemical properties of the pesticide, soil properties, agricultural practices, plant uptake, hydrogeology, climate and topography can affect the movement of pesticides.

Of primary consideration in this study are soil properties, pesticide characteristics and agricultural practices.

2.1.1 Soil Properties

An important physico-chemical process related to pesticide movement in soils is sorption. The sorption process, including adsorption and desorption, is the major retention mechanism for many organic compounds and is actually not totally understood. Adsorption refers to the adherence of pesticide molecules to soil particles. Desorption is related to the separation of molecules from the soil particles.

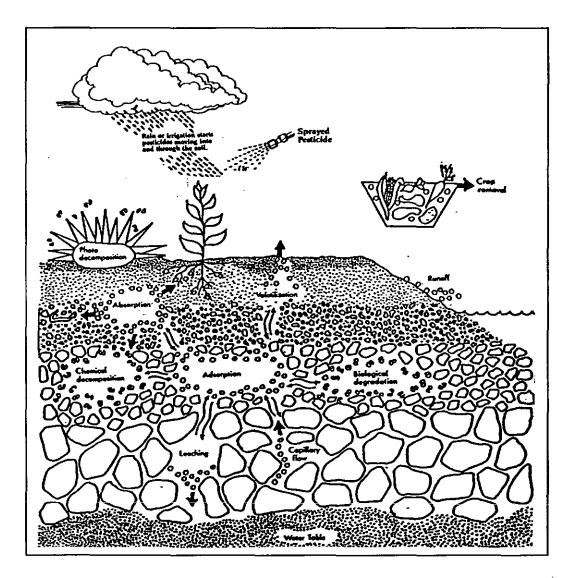


Figure 1. Schematic Representation of Processes Influencing Pesticide Movement.

Source: Adapted from Rao et al. (1983).

Adsorbed compounds are in equilibrium with the soil solution and are capable of desorption (Bonazountas and Wagner, 1981).

An equation commonly used for describing pesticide distribution between the solution phase and the soil phase is

$$K_{d} = C_{s} / C_{w}$$
(1)

where K_d is the partition coefficient of chemical in soil (ml/g soil), C_s is the concentration of the pesticide in the soil or solid phase (μ g/g) and C_w is the concentration of the pesticide in the solution phase (μ g/ml).

The soil partition coefficient, K_d , depends on pesticide characteristics and soil organic carbon content, among other factors. Karickhoff (1981) has shown that K_d for a particular organic chemical in a soil divided by the organic-carbon content of that soil is nearly constant for a wide range of soils:

$$K_{d} = K_{oc} * OC$$
 (2)

where K_{oc} (ml/g OC) is the organic partition coefficient and OC the organic carbon content of the soil.

Organic matter content, clay content, bulk density, texture, pH, moisture content and temperature are soil properties that can affect the sorption process and, therefore, the mobility of pesticides in soil. Organic Matter and Clay. Many researchers consider soil organic matter, principally humus, to be the major soil constituent reducing pesticide movement (Walker and Crawford, 1968; Karickhoff et al., 1979; Nkedi-Kizza et al., 1983). Soil organic matter is a complex mixture consisting of humic and nonhumic fractions. The humic fraction is the transformed component of plants, animals and microorganisms, while the nonhumic fraction is the unaltered fraction.

Walker and Crawford (1968) found a high correlation between adsorption and percent of organic carbon content (OC) in 36 different soils. Adsorption is strongly influenced by the ionization of pesticides. Mono-cations and di-cations are strongly adsorbed by negatively charged clay in soil. Organic matter and clay tend to have the highest cation exchange capacity (CEC) in natural soils (Table 2). CEC is usually defined as the number of milliequivalents of ions that can be exchanged per 100 g dry weight of soil. CEC is pH dependent.

The size of soil particles also seems to be important in the adsorption process. Particles with small diameters, such as clay, provide a high surface area for the interaction between soil and pesticide. Organic matter and clay tend to have the highest surface area in soils (Table 2). Clays are especially effective in immobilizing cationic compounds. Weber et al. (1986), working with the herbicide fluridone in 18 soils of different textures and organic matter content, found that adsorption of the herbicide was highly correlated

SOIL CONSTITUENT	CEC (m.e./100g)	SURFACE AREA (m²/g)	
Organic Matter	200-400	500-800	
Vermiculite	100-150	600-800	
Montmorillonite	80-150	600-800	
Illite	10-40	65-100	
Kaolinite	3-5	7-30	

TABLE 2. Cation Exchange Capacity (CEC) and Surface Area for Different Soil Constituents.

Source: Adapted from Bailey and White, 1970

with montmorillonite clay, but the highest correlation (0.92) was obtained taking into account both organic matter and montmorillonite clay.

pH. The increase of adsorption with decreasing pH values is reported for different pesticide and soil interactions (Frissel and Bolt, 1962; Weber et al., 1986; Lemley et al., 1988; Nicholls, 1988). Frissel and Bolt (1962), working with clay minerals, found that the main variables in the adsorption of several organic acidic and basic herbicides were pH and electrolyte concentration of the system. They found that the adsorption of studied compounds increases with increasing electrolyte concentration and with decreasing pH values ranging from 8 to 4. Lemley et al. (1988), working with aldicarb in a sandy loam soil, found that the sorption of the pesticide increased slightly with decreasing pH values ranging from 8 to 5. <u>Depth.</u> Soil organic matter content and the resulting effect on adsorption usually decreases with depth. However, the effect of clay surface on adsorption may become more important with increasing depth (Nicholls, 1988).

Biodegradation is an important process in breaking organic compounds. Microorganisms, principally bacteria and fungi, are the most significant organisms related to biodegradation. Bonazountas and Wagner (1981) reported that pH, temperature, soil oxygen content, soil moisture content and nutrient concentration among other parameters affect biodegradation. Microbiological activity decreases with increasing depth. However, data for estimating degradation rates below the root zone are very scarce (Rao et al., 1985).

2.1.2 Pesticide Characteristics

Water solubility (S), vapor pressure (V_p) , Henry's constant (K_h) , sorption coefficient (K_{oc}) and degradation half-life $(t_{1/2})$ among others are important parameters related to the movement of pesticides in soil. Published data of these parameters are available in the literature (Rao and Davidson, 1980; Karickhoff, 1981; Jury et al., 1984). Table 3 shows chemodynamic properties for different pesticides. Because these parameters are interrelated, the value of one parameter can be estimated using values of the other by theoretical or empirical equations. Lyman et al. (1982) present a compendium of methods for estimating pesticide parameters and other organic pollutants.

Rao et al. (1985), using a simple screening procedure, suggested that pesticides with solubilities larger than 10 mg/l and half-lives exceeding 50 days seem to have the highest potential to contaminate ground water. In the cited research, a total of 41 pesticides were ranked. Some nematicides and herbicides in use were found to have high potential for contaminating ground water. The same authors recommended careful use of such pesticides, especially in ground water recharge areas having permeable sandy soils.

TABLE 3.	Chemodynamic	Properties	for	Several	Pesticides.
----------	--------------	------------	-----	---------	-------------

Pesticide	S (mg/l)	K _{oc} (ml/g)	K _h	V _p (Pa)	t _{1/2} (days)
Alachlor	2.42E+02 ¹	1.90E+02	1.30E-06	2.90E-03	7
Aldicarb	9.00E+03	1.00E+01	1.00E-04	1.30E-02	
Atrazine	3.20E+01	1.60E+02	2.50E-07	4.00E-05	
Bromacil	8.20E+02	7.20E+01	3.70E-08	3.30E-05	
Captan	3.30E+00	3.30E+01	4.90E-05	1.30E-03	
Carbaryl	4.00E+01	2.29E+02	1.40E-03	6.70E-01	
Carbofuran	3.20E+02	2.80E+01	3.10E-07	2.70E-03	
Chlordane	1.00E+00	3.80E+04	2.20E-04	1.30E-03	
Chorpyrifos	2.00E+00	6.07E+03	1.80E-04	2.50E-03	
Cyanazine	1.71E+02	1.68E+02	1.20E-04	2.00E-01	
2,4-D	9.00E+02	2.00E+01	5.60E-09	5.30E+01	
DBCP	1.00E+03	7.00E+01	1.70E-02	1.06E+02	
DDT	3.00E-03	2.40E+01	2.00E-03	2.50E-05	
Diazinon	4.00E+01	8.50E+01	5.00E-05	9.70E-05	
Dieldrin	1.50E-01	1.20E+04	6.70E-04	4.00E-02	
Disulfoton	2.50E+01	1.60E+03	1.10E-04	2.40E-02	
Diuron	3.70E+01	3.80E+02	5.40E-08	4.10E-04	
EDB	3.40E+03	4.40E+01	3.50E-02	1.50E+03	
EPTC	3.70E+02	2.80E+02	5.90E-04	4.50E+00	
Fenamiphos	7.00E+02	1.71E+02	2.40E-08	1.33E-04	10
Fonofos	1.30E+01	6.80E+01	2.20E-04	2.80E-02	60
Heptachlor	5.60E+02	2.40E+04	1.45E-01	5.30E-02	2000
Lindane	7.50E+02	1.30E+03	1.30E+04	5.60E-03	266
Linuron	8.10E+01	8.60E+02	2.50E-06	2.00E-03	75
Malathion	1.45E+02	1.80E+03	5.00E-06	5.30E-03	1
Methyl-					•
Bromide	1.30E+04	2.20E+01	1.50E+00	5.20E-05	55
Methyl-					
Parathion	5.70E+01	5.10E+03	4.40E-06	1.30E-03	15
Monuron	2.60E+02	1.80E+02	7.60E-09	6.70E-05	166
Napropamide	7.30E+01	3.00E+02	7.90E-07	5.30E-04	70
Oxamyl	2.80E+05	6.00E+00	9.90E-09	3.10E-02	6
Parathion	2.40E+02	1.10E+04	6.10E-06	5.00E-03	18
Phorate	5.00E+01	6.60E+04	3.10E-04	8.50E-05	82
Picloram	4.20E+02	2.60E+01	1.90E-08	8.20E-05	138
Prometryne	4.80E+01	6.10E+02	5.60E-07	1.30E-04	60
Propachlor	6.10E+02	4.20E+02	4.40E - 06	3.10E-02	7
Simazine	5.00E+00	1.40E+02	3.40E-08	8.10E-07	75
Terbacil	7.10E+02	4.60E+01	8.20E-09	6.50E-05	50
Triallate	4.00E+00	3.60E+03	7.90E-04	1.60E-02	100
Trifluralin	3.00E - 01	7.30E+03	6.70E-03	1.40E-02	132

Source: Rao et al. (1985): Adapted from Jury et al. (1984). ¹ 2.42E+02 = 2.42 * 10^2 = 242 vapor and liquid phases. Equation 4 shows that for nonvolatile ($K_h = 0$) and non-adsorbed pesticides ($K_{oc} = 0$), the retardation factor is equal to 1. A retardation factor equal to 1 means that the chemical will move without retardation at the same velocity as the water. Pesticides with large values of K_{oc} or K_h have greater RF values and need greater travel times to reach ground water than pesticides with small K_{oc} or K_h .

The travel time determines the time available for pesticide degradation via chemical and biological processes. Assuming a constant biological degradation with time and depth, the fraction of surface-applied pesticide reaching ground water can be estimated by

$$RA = \exp (-0.693 \text{ tr } / t_{1/2})$$
 (5)

where RA is the relative amount of pesticide remaining in the soil and tr the total travel time (days). The half-life $(t_{1/2})$ is the length of time (days) required for one-half of the present pesticide concentration to be degraded.

2.1.3 Agricultural Practices

Appropriate soil moisture management can decrease the movement of pesticides in soils, allowing microorganisms to increase biological degradation (Mahmood, 1988). Thus, irrigation can influence pesticide movement. Improving irrigation efficiency can reduce the risk of ground-water contamination by pesticides. If deep percolation of water is minimized in irrigated areas, the risk of ground-water contamination by pesticides, fertilizers and other substances dissolved in the water will also be minimized. However, deep percolation water will commonly exist in an irrigated area for two reasons:

- 1. To leach soluble salts out of the root zone.
- 2. To provide enough water at those areas of the field that are less permeable or farthest from the source, consequently over-watering the rest of the field (Holden, 1986).

Addition of organic material to soil can increase the sorption capacity of the soil. This effect is particularly important in soils with low organic carbon content, such as sandy soils. Walker and Crawford (1968) reported that the addition of straw to different soils increased adsorption of four herbicides (atrazine, propazine, prometone and prometryne). Very small movement of herbicides was observed when the organic matter content of the soil reached 2.5 percent.

2.2 Pesticide Leaching

Water is important for the movement of pesticides. Capillary flow, leaching and runoff are the major types of water movement. Water moves through soils by essentially two processes, mass flow and capillary flow. The downward movement of water through the soil profile occurs mainly through medium to large soil pores. However, fast movement of water can occur through cracks in the root zone or subsoil, permitting dissolved substances to reach ground water in a shorter time.

Downward pesticide movement can be quite significant in some soils. Merkle et al. (1967) found that leaching was an important means of moving herbicide in light soils; the greatest herbicide concentrations generally were found at the deepest_sampling depth. Davidson et al. (1968) found that the rate at which fluometuron and diuron (two substituted urea herbicides) move through uniformly packed soil columns depends upon water flux. Nicholls (1988) reported that leaching of pesticides depends on soil properties, characteristics of the pesticide and the weather.

2.3 Simulation of Pesticide Movement in Soils

A number of computer simulation models are available for the simulation of pesticide behavior in the root zone (Carsel et al., 1984; Nofziger and Hornsby, 1986, 1988; Grenney et al. 1987). Such models usually require a large number of soil, environmental, crop and pesticide parameters.

.

Carsel et al. (1984) developed the pesticide root zone model (PRZM) used in USEPA's pesticide regulation programs. The model, using a complex mathematical solution, predicts the pesticide concentration distribution in the soil profile and the pesticide loss below the root zone. PRZM simulates runoff, erosion, plant uptake, foliar washoff, pesticide leaching, decay and volatilization. The model has been tested in different states (New York, Wisconsin, Florida and Georgia). PRZM requires much data and needs a long computer solution time.

For USDA, Leonard et al. (1987) developed a model for ground loading and erosion from agricultural and management systems (GLEAMS). GLEAMS, an extension of the CREAMS model, evaluates effects of agricultural management systems on the movement of agricultural chemicals within and through the plant root zone.

Simple models and indices have been proposed for screening and ranking pesticides in terms of their potential for ground-water contamination (Leistra; 1986; Leonard et al., 1988; Aller et al., 1985; Rao et al., 1985; and Ramzi and Sims, 1986). These models or indices require a less intensive set of data and are useful as screening approaches for assessing the relative potential of various pesticides to leach beyond the crop root zone and contaminate ground water.

1

Aller et al. (1985) proposed a numerical ranking scheme, DRASTIC. Developed by the National Water Well Association, DRASTIC is a standard system for evaluating the potential for ground-water pollution. DRASTIC includes summing the products of relative ratings and weights of site-specific hydrogeologic

factors. These products relate to such major hydrogeologic factors as depth to ground water, net recharge, aquifer media, soil media, topography, impact of the vadose zone and hydraulic conductivity--which form the acronym DRASTIC. The total sum is an index, the DRASTIC index, that shows the relative potential risk that a particular site could have in relation to other locations. The DRASTIC index is used to set priorities for various areas with respect to their vulnerability to ground-water contamination. The DRASTIC index does not include consideration of pesticide characteristics.

ł

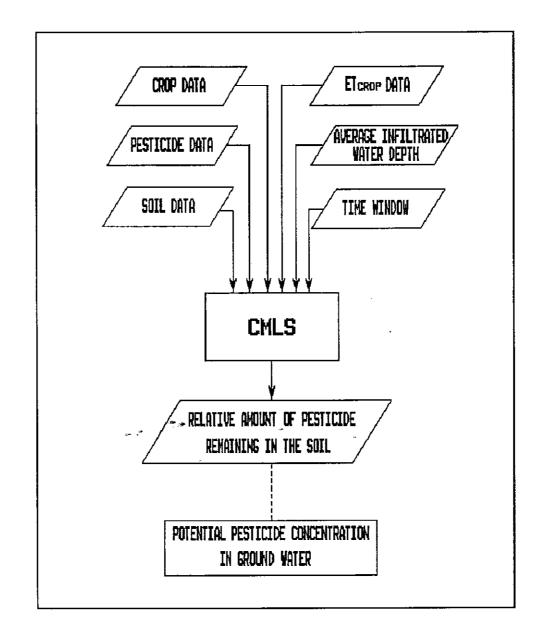
20

÷

CHAPTER III

PROCEDURE

3.1 Site Identification


Eisele et al. (1989) identified and ranked sites with different potential hazards for ground-water contamination for all 29 counties in the state of Utah. They initially used a rapid screening procedure, DRASTIC (Aller et al., 1985), for ranking places that show a high risk for ground-water contamination by chemicals. Eisele et al. (1989) subsequently used a one-dimensional simulation model, CMLS (Nofziger and Hornsby, 1986, 1988), to simulate the movement of pesticides in unsaturated soils in locations of higher risk.

From the named study, six areas located in different counties were chosen. The selected counties are

- Cache
- Davis
- Sevier
- Utah
- Washington
- Weber

Selected areas have greater risk of significant ground-water contamination than other areas studied by Eisele et al. (1989); however, contamination does not necessarily have to occur in these areas. The potential for contamination depends on agricultural practices, pesticide characteristics and time of application, as well as soil profile characteristics. Thus, necessary data were obtained and computer simulations made for alternative water management practices, pesticides and crops for one location in each of these counties. Results were compared based on potentials for ground-water contamination. The schematic representation of the procedure to estimate the potential existence of pesticides in ground water is shown in Fig. 2. The importance of the estimated parameter values is also summarized.

.*

i

Figure 2. Schematic Representation of the Procedure to Estimate Potential Pesticide Concentration in Ground Water.

3.2 Soil Data

Soil characteristics influence adsorption and water movement processes. The presence of organic carbon in the soil profile affects adsorption. Volumetric water content at field capacity and wilting point, and bulk density affect water movement. Generally, soil characteristics vary with the soil layer. Table 4 shows an example of soil data used in this study. A complete listing of bulk density, percent organic carbon values and water retention at field capacity and wilting point for each horizon depth and tested sites is given in Appendix C.

3.3 Pesticide Data

Two pesticide descriptors related to pesticide movement and degradation in soil are the organic carbon partition coefficient (K_{oc}), used to predict adsorption processes, and the half-life time ($t_{1/2}$), used to calculate degradation processes. Appendix B gives K_{oc} , $t_{1/2}$ and Health Advisory Level of all pesticides analyzed in this study. The Health Advisory Level for a particular pesticide is set by USEPA, based on the exposure level that presents a one in a million risk of cancer in the lifetime exposed population. USEPA has not set levels for all pesticides.

Table 5 shows a sample of pesticide data. Pesticide data used in this study are based on Wauchope (1988). Note that other citations might report K_{oc} and $t_{1/2}$ values different than reported by Wauchope for the same pesticide.

Soil Nam	e ; KID	MAN	Ident	ifier : UTO	395	
Soil Tex	ture: f	ine sandy loam				
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Content, (%)	at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	
1	0.28	1.20	1.52	18.0	6.4	
2	0.43	0.70	1.52	18.5	5.4	
3	0.53	0.80	1.53	20.0	6.9	
4	0.69	0.40	1.54	22.0	7.0	
5	0.94	0.20	1,40	21.5	5.3	
6	1.24	0,20	1.45	21.5	5.7	
7	1.47	0.10	1.42	18.0	4.4	

TABLE 4. Example of Soil Data.

TABLE 5. Example of Pesticide Data.

ļ

esticide Library		Туре	Health Advisory Level (ppb)
Common Name	:ALACHLOR	Н	1.5
Partition Coefficient			
Half-Life	:15 days		
Trade Name	: ALANEX		
Trade Name	: PILLARZO		
Trade Name	:LASSO		
Trade Name	:.		

.

Certain pesticides need to be incorporated (applied below the top layer of the soil) in order to reach their target. Incorporation depth, date and amount of commonly used pesticides in each selected county were obtained from the original survey (Eisele et al., 1989).

3.4 Crop data

An important factor related to the movement of pesticides in soils is the rooting system of the crop. Through their roots, crops extract water and pesticide from the soil profile and reduce downward movement of the chemical. Rooting depths depend on many factors. They may be site specific and vary from season to season. However, in this study, rooting depth is treated as a site-independent, constant value. The principal crops in each site were known by survey (Eisele et al., 1989). Table 6 illustrates rooting depths utilized for those crops.

TABLE 6. Rooting Depths of Various Crops Used in this Study

Crop	Rooting Depth in Meters
Alfalfa	1.50
Corn	0.90
Small Grains	1.10
Potatoes	0.80
Vegetables	0.60
Orchards	1.20 -

3.5 Evapotranspiration Data

-

The amount of water used by vegetative growth in respiration and building of plant tissue, together with evaporation from soil and plant surface in a specified time period, is defined as evapotranspiration, or ET (Hill et al., 1983). The potential evapotranspiration of a reference crop, ET, is the ET of a crop, commonly alfalfa or grass, that fully shades the ground. The reference crop is clipped to specified height and adequately irrigated so that transpiration is not limited by available soil moisture.

Extensive research has been conducted in the field of evapotranspiration, and numerous equations for calculating evapotranspiration are presented in the literature (Doorenbos and Pruitt, 1977; Hill et al., 1983). Hargreaves and Samani (1985) developed an approach that requires only data on minimum and maximum temperature and information on the latitude of the location.

The Hargreaves-Samani equation for daily ET_{o} calculations is

$$ET_{o} = 0.0023 * Ra * TD^{0.5} * (TC + 17.8)$$
 (6)

where ET_o is the reference ET of well-watered grass (mm/day), Ra is the extraterrestrial radiation (mm/day), TD is the temperature difference $T_{max} - T_{min}$ (°C) and TC is average daily temperature (°C). In solving the above expression, extraterrestrial radiation can be found as a function of latitude. The same authors conclude:

Considering the problems associated with the availability and reliability of climatological data in the world and possible errors in the more sophisticated methods for estimating crop water requirements, the temperature method herein presented is recommended as the most simple and practical method for estimating reference crop evapotranspiration. (p. 98)

 $\underline{ET_{crop}}$ Data. The Hargreaves-Samani equation was used to estimate daily \underline{ET}_{o} values for three zones of roughly uniform climate in Utah. Table 7[°] gives an overview of zones, counties and representative weather stations of this study. A weather station was selected in each zone and it was assumed that this station provides representative data for the entire zone.

Table 7. Zone, County and Weather Station Assignments.

Zone	County	Weather Station
North Central	Cache Davis Utah Weber	Ogden Sugar Factory
South Central	Sevier	Richfield Radio KSVC
Dixie	Washington	St. George

The evapotranspiration of a crop, ET_{crop} was estimated by

$$ET_{crop} = K_c * ET_o$$
(7)

where ET_{crop} is the evapotranspiration of a given crop (mm/day) and K_c is a Crop coefficient.

Hill et al. (1987) calculated K_c values for the Bear River drainage basin in Utah, Wyoming and Idaho. Based on their results, the K_c values indicated in Table 8 were used throughout the entire study areas. The application of K_c values developed for northern Utah to zones in southern Utah can be questionable; however, to our knowledge, the data in Table 8 was the best available. Seasonal ET_{crop} values for each crop are given in Appendix E.

. . . .

ł

Crop	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Alfalfa	0.00	0.00	0.27	0.60	1.03	1,03	0.83	0.89	0.92	0.36	0.00	0.00
Small Grains	0.00	0.00	0.27	0.66	1.19	1.20	0.40	0.12	0,12	0,12	0.00	0.00
Corn	0.00	0.00	0.18	0.25	0.24	0,43	0.95	1.12	0.71	0.30	0.00	0,00
Vegetables	0.00	0.00	0.18	0,25	0.26	0.79	1.14	1.09	0.60	0.12	0.00	0.00
Potatoes	0.00	0.00	0.18	0.25	0.24	0.69	0.88	0.81	0.40	0.24	0.00	0.00
Orchards	0,00	0.00	0.25	0,37	0.71	0,97	1.02	1.08	0.97	0.87	0.00	0.00

•

Source : Adapted from Hill et al. (1987)

3.6 Average Infiltrated Water Depth

. ...

Water-Storage Efficiency. Irrigation plays an important role in Utah's agriculture. Part of the irrigation water is lost to deep percolation and can contribute significantly to pesticide movement. Deep percolation and surface runoff loss are included in the on-farm application efficiency values, which may be defined for a single irrigation event as

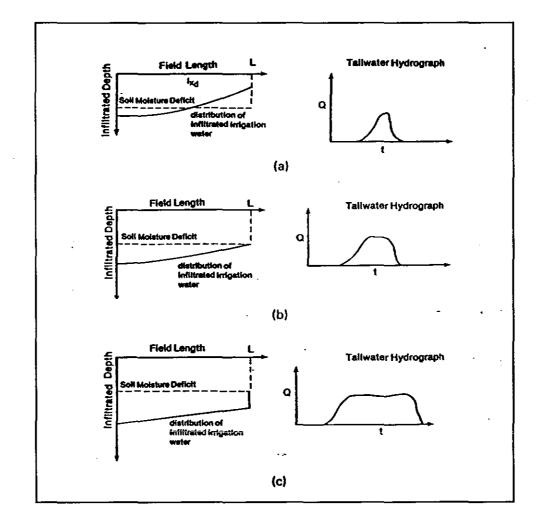
$$E_a = V_s / V_a \tag{8}$$

where E_a is on-farm application efficiency, V_s is the total depth stored in root zone (mm) and V_a is the total depth applied (infiltration + runoff). Water-storage efficiency, used in this work, can be defined by

$$E_s = V_s / V_i$$
 (9)

where E_s is water-storage efficiency, V_s is the total depth of water stored in root zone (mm) and V_i is the total depth of water infiltrated into the soil (mm). E_s tends to have higher values than E_a because the runoff component is not considered in E_s .

Reduction in potential pesticide contamination can be achieved by efficient application of water. Efficiency, in turn, can be improved in different ways. Increased efficiency can be obtained by adequate land leveling (especially important in surface irrigation systems), by changing furrow inflow rates or furrow lengths and by changing to more sophisticated irrigation systems. Efficient control of time of irrigation and adequate scheduling will increase efficiency in most of irrigation systems.


<u>Surface Irrigation</u>. Even though surface irrigation is the oldest and most common method of irrigation, this method is least likely to provide consistently high levels of performance. Fig. 3 shows the relation between required water application and actual moisture distribution for different irrigation regimes (Walker and Skogerboe, 1987).

Inefficiency is frequently the result of variability in soil infiltration rates and other factors. The rate at which water will be absorbed through the soil surface is a nonlinear process that varies both temporally and spatially and commonly is described by empirical equations.

The Kostiakov-Lewis equation, one such expression, is

$$Z = k \tau^{a} + f_{0} \tau$$
 (10)

where Z is the accumulated infiltrated depth per meter of furrow length (m^3/m) , τ is the infiltration opportunity time (\min) , f_0 is the basic intake rate $(m^3/m \min)$ and k $(m^3/m \min^a)$ and a are empirical fitting parameters.

Ξ

ß

- Figure 3. Relation Between Required Water Application and Actual Moisture Distribution for Three Typical Irrigation Regimes.

 - a. Under-irrigation.b. Complete-irrigation.
 - c. Over-irrigation.

٦

Source: Walker and Skogerboe, 1987

Walker and Humpherys (1983) developed a kinematic-wave model for simulating furrow irrigation under continuous and surge flow conditions. The kinematic-wave model solves the continuity equation utilizing a numerical procedure. The accuracy of the model was demonstrated with data of relatively wide range of field and soil conditions taken from different states (Elliott and Walker, 1982).

In the current study, the kinematic-wave model (Walker and Humpherys, 1983) was used to estimate the average quantity of water infiltrated in a soil profile along the length of furrows for different inlet discharges (1, 1.25, 1.5, 1.75, 2 and 2.5 1/s) and furrow lengths (80, 100 and 125 m). Two furrow slopes (0.006 and 0.002 m/m) were assumed. These limits of soil slopes were assumed to avoid soil erosion and ensure applicability of the kinematic-wave model, to respectively. A Kostiakov-Lewis infiltration function for an average sandy soil was assumed because all six selected soils have sandy characteristics. The required application depth, Z_{req} , at the end of the furrow was assumed 0.045 m³/m (45 mm) for all simulations. By using this assumption (rather than by preparing detailed values for crop and soil characteristics of each of the six sites), the number of simulations (using both kinematic-wave and CMLS models) could be drastically reduced. Input and output data of these simulations are shown on Table 9. Figs. 4 and 5 graphically represent water-storage efficiency (Z_{req} / d_{ave}) versus furrow length.

精神

Slope	Length	Q _{in}	d _{ave}	d _{max}	d _{min}	d _{run}	T _{ço}
m/m	m	l/s	mm	mm	mm	mm	min
0.006	80	1.00	132	152	49	2	178
0.006	80	1.25	87	97	49	4	97
0.006	80	1.50	71	76	50	8	70
0.006	80	1.75	63	67	53	12	57
0.006	100	1.00	254	295	52	1	424
0.006	100	1.25	134	154	53	2	181
0.006	100	1.50	95	105	53	4	109
0.006	100	1.75	77	83	52	6	79
0.006	125	1.00	654	755	53	0	1363
0.006	125	1.25	256	297	53	1	428
0.006	125	1.50	148	171	5 2	1	207
0.006	125	1.75	106	120	52	3	130
0.002	80	1.25	89	99	49	4	99
0.002	80	1.50	74	79	53	8	72
0.002	80	2.00	55	57	47	13	45
0.002	80	2.50	49	49	45	19	36
0.002	100	1.25	138	157	53	2	187
0.002	100	1.50	99	110	54	4	114
0.002	100	2.00	68	72	49	8	63
0.002	100	2.50	58	59	48	14	48
0.002	125	1.25	259	302	55	1	433
0.002	125	1.50	154	176	56	2	216
0.002	125	2.00	90	99	54	5	99
0.002	125	2.50	73	76	54	10	69

Common input data for all the simulations are:

1

Abbreviations: Q_{in} = flow discharge at the furrow head; d_{ave} = average infiltrated depth; d_{max} = maximum infiltrated depth; d_{min} = minimum depth; d_{run} = runoff volume / furrow area T_{co} = time of cutoff.

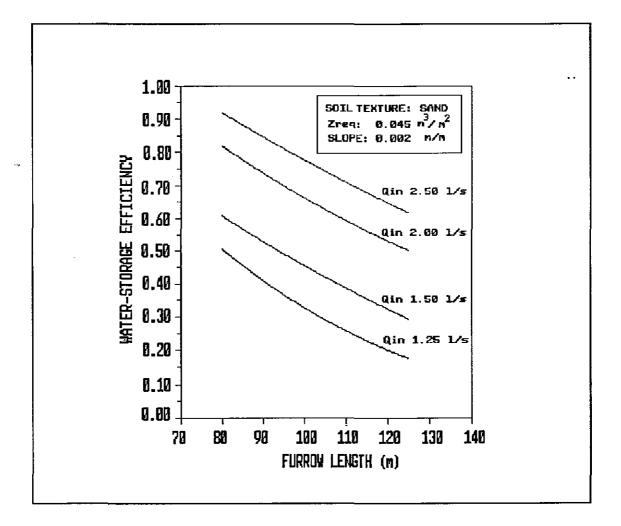


Figure 4. Effect of Various Furrow Inflow Rates and Furrow Lengths on Storage Efficiency (furrow slope = 0.002 m/m).

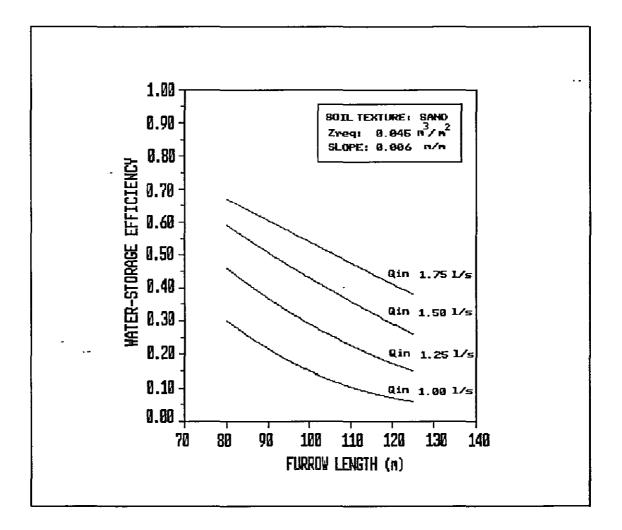


Figure 5. Effect of Various Furrow Inflow Rates and Furrow Lengths on Storage Efficiency (furrow slope = 0.006 m/m).

Dates for irrigation were estimated using a daily soil moisture balance approach (irrigation + rainfall - ETcrop deep percolation), assuming soil at field capacity at the beginning of the irrigation schedule. Depth of water application was the same for each irrigation, although intervals between irrigation varied depending on ET.

The average depths estimated via the kinematic-wave model were then used as input to the CMLS model. Computer programs were created to automatically prepare the input files.

<u>Sprinkler Irrigation</u>. Sprinkler irrigation is an alternative to surface irrigation. This technique can be used on land of irregular topography that is difficult to irrigate by surface methods. Sprinklers are specially adapted to shallow, coarse-textured and highly permeable soils of low available water capacity that require frequent and light applications. However, sprinkler systems generally cost more than surface irrigation methods (Hansen et al., 1980).

Application efficiencies are generally higher for sprinkler systems than for surface systems. However, the uniformity of distribution of water from sprinkler systems varies greatly, depending upon pressure, wind, rotation of sprinkler, spacing and many others factors. One common method of describing the distribution of water uses Christiansen's uniformity coefficient (UC)

$$UC = 100 * (1.0 - \Sigma X / nm)$$
(11)

or

1

$$UC = 100 * (1.0 - \Sigma | z - m | / \Sigma z)$$
(12)

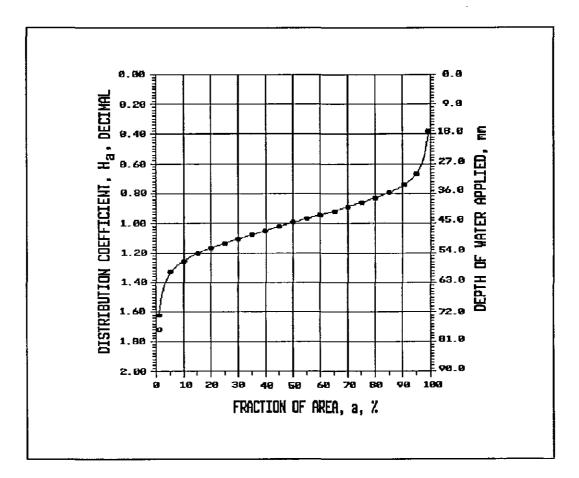
where UC is Christiansen uniformity coefficient (%), z is the individual depth of catch observation from uniformity test (mm), X is the absolute deviation of the individual observation from the mean (mm), m is the mean depth of observations (mm) and n is the number of observations.

Hart and Reynolds (1965), assuming that the distribution of values in an overlapped sprinkler pattern approximates the normal distribution, proposed a method for estimating the distribution of water on a specified area. They relate to the UC, the distribution coefficient (H_a) or fraction of the mean application that exceeds or equals the mean application over a specific area. Table 10 gives UC and H_a values for distributions with a mean application of one. As an example, if a sprinkler system has an UC of 84 percent and a mean application depth of 45 mm, 80 percent of the area has an infiltrated depth of 37.39 mm (45 * 0.831 = 37.39) or more (Fig. 6). If the mean application is 54.15 (45 / 0.831) for the same UC, then 80 percent of the area has an infiltrated depth of 45 mm or more.

UC (%)	99.9	95	90	85	80	75	70	65	60	55	5
96	0,845	0.917	0.936	0.948	0.958	0.966	0.974	0,981	0.987	Ö.994	1.00
92	0,690	0.835	0.871	0.869	0,915	0.932	0.947	0.961	0.975	0.987	1.00
88	0.535	0.753	0.807	0.844	0.873	0.899	0.921	0.942	0.962	0.981	1.00
84	0.380	0.670	0.743	0.792	0.831	0.865	0.895	0.923	0.949	0.975	1.00
80	0.225	0.588	0.670	0,740	0.789	0.831	0.860	0.903	0,937	0,968	1.00
76	0.071	0.505	0,614	0.688	0.747	0.797	0.842	0.884	0.924	0,969	1,00
72		0,423	0,550	0.636	0.704	0.763	0.816	0.865	0.911	0.956	1.00
68		0,340	0,486	0,535	0,662	0,730	0.790	0.845	0.899	0.949	1,00
64		0.258	0.421	0.533	0.620	0,696	0.763	0.826	0.886	0.943	1.00
60			0.357	0.401	0.578	0,662	0.737	0.807	0.873	0,937	1.00

Table 10. Distribution Coefficient (H_a) Values Based on a Normal Distribution.

Source: Adapted from Hart and Reynolds, 1965


ł

In this study, H_a values were used to estimate average depth of water infiltrated in the soil profile, assuming 80 percent of area adequately irrigated and UC values of 60, 72 and 84 percent. The following equation was used to estimate average infiltrated depth

$$V_i = Z_{reg} / H_a$$
 (13)

where V_i is the depth of water infiltrated into the soil (mm), Z_{req} is the required depth of application at the irrigation date (mm) and H_a is the distribution coefficient.

Values of average infiltrated depths of water in the soil for different uniformity coefficients were incorporated in irrigation schedules, as was done in surface irrigation systems.

Figure 6. Relation Between Fraction of Area Adequately Irrigated and H_a for a UC of 84%.

Source: Adapted from Hart and Reynolds (1965).

3.8 CMLS MODEL

Ę

The CMLS model was considered the most appropriate pesticide transport model for this study in terms of accuracy, simulation time, input data requirements and output data presentation (Eisele et al., 1989). A comparison of CMLS with data observed and simulated by Smith et al. (1989) is given in Appendix G. Pesticide movement predictions given by the CMLS model are based on the following assumptions (Nofziger and Hornsby, 1986, 1988):

- 1. All soil water residing in pore spaces participates in the transportation process. If this assumption is not valid and a preferential flow is present, a portion of the soil water will be bypassed during flow, and the model will underestimate the depth of the chemical front. An example of this aspect is shown in Appendix G.
- 2. Water entering the soil redistributes instantaneously to field capacity. This assumption is approached for coarse-textured soils.
- 3. Water is removed by evapotranspiration from each layer in the root zone in proportion to the relative amount of water available in that layer. A uniform root distribution is assumed. This assumption will not be strictly valid for many situations. More precise schemes for dealing with evapotranspiration would require information about the root distribution and the soil hydraulic properties.
- 4. Upward movement of soil water does not occur anywhere in the soil profile. Water is lost from the root zone by evapotranspiration and is not replenished from below.
- 5. The adsorption process can be described by a linear, reversible equilibrium model. If the sorption coefficient is described by non-linear isotherm, the partition coefficient decreases with increasing concentration of the chemical. Thus the depth to which the chemical will be leached will depend upon the concentration. This aspect is probably not

significant for the concentration range of interest in most agricultural applications. When adsorption equilibrium is not instantaneous, the chemical will be leached to a greater depth than predicted here. Irreversible sorption would result in less leaching.

6. The half-life time for biological degradation of the chemical is constant with time and soil depth. Degradation rate coefficients are dependent upon a environmental factors, primarily variety of temperature and soil-water content. Hence, seasonal changes in rate coefficients can be expected. Also, with decreasing microbial activity at greater soil the degradation rate coefficient may depths, decrease with depth. Sufficient data are not available to formulate mathematical relationships to describe these effects.

CMLS considers two processes: (a) the movement of the chemical and (b) the degradation of the chemical. In this model, chemicals move only in the liquid phase in response to soil-water movement. Water movement is calculated using a volume balance approach. It is assumed that at the beginning of the simulation, each layer in the soil profile is at field capacity. Water is considered available for plants if the water content in any layer of the root zone is above permanent wilting point as expressed by the following relationship

$$AW(j) = t(j) * [(\theta(j) - \theta_{pwp}(j)]$$
(14)

where AW(j) is the available water in the layer j (mm), t(j) is the thickness of the layer j (mm), θ (j) is the volumetric water content of layer j and $\theta_{pwp}(j)$ is the volumetric water content at permanent wilting point of layer j. The total

available water, AW_{total} , in the root zone is the sum of the amounts of water available in each layer. If AW_{total} is greater than the evapotranspiration (ET_{crop}) for a day, the water content of each layer in the root zone is depleted in proportion to the amount of water available in that layer as expressed by the following equation

$$\theta(j) = \theta'(j) - [ET_{crop} * AW(j)] / [AW_{total} * t(j)] \quad (15)$$

where $\theta'(j)$ is the volumetric water content of the layer j prior to adjustment. If the total available water is less than the evapotranspiration demand all the layers in the root zone are assumed equal to

$$\theta(j) = \theta_{pwp}(j) \tag{16}$$

Equation 16 assumes no effect of soil water content on ET when the volumetric water content of the soil is approaching wilting point. However, ET will decrease due to stress long before θ_{pwp} is reached.

When an infiltration event occurs, the water content of each layer is adjusted, starting with the layer closest to the surface (j=1). The soil-water deficit for that layer is determined using the equation

$$swd(j) = t(j) * [\theta_{fc}(j) - \theta(j)]$$
(17)

where swd(j) is the soil-water deficit of the layer j (mm) and $\theta_{fc}(j)$ is the volumetric water content of the layer j at field capacity. If the infiltrating amount, I(j), is greater than swd(j), then

$$\theta(\mathbf{j}) = \theta_{\mathbf{f}c}(\mathbf{j}) \tag{18}$$

$$I(j + 1) = I(j) - swd(j)$$
 (19)

If I(j) is less than swd(j), then

$$\theta(\mathbf{j}) = \theta'(\mathbf{j}) + \mathbf{I}(\mathbf{j}) / \mathbf{t}(\mathbf{j})$$
(20)

$$I(j + 1) = 0$$
 (21)

Chemicals are exposed to adsorption processes and therefore advance less far in depth than water. A linear and reversible equilibrium adsorption model simulates the retardation of the chemical movement.

The following equations are used to predict chemical movement

if
$$W_p > 0$$
, $d_s - d'_s = W_p / (RF * \theta_{fc})$ (22)

if
$$W_p \le 0$$
, $d_s - d'_s = 0$ (23)

$$RF = 1 + BD * K_d / \theta_{fc}$$
(24)

$$K_{d} = K_{oc} * OC$$
 (25)

where W_p is the amount of water passing the depth d_s (mm), d_s

is solute front depth (mm), d'_s is the solute front depth prior to the adjustment (mm), RF is the retardation factor, θ_{fc} is the soil-water content on a volume basis at field capacity, BD is soil bulk density (g/cm³), K_d is the partition coefficient of the chemical in soil (ml/g soil), K_{oc} is the organic carbon partition coefficient (ml/g OC) and OC is the organic carbon content of the soil (OC fraction).

Chemicals are exposed to degradation processes. The model predicts the fraction RA of the applied chemical remaining in the entire soil profile as

$$RA = \exp[-tr * \ln (2) / t_{1/2}]$$
(26)

where tr is the travel time since the chemical was applied (days) and $t_{1/2}$ is the biological degradation half-life of the chemical (days).

Relative Amount Remaining in the Soil. The inputs to the CMLS model are soil properties (bulk density, water content at field capacity and permanent wilting point and soil organic carbon content); chemical properties of the pesticide (partition coefficient and degradation half-life); climatic and cultural factors (plant root depth, daily rainfall + irrigation and daily evapotranspiration amounts).

Model outputs include, among others, travel times for chemicals to move to selected depths and relative amount of pesticide remaining in the soil profile at those times. A sample analysis is demonstrated for the herbicide atrazine applied in April to corn on Vineyard sandy loam soil. Using data from Table 11 and the pesticide library (Appendix B), the relative amount remaining in the soil profile when the chemical front arrives at 2 m can be calculated by

RA = exp $[-tr * ln 2 / t_{1/2}]$

= exp [- 412 days * 0.6931 / 60 days] = 0.0086

TABLE 11. Example of Pesticide Movement to Selected Depths.

Chemical.	ATRAZINE
Partition Coefficient, Koc, (m1/g OC)	100
Application date. (month/day/year)	4/4/1980
Ending date, (month/day/year)	12/31/85
Pesticide application depth, (m)	0.00
Rooting depth for corn. (m)	0.90
Rooting depth for corn, (m)	0.90
Time (days) to 1.00 m	119
Relative Amount Remaining	0.2529
Time (days) to 1.50 m	164
Relative Amount Remaining	0.1504
Time (days) to 2.00 m	412
Relative Amount Remaining	0,0086
-	
Time (days) to 3.00 m	467
Relative Amount Remaining	0.0045

3.9 Potential Pesticide Concentration in Ground Water

The amount of pesticide remaining in the soil profile when the pesticide front arrives at a 2-m depth is calculated as the relative amount remaining in the soil profile times the amount of pesticide applied. The amount of pesticide in the soil is subsequently converted into a hypothetical pesticide concentration by assuming a mixing water volume of 500 l. The resulting concentrations are divided by the Health Advisory Level to yield a ratio. The higher the ratio, the more hazardous is the pesticide. The calculated values of pesticide concentrations in ground water because such calculations do not consider the degradation and dilution of pesticide in ground water with time. Thus, a ratio greater than one does not necessarily mean that a hazardous situation exists. However, a pesticide having a high ratio is more hazardous than one having a low ratio.

3.10 Pesticide Simulations

Simulations were performed to compare alternative water management practices, pesticides and irrigation systems. Simulations were performed for the following:

- Fifty-six pesticides commonly used in Utah were compared based on RA values. Considered were crop and pesticide combinations.
- Potential pesticide contamination from furrow irrigation systems were compared.
 Considered were 3 furrow lengths, 6 inlet discharges, 2 slopes, 41 pesticides, 6 crops and 6 soils.
- Potential pesticide contamination from sprinkler irrigation systems were compared. Considered were 3 Christiansen uniformity coefficients, 41 pesticides, 6 crops and 6 soils.
- Soil characteristics and average infiltrated water depth using furrow and sprinkler irrigation were treated as variables for sensitivity analyses.

A summary of the output results for the different case studies is given in Appendices A and F.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Management Practices to Reduce Potential Ground-Water Contamination

The use of pesticides is considered necessary for economically successful agricultural systems; however there is increasing concern about unacceptable environmental pollution by pesticides. To prevent this, best-management systems (BMSs) are being developed. By retaining pesticides in their target site as much as possible, BMSs will accomplish both pest control and water quality goals. To illustrate differences of pesticide movement, alternative pesticides, application dates, water management practices and irrigation systems were compared.

4.1.1 Alternative Pesticides.

Frequently, several pesticides can be used to control the same problem. Use of less toxic, less mobile, less persistent and more selective pesticides to meet pest control objectives is important for reducing undesired environmental impact.

Pesticides may only be legally applied to sites of crops or animals that are listed on the label. Site restrictions that relate to protecting ground water from potential contamination by pesticides are present on some labels and will probably appear on many more during the next few years. Some pesticides, such as the herbicides cyanazine and picloram, are classified by the USEPA as restricted-use pesticides because of their potential to contaminate surface and/or ground water. For the same reason, more pesticides will probably be classified as restricted-use pesticides during the next few years.

When growers consider the potential for ground-water contamination of alternative pesticides, they need information on each potential choice. This information should include the pesticide's leachability, persistence and adsorptivity to soil particles. Often this information is not readily available to growers and at this time does not have to be included on the pesticide's label. Even if this information were available, growers might have difficulty in interpreting the information or in comparing the information of one pesticide with that of another.

This study, utilizing available information, compared 56 pesticides commonly used in six crops in the State of Utah. Figs. 7-10 display in bar graph form the relative comparison of registered pesticides for specific crops and types of pesticide in Utah County. These bar graphs compare the relative amount of pesticide remaining in the soil (RA) when it has reached a depth of 1 m. One-meter depth was chosen because differences in RA values among pesticides are significant at this depth. All other variables such as time since application, climate, soil characteristics and irrigation, among others, were constant for the compared simulations.

The bar graphs provide a rapid and easy visual comparison between registered alternatives and do not require in-depth analysis or examination. Fig. 7 shows a notable difference in RA for alfalfa herbicides. Terbacil and hexazinone have the greatest potential for being detected at a depth of 1 m when compared to other alfalfa herbicides, with other conditions being constant. Both of these herbicides are more mobile than the other alternatives and, thus, have the greatest potential ground-water for contamination when used on alfalfa at the tested location in Utah County. The difference in mobility shown in these graphs is principally based on the organic partition Pesticides with organic coefficient and the degradation. partition coefficients smaller than 200 ml/g and degradation half-lives equal or greater than 10 days show the biggest RA values for the case study, offering more risk for potential ground-water contamination.

Similar easy and obvious comparisons can be made from other figures or simulation results for other counties (Appendix F). This can help growers in selecting pesticides based on ground-water contamination potential.

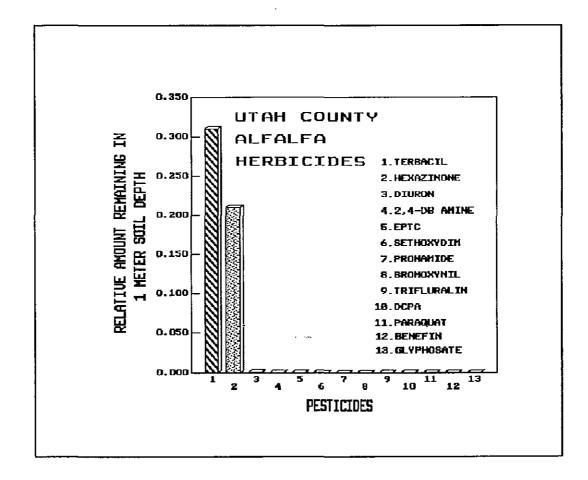
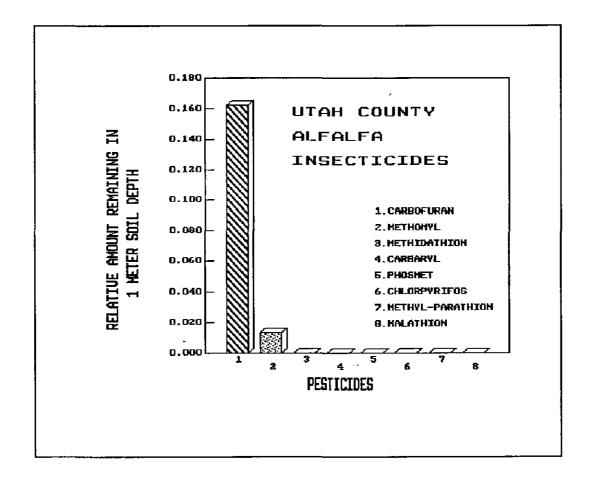



Figure 7. Alternative Alfalfa Herbicides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County.

1

Figure 8. Alternative Alfalfa Insecticides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County.

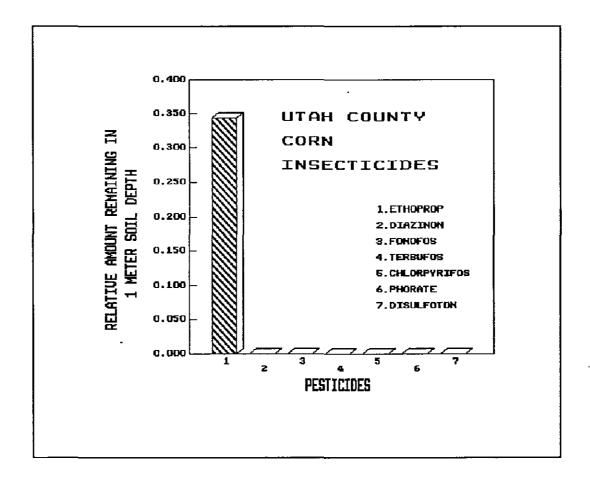


Figure 9. Alternative Corn Insecticides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County.

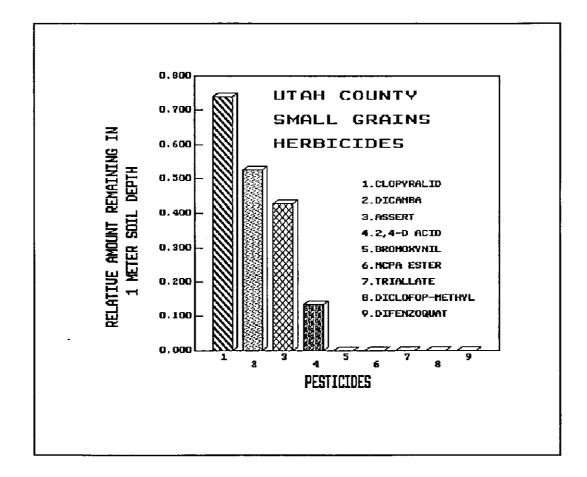


Figure 10. Alternative Small Grains Herbicides and Their Relative Amounts Remaining in the Soil When Pesticides Reach a Depth of 1 m in Utah County.

4.1.2 Alternative Application Dates.

The timing and the amount of pesticide applied during the irrigation season affects pesticide transport and potential ground-water contamination. As an example, hexazinone and metribuzin can be applied in either fall or spring for However, the risk of contaminating efficient weed control. ground water with spring pesticide application can be greater than with fall application (Fig. 11). Fig. 11 shows that hexazinone reaches a depth of 2 m in 114 days when applied in spring. The same pesticide reaches a depth of 2 m in 315 days when applied in fall. Thus, hexazinone has less time available for pesticide degradation via chemical and biological processes when applied in spring. The principal factor causing this difference is the irrigation period that follows spring application.

Values of the relative amount of pesticide remaining in the soil (RA) are a function of travel time and degradation half-life (Equation 26). However, simulated RA values resulting from fall pesticide application can be underestimated because degradation rate is smaller in winter than spring, and this aspect is not accounted for in the model.

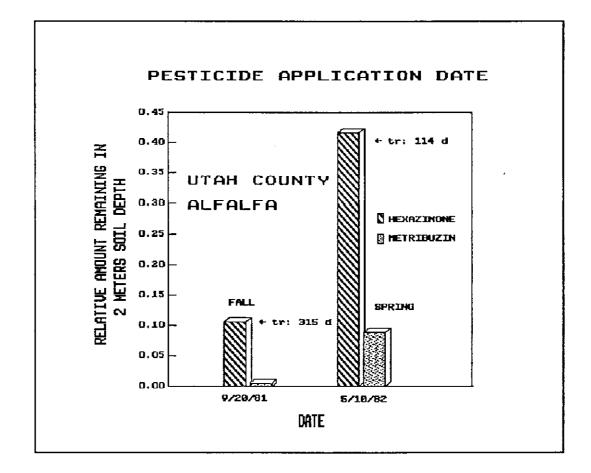


Figure 11. Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Two Pesticide Application Dates. Assumes 50% Irrigation Efficiency.

<u>4.1.3 Alternative Water</u> <u>Management Practices</u>.

Reduction in potential pesticide contamination can be achieved by improving the efficiency of water application in different ways. Increased efficiency can be obtained by adequate land leveling (especially important in surface irrigation systems), by changing furrow inflow rates or furrow lengths in surface irrigation systems and by increasing the uniformity coefficient (UC) in sprinkler irrigation systems. Efficient control of the time of irrigation and an adequate irrigation schedule will increase efficiency in most systems. Figs. 12 and 13 indicate the influence of the irrigation water-storage efficiency on the relative amount of selected pesticides remaining in the soil profile.

Fig. 12 shows an abrupt effect of water-storage efficiency on relative amounts of atrazine remaining in the soil (RA) when water-storage efficiency changes from 40 to 30 percent. This effect is related mainly to pesticide and soil characteristics.

Fig. 13 shows that low values of water-storage irrigation efficiency influence more pesticides with the small K_{oc} values (metribuzin: $K_{oc} = 41 \text{ ml/g OC}$) than pesticides with large K_{oc} values (chlorpyrifos: $K_{oc} = 6070 \text{ ml/g OC}$) for the same degradation half-lives ($t_{1/2} = 30 \text{ days}$).

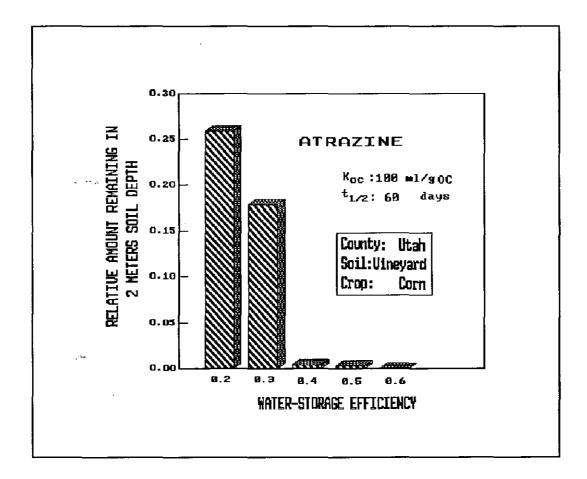
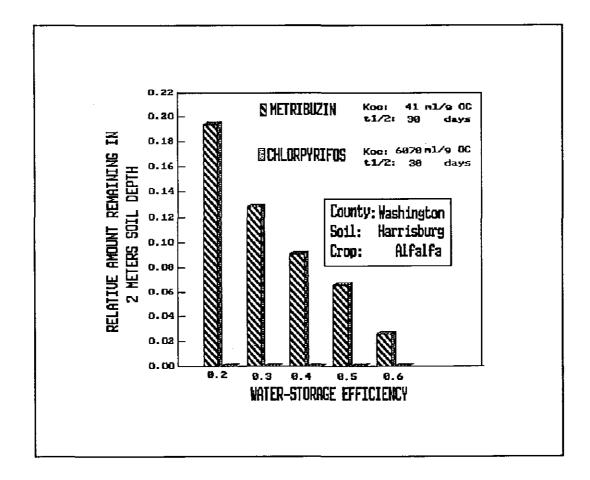
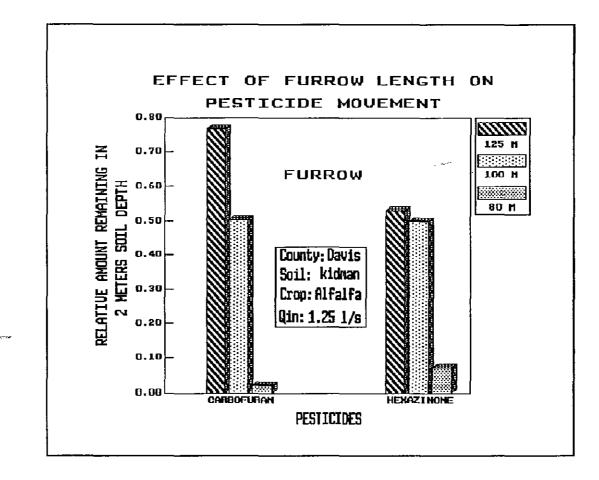



Figure 12. Effect on Relative Amount of Atrazine Remaining in the Soil When the Herbicide Reaches a Depth of 2 m for Various Water-Storage Efficiencies.

:

1000


Figure 13. Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Various Surface Irrigation Efficiencies.

4.1.4 Alternative Irrigation Systems.

Irrigation system design can be critical in determining the amount of pesticide leaching in agricultural areas. With appropriate furrow system design, pesticide leaching can be reduced appreciably in relation to pesticides and sites characteristics. For example, Figs. 14 and 15 show a range of reduction between 10 to 90 percent in RA values. Fig. 14 shows decreasing RA values of carbofuran and hexazinone with decreasing furrow lengths. If the length of the furrow cannot be decreased, an important reduction in RA values for these pesticides and site characteristics can be obtained by increased flow rates at the head of the furrow (Fig. 15). Furrows that are too long or are irrigated with small inflow rates will increase leaching of pesticide, particularly for the coarse textured soils considered in this study.

When there is a limited number of alternative pesticides or leaching losses are significant (for example, irrigation of shallow rooted crops on sandy soils) the selection of improved irrigation systems such as sprinkler irrigation can be especially important. Fig. 16 indicates the effects of three uniformity coefficients on the relative amounts of pesticides remaining in the soil profile when the pesticide front reaches 2-m in depth under a sprinkler irrigation system. Comparing Figs. 16 with 14 and 15 shows that even with very small uniformity coefficients, sprinkler irrigation is less likely to contaminate ground water than is surface irrigation for the pesticides and site considered. Acceptable water-storage efficiencies can be obtained in well-designed and well-operated surface irrigation systems. However, high efficiencies are difficult to maintain in these systems because they depend on human factors, and the site characteristics change with space and time.

- ***

1

Figure 14. Effect of Furrow Lengths on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m.

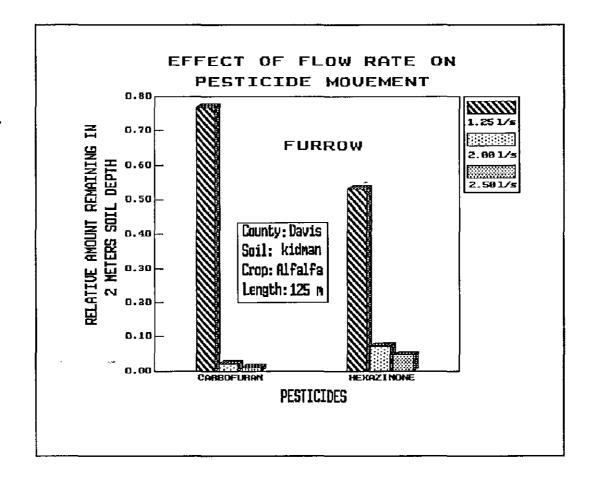


Figure 15. Effect on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m for Various Inflows Rates (Q_{in}) to the Furrow Head.

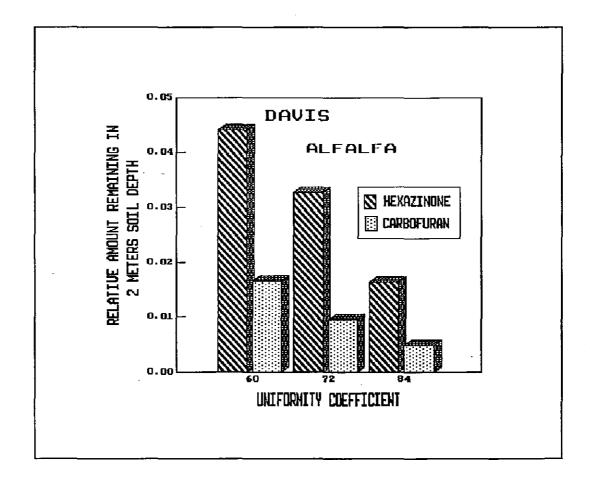


Figure 16. Effects of Various Uniformity Coefficients on Relative Amount of Pesticides Remaining in the Soil When They Reach a Depth of 2 m Under a Sprinkler Irrigation System.

4.2 Sensitivity Analyses

Physical properties of soils and irrigation design parameters were treated as variables for a sensitivity analysis. Some of the resulting graphs from this analysis are shown in the following pages.

<u>4.2.1 Soil</u>.

Soils with high clay and organic carbon content have a tendency to adsorb pesticides, minimizing the risk of groundwater contamination. Pesticides require more travel time when moving through soils of high water content at field capacity values, as clay soils, than through lighter soils of small water content at field capacity values (equation 3). The travel time, in turn, determines the time available for pesticide attenuation via chemical and biological processes. Figs. 17 and 18 clearly indicate the change in RA resulting from different soil textures. Fig. 17 shows approximately 80 percent reduction in RA values when a silty clay soil is compared to a sandy soil. Differences in organic carbon and water contents are the principal contributors to this Soils used for the simulations are given in contrast. Appendix C.

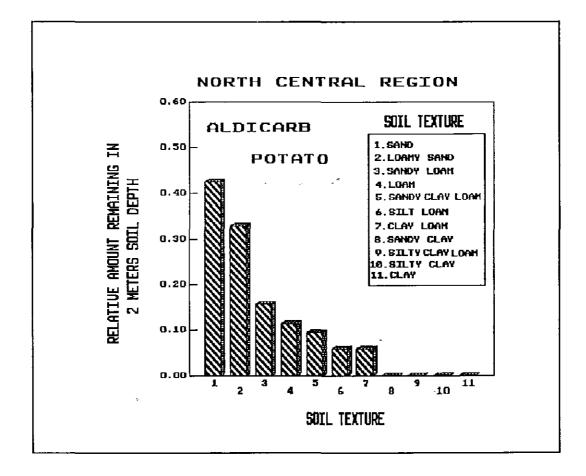
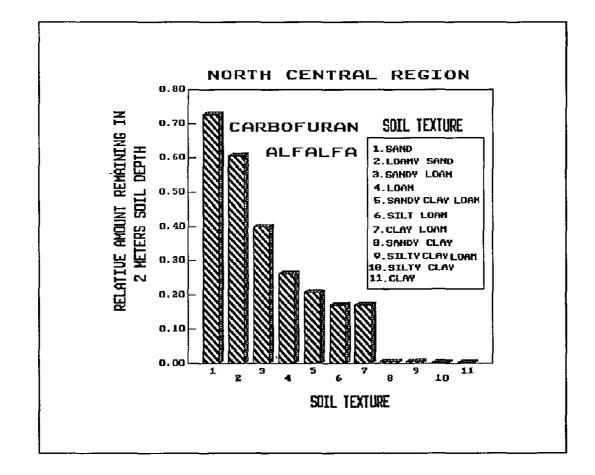



Figure 17. Effect of Various Soil Textures on Relative Amount of Aldicarb Remaining in the Soil When It Reaches a Depth of 2 m.

à.

Figure 18. Effect of Various Soil Textures on Relative Amount of Carbofuran Remaining in the Soil When It . Reaches a Depth of 2 m.

4.2.2 Sprinkler Irrigation.

The depth of water infiltrated in the soil in each 10 percent increment of field area was estimated as described in the Procedure section. Assumed were a uniformity coefficient of 60 percent and 80 percent of the area adequately irrigated. A uniformity coefficient of 60 percent was selected because it demonstrates the greatest difference between RA values for the average depth of infiltrated water.

Estimated depths of infiltrated water for each increment of area were input in each of 10 runs of CMLS. Aldicarb, one of the most mobile and commonly found pesticides in ground water (Table 1), was used. Fig. 19 shows the influence of different irrigation depths in the movement of the pesticide. The first 10 rows of Table 12 numerically illustrate the results of these simulations. Averaging these 10 rows yields a field average of these detailed simulations. It is useful to compare that average with what is computed if only a single average infiltration value is used for an entire field (bottom row). The results are very similar down to a depth of 1.5 m.

	PESTICIDE	AREA	đ	RELAT	IVE AMOU	NT REMAI	NING
No	NAME	¥	(mm)	1.0 m	1.5 m	2.0 m	3.0 m
1	ALDICARB	10	16	0.0000	0.0000	0.0000	0.0000
2	ALDICARB	10	37	0.0000	0.0000	0.0000	0.0000
3	ALDICARB	10	51	0.0001	0.0000	0.0000	0.0000
4	ALDICARB	10	63	0.0905	0.0001	0.0000	0.0000
5	ALDICARB	10	73	0.1649	0.0001	0.0001	0.0000
6	ALDICARB	10	83	0.1984	0.0905	0.0001	0.0000
7	ALDICARB	10	93	0.1984	0.1371	0.0686	0.0001
8	ALDICARB	10	104	0.2679	0.1649	0.1114	0.0001
9	ALDICARB	10	118	0.2679	0.1984	0.1371	0.0686
10	ALDICARB	10	140	0.3455	0.1984	0.1649	0.1114
10	SUBAREAS					·	<u> </u>
	AVERAGE		78	0.1534	0.0790	0.0482	0.0180
	ALDICARB	100	78	0.1649	0.0686	0.0001	0.0000

TABLE 12. Pesticide Movement Comparison Under Sprinkler Irrigation.

However, we do see appreciable difference in relatively insignificant RA values for depths greater than 1.5 m because applied depth of water in each 10 percent area is not uniform (16 to 140 mm). This nonuniformity produces some areas with practically no deep percolation and pesticide movement and other areas with high deep percolation and pesticide movement. Results from the sprinkler simulation can underestimate real RA values in 2-m soil depth. This underestimation can be more important if preferential flow, not accounted for in the model, is present, and a portion of the soil water is bypassed during flow.

ļ

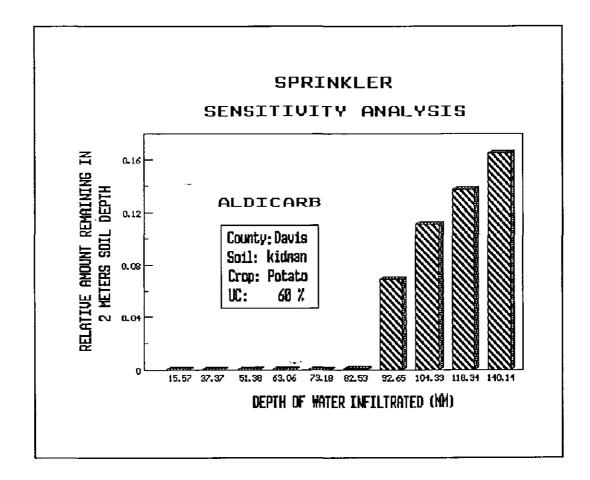


Figure 19. Effect of Various Infiltrated Water Depths on Relative Amount of Aldicarb Remaining in the Soil When It Reaches a Depth of 2 m.

4.2.3 Furrow Irrigation.

Values of depth of infiltrated water in every 10 percent increment of furrow length were obtained from the kinematicwave model. The greatest depth of applied water (259 mm) was considered because it gives the biggest nonuniformity in the distribution of water and the highest variation among RA values. This water depth is a kinematic-wave output for a 125-m long furrow on sandy soil with an inflow discharge of 1.25 l/s at the furrow head.

Table 13 shows the CMLS results of these 10 infiltration depths and the average RA values. Table 13 also shows the RA values computed if only an average infiltration depth is used. Comparison shows that using average infiltration in this case is quite reasonable.

Selection of inflow rate and furrow length depends on site-specific water management practices. In the selection process, it is helpful to consider an efficiency criteria (such as that discussed in the Procedure section) that quantifies hydraulic performances. It is also beneficial if, in the selection process, the environmental results of using a particular irrigation water management alternative are estimated. Knowing that efficient water management practice greatly reduces pesticide leaching beyond the root zone, the farmer may decide to use a combination of improved irrigation management and alternative pesticides that have less hazardous environmental effects.

	PESTICIDE	AREA	d	RELA	TIVE AMO	UNT REMA	INING
No	NAME	%	(mm)	1.0 m	1.5 m	2.0 m	3.0 m
1	ALDICARB	10	302	0.3455	0.3455	0.2679	0.2679
2	ALDICARB	10	302	0.3455	0.2679	0.2679	0.2679
3	ALDICARB	10	302	0.3455	0.3455	0.2679	0.2679
4	ALDICARB	10	299	0.3455	0.3455	0.2679	0.2679
5	ALDICARB	10	292	0.3455	0.3455	0.2679	0.1984
6	ALDICARB	10	283	0.3455	0.3455	0.2679	0.1984
7	ALDICARB	10	267	0.3455	0.3455	0.2679	0.1984
8	ALDICARB	10	239	0.3455	0.2679	0.2679	0.1984
9	ALDICARB	10	193	0.3455	0.2679	0.1984	0.1649
10	ALDICARB	10	111	0.2679	0.1649	0.1371	0.0005
10	SUBAREAS						
	AVERAGE		259	0.3377	0.3042	0.2479	0.1763
	ALDICARB	100	259	0.3455	0.3455	0.2679	0.1984

TABLE 13. Pesticide Movement Comparison Under Surface Irrigation.

CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

-

The principal objective of this study was to develop guidelines to help in reducing potential hazardous effects of agricultural pesticides. Different irrigation water management approaches (stream size and length of furrows in surface irrigation systems, uniformity coefficients in sprinkler systems), alternative pesticides and timing of pesticide applications were considered to evaluate water management and pesticide transport interactions.

It was determined that pesticide application near to an infiltration event, rain or irrigation, is not advisable because of potential ground-water contamination.

Water-storage efficiency is an important factor in the movement of pesticides. Water-storage efficiencies do not affect the movement of pesticides in the same way. Pesticides with K_{oc} smaller than 200 ml/g and half-life equal or greater than 10 days present the greatest risk for potential groundwater contamination when water-storage efficiency values are smaller than 50 percent. Increasing flow rates at the head of the furrow or decreasing furrow length decreases the leaching of pesticides and the risk of potential ground-water contamination. Sprinkler irrigation systems present less potential risk for ground-water contamination than surface irrigation systems. Using an average estimate of infiltration within a pesticide transport model is very appropriate for furrow irrigation systems and almost as appropriate for sprinkler irrigation systems.

Environmental consequences should be considered when selecting from alternative pesticides to prevent ground-water contamination and unnecessary losses of pesticides. Chemicals removed by run-off and leaching are not available for pest control. Use of pesticide conservation practices will have both short-term and long-term économic benefits. Voluntary adoption, cost-sharing and selection of sound chemical management are superior alternatives to forced regulation. The implementation of sound pesticide management practices will provide water quality, crop production and economic benefits.

76

5.2 Recommendations

5

As a result of the study conducted the following topics are considered important for further investigation:

- 1. Further comparison of the CMLS model with alternative simulation models and field measurement is desirable. A complete set of field data should be obtained for using in these comparisons. This will allow the improvement of the CMLS model and a better knowledge of the importance of its assumptions.
- 2. A stochastic procedure (random generation of a statistical population) for determining the weather input data to the model is recommended. Probability distribution functions can help in developing generalizations for the selection of pesticides.
- 3. Improving and linking the CMLS model with an expert system may be a useful tool in pesticide decisionmaking for different pesticide and site characteristics.
- Economic consideration of the relationships between irrigation system designs and potential ground-water contamination is recommended.

REFERENCES

Aller, L., Truman, B., Lehr, J.H., and Petty, R.J. 1985. "DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings," <u>USEPA/600/2-85/018</u> U.S. Environmental Protection Agency, Washington, DC.

Bailey, G.W., and White, J.L. 1970. "Factors influencing the adsorption, desorption, and movement of pesticide in soils," <u>Residue Reviews</u> 32: 29-93.

Bonazountas, M., and Wagner, J. 1981. SESOIL- "A seasonal soil compartment model". Arthur D. Little., Inc., Cambridge, Mass. Prepared for USEPA Office of Toxic Substances, Wash., DC.

Burnside, O.C. 1974. "Prevention and detoxification of pesticide residues in soils," <u>Pesticides in soil and water</u>, W.D. Guenzi, ed., Society of America, Soil Science, Madison, Wisconsin, pp. 387-412.

Carsel, R.F., Smith, C.N., Mulkey, L.A., Dean, J.D., and Jowsie, P. 1984. "Pesticide root zone model (PRZM): Release 1," <u>USEPA-600/3-84-109</u>, Environmental Protection Agency, Athens, GA.

Davidson, J.M., Rieck, C.E., and Santelmann, P.W. 1968. "Influence of water flux and porous material on movement of selected herbicides," <u>Proceedings</u>, Soil Science Society of America, Vol. 32, pp. 629-633.

操兵

Doorenbos, J., and Pruitt, W.O. 1977. "Crop water requirements," <u>FAO Irrigation and Drainage Paper 24</u>, Food and Agriculture Organization of the United Nations, Rome, p. 156.

Eisele, H., Ehteshami, M., Peralta, R.C., Deer, H.M., and Tindall, T. 1989. "Agricultural pesticide hazard to ground water in Utah," <u>IIC-89/1A</u>, Agricultural and Irrigation Engineering Department, Vols. I-II, Utah State University, Logan, Utah.

Elliot, R.L., and Walker, W.R. 1982. "Field evaluation of furrow infiltration and advance functions," <u>Transactions</u>, ASAE, 25(2): 396-400.

Frissel, M.J., and Bolt, G.H. 1962. "Interaction between certain ionizable organic compounds (herbicides) and clay minerals," <u>Soil Science</u> 94: 284-291. Grenney, W.J., Caupp, C.L., Sims, R.C., and Short, T. 1987. "A mathematical model for the fate of hazardous substances in soil: Model description and experimental results," <u>Hazardous</u> <u>Waste & Hazardous Material</u> 4(3): 223-239.

Hansen, V.E., Israelsen, O.W., and Stringham, G.E. 1980. <u>Irrigation principles and practices</u>, John Wiley and Sons, New York.

Hargreaves, G.H., and Samani, Z.A. 1985. "Reference crop evapotranspiration from ambient air temperature," presented at December 12-13 ASCE winter meeting of the ASAE, held at Chicago, IL.

Hart, W.E., and Reynolds, W.N. 1965. "Analytical Design of Sprinkler Systems," <u>Transactions</u>, ASAE 8(2): 83-89.

Hedden, K.F. 1986. "Example field testing of soil fate and transport model, PRZM, Dougherty Plain, Georgia," in <u>Vadose</u> <u>Zone Modeling of Organic Pollutants</u>. S.C. Hern and S.M. Melancon, eds., Lewis Publishers, Inc. Chelsea, MI., pp. 81-101. (Cited by Smith et al., 1989)

Hill, R.W., Brockway, C.E., Burman, R.W., Allen, L.N., Robison, C.W. 1987. "Field verification of empirical method for estimating depletion," <u>Research Report 125</u>, Appendices F and G, Utah Agricultural Experiment Station, Utah State University, Logan, Utah.

Hill, R.W., Johns, E.L., and Frevert, D.K. 1983. "Comparison of equations used for estimating agricultural crop evapotranspiration with field research," Bureau of Reclamation, Engineering and Research Center, Denver, CO.

Holden, P.W. 1986. "Pesticides and ground water quality," <u>National Academy Press</u>, Washington, DC.

Jury, W.A., Spencer, W.F., and Farmer, W.J. 1984. "Behavior assessment model for trace organics in soil: III. Application of screening model," <u>Journal of Environmental Quality</u>. 13: 573-579. (Cited by Rao et al., 1985)

Karickhoff, S.A. 1981. "Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils," <u>Chemosphere</u> 10: 833-846.

Karickhoff, S.A., Brown, D.S., and Scott, T.A. 1979. "Sorption of hydrophobic pollutant on natural sediments," <u>Water Resources</u> 13: 245-248.

Lau, L.S., and Mink, J.F. 1987. "Organic contamination of ground water: A learning experience," <u>Journal of American</u>

Water Works Association, 79(8): 37-42.

Leistra, M. 1986. "Modelling the behavior of organic chemical in soil and ground water," <u>Pesticide Science</u>, 17: 256-264.

Lemley, A.T., Wagenet, R.J., and Zhong, W.Z. 1988. "Sorption and degradation of aldicarb and its oxidation products in soil water flow system as a function of pH and temperature," <u>Journal of Environmental Quality</u>, 17: 408-414.

Leonard, R.A., Knisel, W.G., and Still, D.A. 1987. "GLEAMS: Ground water loading effects of agricultural management systems," <u>Transactions</u>, ASAE 30(5): 1403-1418

Leonard, R.A., Shirmohammadi, A., Johnson, A.W., and Marti, L.R. 1988. "Pesticides transport in shallow ground water," <u>Transactions of American Society of Agricultural Engineers</u> 31(3): 776-788.

Lyman, W.J., Rheel, W.F., and Rosenblatt, D.H. 1982. "Handbook of chemical property estimation methods: Environmental behavior of organic compounds," <u>McGraw-Hill Book Co.</u>, New York, NY.

Mahmood, J.R. 1988. "Evaluation of enhanced mobility of polynuclear aromatic compounds in soil systems," dissertation presented to Utah State University at Logan, Utah.

Merkle, M.G., Bovey, R.W., and Davis, F.S. 1967. "Factors affecting the persistence of picloram in soil," <u>Agronomy</u> <u>Journal</u> 59: 413-415.

Nicholls, P.H. 1988. "Factors influencing entry of pesticides into soil water," <u>Pesticide Science</u> 22: 123-137.

Nkedi-Kizza, P.R., Rao, S. C., and Johnson, J.W. 1983. "Adsorption of Diuron and 2,4,5-T on soil particle separates," Journal of Environmental Quality 12: 195-197.

Nofziger, D.L., and Hornsby, A.G. 1986. "A microcomputerbased management tool for chemical movement in soil," <u>Applied</u> <u>Agricultural Research</u>, Vol.1, No.1, pp. 50-56.

Nofziger, D.L., and Hornsby, A.G. 1988. "Chemical movement in layered soils: User's Manual," Agricultural Experiment Station, Division of Agriculture, Oklahoma State University, Stillwater, OK.

Oki, D.S., and Giambelluca, T.W. 1987. "DBCP, EDB, and TCP contamination of ground water in Hawaii," <u>Ground Water</u> 25(6): 693-702.

Pimentel, D., and Levitan, L. 1986. "Pesticides: Amounts applied and amounts reaching pest," <u>BioScience</u> 36: 86-91.

Pionke, H.B., Glotfelty, D.E., Lucas, A.D., and Urban, J.B. 1988. "Pesticide contamination of ground water in the Mahantango Creek Watershed," <u>Journal of Environmental Quality</u> 17: 76-84.

Ramzi, J.M., and Sims, R.C. 1986. "Mobility of organics in land treatment systems," <u>Journal of Environmental Engineering</u> 112(2): 236-245.

Rao, P.S.C., and Davidson, J.M. 1980. "Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models," in <u>Environmental impact of</u> <u>nonpoint source pollution</u>, M.R. Overcash and J.M. Davidson eds., Ann Arbor Publishers, Ann Arbor, MI, pp: 2-67.

Rao, P.S.C., Hornsby, A.C., and Jessup, R.E. 1985. "Indices for ranking the potential for pesticide contamination of ground water," <u>Proceedings</u>, Soil Crop Science Society of Florida, 44, pp. 1-8

Rao, P.S.C., Mansell, R.S., Baldwin, L.B., and Laurent, M.F. 1983. "Pesticides and their behavior in soil and water," Soil Science Fact Sheet, Sept. 1983, Florida Cooperative Extension Service, Univ. of Florida, Gainesville, FL.

Smith, M.C., Campbell, K.L., Bottcher, A.B., and Thomas, D.L. 1989. "Field testing and comparison of the PRZM and GLEAMS models," presented at June 25-28 ASAE and CSAE, St. Joseph, MI., Paper No. 89-2072, 29 pp.

Sum, M. 1986. "Ground water: Many diagnoses, few remedies," <u>Science</u>, 232: 1490-1493.

USEPA. 1972. "Pesticides," in <u>Environmental Protection</u> <u>Agency progress report</u>, Environmental Protection Agency, Washington, DC, pp. 34-37.

USEPA. 1987. "Agricultural chemicals in ground water: Proposed strategy," U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances, Washington, DC.

Waddell, K.M. 1987. "Utah ground water quality," <u>U.S.</u> <u>Geological Survey</u>, Open-File 87-0757.

Walker, A., and Crawford, D.V. 1968. "The role of organic matter in adsorption of the triazine herbicides by soils," <u>Proceedings</u>, Second Symposium at International Atomic Energy Agency, Vienna, July 20-28, pp. 91-108. Walker, W.R., and Humpherys, A.S. 1983. "Kinematic-wave furrow irrigation model," <u>Journal of Irrigation and Drainage</u> <u>Division</u>, ASCE, 109(IR4): 377-392.

Walker, W.R., and Skogerboe, G.V. 1987. "Surface irrigation: Theory and Practice," <u>Prentice-Hall, Inc.</u>, Englewood Cliffs, New Jersey.

Wauchope, R.D. 1988. "USDA-ARS interim pesticide properties database, version 1.9," Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC.

Weber, J.B., Shea, P.H., and Weed, S.B. 1986. "Fluridone retention and release in soils," <u>Journal of Soil Science</u> <u>Society of America</u> 50: 582-588.

Zaki, M.H., Morgan, D., and Harris, D. 1982. "Pesticides in ground water: The aldicarb story in Suffolk County, NY," <u>American Public Health</u> 72: 1391-1395.

APPENDICES

.

.....

.

•--

ł

1

Appendix A. CMLS Simulations

1

-

• 7/7*

Table 14. CMLS Simulations: Alternatives Pesticides

COUNTY	CROP	Type	PESTICIDE	Koc	t1/2	RA	RA	RA	RA
			NAME	ml/g	days	1 m	1.5 m	2 m	3 m
UTA	ALF	I	CARBOFURAN	22	50	0,1627	0.1416	0.1001	0.0034
UTA	ALF	Н	2,4-DB AMINE	109	10	0.0000	0.0000	0.0000	0.0000
UTA	ALF	н	BENEFIN	9000	40	0.0000	0.0000	0.0000	0.0000
UTA	ALF	H	BROMOXYNIL	190	5	0.0000	0.0000	0.0000	0.0000
UTA	ALF	H	DCPA	5000	100	0.0000	0.0000	0.0000	0.0000
UTA	ALF	Н	DIURON	480	90	0.0009	0.0001	0.0000	0.0000
UTA	ALF	H	EPTC	2.80	30	0.0000	0.0000	0.0000	0.0000
UTA UTA	ALF ALF	H	GLYPHOSATE	24000	47	0.0000	0.0000	0.0000	0.0000
ATU	ALF	н н	HEXAZINONE PARAQUAT	54 100000	90 500	0.2094 0.0000	0.1166 0.0000	0.0296	0.0166 0.0000
UTA	ALF	н	PRONAMIDE	990	60	0.0000	0.0000	0.0000	0.0000
UTA	ALF	н	SETHOXYDIM	50	10	0.0000	0.0000	0.0000	0.0000
UTA	ALF	H	TERBACIL	55	120	0,3096	0,1984	0.0658	0,0463
UTA	ALF	H	TRIFLURALIN	7000	60	0.0000	0,0000	0.0000	0,0000
UTA	ALF	I	CARBARYL	200	10	0,0000	0.0000	0.0000	0.0000
UTA	ALF	I	CHLORPYRIFOS	6070	30	0,0000	0.0000	0.0000	0.0000
UTA	ALF	I	MALATHION	1800	1	0,0000	0.0000	0.0000	0.0000
UTA	ALF	I	METHIDATHION	400	21	0,0000	0,0000	0.0000	0.0000
UTA	ALF	I	METHOMYL	72	33	0.0132	0.0002	0.0001	0.0000
UTA	ALF	I	METHYL~PARATHION	5100	5	0.0000	0.0000	0.0000	0.0000
UTA	ALF	I	PHOSMET	612	12	0.0000	0.0000	0.0000	0.0000
UTA UTA	COR COR	н Н	ALACHLOR ATRAZINE	170	15 60	0.0000	0.0000	0.0000	0.0000
UTA	COR	Н	BENTAZON	100 35	20	0.2529 0.1340	0.1504 0.0825	0.0088	0.0045 0.0055
UTA	COR	н	BROMOXYNIL	190	5	0.1040	0.00020	0.0000	0.0000
UTA	COR	H	BUTYLATE	126	12	0,0001	0.0000	0.0000	0.0000
UTA	COR	н	CYANAZINE	190	14	0,0000	0.0000	0.0000	0.0000
UTA	COR	Н	EPTC	280	30	0.0000	0.0000	0.0000	0.0000
UTA	COR	н	GLYPHOSATE	24000	47	0.0000	0.0000	0.0000	0.0000
UTA	COR	н	PARAQUAT	100000	500	0.0000	0.0000	0.0000	0.0000
UTA	COR	H	PENDIMETHALIN	24300	90	0.0000	0.0000	0.0000	0,0000
UTA	COR	H	SIMAZINE	138	75	0.2197	0.0222	0.0176	0.0030
UTA	COR	н	TRIDIPHANE	5600	31	0.0000	0.0000	0.0000	0.0000
UTA	COR	н	VERNOLATE	330	12	0.0000	0.0000	0.0000	0.0000
UTA UTA	COR	I	CHLORPYRIFOS	6070	30 40	0.0000	0.0000	0.0000	0.0000
UTA	COR COR	I I	DIAZINON DISULFONTON	500 1600	40	0.0000 0.0000	0.0000	0.0000	0.0000
UTA	COR	Ī	ETHOPROP	70	50	0.3439	0.0154	0.0073	0.0000
UTA	COR	Î	FONOFOS	532	45	0.0000	0.0000	0.0000	0.0000
UTA	COR	Î	PHORATE	2000	90	0.0000	0.0000	0.0000	0,0000
UTA	COR	ī	TERBUFOS	3000+	5	0,0000	0,0000	0.0000	0.0000
UTA	ORC	Ï	AZINPHOS-METHYL	1000	40	0.0000	0,0000	0.0000	0.0000
UTA	ORC	I	CARBARYL	200	10	0.0000	0.0000	0.0000	0.0000
UTA	ORC	I	DIAZINON	500	40	0.0000	0.0000	0.0000	0.0000
UTA	ORC	I	DIMETHOATE	8	7	0.2500	0.0464	0.0421	0.0001
UTA	ORC	I	FENVALERATE	5300	35	0.0000	0.0000	0.0000	0.0000
UTA	ORC	I	MALATHION	1800	1	0.0000	0.0000	0.0000	0.0000
UTA	ORC	I	PARATHION	5000	14	0.0000	0.0000	0.0000	0.0000
UTA	POT	H	EPIC	280	30	0.0000	0.0000	0.0000	0.0000
UTA UTA	POT	H H	GLYPHOSATE	24000	47	0.0000	0.0000	0.0000 0.0313	0.0000
UTA UTA	POT POT	н Н	METRIBUZIN	41 100000	30 500	0.0702	0.0597	0.0010	0.0001 0.0000
UTA	POT	Н	PARAQUAT PENDIMETHALIN	24300	90	0,0000 0,0000	0.0000	0.0000	0.0000
UTA	POT	Н	TRIFLURALIN	7000	90 60	0.0000	0.0000	0.0000	0.0000
UTA	POT	Ï	ALDICARB	10	30	0.5743	0.4774	0.4353	0.1649
UTA	POT	i	DIMETHOATE	- 8	7	0.1132	0.0464	0.0283	0.0009
UTA	POT	î	DISULFOTON	1600	5	0.0000	0.0000	0.0000	0.0000
UTA	POT	Î	ENDOSULFAN	2040	120	0.0000	0.0000	0.0000	0.0000
UTA	POT	ī	ESFENVALERATE	5300	35	0.0000	0.0000	0.0000	0.0000
UTA	POT	I	FENVALERATE	5300	35	0.0000	0.0000	0.0000	0.0000
UTA	POT	I	MALATHION	1800	1	0.0000	0.0000	0.0000	0.0000
TINS A	POT	I	METHAMIDOPHOS	1	6	0.1575	0.0351	0.0248	0.0014
UTA UTA	POT	٠Ï	METHOMYL	72	33	0.1677	0.0694	0.0003	0,0001

Abbreviations: A = acaricide; H = herbicide; I = insecticide; N = nematicide; ALF = alfalfa; COR = corn ORC = orchards; POT = potato; SGR = Small grains; VEG = Vetables; UTA = Utah; K_{oc} = organic carbon partition coefficient; $t_{1/2}$ = degradation half-life; RA = Relative Amount of Pesticide Remaining in the soil when the chemical front arrives at a given depth. Assumed water-storage efficiency 50 percent.

.

~

Table 14. CMLS Simulations: Alternatives Pesticides (cont.)

COUNTY	CROP	Туре	PESTICIDE	Koc	t1/2	RA	RĄ	RA	RA
		••	NAME	ml/g	days	1 m	1.5 m	2 m	3 m
UTA	POT	I	OXAMYL	25	4	0.0039	0.0006	0.0000	0.0000
UTA	POT	I	PARATHION	5000	14	0.0000	0.0000	0.0000	0,0000
UTA	POT	I	PERMETHRIN	86000	32	0.0000	0.0000	0.0000	0.0000
UTA	POT	I	PHORATE	2000	90	0,0000	0.0000	0.0000	0.0000
UTA	POT	I	PHOSPHAMIDON	1	17	0,5208	0.3065	0.2712	0.0979
UTA	VEG	н	BENTAZON	35	20	0.4353	0.3536	0.2500	0.1487
UTA	VEG	H	DCPA	5000	100	0.0000	0,0000	0.0000	0.0000
UTA	VEG	н	EPTC	280	30	0.0001	0.0000	0.0000	0,0000
UTA	VEG	Н	PENDIMETHALIN	24300	90	0.0000	0.0000	0.0000	0.0000
UTA	VEG	H	TRIFLURALIN	7000	60	0,0000	0.0000	0.0000	0.0000
UTA	SGR	H	2.4-D ACID	20	10	0.1340	0.0508	0.0000	0,0000
UTA	SGR	H	ASSERT	35	35	0.4267	0.0009	0.0006	0.0000
UTA	SGR	Н	BROMOXYNIL	190	5	0.0000	0.0000	0.0000	0.0000
UTA	SGR	H	CLOPYRALID	1	30	0.7405	0.5117	0.3703	0.0003
UTA	SGR	H	DICAMBA	2	14	0.5254	0.2379	0.1190	0,0000
UTA	SGR	H	DICLOFOP-METHYL	48500	2	0.0000	0.0000	0.0000	0.0000
UTA	SGR	н	DIFENZOQUAT	54500	100	0.0000	0.0000	0.0000	0.0000
UTA	SGR	н	MCPA ESTER	1000	14	0.0000	0.0000	0.0000	0,0000
UTA	SGR	Ħ	TRIALLATE	2400	82	0.0000	0.0000	0.0000	0.0000

-

.

-

2.12

Table 15. CMLS Simulations: Furrow Irrigation

Solution	mon								D. Into
COUNTY	CROP	Туре	PESTICIDE	d (mm)	Es	t(days) 2 m	RA 2 m	C(ppb) 2 m	RATIO 2 m
				()				0	
CAC	ALF	H	HEXAZINONE	259	0.2	63	0.6156	184.670	0.880
CAC	ALF	Н	HEXAZINONE	148	0.3	78	0.5484	164.520	0,780
CAC CAC	ALF ALF	H	HEXAZINONE	105 89	0.4	99 116	0.4665	139,950 122,780	0,670 0,580
CAC	ALF	H H	HEXAZINONE HEXAZINONE	71	0.5 0.6	296	0,4093	30,690	0.150
CAC	ALF	H	METRIBUZIN	259	0.2	63	0,2333	39.190	0.220
CAC	ALF	H	METRIBUZIN	148	0.3	71	0.1939	32.570	0.190
CAC	ALF	H	METRIBUZIN	106	0.4	90	0.1250	21,000	0.120
CAC	ALF	H	METRIBUZIN	89	0.5	107	0.0844	14.180	0.080
CAC	ALF	н	METRIBUZIN	71	0.6	146	0.0343	5.760	0.030
CAC	ALF	I	MALATHION	259	0.2	1135	0.0000	0.000	0.000
CAC	ALF	I	MALATHION	148	0.3	2020	0.0000	0.000	0.000
CAC	ALF	I	PARATHION	259	0.2	2046	0.0000	0.000	0.000
CAC	ALF	I,A,N	CARBOFURAN	259	0.2	41	0.5664	126.880	3,520
CAC CAC	ALF ALF	I,A,N I,A,N	CARBOFURAN CARBOFURAN	148 106	0.3 0.4	48 60	0.5141 0.4353	115.150 97.500	3.200 2.710
CAC	ALF	I,A,N	CARBOFURAN	89	0.5	77	0.3439	77.030	2.140
CAC	ALF	I,A,N	CARBOFURAN	71	0.6	105	0.2333	52.250	1.450
CAC	COR	H	ALACHLOR	259	0.2	106	0.0075	5.010	3,340
CAC	COR	B	ALACHLOR	148	0.3	434	0.0000	0.000	0.000
CAC	COR	H	ALACHLOR	106	0.4	480	0.0000	0,000	0.000
CAC	COR	B	ALACHLOR	89	0.5	615	0.0000	0.000	0.000
CAC	COR	H	ALACHLOR	71	0.6	1109	0,0000	0.000	0,000
CAC	COR	н	ATRAZINE	259	0.2	99	0.3186	142.750	47.580
CAC	COR	H	ATRAZINE	148	0.3	119-	0.2529	113.300	37.770
CAC	COR	H	ATRAZINE	106	0.4	434	0.0066	2.980	0.990
CAC	COR	H	ATRAZINE	89	0.5	460	0.0049	2.200	0.730
CAC	COR COR	H	ATRAZINE	71 259	0.6 0.2	616 113	0.0008	0.360 1.670	0.120 0.190
CAC CAC	COR	H H	CYANAZINE CYANAZINE	148	0.3	445	0.0000	0.000	0.000
CAC	COR	H	CYANAZINE	106	0.4	488	0.0000	0.000	0.000
CAC	COR	H	CYANAZINE	89	0.5	699	0.0000	0.000	0.000
CAC	COR	H	CYANAZINE	71	0.6	860	0.0000	0,000	0.000
CAC	COR	H	EPTC	259	0.2	93	0.1166	104,500	
CAC	COR	H	EPTC	148	0.3	375	0.0002	0.150	
CAC	COR	н	EPTC	106	0.4	458	0.0000	0.020	
CAC	COR	H	METOLACHLOR	259	0.2	57	0.1387	93.200	9.320
CAC	COR	н	METOLACHLOR	148	0.3	88	0.0474	31.830	3.180
CAC	COR	H	METOLACHLOR	106	0.4	93 (37	0.0398	26,770	2.680
CAC CAC	COR COR	H H	METOLACHLOR	89 71	0.5 0.6	432 683	0.0000	0.000	0.000 0.000
CAC	ORC	В	METOLACHLOR PHOSALONE	259	0.2	1225	0,0000	0.000	0.000
CAC	ORC	M	PROPARGITE	259	0.2	2066	0.0000	0.000	0.000
CAC	ORC	M	PROPARGITE	148	0.3	2066	0.0000	0.000	0.000
CAC	VEG	Ħ	TRIFLURALIN	259	0.2	2066	0.0000	0.000	0.000
CAC	SGR	H	2,4-D ACID	259	0.2	44	0.0474	10.610	0.150
CAC	SGR	H	2,4-D ACID	148	0.3	50	0.0313	7.000	0.100
CAC	SGR	H	2,4-D ACID	106	0.4	56	0.0206	4.620	0.070
CAC	SGR	H	2,4-D ACID	89	0.5	355	0,0000	0.000	0.000
CAC	SGR	H	2,4-D ACID	71	0.6	381	0.0000	0.000	0.000
CAC	SGR	H	2,4-D ACID	49	0.9	626	0.0000	0.000	0,000
CAC	SGR	H	CHLORSULFURON	259	0.2	50	0.8052	4.350	
CAC	SGR	H	CHLORSULFURON	148	0.3	58	0.7778	4.200	
CAC CAC	SGR SGR	н н	CHLORSULFURON CHLORSULFURON	106 89	0.4 0.5	65 71	0,7546	4.070 3.970	
CAC	SGR	H	CHLORSULFURON	71	0.6	376	0.1961	1.060	
CAC	SGR	H	DICAMBA	259	0.2	22	0.3365	9,420	1.050
CAC	SGR	Ħ	DICAMBA	148	0.3	29	0.2379	6,660	0.740
CAC	SGR	H	DICAMBA	106	0.4	41	0.1313	3.680	0.410
CAC	SGR	H	DICAMBA	89	0.5	42	0.1250	3.500	0.390
CAC	SGR	Н	DICAMBA	71	0.6	364	0.0000	0.000	0.000

Abbreviations: A = acaricide; H = herbicide; I = insecticide; N = nematicide; ALF = alfalfa; COR = corn ORC = orchards; POT = potato; SGR = Small grains; VEG = Vegetables; CAC = Cache county; DAV = Davis county; SEV = Sevier county; UTA = Utah county; WAS = Washington county; WEB = Weber county; t = travel time; RA = Relative Amount of Pesticide Remaining in the soil when the chemical front arrives at a given depth; d = average depth of water infiltrated in the soil; Es = water-storage efficiency; C = potential pesticide concentration in water table assuming a mixing volume of 500 liters of water; RATIO = C / h.a.1.

.

Table 15. CMLS Simulations: Furrow Irrigation (cont.)

COUNTY	GDGD	Tuno	PESTICIDE	d	Es	t(days)	RA	C(ppb)	RATIO
CODALI	onot	туре	NAME	(mm)	ца	2 m	2 m	2 m	2 m
				(_		
CAC	SGR	H	METSULFURON	259	0.2	65	0.6870	0.550	
CAC	SGR	Ħ	METSULFURON	148	0.3	77	0.6410	0.510	
CAC	SGR	н	METSULFURON	106	0.4	387	0.1069	0.090	
CAC	SGR	н	METSULFURON	89	0.5	402	0.0981	0.080	
CAC	SGR	H	METSULFURON	71	0.6	436	0.0806	0.060	0 760
DAV	ALF	H	HEXAZINONE	259	0.2	82	0.5318	159.530	0.760
DAV DAV	ALF ALF	H H	HEXAZINONE HEXAZINONE	148 106	0.3	82 121	0.5318 0.3938	159,530	0.760 0.560
DAV	ALF	H	HEXAZINONE	89	0.4 0.5	342	0.0718	118.140 21.540	0.100
DAV	ALF	Н	HEXAZINONE	71	0.6	397	0.0470	14.100	0.070
DAV	ALF	Ĥ	SETHOXYDIM	259	0.2	58	0.0179	0.000	0.070
DAV	ALF	Ĥ	SETHOXYDIM	148	0.3	87	0.0024	0.000	
DAV	ALF	H	SETHOXYDIM	106	0.4	115	0.0003	0.000	
DAV	ALF	H	SETHOXYDIM	89	0.5	334	0.0000	0.000	
DAV	ALF	H	SETHOXYDIM	71	0.6	391	0,0000	0.000	
DAV	ALF	I,A,N	CARBOFURAN	259	0.2	19	0,7684	172.130	4.780
DAV	ALF	I,A,N	CARBOFURAN	148	0.3	45	0,5359	120.040	3.330
DAV	ALF	I,A,N	CARBOFURAN	106	0.4	64	0.4118	92.240	2.560
DAV	ALF	I,A,N	CARBOFURAN	89	0.5	280	0.0206	4,620	0.130
DAV	ALF	I,A,N	CARBOFURAN	71	0.6	328	0.0106	2.370	0.070
DAV	COR	B	ALACHLOR	259	0.2	414	0.0000	0.000	0.000
DAV	COR COR	H	ALACHLOR METOLACHLOR	148	0.3	468	0.0000	0.000	0.000
DAV DAV	COR	H H	METOLACHLOR	259 148	0.2 0.3	425 626	0.0000	0.000 0.000	0.000 0.000
DAV	POT	Н	METOLACHLOR	106	0.4	423	0.0000	0.000	0.000
DAV	POT	Ĥ	METRIBUZIN	259	0.2	66	0.2176	24.380	0.140
DAV	POT	Н	METRIBUZIN	148	0.3	100	0.0992	11.110	0.060
DAV	POT	H	METRIBUZIN	106	0.4	400	0.0001	0.010	0.000
DAV	POT	H	METRIBUZIN	89	0.5	431	0.0000	0.010	0.000
DAV	POT	H	METRIBUZIN	71	0.6	527	0.0000	0.000	0.000
DAV	POT	I	AZINPHOS-METHY	ľL 259	0.2	1849	0.0000	0.000	
DAV	POT	I,N	ALDICARB	259	0.2	63	0.2333	104.500	10.450
DAV	POT	I,N	ALDICARB	148	0.3	76	0.1727	77.390	7.740
DAV	POT	I,N	ALDICARB	105	0.4	101	0.0969	43.430	4.340
DAV	POT	I,N	ALDICARB	89	0.5	122	0.0597	26.740	2.670
DAV	POT VEG	I,N	ALDICARB	71	0.6	433	0.0000	0.020	0.000
DAV DAV	VEG	H H	BENTAZON BENTAZON	259 148	0.2	6 49	0.8123	181.940 40.990	
DAV	VEG	Ë	BENTAZON	106	0.4	376	0,0000	0.000	
DAV	VEG	H	BENTAZON	89	0.5	412	0.0000	0.000	
DAV	VEG	H	TRIFLURALIN	259	0.2	2091	0.0000	0.000	0.000
DAV	VEG	I	MALATHION	259	0.2	2091	0.0000	0.000	0.000
DAV	SGR	H	2,4-D ACID	259	0.2	45	0.0442	9,900	0.140
DAV	SGR	H	2,4-D ACID	148	0.3	350	0.0000	0.000	0.000
DAV	SGR	H	2,4-D ACID	106	0.4	374	0.0000	0.000	0.000
DAV	SGR	Ι	CARBARYL	259	0.2	384	0.0000	0.000	0.000
DAV	SGR	I	CARBARYL	148	0,3	741	0.0000	0.000	0.000
DAV	SGR	I	CARBARYL	106	0.4	1105	0.0000	0.000	0.000
SEV	ALF	H	HEXAZINONE	259	0.2	91	0.4962	148.850	0.710
SEV SEV	ALF	H	HEXAZINONE	148	0.3	114	0.4156	124.690	0.590
SEV	ALF ALF	H H	HEXAZINONE	106	0.4	149	0.3174	95.220	0.450 0.370
SEV	ALF	н	HEXAZINONE HEXAZINONE	89 71	0.5 0.6	177 498	0.2558 0.0216	76.750 6.480	0.030
SEV	ALF	H	METRIBUZIN	259	0.0	498 91	0.1221	20.520	0.120
SEV	ALF	H	METRIBUZIN	148	0.3	114	0.0718	12.060	0.070
SEV	ALF	H	METRIBUZIN	106	0.4	140	0.0394	6.610	0.040
SEV	ALF	B	METRIBUZIN	89	0.5	158	0.0260	4.360	0.020
SEV	ALF	H	METRIBUZIN	71	0.6	480	0.0000	0.000	0.000
SEV	ALF	ĩ	PARATHION	259	0.2	2048	0.0000	0.000	0.000
SEV	ALF	I,A,N	CARBOFURAN	259	0.2	26	0.6974	156,210	4.340
SEV	ALF	I,A,N	CARBOFURAN	148	0.3	42	0.5586	125,140	3.480
SEV	ALF	I,A,N	CARBOFURAN	106	0.4	68	0.3896	87.270	2.420
SEV	ALF	I,A,N	CARBOFURAN	89	0.5	86	0.3035	67.990	1.890
SEV	ALF	I,A,N	CARBOFURAN	71	0.6	399	0.0040	0.890	0.020
SEV	COR	H	ATRAZINE	259	0.2	87	0.3660	163.980	54.660
SEV	COR	H	ATRAZINE	148	0.3	116	0.2618	117.300	39,100
SEV	COR	H	ATRAZINE	105	0.4	452	0.0054	2.420	0.810
SEV	COR	н	ATRAZINE	89	0.5	491	0,0034	1.540	0.510

÷

Ì

Table 15. CMLS Simulations: Furrow Irrigation (cont.)

COUNTY	CROP	Туре	PESTICIDE	d ,	Es	t(days)	RA	C(ppb)	RATIO
			NAME	(mm)		2 m	2 m	2 m	2 m
SEV	COR	Н	ATRAZINE	71	0.6	1211	0.0000	0,000	0.000
SEV	COR	H	DICAMBA	259	0.2	49	0.0884	9,900	1.100
SEV	COR	H	DICAMBA	148	0.3	65	0.0400	4.480	0.500
SEV	COR	Н	DICAMBA	106	0.4	86	0.0142	1.590	0.180
SEV	COR	H	DICAMBA	89	0.5	101	0.0067	0.750	0.080
SEV	COR	Н	DICAMBA	71	0.6	437	0,0000	0.000	0.000
SEV	COR	I	FONOFOS	259	0.2	1186	0,0000	0.000	0.000
SEV	COR	I	PHORATE	259	0.2	2068	0.0000	0.000	
SEV	COR	I	TRIMETHACARB	259	0.2	449	0.0000	0.000	
SEV	COR	I,A,N	CARBOFURAN	259	0.2	69	0.3842	172.130	4.780
SEV	COR	I,A,N	CARBOFURAN	148	0.3	84	0.3121	139.810	3.880
SEV	COR	I,A,N	CARBOFURAN	106	0.4	105	0.2333	104,500	2.900
SEV	COR	I,A,N	CARBOFURAN	89	0.5	128	0.1696	75,970	2.110
SEV	COR	IAN	CARBOFURAN	71	0.6	470	0,0015	0.660	0.020
SEV	ORC	Ι	AZINPHOS-METHYL		0.2	454	0.0004	0.130	
SEV	ORC	ī	PHOSMET	259	0.2	369	0.0000	0.000	
SEV	SGR	Ĥ	2,4-D ACID	259	0.2	16	0.3299	73.890	1.060
SEV	SGR	Ħ	2,4-D ACID	148	0.3	28	0.1436	32.160	0.460
SEV	SGR	H	2,4-D ACID	106	0.4	380		0.000	0.000
	SGR						0.0000		
SEV		H	2,4-D ACID	89	0.5	397	0.0000	0.000	0.000
SEV	SGR	H	DICLOFOP-METHYL		0.2	2071	0.0000	0.000	
SEV	SGR	н	DIFENZOQUAT	259	0.2	2068	0.0000	0.000	
SEV	SGR	H	TRIALLATE	259	0.2	2098	0.0000	0.000	
SEV	SGR	I	BARBAN	259	0.2	41	0.3878	32.570	
SEV	SGR	I	BARBAN	148	0.3	53	0.2939	24,690	
SEV	SGR	I	BARBAN	106	0.4	405	0.0001	0.010	
SEV	SGR	I	BARBAN	89	0,5	422	0.0001	0.000	
UTA	ALF	н	GLYPHOSATE	259	0,2	2096	0.0000	0,000	0.000
UTA	COR	H	2.4-D ACID	259	0.2	100	0.0010	0.220	0.000
UTA	COR	H	2,4-D ACID	148	0.3	107	0,0006	0.130	0.000
UTA	COR	H	2,4-D ACID	106	0.4	122	0.0002	0.050	0.000
UTA	COR	Н	2,4-D ACID	89	0.5	135	0,0001	0.020	0.000
UTA	COR	H	2,4-D ACID	71	0.6	468	0.0000	0.000	0.000
UTA	COR	H	ATRAZINE	259	0.2	117	0.2588	115.950	38.650
UTA	COR	н	ATRAZINE	148	0.3	149	0.1788	80.120	26.710
UTA	COR		ATRAZINE			478			
		H		106	0.4		0.0040	1,790	0.600
UTA	COR	H	ATRAZINE	89	0.5	514	0.0026	1.180	0.390
UTA	COR	H	ATRAZINE	71	0.6	839	0.0001	0.030	0.010
UTA	COR	I	DIAZINON	259	0.2	2097	0,0000	0.000	0.000
UTA	COR	1	DIAZINON	148	0.3	2097	0,0000	0.000	0.000
UTA	SGR	H	2,4-D ACID	259	0.2	34	0.0947	21.220	0.300
UTA	SGR	Ħ	2,4-D ACID	148	0.3	46	0.0412	9,240	0.130
UTA	SGR	н	2,4-D ACID	106	0.4	356	0.0000	0.000	0.000
UTA	SGR	H	2,4-D ACID	89	0.5	371	0.0000	0.000	0.000
UTA	SGR	Н	2,4-D ACID	71	0.6	412	0.0000	0.000	0.000
UTA	SGR	H	2,4-D ACID	49	0.9	864	0.0000	0.000	0.000
UTA	SGR	н	DICAMBA	259	0.2	34	0.1857	5,200	0.580
UTA	SGR	H	DICAMBA	148	0.3	40	0.1380	3,860	0.430
UTA	SGR	н	DICAMBA	106	0.4	47	0.0976	2,730	0.300
UTA	SGR	H	DICAMBA	89	0,5	356	0.0000	0.000	0.00
UTA	SGR	н	DICAMBA	71	0,6	383	0.0000	0.000	0.00
UTA	SGR	Н	DIFENZOQUAT	259	0,2	2056	0.0000	0,000	
WAS	ALF	H	HEXAZINONE	259	0.2	71	0.5788	173,640	0.830
WAS	ALF	H	HEXAZINONE	148	0.3	89	0.5039	151,160	0.72
WAS	ALF	н	HEXAZINONE	106		104	0.4489	134,670	0.64
			HEXAZINONE		0.4				
WAS	ALF	H		89	0.5	124	0.3848	115.440	0.55
WAS	ALF	H	HEXAZINONE	71	0.6	165	0.2806	84.180	0.40
WAS	ALF	H	METRIBUZIN	259	0.2	71	0.1939	32.570	0.19
WAS	ALF	н	METRIBUZIN	148	0.3	89	0.1279	21.490	0.12
WAS	ALF	H	METRIBUZIN	106	0.4	104	0.0905	15.200	0.09
WAS	ALF	н	METRIBUZIN	89	0.5	118	0,0655	11.000	0.06
	ALF	H	METRIBUZIN	71	0.6	158	0.0260	4,360	0.02
WAS	47.71	I	CHLORPYRIFOS	259	0.2	1878	0.0000	0,000	
	ALF	-							
WAS	ALF	i	PARATHION	259	0.2	1535	0.0000	0.000	0.00
WAS WAS WAS	ALF	I	PARATHION		$0.2 \\ 0.2$			$0.000 \\ 1.260$	0.00
WAS WAS				259	0.2 0.2 0.3	1535 339 475	0.0000 0.0028 0.0003	$0.000 \\ 1.260 \\ 0.120$	0.000

. .

· . ·

.

Table 15. CMLS Simulations: Furrow Irrigation (cont.)

COUNTY	CBOB	Tarres	PESTICIDE	đ	Es	t(days)	RA	C(mph)	RATIO
COONTI	CRUP	туре		a (mm)	сS	t(days) 2 m	ка 2 m	C(ppb) 2 m	2 m
			117120	(unit)		44 W	2 III	мъ	ΖЩ
WEB	ALF	н	HEXAZINONE	259	0.2	26	0,8185	245,560	1.170
WEB	ALF	H	HEXAZINONE	148	0.3	43	0,7181	215,420	1.030
WEB	ALF	H	HEXAZINONE	106	0.4	60	0.6300	188,990	0,900
WEB	ALF	H	HEXAZINONE	89	0.5	82	0.5318	159,530	0,760
WEB	ALF	H	HEXAZINONE	71	0.6	303	0,0969	29.080	0.140
WEB	ALF	Н	METRIBUZIN	259	0.2	105	0.0884	14.850	0.080
WEB	ALF	H	METRIBUZIN	148	0.3	113	0,0735	12,340	0,070
WEB	ALF	H	METRIBUZIN	106	0.4	120	0.0625	10,500	0.060
WEB	ALF	н	METRIBUZIN	89	0.5	132	0.0474	7,960	0.050
WEB	ALF	H	METRIBUZIN	71	0.6	158	0.0260	4.360	0,020
WEB	ALF	ī	PARATHION	259	0.2	2027	0.0000	0.000	0,000
WEB	ALF	I.Ā.N	CARBOFURAN	259	0.2	14	0.8236	184.480	5,120
WEB	ALF	I,A,N	CARBOFURAN	148	0.3	26	0,6974	156.210	4.340
WEB	ALF	I.A.N	CARBOFURAN	106	0.4	43	0.5510	123,410	3,430
WEB	ALF	I.A.N	CARBOFURAN	89	0.5	52	0.4863	108,940	3,030
WEB	ALF	I,A,N	CARBOFURAN	71	0.6	82	0.3209	71.870	2,000
WEB	COR	H	METOLACHLOR	259	0,2	103	0.0282	18.930	1 890
WEB	COR	H	METOLACHLOR	148	0.3	435	0.0000	0.000	0.000
WEB	COR	H	METOLACHLOR	106	0.4	485	0.0000	0.000	0.000
WEB	COR	ï	FONOFOS	259	0,2	454	0.0009	0.210	0.010
WEB	COR	Î	FONOFOS	148	0.3	840	0.0000	0.000	0.000
WEB	COR	Î	FONOFOS	106	0.4	1193	0.0000	0.000	0.000
WEB	ORC	Ē	BENOMYL	259	0.2	268	0.4612	51.650	0.000
WEB	ORC	Ê	BENOMYL	148	0.3	326	0,3900	43.680	
WEB	ORC	F	BENOMYL	106	0.4	357	0,3566	39,940	
WEB	ORC	F	BENOMYL	89	0,5	390	0.3242	36,310	
WEB	ORC	F	BENOMYL	71	0.6	668	0.1453	16.270	
WEB	ORC	F	CHLOROTHALONIL	259	0.2	995	0,0000	0.000	0.000
WEB	ORC	ī	AZINPHOS-METHYL		0.2	661	0.0000	0.000	
WEB	ORC	Ĩ	AZINPHOS-METHYL		0.3	1311	0.0000	0.000	
WEB	ORC	ī	AZINPHOS-METHYL		0.4	1738	0,0000	0.000	
WEB	ORC	Ī	CHLORPYRIFOS	259	0,2	1670	0.0000	0,000	
WEB	ORC	ĩ	ENDOSULFAN	259	0.2	2049	0.0000	0,000	
WEB	ORC	Ī	ENDOSULFAN	148	0,3	2049	0.0000	0.000	
WEB	ORC	Ī	ENDOSULFAN	106	0.4	2049	0.0000	0.000	
WEB	ORC	ī	METHIDATHION	259	0.2	152	0.0066	1,480	
WEB	VEG	Ē	BENTAZON	259	0.2	320	0.0000	0.000	
WEB	VEG	H	BENTAZON	148	0.3	329	0.0000	0.000	
WEB	VEG	H	BENTAZON	106	0.4	336	0.0000	0.000	
WEB	VEG	Ĥ	EPTC	259	0.2	407	0.0001	0.050	
WEB	VEG		EPTC	148	0.3	754	0.0000	0.000	
WEB	VEG	H	EPTC	106	0.4	894	0.0000	0.000	
WEB	VEG	<u>н</u> н	TRIFLURALIN	259	0.2	2056	0.0000	0.000	0,000
WEB	VEG	I	MALATHION	259	0.2	2006	0.0000	0,000	0.000
WEB	SGR	H	2.4~D ACID	259	0.2	2000	0.1088	24,380	0.350
WEB	SGR	H	2.4-D ACID	148	0.3	39	0.0670	15.000	0.210
WEB	SGR	H	2,4-D ACID	106	0.4	45	0.0442	9,900	0.140
WEB	SGR	H	2,4-D ACID	89	0.5	52	0.0272	6.090	0.090
WEB	SGR	Н	2,4-D ACID	71	0.5	375	0.0000	0,000	0,000
11111	DOL	ц Ц	A'4-D VOID	11	0.0	575	0.0000	0.000	0.000

.

.

.

-

ï

Table 16. CMLS Simulations: Sprinkler Irrigation

					•			•
COUNTY	CROP	Туре	PESTICIDE	UC	t(days)	RA	C(ppb)	RATIO
			NAME		2 m	2 m	2 m	2 m
CAC	ALF	H	HEXAZINONE	60	146	0.3248	97,50	0.464
CAC	ALF	Н	HEXAZINONE	72	367	0.0592	17.80	0.085
CAC	ALF	H	HEXAZINONE	84	406	0.0439	13.20	0.063
CAC	ALF ALF	H H	METRIBUZIN	60 70	124	0.0570	9.60	0.055
CAC CAC	ALF	н Н	METRIBUZIN METRIBUZIN	72 84	351 399	0.0003	0.10	0.000 0.000
CAC	ALF		CARBOFURAN	60	94	0.2717	0.00 60,90	1,690
CAC	ALF		CARBOFURAN	72	135	0.1539		0.958
CAC	ALF		CARBOFURAN	84	337	0.0094	2.10	0.058
CAC	COR	H H	ALACHLOR	60	699	0.0000	0.00	0.000
CAC	COR	н	ALACHLOR	72	839	0.0000	0.00	0.000
CAC	COR	H	ALACHLOR	84	899	0.0000	0.00	0.000
CAC	COR	H	ATRAZINE	60	480	0.0039	1,80	0.583
CAC	COR	H	ATRAZINE	72	646	0.0006	0.30	0,086
CAC	COR	н	ATRAZINE	84	717	0,0003	0,10	0.038
CAC	COR	н	CYANAZINE	60	790	0,0000	0,00	0.000
CAC	COR	н	CYANAZINE	72	871	0.0000	0.00	0.000
CAC	COR	H	CYANAZINE	84	960	0.0000	0.00	0.000
CAC	COR	н	METOLACHLOR	60	800	0.0000	0.00	0.000
CAC	COR	H	METOLACHLOR	72	874	0.0000	0.00	0.000
CAC	COR	H	METOLACHLOR	84	1015	0.0000	0,00	0.000
CAC	SGR	H	2,4-D ACID	60	379	0.0000	0,00	0.000
CAC	SGR	Н	2,4-D ACID	72	394	0.0000	0.00	0.000
CAC	SGR	н	2,4-D ACID	84	529	0,0000	0.00	0.000
CAC	SGR.	н	DICAMBA	60	351	0,0000	0.00	``0.000
CAC	SGR	н	DICAMBA	72	366	0.0000	0.00	0.000
CAC	SGR	H	DICAMBA	84	394	0.0000	0.00	0.000
CAC	SGR	н	METSULFURON	60	430	0.0834	0.10	
CAC	SGR	H	METSULFURON	72	614	0,0288	0.00	
CAC	SGR	H	METSULFURON	84	673	0.0205	0,00	
DAV	ALF	н	HEXAZINONE	60	405	0.0442		0.063
DAV	ALF	Н	HEXAZINONE	72	444	0.0327	9.80	0.047
DAV	ALF	н	HEXAZINONE	84	534	0.0164	4.90	0.023
DAV	ALF	Н	SETHOXYDIM	60	379	0.0000		
DAV	ALF	Н	SETHOXYDIM	72	419	0.0000		
DAV	ALF	H	SETHOXYDIM	84	498	0.0000		
DAV	ALF		CARBOFURAN	60	296	0.0165	3.70	0.103
DAV	ALF		CARBOFURAN	72	335	0.0096	2.20	0.060
DAV	ALF		CARBOFURAN	84	384	0.0049	1.10	0.030
DAV	COR	H	ALACHLOR	60	1081	0.0000	0.00	0.000
DAV	COR	н	ALACHLOR	72 84	1179	0.0000	0.00	0.000
DAV DAV	COR	В	ALACHLOR	60	1305		0.00	0.000
DAV	COR COR	В Н	METOLACHLOR	72	1169	0.0000	0.00	0.000
DAV	COR	H	METOLACHLOR	84	1305	0.0000	0.00	0.000
DAV	POT	н	METOLACHLOR METOLACHLOR	60	1428 1187	0.0000	0.00 0.00	0.000
DAV	POT	H	METOLACHLOR	72	1305	0.0000	0.00	0.000 0.000
DAV	POT	H	METOLACHLOR	84	1445	0.0000	0.00	0.000
DAV	POT	H	METRIBUZIN	60	455	0.0000	0.00	0,000
DAV	POT	H	METRIBUZIN	72	599	0.0000	0.00	0.000
DAV	POT	H	METRIBUZIN	84	680	0,0000	0.00	0.000
DAV	POT	I,N	ALDICARB	60	410	0.0001	0.00	0,003
DAV	POT	I,N	ALDICARB	72	449	0.0000	0.00	0.001
DAV	POT	I,N	ALDICARB	84	539	0.0000	0.00	0.000
DAV	VEG	H H	BENTAZON	60	489	0.0000	0,00	0.000
DAV	SGR	H	2,4-D ACID	60	410	0.0000	0,00	0.000
DAV	SGR	H	2,4-D ACID	72	670	0.0000	0,00	0.000
DAV	SGR	Ĥ	2,4-D ACID	84	678	0.0000	0,00	0.000
-		-		- •				

Abbreviations: A = acaricide; H = herbicide; I = insecticide; N = nematicide; ALF = alfalfa; COR = corn ORC = orchards; POT = potato; SGR = Small grains; VEG = Vegetables; CAC = Cache county; DAV = Davis county; SEV = Sevier county; UTA = Utah county; WAS = Washington county; WEB = Weber county; t = travel time; RA = Relative Amount of Pesticide Remaining in the soil when the chemical front arrives at a given depth; d = average depth of water infiltrated in the soil; UC = uniformity coefficient; C = potential pesticide concentration in water table assuming a mixing volume of 500 liters of water; RATIO = C / h.a.l.

Table 16. CMLS Simulations: Sprinkler Irrigation (cont.)

COUNTY	CROP	Турө	PESTICIDE	ບດ	t(days)	RA	C(ppb)	RATIO
			NAME		2 m	2 m	2 m	2 m
SEV	ALF	н	HEXAZINONE	60	466	0.0276	8,30	0.040
SEV	ALF	H	HEXAZINONE	72	532	0.0166	5.00	0.024
SEV	ALF	н	HEXAZINONE	84	1006	0.0004	0,10	0.001
SEV	ALF	H	METRIBUZIN	60	191	0.0121	2.00	0.012
SEV	ALF	H	METRIBUZIN	72	514	0.0000	0.00	0.000
SEV	ALF	H	METRIBUZIN	84	917	0.0000	0.00	0.000
SEV SEV	ALF ALF		CARBOFURAN CARBOFURAN	60 72	124 425	0.1792	40.20	1.115 0.017
SEV	ALF		CARBOFURAN	84	824	0.0000	0.00	0.000
SEV	COR	H, M, M	ATRAZINE	60	845	0.0001	0.00	0.009
SEV	COR	Ë	ATRAZINE	72	1887	0.0000	0.00	0.000
SEV	COR	H	ATRAZINE	84	2071	0.0000	0.00	0.000
SEV	COR	H	DICAMBA	60	414	0.0000	0.00	0.000
SEV	COR	н	DICAMBA	72	467	0.0000	0.00	0.000
SEV	COR	Ħ	DICAMBA	84	1877	0.0000	0.00	0.000
SEV	COR	I	FONOFOS	60	2068	0.0000	0.00	0.000
SEV	COR	I	FONOFOS	72	2068	0.0000	0.00	0.000
SEV	COR	I	FONOFOS	84	2068	0.0000	0.00	0.000
SEV SEV	COR COR		CARBOFURAN CARBOFURAN	60	449	0.0020	0.90	0.025
SEV	COR		CARBOFURAN	72 84	803 1943	0.0000	0.00 0.00	0.000 0.000
SEV	SGR	H	2,4-D ACID	60	730	0.0000	0.00	0.000
SEV	SGR	H	2,4-D ACID	72	1096	0.0000	0.00	0.000
SEV	SGR	H	2,4~D ACID	84	2046	0.0000	0,00	0.000
SEV	SGR	Ï	BARBAN	60	746	0.0000	0.00	
SEV	SGR	I	BARBAN	72	1128	0.0000	0,00	
SEV	SGR	I	BARBAN	84	2071	0.0000	0.00	
UTA	COR	H	2,4-D ACID	60	422	0.0000	0,00	0.000
UTA	COR	H	2,4-D ACID	72	490	0.0000	0.00	0.000
UTA	COR	H	2,4-D ACID	84	662	0.0000	0.00	0.000
UTA	COR	Н	ATRAZINE	60	728	0.0002	0.10	0.033
UTA UTA	COR COR	ਸ ਸ	ATRAZINE ATRAZINE	72	871 971	0.0000	0.00	0.006
UTA	SGR	н	2,4-D ACID	84 60	390	0.0000	0.00 0.00	0.002 0.000
UTA	SGR	н	2,4-D ACID	72	601	0.0000	0.00	0.000
UTA	SGR	н	2,4-D ACID	84	654	0.0000	0.00	0.000
UTA	SGR	H	DICAMBA	60	371	0.0000	0.00	0.000
UTA	SGR	н	DICAMBA	72	399	0.0000	0.00	0.000
UTA	SGR	Н	DICAMBA	84	616	0.0000	0.00	0.000
WAS	ALF	Н	HEXAZINONE	60	143	0.3324		0.475
WAS	ALF	H	HEXAZINONE	72	184	0.2424		0.346
WAS	ALF	H	HEXAZINONE	84	487	0.0235	7.10	0.034
WAS	ALF	H	METRIBUZIN	60	136	0.0432	7.30	0.042
WAS WAS	ALF ALF	H H	METRIBUZIN METRIBUZIN	72 84	166 469	0.0216	3.60 0.00	0.021 0.000
WEB	ALF	H	HEXAZINONE	60	303	0.0969		0.139
WEB	ALF	H	HEXAZINONE	72	335	0.0758		0.108
WEB	ALF	н	HEXAZINONE	84	358	0.0635		0.091
WEB	ALF	H	METRIBUZIN	60	149	0.0320	5.40	0.031
WEB	ALF	н	METRIBUZIN	72	177	0.0167	2.80	0.016
WEB	ALF	Н	METRIBUZIN	84	409	0.0001	0.00	0.000
WEB	ALF		CARBOFURAN	60	60	0.4353	97.50	2.708
WEB	ALF		CARBOFURAN	72	101	0.2466		1.534
WEB	ALF		CARBOFURAN	84	303	0.0150	3.40	0.093
WEB	COR	H	METOLACHLOR	60	818	0.0000	0,00	0.000
WEB WEB	COR	H H	METOLACHLOR	72	888 1056	0.0000	0.00	0.000
WEB	COR COR	л I	METOLACHLOR FONOFOS	84 60	1056 1665	0.0000	0.00 0.00	0.000
WEB	COR	I	FONOFOS	72	2066	0.0000	0.00	0.000
WEB	COR	Î	FONOFOS	84	2066	0.0000	0.00	0.000
WEB	SGR	Ĥ	2,4-D ACID	60	374	0.0000	0.00	0.000
WEB	SGR	H	2,4-D ACID	72	388	0,0000	0.00	0.000
WEB	SGR	H	2,4-D ACID	84	524	0.0000	0.00	0.000

**

.

.

÷

Appendix B. Pesticide Library

.

•

Type ¹ Health Ad	visory (ppb)
-----------------------------	--------------

Common Name	:2,4-D ACID	H	70
Partition Coefficient			
Half-Life	:10 days		
Trade Name	: DACAMINE		
Trade Name	:.		
Trade Name Trade Name			
ITade Malle	1.		
Common Name	:2,4-D ESTER	н	70
Partition Coefficient			
Half-Life	:10 days		
Trade Name	AQUA KLEEN		
Trade Name	:WEEDONE		
Trade Name Trade Name	: EMULSAMINE		
Irade Name	:.		
Common Name	:2,4-D AMINE SALT	В	70
Partition Coefficient		•	
Half-Life	:10 days		
Trade Name	:WEEDAR		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	:2,4-DB ESTER	н	70
Partition Coefficient			/0
Half-Life	:10 days		
Trade Name	BUTYRAC ESTER		
Trade Name	: BUTOXONE		
Trade Name	:.		
Trade Name	:.		
C N	O L-DE ANINE	н	70
Common Name Partition Coefficient	:2,4-DB AMINE	п	70
Half-Life	:10 days		
Trade Name	:.		
Trade Name	• •		
Trade Name	:.		
Trade Name	:.		
Corren None	: ALACHLOR	u	1 6
Common Name Partition Coefficient		Н	1.5
Half-Life	:15 days		
Trade Name	ALANEX		
Trade Name	PILLARZO		
Trade Name	:LASSO		
Trade Name	:.		
Comer News	AT DICARD	Ŧ	10
Common Name	:ALDICARB	I	10
Partition Coefficient Half-Life	:30 days		
Trade Name	: TEMIK		
Trade Name	:TEMIK15G		
Trade Name	:OMS 771		
Trade Name	:UC21149		
		_	
Common Name	ASSERT	H	
Partition Coefficient Balf-Life			
Hali-Liie Trade Name	:35 days		
Trade Name	· · · · · · · · · · · · · · · · · · ·		
	•••		
Common Name	ATRAZINE	Н	3
Partition Coefficient			
Half-Life	:60 days		
Trade Name	AATREX		
Trade Name	: GRIFFEX		
Trade Name Trade Name	:ATRANEX :VECTAL SC		
ITAGE Mana	. TOTAL DO		

:

¹ I-Insecticide; H-Herbicide; F-Fungicide; G-Growth Regulator; M-Miticide

-

Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name	:AZINPHOS-METHYL :1000 ml/g OC :40 days :GUTHION :.
Trade Name	1.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:BARBAN :30 ml/g OC :30 days :CARBYNE :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BENEFIN :9000 ml/g OC :40 days :BATAN :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	;BENOMYL :190 ml/g OC :240 days :BENLATE :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:BENSULIDE :10000 ml/g OC :120 days :FREFAR :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:BENTAZON :35 ml/g OC :20 days :BASAGRAN :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:BROMACIL ACID :32 m1/g OC :60 days :HYVAR XL :BOROCIL :UREABOR :HYVAR X
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BROMOXYNIL :190 ml/g OC :5 days :BROMINAL :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BUTYLATE :126 ml/g OC :12 days :SUTAN PLUS :. :.

ļ

I

Health Advisory (ppb)

Type

F

H

H .-

н

H

H

-

٠

đ

		-	
Common Name	:CAPTAN	F	
Partition Coefficient Half-Life			
	:3 days :CAPTAN		
	ORTHOCIDE		
	PILLARCAP		
Trade Name	: VONDCAPTAN		
Common Name	:CARBARYL	I	700
Partition Coefficient	:200 m1/g OC	.*	
Half-Life	:10 days		
Trade Name	:SEVIN		
Trade Name	:.		
Trade Name Trade Name	· ·		
	:.		
Common Name	: CARBOFURAN	I	36
Partition Coefficient			
	:50 days		
	FURADAN		
	:BAY 70143 ;YALTOX		
Trade Name	CURATERR		
Common Name	: CHLORDANE	I	
Partition Coefficient			
Half-Life Trade Name	:3500 days :CHLORDAN		
Trade Name	:ORTHO-KLOR		
Trade Name	BELT		
Trade Name	:.		
Common Name	:CHLOROTHALONIL	F	1.5
Partition Coefficient		-	1.5
Half-Life	:30 days		
Trade Name	: BRAVO		
Trade Name	:.		
Trade Name Trade Name	:.		
Irade Name	:.		
Common Name	:CHLORPYRIFOS	I	
Partition Coefficient			
Half-Life	:30 days		
Trade Name Trade Name	:LORSBAN		
Trade Name Trade Name	: BRODAN : DURSBAN		
Trade Name	:ERADEX		
Common Name	: CHLORSULFURON	H	
Partition Coefficient			
Half-Life Trada Nama	:160 days :GLEAN		
Trade Name Trade Name	:TELAR		
Trade Name	:.		
Trade Name	·· ·		
Common Name	CLOPYRALID	н	
Partition Coefficient		11	
Half-Life	:30 days		
Trade Name	: STRINGER		
	1. .		
Trade Name	:.		
Trade Name	:.		
Common Name	CYANAZINE	н	9
Partition Coefficient			
Balf-Life	:14 days		
Trade Name	:BLADEX		
Trade Name Trade Name	FORTROL		
Trade Name Trade Name	:SD 15418 :WL 19805		
TING Hame	18005	~	

. . .,

Type

Health Advisory (ppb)

96

•

Common Name	: DAMINOZIDE	G	
Partition Coefficient		-	
Half-Life	:7 days		
Trade Name	ALAR		
Trade Name	; ALAR		
Trade Name	:.		
Trade Name	:.		
Common Name	:DCPA	H	3500
Partition Coefficient			
Half-Life	:100 days		
Trade Name	: DACTHAL		
Trade Name Trade Name	:.		
Trade Name	:. :.		
Common Name	: DEMENTON	I	35
Partition Coefficient		-	+-
Half-Life	:30 days		
Trade Name	:METASYSTOX		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	:DIAZINON	Ĩ	0.63
Partition Coefficient			
Half-Life	:40 days		
Trade Name	: BASUDIN		
Trade Name Trade Name	:DIANON :SPECTRACIDE		
Trade Name	: .		
II ade trane	• •		
Common Name	:DICAMBA	H	9
Partition Coefficient	:2 ml/g OC		-
Half-Life	:14 days		
Trade Name	BANVEL D		
Trade Name	: BANEX		
Trade Name	:DIANAT		
Trade Name	:WEEDMASTER		
Common Name			
	L DTCI ARAD_METUVI		
	:DICLOFOP-METHYL	Н	
Partition Coefficient	:48500 ml/g OC	н	
Partition Coefficient Half-Life	:48500 ml/g OC :2 days	Н	
Partition Coefficient Half-Life Trade Name	:48500 ml/g OC :2 days :BOELON	Н	
Partition Coefficient Half-Life Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :.	н	
Partition Coefficient Half-Life Trade Name	:48500 ml/g OC :2 days :BOELON :. :.	н	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :.	н	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name	:48500 ml/g OC :2 days :HOELON :. :. :. :. :.	H	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient	:48500 ml/g OC :2 days :HOELON :. :. :. :. :.		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life	:48500 ml/g OC :2 days :BOELON :. :. :. :DIELDRIN :8400 mL/g OC :1000 days		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name	:48500 ml/g OC :2 days :BOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. : : : : : : : : : : : : : : : :		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDREX :DIELDREX :DIELDRITE		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. : : : : : : : : : : : : : : : :		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT		
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT :54500 ml/g OC	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDREX :DIELDRITE :OCTALOX :DIFENZOQUAT :54500 ml/g OC :100 days	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name	:48500 ml/g OC :2 days :BOELON :. :. : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I H	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Common Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I H	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT :54500 ml/g OC :100 days :AVENGE :. :. :. :DIMETHOATE :8 ml/g OC :7 days	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT :54500 ml/g OC :100 days :AVENGE :. : : : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name	:48500 ml/g OC :2 days :BOELON :. : : : : : : : : : : : : : : : : : :	I	
Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:48500 ml/g OC :2 days :HOELON :. :. :DIELDRIN :8400 ml/g OC :1000 days :ALVIT :DIELDRITE :OCTALOX :DIFENZOQUAT :54500 ml/g OC :100 days :AVENGE :. : : : : : : : : : : : : : : : : : :	I	

Health Advisory (ppb)

Туре

.

•

Туре

Ι

Common Name	; DINOSEB
Partition Coefficient	
Half-Life	:30 days
Trade Name	:DNBP
Trade Name	: BASANITE
Trade Name	:KILOSEB
Trade Name	: CHEMOX
Common Name	:DISULFOTON
Partition Coefficient	:1600 m1/g OC
Half-Life	:5 days
Trade Name	:DISYSTON
Trade Name	:DITHIOSYSTOX
Trade Name	: THIODEMETON
Trade Name	:DITBIODEMETON
Common Name	: DIURON
Partition Coefficient	
Half-Life	:90 days
Trade Name	KARMEX
Trade Name	UROX D
Trade Name	:DIREX 4L
Trade Name	:DIUROL
a	
Common Name	:ENDOSULFAN
Partition Coefficient Ealf-Life	:2040 m1/g OC :120 days
Trade Name	THIODAN
Trade Name	:.
Trade Name	··· :.
Trade Name	:.
Common Name	: ENDRIN
Partition Coefficient	:8100 ml/g OC
Half-Life	:4300 days
Trade Name Trade Name	:ENDREX :HEXADRIN
Trade Name	: HEAMDRIN
Trade Name	:. :.
Common Name	:EPTC
Partition Coefficient	
Half-Life	:30 days
Trade Name	:EPTAM
Trade Name Trade Name	÷.
Trade Name	:. :.
	••
Common Name	: ESFENVALERATE
Partition Coefficient	:5300 m1/g OC
Half-Life	:35 days
Trade Name	:ASANA
Trade Name	:.
Trade Name	:.
Trade Name	
	••
	• ETHOPROP
Common Name	:ETHOPROP :70 ml/g OC
	:70 ml/g OC
Common Name Partition Coefficient	
Common Name Partition Coefficient Half-Life	:70 ml/g OC :50 days
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name	:70 ml/g OC :50 days :MOCAP
Common Name Partition Coefficient Half-Life Trade Name Trade Name	:70 mL/g OC :50 days :MOCAP :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:70 ml/g OC :50 days :MOCAP :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name	:70 ml/g OC :50 days :MOCAP :. :. :FENVALERATE
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient	:70 ml/g OC :50 days :MOCAP :. : : : : : : : : : : : : : : : : : :
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name	:70 ml/g OC :50 days :MOCAP :. :. :. :FENVALERATE :5300 ml/g OC :35 days
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life	:70 ml/g OC :50 days :MOCAP :. : : : : : : : : : : : : : : : : : :
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name	:70 ml/g OC :50 days :MOCAP :. : : : : : : : : : : : : : : : : : :
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name Trade Name	:70 ml/g OC :50 days :MOCAP :. :FENVALERATE :5300 ml/g OC :35 days :PYDRIN :.

-

.

Health Advisory (ppb) I

0.3

н I

I

Н -. -

I

I .

ı٠

•

Common Name	FLUAZIFOP-P-BUTYL	H	
Partition Coefficient			
Ralf-Life	:20 days		
Trade Name	FUSILADE		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	FONOFOS	I	14
Partition Coefficient	:532 m1/g OC		
	:45 days		
	DYFONATE		
Trade Name	:N-2790		
Trade Name	:.		
Trade Name	:.		
Common Name	:GLYPHOSATE	H	700
Partition Coefficient	:24000 ml/g OC		
	:47 days		
	ROUNDUP		
	1.		
Trade Name	:.		
Trade Name	:.		
Common Name	: HEPTACHLOR	I	
Partition Coefficient	:24000 m1/g OC		
	:2000 days		
Trade Name	: DRINOX		
Trade Name	: HEPTOX		
Trade Name	:HEPTAMUL		
Trade Name	÷.		
Common Name	:HEXAZINONE	н	210
Partition Coefficient	:54 m1/g OC		
Half-Life	:90 days		
Trade Name	: VELPAR		
Trade Name	:.		
Trade Name	1.		
Trade Name	:.		
Common Name	LINDANE	I	
Partition Coefficient			
Half-Life	:400 days		
Trade Name	GAMMA BHC		
Trade Name	: ISOTOX		
Trade Name	: LINTOX		
Trade Name	:SILVANOL		
Common Name	:LINURON	н	
Partition Coefficient			
Half-Life	;60 days		
Trade Name	AFALON		
Trade Name	:HOE 2810		
Trade Name	LOROX L		
Trade Name	:LINUREX		
Common Name	:MALATHION	I	140
Partition Coefficient		-	140
	:1 days		
Half-Life			
	:MERCAPTOTHION ;CALMATHION		
Half-Life Trade Name	:MERCAPTOTHION		
Half-Life Trade Name Trade Name	:MERCAPTOTHION :CALMATHION		
Half-Life Trade Name Trade Name Trade Name Trade Name	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION	F	
Half-Life Trade Name Trade Name Trade Name Trade Name Common Name	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION :MANEB	F	
Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION :MANEB :1000 ml/g OC	F	
Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION :MANEB :1000 ml/g OC :60 days	F	
Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION :MANEB :1000 ml/g OC	F	
Half-Life Trade Name Trade Name Trade Name Trade Name Common Name Partition Coefficient Half-Life Trade Name	:MERCAPTOTHION :CALMATHION :CARBOFOS :CYTHION :MANEB :1000 ml/g OC :60 days :DITHANE	F	

Health Advisory (ppb)

Type

-

		Туре	Health Advisory (p
C N			
Common Name	MCPA ESTER	Н	3.6
Partition Coefficient			
Half-Life	:14 days		
Trade Name	:WEEDONE		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	: METHAMIDOPHOS	I	
Partition Coefficient		-	
Half-Life	:6 days		
Trade Name	:MONITOR		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	:METHIDATHION	I	
Partition Coefficient	:400 m1/g OC		
Half-Life	:21 days		
Trade Name	:SUPRACIDE		
Trade Name	:.		
Trade Name	:.		
Trade Name	:.		
Common Name	METHYL PARATHION	I	2
Partition Coefficient	:5100 m1/g OC		
Half-Life	:5 days		
Trade Name	:METAFOS		
Trade Name			
	: PARATHION-METHYL		
Trade Name	DEVITHION		
Trade Name	:NITROX 80		
Common Name	METOLACHLOR	н	10
Partition Coefficient	:200 ml/g OC		
	:20 days		
Trade Name	:DUAL		
Trade Name			
Trade Name			
Trade Name	:. :.		
7		-	
Common Name	METHOMIL	I	
Partition Coefficient	:72 ml/g OC		•
Half-Life	:33 days		
Trade Name	LANNATE		
Trade Name	:.		
Trade Name			
Trade Name	1. 1.		
Common Name	:METRIBUZIN	H	175
Partition Coefficient			
Half-Life	:30 days		
Trade Name	: LEXONE		
Trade Name	: SENCOR		
Trade Name	:.		
Trade Name	··· :.		
Common Name	METSULFURON	н	
		ш	
Partition Coefficient			
Half-Life	:120 days		
Trade Name	:ALLY		
Trade Name	: ESCORT		
Secolar Name	:. ·		
Trade Name	:.		
Trade Name Trade Name			
Trade Name	MEVINEHOS	Ϋ́	
Trade Name Common Name	MEVINPHOS	I	
Trade Name Common Name Partition Coefficient	:1 m1/g OC	I	
Trade Name Common Name Partition Coefficient Half-Life	:1 ml/g OC :3 days	I	
Trade Name Common Name Partition Coefficient Half-Life Trade Name	:1 m1/g OC	I	
Trade Name Common Name Partition Coefficient Half-Life	:1 ml/g OC :3 days	I	
Trade Name Common Name Partition Coefficient Half-Life Trade Name	:1 ml/g OC :3 days :PHOSDRIN	I	

- -----

--

ļ

100

Type Health Advisory (ppb)

Common Name Partition Coefficient Half-Life	:NAPTALAM :30 ml/g OC :14 days
Trade Name	:ALANAP
Trade Name	:.
Trade Name Trade Name	:.
ITAGE Rane	:.
Common Name Partition Coefficient Half-Life	:OXAMYL :25 ml/g OC :4 days
Trade Name	:VYDATE
Trade Name	:VYDATE L
Trade Name	:VYDATE G
Trade Name	:HA-2214
Common Name Partition Coefficient	:OXYDEMETON-METHYL :1 ml/g OC
Half-Life	:10 days
Trade Name	:MSR
Trade Name	:METASYSTOX
Trade Name	••
Trade Name	:.
Common Name	: OXYFLUORFEN
Fartition Coefficient	
Half-Life	:35 days
Trade Name	:GOAL
Trade Name Trade Name	· .
Trade Name	:. :.
11000 11000	• •
Common Name	: PARAQUAT
Partition Coefficient	
Half-Life	:500 days
Trade Name Trade Name	: GRAMOXONE
Trade Name	: GRAMOXONE
Trade Name	··· •·
Common Name	: PARATHION
Partition Coefficient Half-Life	:5000 m1/g OC :14 days
Trade Name	THIOPHOS
Trade Name	: BLADAN
Trade Name	ORTHOPHOS
Trade Name	: PANTHION
Common Name	: PENDIMETHALIN
Partition Coefficient Half-Life	:24300 m1/g OC :90 days
Trade Name	: PROWL
Trade Name	:.
Trade Name	:.
Trade Name	:.
Common Name	: PERMETHRIN
Partition Coefficient	
Half-Life	:32 days
Trade Name	: POUNCE
Trade Name	: AMBUSH
Trade Name Trade Name	:. :.
	••
Common Name	: PHORATE
Partition Coefficient	
Half-Life	:90 days
Trade Name Trade Name	: THIMET :RAMPART
Trade Name	:AGRIMET
Trade Name	:GEOMET

--

н

I

- Е
- н

н. 35

- н
- I
- I

Туре	Health	Advisory	(ppb)

100

52

35

Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:PHOSPHAMIDON :1 ml/g OC :17 days :SWAT :. :.		I
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	: PHOSMET		I
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	: FICLORAM : 15 m1/g OC : 908 days : TORDON : TORDON 22K : AMDON : GRAZON		H
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:PROMETON :300 ml/g OC :120 days :PRAMITOL :. :.		H
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:PRONAMID :990 ml/g OC :60 days :KERB :. :.		H
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	: FROPARGITE	-	м
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:SETHOXYDIM :50 ml/g OC :10 days :POAST :. :		H
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:SIMAZINE :138 ml/g OC :75 days :AQUAZINE :PRINCEP :SIMADEX :SIM-TROL		Ħ
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:TERBACIL :55 ml/g OC :120 days :SINBAR :. :.		н

.

-

102

Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:TERBUFOS :3000 ml/g OC :5 days :COUNTER :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name	:TRIALLATE :2400 ml/g CC :82 days :FARGO :. :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:TRIADIMEFON :273 ml/g OC :21 days :BAYLETON :. :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:TRIFLURALIN :7000 ml/g OC :50 days :ELANCOLAN :TREFANOCIDE :TREFLAN :TRIM
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:TRIMETHACARB :200 ml/g OC :10 days :BROOT :. :.
Common Name Partition Coefficient Half-Life Trade Name Trade Name	:VERNOLATE :330 ml/g OC :12 days :SAFER :SURPASS

ļ

.

•

Type Health Advisory (ppb) I 0.18

H F

н 2

H

er.

Appendix C. Soil Library

-

٠

Soil Library

Soil Nam	e : HAR	RISBURG	Ident	ifier : UTU	003	
County	: Was	hington	Regio	n :Dix	ie	
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Con	tent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.05	0.22	1.70	13.0	5.5	40.0
2	0.41	0.14	1.66	13.5	6.0	40.0
3	0.66	0.09	1.69	13.5	6.0	40.0
4	0.89	0.21	1.59	13.5	6.5	40.0
5	0.99	0.10	1.59	13.5	6.5	40.0

Soil Name : KIDMAN County : Davis		Identifier : UT0395 Region : North Central				
						Horizon
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.28	1.20	1.52	18.0	6.4	40.0
2	0.43	0.70	1.52	18.5	6.4	40.0
3	0.53	0.80	1.53	20.0	6.9	40.0
4	0.69	0.40	1.54	22.0	7.0	40.0
5	0.94	0.20	1.40	21.5	5.3	40.0
6	1.24	0.20	1.45	21.5	5.7	40.0
7	1.47	0.10	1.42	18.0	4.4	40.0

Soil Nam	e : LAY	TON	Ident	ifier : UTO3	38	
County	: Web	er	Regio	n : Nort	th Central	
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.18	0.70	1.55	12.5	3.7	40.0
2	0.38	0.50	1.55	13.0	4.0	40.0
3	0.58	0.20	1.55	14.0	4.5	40.0
4	0.74	0.20	1.55	12.5	4.0	40.0
5	1.04	0.10	1.54	12.0	3.3	40.0
6	1.68	0.10	1.52	8.0	1.7	42.0

Soil Name : LEWISTON		Identifier : UT0546				
County	: Cac	he	Regio	n :Nor	th Central	
Korizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.25	0.60	1.55	14.0	7.0	41.0
2	0.33	0.42	1.66	16.0	11.0	41.0
3	0.56	0.39	1.59	22.0	14.0	41.0
4	0.81	0.16	1.64	18.0	12.0	41.0
5	1.52	0.08	1.58	12.0	6.0	41.0

Soil Nam County	e : SEV : Sev			ifier:SE1 n:Sout	th Central	
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Con	tent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.15	1.00	1.35	20.0	10.0	43.0
2	0.30	0.70	1.35	20.0	10.0	43.0
3	0.60	0.30	1.35	20.0	8.0	43.0
4	0.90	0.20	1.35	20.0	10.0	43.0
5	1.00	0.10	1.35	20.0	10.0	43.0

Soil Name : VINEY County : Utah	ARD	Identi Regior	fier : UTO3	50 h Central	
	rganic Carbon	Bulk Density			ent. (%) at
(m)	(%)	(Mg/cu meter)		-1.5 MPa	
1 0.18	0.81	1.70	16.0	8.0	40.0
2 0.33	0.47	1.70	16.0	8.0	40.0
3 0.61	0.31	1.70	17.0	9.0	40.0
4 0.89	0.21	1.70	18.0	9.0	40.0
5 1.07	0.21	1.70	19.0	10.0	40.0
6 1.52	0.12	1.70	16.0	8.0	40.0
Soil Name : SAND		Identi	fier : SAND		
Horizon Depth O	rganic Carbon	Bulk Density			
(m)	(%)	(Mg/cu meter)	-0.01 MPa	- 1. 5 MPa	Saturation
1 0.25	1.00 0.10	1.60	9_1	3.3	39.6
2 1.50	0.10	1.60	9.1	3.3	39.6
Soil Name : LOAMY	CAND	7 Jan 45	fine - 1014		
Horizon Depth O			fier : LOAM		ant (4) at
morizon Depth U (m)	(%)	(Mg/cu meter)			
1 0.25	1.20	(Mg/cu meter) 1.50	-0.07 MPa 12.5	-1.2 MPa 5.5	43.4
2 1.50	0.11	1.50	12.5	5.5	43.4
2 1.00	0.11	1.50	12.3	5.5	4314
Soil Name : SANDY	LOAM	Identi	fier : SAND	Y LOAM	
		- 11 - 1 <i>.</i>	N-1		
Korizon Depth O	rganic Carbon	Bulk Density	volumetric	Water Cont	ent, (a) at
Korizon Depth O (สา)	rganic Carbon (%)	Bulk Density (Mg/cu meter)			
	-				
(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
(m) 1 0.25	(%) 1.30	(Mg/cu meter) 1.49	-0.01 MPa 20.7	-1.5 MPa 9.5	Saturation 43.8
(m) 1 0.25	(%) 1.30	(Mg/cu meter) 1.49	-0.01 MPa 20.7	-1.5 MPa 9.5	Saturation 43.8
(m) 1 0.25 2 1.50 Soil Name : LOAM	(%) 1.30 0.12	(Mg/cu meter) 1.49 1.49 I.49 Identi	-0.01 MPa 20.7 20.7 fier : LOAM	-1.5 MPa 9.5 9.5	Saturation 43.8 43.8
(m) 1 0.25 2 1.50	(%) 1.30 0.12	(Mg/cu meter) 1.49 1.49 Identi Bulk Density	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric 1	-1.5 MPa 9.5 9.5 Water Cont	Saturation 43.8 43.8 ent, (%) at
(m) 1 0.25 2 1.50 Soil Name : LOAM	(%) 1.30 0.12	(Mg/cu meter) 1.49 1.49 I.49 Identi	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric 1	-1.5 MPa 9.5 9.5 Water Cont	Saturation 43.8 43.8 ent, (%) at
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O	(%) 1.30 0.12 rganic Carbon	(Mg/cu meter) 1.49 1.49 Identi Bulk Density	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric 1	-1.5 MPa 9.5 9.5 Water Cont	Saturation 43.8 43.8 ent, (%) at
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m)	(%) 1.30 0.12 Frganic Carbon (%)	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter)	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa	Saturation 43.8 43.8 ent, (%) at Saturation
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m) 1 0.25	(%) 1.30 0.12 Frganic Carbon (%) 1.50	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7	Saturation 43.8 43.8 ent, (%) at Saturation 46.4
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m) 1 0.25 2 1.50	(%) 1.30 0.12 mganic Carbon (%) 1.50 0.13	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric : -0.01 MPa 27.0 27.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7	Saturation 43.8 43.8 ent, (%) at Saturation 46.4
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT	(%) 1.30 0.12 mrganic Carbon (%) 1.50 0.13	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 fier : SILT	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0	(%) 1.30 0.12 mrganic Carbon (%) 1.50 0.13 LOAM urganic Carbon	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric M -0.01 MPa 27.0 27.0 fier : SILT Volumetric M	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 ent, (%) at
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m)	(%) 1.30 0.12 Prganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%)	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter)	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric : -0.01 MPa 27.0 27.0 fier : SILT Volumetric : -0.01 MPa	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 ent, (%) at Saturation
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m) 1 0.25	(%) 1.30 0.12 Prganic Carbon (%) 1.50 0.13 LOAM Prganic Carbon (%) 2.00	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric M -0.01 MPa 27.0 27.0 fier : SILT Volumetric M -0.01 MPa 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m)	(%) 1.30 0.12 Prganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%)	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter)	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric : -0.01 MPa 27.0 27.0 fier : SILT Volumetric : -0.01 MPa	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 ent, (%) at Saturation
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m) 1 0.25	(%) 1.30 0.12 Prganic Carbon (%) 1.50 0.13 LOAM Prganic Carbon (%) 2.00	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric M -0.01 MPa 27.0 27.0 fier : SILT Volumetric M -0.01 MPa 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m) 1 0.25	(%) 1.30 0.12 rganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%) 2.00 0.14	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32 1.32	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 27.0 fier : SILT Volumetric H -0.01 MPa 33.0 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3 13.3	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2 50.2
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth O (m) 1 0.25 2 1.50 Soil Name : SANDY	(%) 1.30 0.12 rganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%) 2.00 0.14 CLAY LOAM	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32 1.32 Identi	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 27.0 fier : SILT Volumetric H -0.01 MPa 33.0 33.0 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3 13.3	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2 50.2
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth O (m) 1 0.25 2 1.50	(%) 1.30 0.12 Frganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%) 2.00 0.14 CLAY LOAM Irganic Carbon	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32 1.32 Identi	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 27.0 fier : SILT Volumetric H -0.01 MPa 33.0 33.0 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3 13.3	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2 50.2
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth O (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth O (m) 1 0.25 2 1.50 Soil Name : SANDY Horizon Depth O	(%) 1.30 0.12 rganic Carbon (%) 1.50 0.13 LOAM Irganic Carbon (%) 2.00 0.14 CLAY LOAM	(Mg/cu meter) 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32 1.32 Identi Bulk Density (Mg/cu meter)	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 27.0 fier : SILT Volumetric H -0.01 MPa 33.0 33.0 33.0	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3 13.3 Y CLAY LOA Water Cont	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 46.4 ent, (%) at Saturation 50.2 M ent, (%) at
(m) 1 0.25 2 1.50 Soil Name : LOAM Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SILT Horizon Depth 0 (m) 1 0.25 2 1.50 Soil Name : SANDY Horizon Depth 0 (m)	(%) 1.30 0.12 Frganic Carbon (%) 1.50 0.13 LOAM Inganic Carbon (%) CLAY LOAM Frganic Carbon (%)	(Mg/cu meter) 1.49 1.49 1.49 Identi Bulk Density (Mg/cu meter) 1.42 1.42 Identi Bulk Density (Mg/cu meter) 1.32 1.32 Identi Bulk Density	-0.01 MPa 20.7 20.7 fier : LOAM Volumetric H -0.01 MPa 27.0 27.0 fier : SILT Volumetric H -0.01 MPa 33.0 33.0 fier : SAND Volumetric H -0.01 MPa	-1.5 MPa 9.5 9.5 Water Cont -1.5 MPa 11.7 11.7 LOAM Water Cont -1.5 MPa 13.3 13.3 Y CLAY LOA Water Cont -1.5 MPa	Saturation 43.8 43.8 ent, (%) at Saturation 46.4 46.4 ent, (%) at Saturation 50.2 50.2 M ent, (%) at Saturation

:

ł

Soil Name	: CLA	Y LOAM	Identi	ifier : CLAY	LOAM	
Horizon D		Organic Carbon				
_	(m)		(Mg/cu meter)			
	0.25		1.30	31.8	19.7	50.9
2	1.50	0.16	1.30	31.8	19.7	50.9
Soil Name	: SIL	TY CLAY LOAM	Identi	ifier : SILT	Y CLAY LOA	м
Horizon D)epth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.25	3.50	1.40	36.6	20.8	47.2
2	1.50	0.17	1.40	36.6	20.8	47.2
	- <i>-</i>					
Soil Name				ifier : SAND		
Horizon L	•	Organic Carbon				
	(m)	(%)	(Mg/cu meter)			
-	0.25		1.55		23.9	41.5
2	1.50	0.18	1.55	33.9	23.9	41.5
Soit Name	: SIL	TY CLAY	Identi	ifier : SILT	Y CLAY	
Horîzon E	Depth	Organic Carbon				
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	
	0.25		1.45	38.7	25.0	45.3
2	1.50	0.19	1.45	38.7	25.0	45.3
Soil Name	: CLA	Y	Identi	ifier : CLAY		
Horizon D	Depth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	- (%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.25	5.00	1.30	39.6	27.2	50.9
2	1.50	0.20	1_30	39.6	27.2	50.9

.

÷

Appendix D. Irrigation Schedules

هنې د

.

--

. •

Crop	Date	d(mm)	
Alfalfa			
	05/15	75	
	06/01	150	
	06/15	150	
	07/01	150	
	07/15	150	
	08/01	150	
	08/15	150	
	09/01	150	
	09/15	75	
	00/10	, .	
Corn		•• •	
	05/10	75	
	05/20	75	
	06/01	125	
	06/15	125	
	07/01	125	
	07/15	125	
	08/01	125	
	08/15	125	
	09/01	125	
	09/15	125	

}

.

Table 17. Irrigation Schedules: Alternative Pesticides

Values given in tables are from Eisele et al., 1989. Values, d, represent depth of water expresed in millimeters required for different crop, assuming a 50% of irrigation efficiency.

Crop	Date	d(mm)	
Orchards	· · · ·	<u></u>	
	05/01	75	
	05/15	100	
	06/01	125	
	06/15	125	
	07/01	125	
	07/15	125	
	08/01	125	
	08/15	125	
	09/01	125	
	09/15	125	
	10/01	125	
	10/15	100	
Potato			
	05/01	50	
	05/10	50	
	05/20	50	
	06/10	75	
	06/10	75	
	06/20	75	
	07/01	75	
	07/10	75	
	07/20	- 75	
	08/01	75	
	08/10	75	

Table 17. Irrigation Schedules: Alternative Pesticides (cont.)

- -- --

Crop	Date	d(mm)
Small Gr	ains	
	05/25	150
	06/05	150
	06/15	150
	07/01	150
	07/15	150
Vegetabl	es	
0	05/10	50
	05/15	50
	05/20	50
	05/25	50
	05/30	80
	06/04	80
	06/09	80
	06/14	80
	06/19	80
	06/24	80
	06/29	80
	07/04	80
	07/09	80
	07/14	80

•--

Table 17. Irrigation Schedules: Alternative Pesticides (cont.)

		····	
Crop	North Central	South Central	Dixie
Alfalf	à		
	05/14	05/17	05/09
	05/25	05/27	05/18
	06/07	06/07	05/25
	06/17	06/14	05/31
	06/24	06/21	06/07
	07/04	07/03	06/14
	07/15	07/11	06/20
	07/24	07/30	06/26
	08/04	08/08	07/03
	08/13	08/17	07/11
	08/22	08/26	07/18
	09/04	09/05	07/28
	***	09/22	08/06
	***	***	08/16
	***	***	08/27
	***	***	09/04
	***	***	09/13
Corn			
	06/23	06/09	
	07/08	06/29	
	07/15	07/07	
	07/23	07/15	
	07/30	07/24	-
	~ 08/06	08/02	-
	08/12	08/10	
	08/22	08/24	
	08/31	09/01	
<u> </u>	<u></u>	······	

Table 18. Irrigation Schedule^a: Furrow and Sprinkler Irrigation.

^a Average dates of irrigation considering six years of data.

٠

Crop	North Central	South Central	Dixie
Orchar	ds		
	06/12	05/07	05/14
	06/20	05/26	05/24
	06/27	06/07	06/03
	07/06	06/14	06/10
	07/13	06/21	06/17
	07/20	07/02	06/23
	07/26	07/08	06/29
	08/02	07/15	07/09
	08/08	07/31	07/15
	08/15	08/07	07/21
	08/24	08/14	07/27
	09/02	09/21	08/02
	09/18	08/28	08/08
	10/01	09/06	08/14
	***	09/22	08/21
	***	10/06	08/29
	***	***	09/06
	***	***	09/17
	***	***	09/27
	***	***	10/07
Potato		· • • • • • • • • • • • • • • • • • • •	
	04/21		
	05/08		-
	05/25		
	06/10		
	06/24		
	07/09		
	07/17		
	07/26		
	08/06		
	08/16		

٠

ļ

Table 18. Irrigation Schedule: Furrow and Sprinkler Irrigation (cont.)

Crop	North Central	South Central	
Small	grains		
	05/20	05/23	
	05/29	05/30	
	06/08	06/08	
	06/16	06/14	
	06/23	06/19	
	***	06/29	
	***	07/14	
Vegeta			
	06/10	06/04	
	06/19	06/10	
	06/26	06/16	
	07/02	06/22	
	07/08	06/28	
	07/14	07/04	
	***	07/08	
	***	07/12	

**

.

•

.

Table 18. Irrigation Schedule: Furrow and Sprinkler Irrigation (cont.)

Appendix E. Seasonal Soil-Water Budget

.

•

CROP	YEAR	REGION	SEASON	ET mm	R _{in}	d mma	Inum	T _{iw}	_dr m
ALFALFA	1980	NORTH CENTRAL	5/8-9/22	729	242	89	11	979	49
	1981		-,,	760	108	89	14	1246	59
	1982			728	165	89	12	1068	50
	1983			704	218	89	10	890	40
	1984			715	160	89	12	1068	51
	1985			754	143	89	12	1068	45
	AVG			732	173	89	12	1053	49
	1980	SOUTH CENTRAL	5/8-9/22	767	157	89	12	1068	45
	1981			779	122	89	13	1157	50
	1982			740	154	89	12	1068	48
	1983			747	125	89	13	1157	53
	1984			792	135	89	12	1068	41
	1985			766	127	89	13	1157	51
	AVG			765	137	89	13	1113	48
	1980	DIXIE	5/8-9/22	899	55	89	16	1424	58
	1981		· · ·	919	76	89	16	1424	58
	1982			886	75	89	16	1424	61
	1983			921	80	89	17	1513	67
				944			17	1513	61
	1984				47	89			
	1985			954	62	89	17	1513	62
	AVG	Aur V		921	66	89	17	1469	61
CORN	1980	NORTH CENTRAL	5/8-9/22	589	241	89	9	801	45
	1981		-,,	616	107	89	10	890	38
	1982			578	164	89	ĝ	801	38
	1983			562	217	89	7	623	27
	1983			561	159	89	8	712	31
	1985			596	142	89	9	801	34
	AVG		<u>.</u>	584	172	89	9	771	35
	1000	SOUTH CENTRAL	5/8-9/22	613	136	89	10	890	41
		SOULT CERTRAL	5/0-8/22				-		
	1981			617	121	89	10	890	39
	1982			582	152	89	8	712	28
	1983			586	123	89	9	801	33
	1984			601	138	89	8	712	24
	1985			599	126	89	10	890	41
	AVG			597	133	89	9	816	34
ORCHARDS	1980	NORTH CENTRAL	4/24-10/22	885	298	89	14	1246	65
	1981		.,	906	215	89	16	1424	73
	1982			855	273	89	13	1157	57
				837	421	89	13	1068	65
	1983								
	1984			824	258	89	13	1157	- 59
	1985			893	166	89	15	1335	60
	AVG			867	272	89	14	1231	63
	1980	SOUTH CENTRAL	4/24-10/22	930	184	89	16	1424	67
	1981		· <i>•</i>	936	204	89	16	1424	69
	1982			881	186	89	14	1246	55
	1983			889	156	89	14	1246	51
	1983			913	183	89	16	1424	69
				913	T09	09	τo	1424	
					166	80	16	1494	67
	1984 1985 			912 910	166	89	16 15	1424 1365	67 63

Table 19. Seasonal Soil-Water Budget

....

:

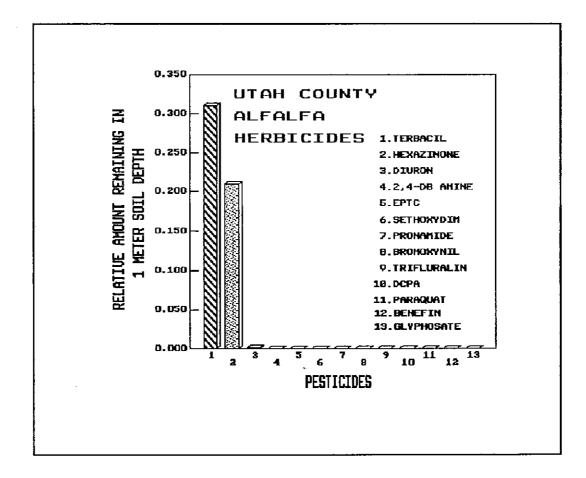
.

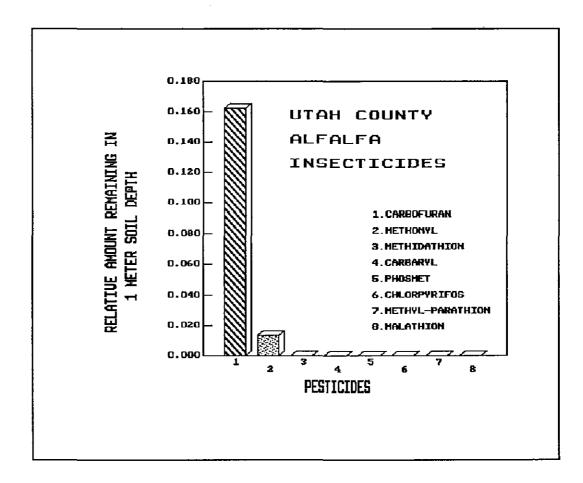
Abbreviations: ET = sesonal ET_{crop}; R_{in} = seasonal rain fall; I_{num} = number of irrigations in the season; T_{iw} = total water infiltrated in the seson; d = average water depth infiltrated in each irrigation considering 0.5 water-storage efficiency; d_r = seasonal drainage (R_{in} + T_{iw} - ET); AVG = average values.

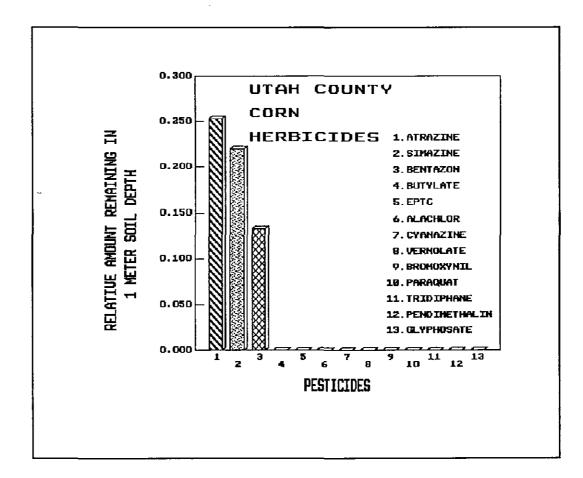
				-	-	•			
CROP	YEAR	REGION	SEASON	ET	Rin	d	Inum	T _{iw} mm	d _r
				μm		1000		mm	mm
ORCHARDS	1980	DIXIE	4/24-10/22	1087	86	89	20	1780	780
(Cont.)	1981			1103	85	89	20	1780	762
	1982			1062	95	89	20	1780	813
	1983			1086	142	89	19	1691	747
	1984			1109	63	89	21	1869	823
	1985			1141	83	89	21	1869	811
	AVG		<u></u>	1098	92	89	20	1795	789
POTATO		NORTH CENTRAL	4/14-8/17	447	243	89	10	890	419
	1981			461	98	89	11	917	350
	1982			434	98	89	10	890	286
	1983			422	241	89	9	801	353
	1984			413	148	69	9	801	270
	1985			456	70	89	11	917	326
	AVG			439	150	89	10	869	334
SMALL GRAINS	1090	NORTH CENTRAL	5/8-7/22	401	210	89	- 4 -	356	165
SPIALL GRAINS	1980	NORTH CENTRAL	2/0-//22	413	97	89	6	534	218
				413	83	89	5	445	117
	1982 1983			392	111	89	5	445	164
							5 6	534	218
	1984			405	89	89			
	1985			436	67	89	6	534	165
	AVG			409	109	89	5	475	175
	1980	SOUTH CENTRAL	5/8-7/22	430	52	89	7	623	245
	1981			443	72	89	6	534	163
	1982			425	74	89	6	534	183
	1983			420	52	89	7	623	255
	1984			473	80	89	6	534	142
	1985			448	105	89	7	623	280
	AVG			442	73	89	7	579	211
VEGETABLE	1000	NODAL CENTRAL	E /2	258	222	89	5	445	409
VEGETABLE		NORTH CENTRAL	5/3-7/21				-	534	409 357
	1981			274	96	89	6 5		
- +	1982			268	81	89		445	258
	1983			261	120	89	5	445	304
	1984			273	92	89	6	534	354
	1985			303	60	89	7	623	380
	AVG			273	112	89	6	504	344
		SOUTH CENTRAL	5/8-7/22	362	62	89	8	712	412
	1981			367	83	89	7	623	339
	1982			346	75	89	7	623	352
	1983			349	55	89	8	712	418
	1984			368	77	89	9	801	510
	1985			364	93	89	8	712	441
	AVG	· · · · · · · · · · · · ·		359	74	89	8	697	412

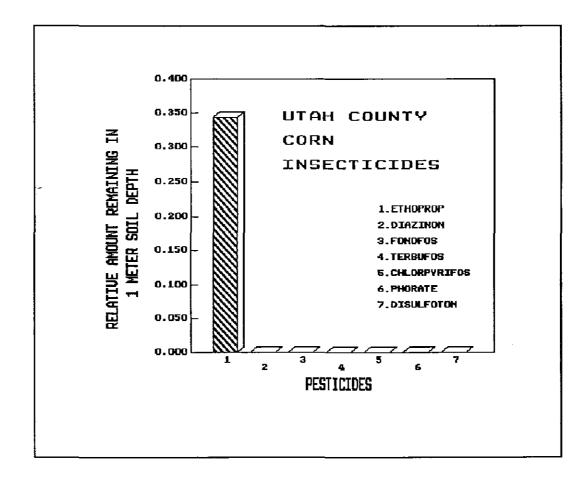
Table 19. Seasonal Soil Water Budget (cont.)

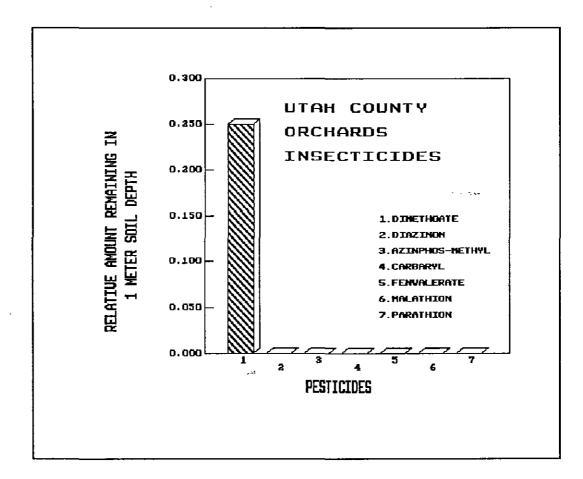
1

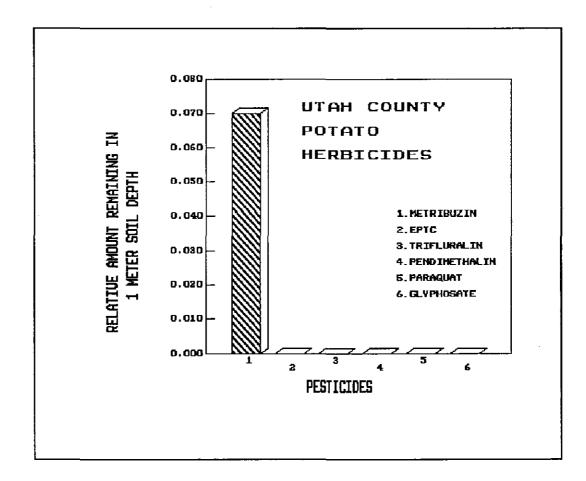

.

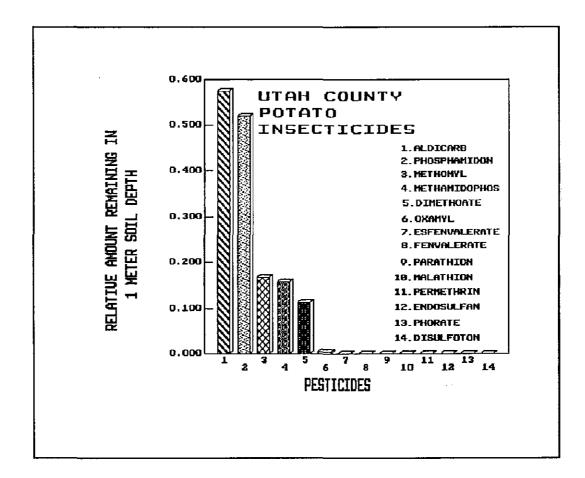

}

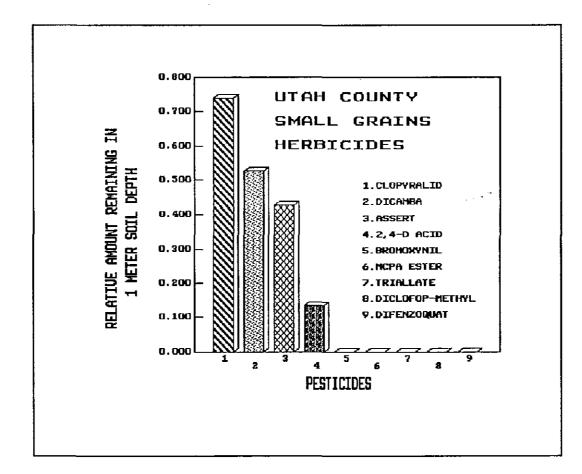

٠

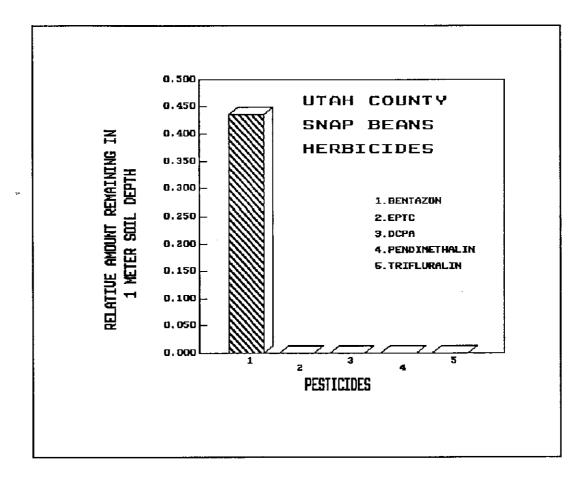

Appendix F. BMSs Graphical Outputs

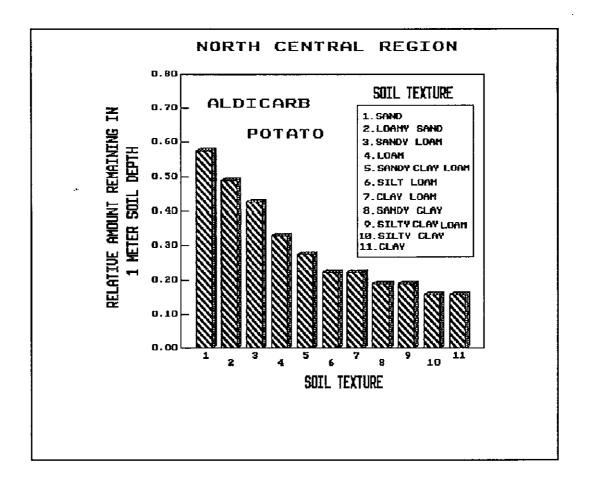

-

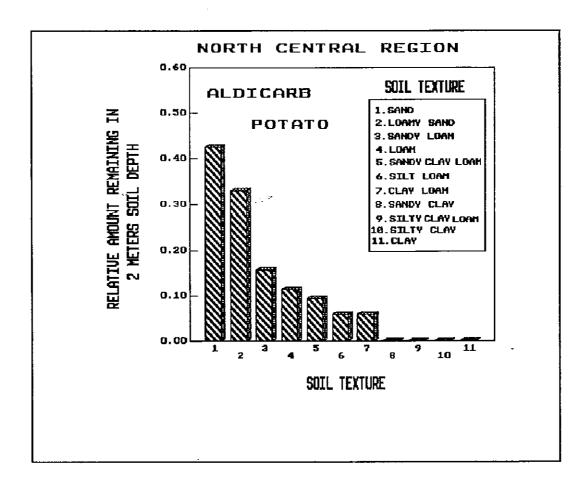


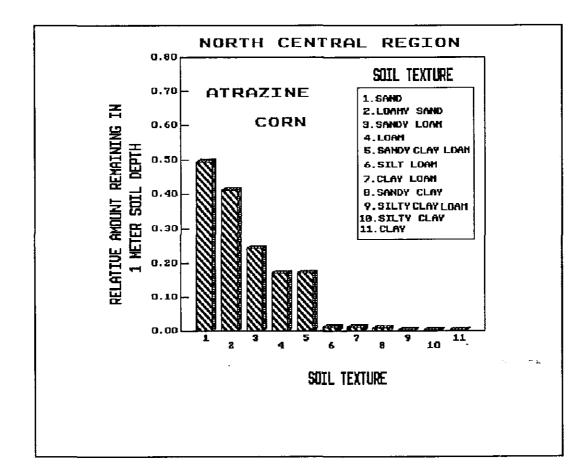




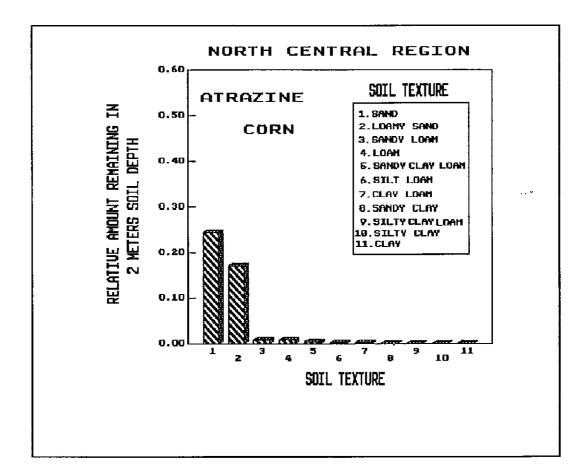


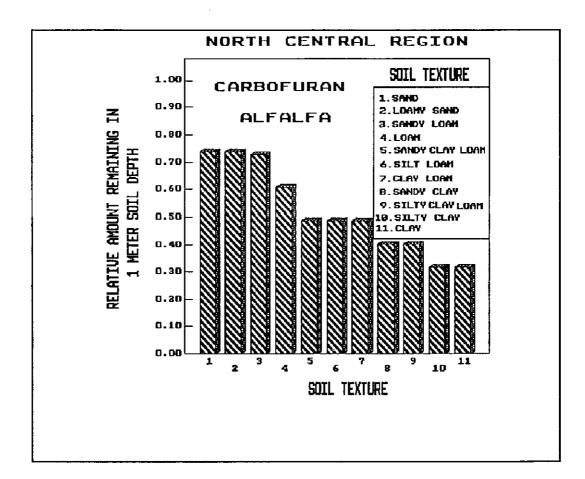


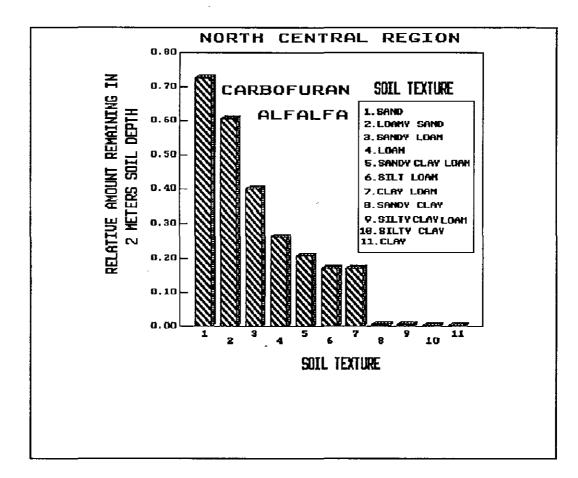


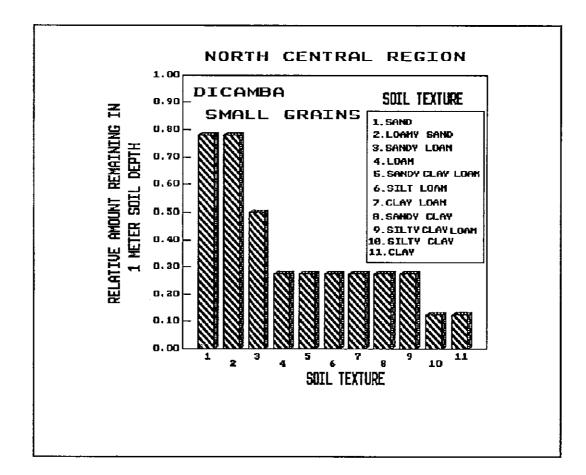


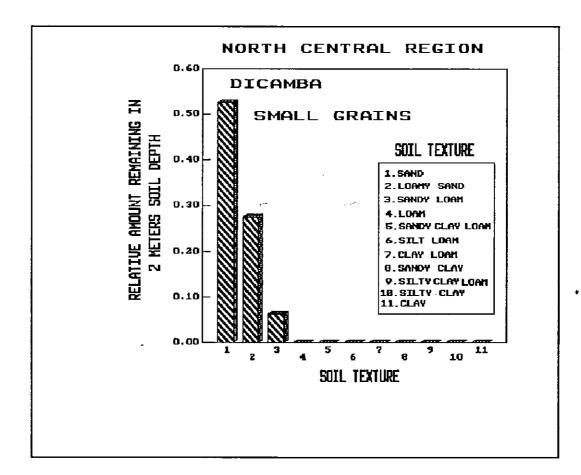
ļ

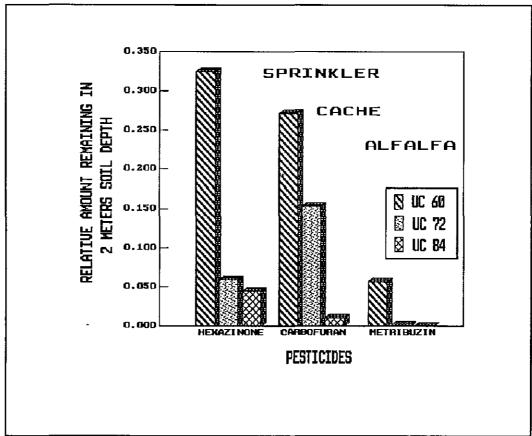


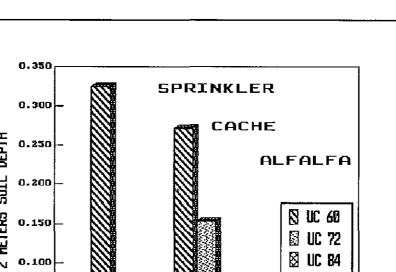


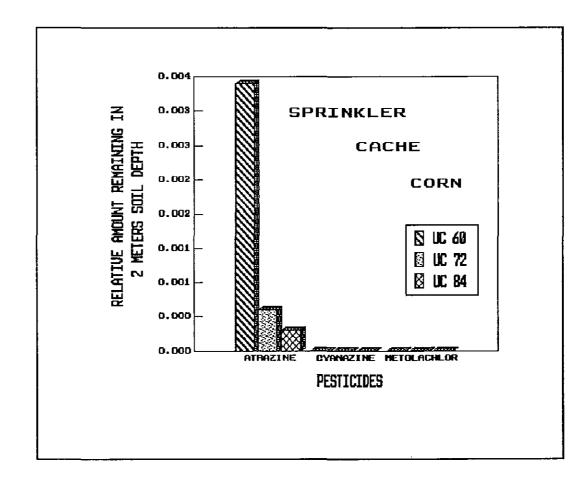




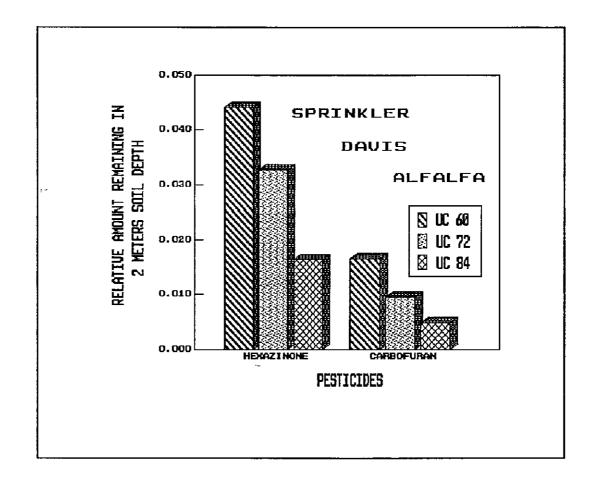

ļ

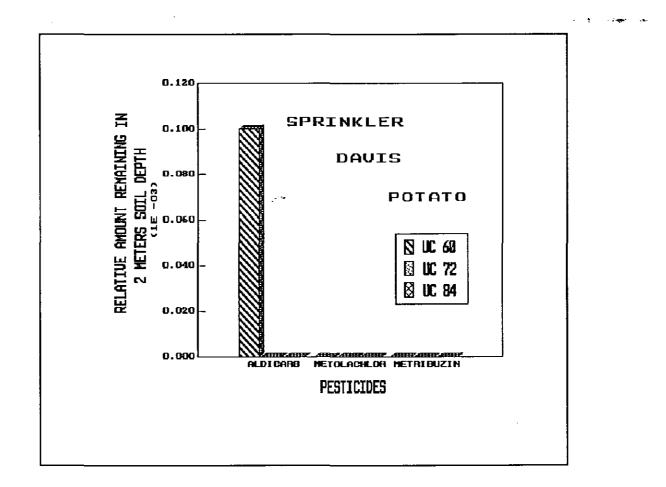




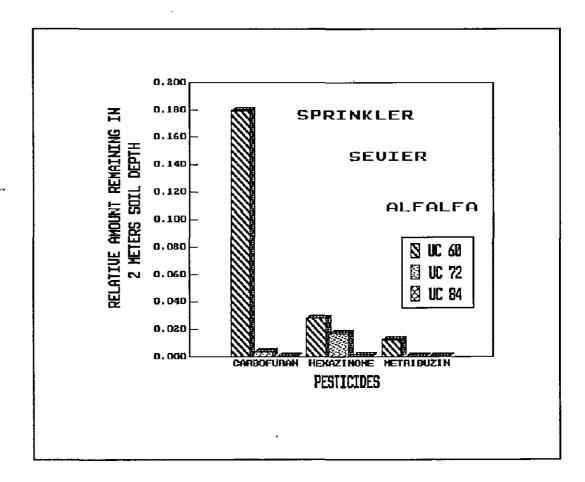


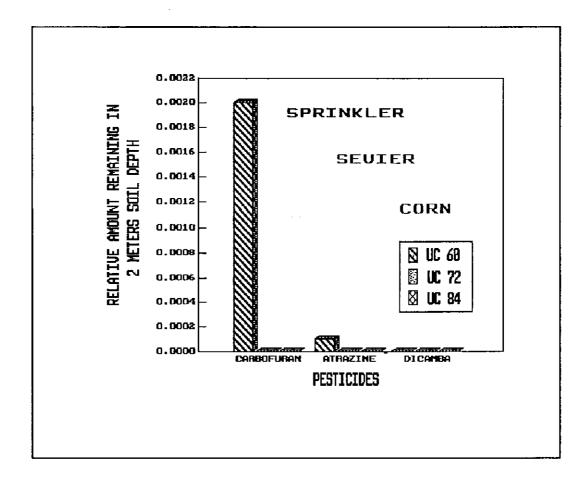
ļ

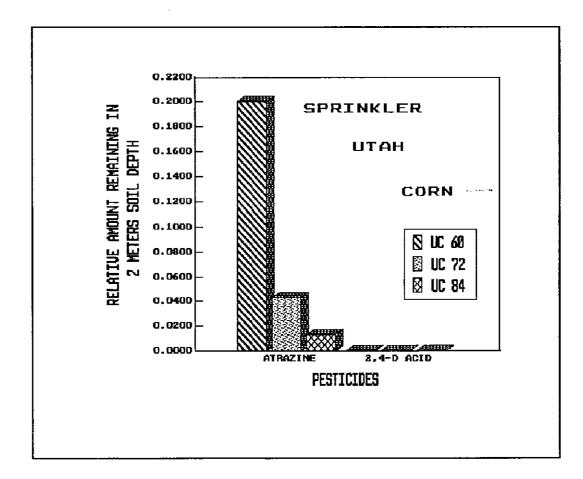

.

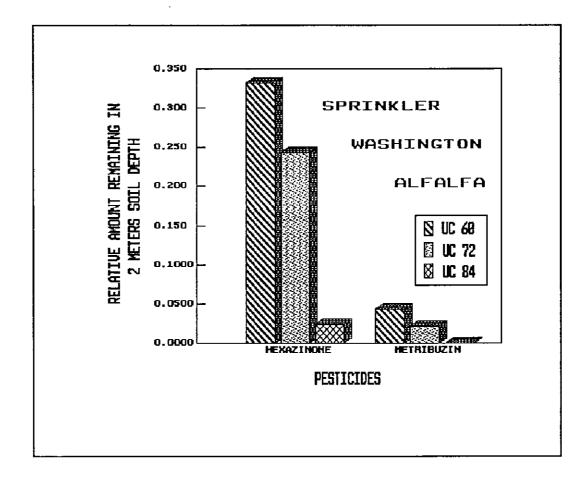


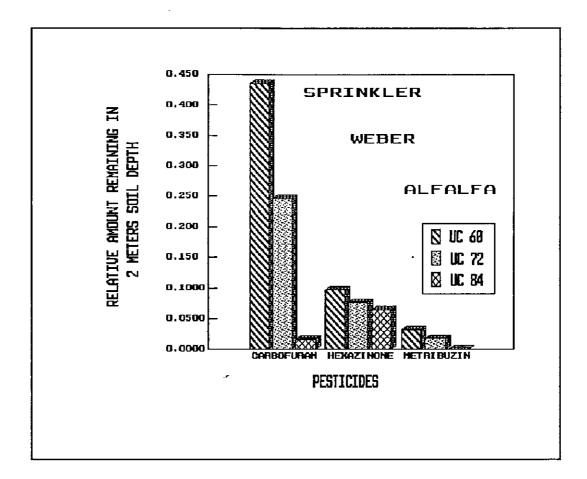
~


. . :-




STREET, DAY OF


ł



i

. . .

Appendix G. CMLS Analysis

.

.

.

G.1 CMLS Comparison

!

Many sources of error (input data, assumptions, etc.) are associated with model predictions; thus, it should not be expected that models provide accurate predictions of pesticide transport within a field. Hedden (1986) reported comments of participants of the Predictive Exposure Assessment Workshop, sponsored by USEPA in Atlanta, GA, on April 27-29, 1982. Participants agreed that for screening applications (having limited site-specific data and without the model being calibrated to the site), a model should be able to predict measured field data within an order of magnitude. This criteria seems to be quite reasonable considering all the sources of error associated with model predictions.

The purpose of this study is not the estimation of the probable pesticide concentration in groundwater but the relative comparison of different pesticides under alternative irrigation and pesticide management practices. However, in order to gain confidence in the use of the CMLS model, comparisons between simulated pesticide concentrations from three pesticide transport models and observed data from Smith et al. (1989) are presented.

Smith et al. (1989) reported data of simulated concentrations using the Pesticide Root Zone Model, PRZM version 2 (Carsel et al., 1984), Groundwater Loading Effects of Agricultural Management Systems, GLEAMS, (Leonard et al., 1988), and observed concentrations of atrazine and alachlor in the soil. Some data for the experimental site located near Tifton, Georgia, are shown in Tables 20 through 22. The same data were used as input for CMLS simulations.

Results of the comparisons are shown in Figs. 20 to 25. Fiq. 20 shows that the front (presumably the peak concentration) of atrazine simulated by CMLS arrives at a depth of 121 cm between 70 and 80 days. This approximates in agreement with the arrival time of atrazine reported by Smith et al. (1989) (Fig. 22). Figs. 23 to 26 show that in all cases, CMLS-peak simulated concentrations are within one order of magnitude of the observed values. Thus, CMLS, PRZM and GLEAMS have met the criteria for acceptance suggested by Hedden (1986).

G.2 Preferential Flow.

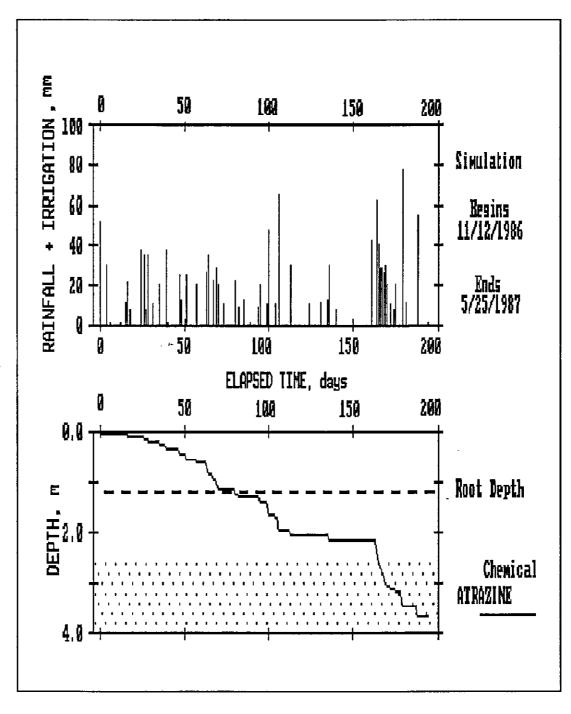
It is appropriate to consider the effect of preferential flow on CMLS-predicted values. Table 23 illustrates possible effects of preferential flow on RA values. If there is no preferential flow, the preferential flow factor (PF) is 1.0. This factor decreases in value as the number of preferential flow paths increase. Thus, as the PF factor decreases, contaminant movement increases.

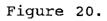
	Year	Precipitation	ET	
		(mm)	(mm)	
CMLS	1986	1190	733	
	1987	1431	704	
PRZM ¹	1986	1190	630	
	1987	1431	737	
GLEAMS ¹	1986	1190	687	
	1987	1431	831	

Table 20. Estimated and Simulated Hydrological Data.

Table 21. Pesticide Data Used in Simulations¹

	Chemical Applied			
	Atrazine	Alachlor		
Application Date	11/12/86	11/12/86		
Application Rate (kg/ha)	4.9	4.9		
K_{nc} (ml/g OC)	163	190		
K_{oc} (ml/g OC) $t_{1/2}$	60	18		


Table 22. Soil Properties Used in Simulations.


Depth	Organic Carbon (%)	Bulk Density (g/cm ³)	Water Content (%)				
(cm)				Field Capacity	Wilting Point		
0-13	0.55	1.45	33.0	10.0	2.1		
13-20	0.28	1.60	33.0	10.0	2.1		
20-51	0.08	1.58	33.3	10.0	2.1		
51-102	0.04	1.59	33.8	9.0	2.1		
102-262	0.03	1.59	34.0	9.0	2.1		

1 Data from Smith et al., 1989

م. . .

•

Rainfall, Irrigation and Chemical Depth as a Function of Time.

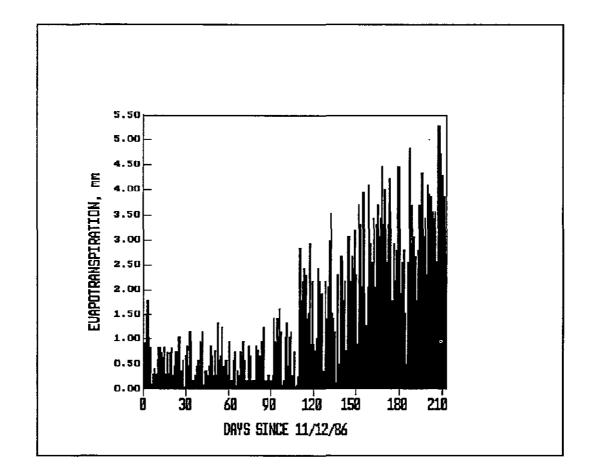


Figure 21.

-

í

ł

Estimated Daily Grass Evapotranspiration for Tifton, Georgia.



Figure 22.

Total Mass of Atrazine in the Saturate Zone. Source: Smith et al., (1989).



Figure 23.

Simulated and Observed Peak Concentrations of Atrazine on Different Dates.

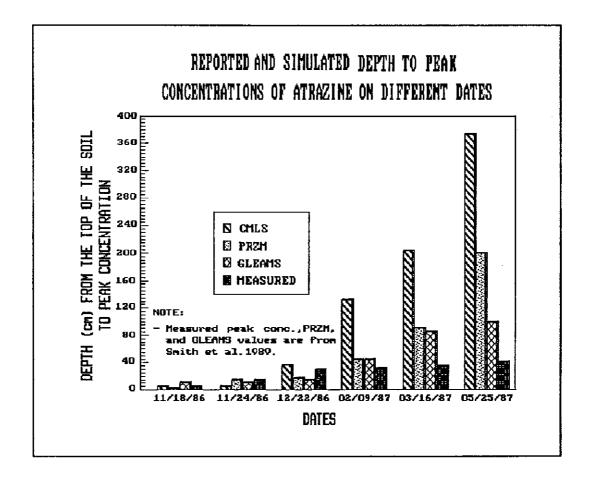


Figure 24. Simulated and Observed Depths to Peak Concentration of Atrazine on Different Dates.

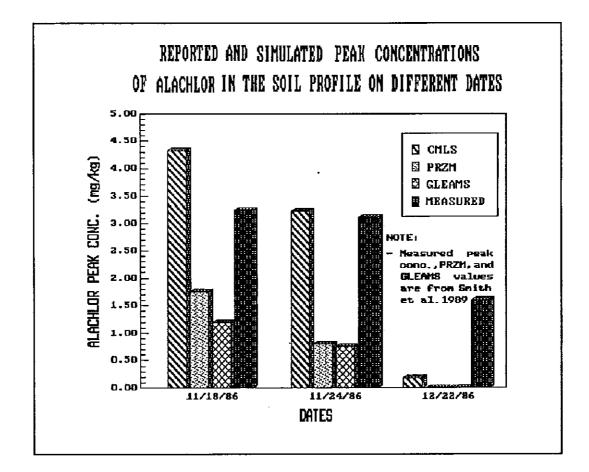


Figure 25.

Simulated and Observed Concentrations of Alachlor on Different Dates.

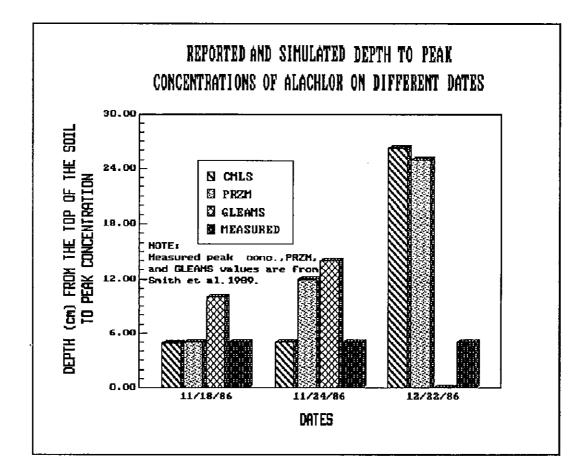


Figure 26. Simulated and Observed Depths to Peak Concentration of Alachlor on Different Dates.

Table 23. CMLS Analysis: Preferential Flow

 COUNTY	SOIL	CROP	PESTICIDE	d	PF	t(days)	RA	C(ppb)	RATIO
			NAME	(mm)		2 m	2 m	2 m	2 m
		•							
DAVIS	KIDMAN	COR	ATRAZINE	89	1.00	699	3.11E-04	0.15	0.05
DAVIS	KIDMAN	COR	ATRAZINE	89	0,67	466	4.59E-03	2,20	0.73
DAVIS	KIDMAN	COR	ATRAZINE	89	0.50	350	1.76E-02	8.47	2.82
DAVIS	KIDMAN	COR	ATRAZINE	89	0.33	233	6.78E-02	32.53	10.84
DAVIS	KIDMAN	COR	ATRAZINE	89	0.20	140	1.99E-01	95.46	31.82
DAVIS	KIDMAN	COR	ALACHLOR	89	1.00	877	2.51E-18	0.00	0.00
DAVIS	KIDMAN	COR	ALACHLOR	89	0.67	585	1.85E-12	0,00	0.00
DAVIS	KIDMAN	COR	ALACHLOR	89	0.50	439	1.58E-09	0.00	0.00
DAVIS	KIDMAN	COR	ALACHLOR	89	0.33	292	1.36E-05	0.00	0.00
DAVIS	KIDMAN	COR	ALACHLOR	89	0.20	175	3.02E-04	0.09	0.06
DAVIS	KIDMAN ·	ALF	HEXAZINONE	89	1,00	342	7.18E-02	21.54	0.10
DAVIS	KIDMAN	ALF	HEXAZINONE	89	0.67	228	1.73E-01	51.82	0.25
DAVIS	KIDMAN	ALF	HEXAZINONE	89	0.50	171	2.68E-01	80.38	0.38
DAVIS	KIDMAN	ALF	HEXAZINONE	89	0.33	114	4.16E-01	124.69	0.59
DAVIS	KIDMAN	ALF	HEXAZINONE	89	0.20	68	5.90E-01	177.15	0.84
DAVIS	KIDMAN	ALF	CARBOFURAN	89	1.00	280	2.06E-02	4.62	0.13
DAVIS	KIDMAN	ALF	CARBOFURAN	89	0.67	187	7.52E-02	16.84	0.47
DAVIS	KIDMAN	ALF	CARBOFURAN	89	0.50	140	1.44E-01	32.16	0.89
DAVIS	KIDMAN	ALF	CARBOFURAN	89	0.33	93	2.74E-01	61.42	1.71
DAVIS	KIDMAN	ALF	CARBOFURAN	89	0.20	56	4.60E-01	103.06	2.86
DAVIS	KIDMAN	. SGR	DICAMBA	89	1.00	364	1.49E-08	0.00	0.00
DAVIS	KIDMAN	SGR	DICAMBA	89	0.67	243	6.06E-06	0.00	0.00
DAVIS	KIDMAN	SGR	DICAMBA	89	0.50	182	1.22E-04	0.00	0.00
DAVIS	KIDMAN	SGR	DICAMBA	89	0.33	121	2.46E-03	0.07	0.01
DAVIS	KIDMAN	SGR	DICAMBA	89	0.20	73	2.72E-02	0.76	0.08
DAVIS	KIDMAN	SGR	2,4-D ACID	89	1.00	396	1,20E-12	0.00	0.00
DAVIS	KIDMAN	SGR	2,4-D ACID	89	0.67	264	1.13E-08	0,00	0.00
DAVIS	KIDMAN	SGR	2,4-D ACID	89	0.50	198	1.10E-06	0.00	0.00
DAVIS	KIDMAN	SGR	2,4-D ACID	89	0.33	132	1.06E-04	0.03	0.00
DAVIS	KIDMAN	SGR	2,4-D ACID	89	0,20	79	4.13E-03	0,99	0.01
DAVIS	KIDMAN	POT	ALDICARB	89	1.00	122	5.97E-02	26.74	2.67
DAVIS	KIDMAN	POT	ALDICARB	89	0.67	81	1.53E-01	68.42	6.84
DAVIS	KIDMAN	POT	ALDICARB	89	0,50	61	2.44E-01	109,44	10.94
DAVIS	KIDMAN	POT	ALDICARB	89	0.33	41	3.91E-01	175,07	17.51
DAVIS	KIDMAN	POT	ALDICARB	89	0.20	24	5.69E-01	254.94	25.49
DAVIS	KIDMAN	POT	METOLACHLOR	89	1.00	1090	3.93E-17	0.00	0.00
DAVIS	KIDMAN	POT	METOLACHLOR	89	0.67	727	1.15E-11	0.00	0.00
DAVIS	KIDMAN	POT	METOLACHLOR	89	0,50	545	6.27E-09	0.00	0.00
DAVIS	KIDMAN	POT	METOLACHLOR	89	0.20	218	5.23E-04	0.35	0.04

Abbreviations: ALF = alfalfa; COR = corn; POT = potato; SRG = small grains; PF = preferential flow; RA = relative amount of pesticide remaining in the soil when the chemical front arrives at a given depth; d = average depth of water infiltrated in the soil; C = potential pesticide concentration in groundwater assuming a mixing volume of 500 liters of water; RATIO = C / health advisory level.