
AGRICULTURAL PESTICIDE HAZARD TO GROUNDWATER IN UTAH

by

Hubert Eisele Majid Ehteshami Richard C. Peralta Howard M. Deer Terry Tindall

IIC - 89/1A

Agricultural and Irrigation Engineering Dept. and University Extension Services Utah State University Logan Utah

April 1989

ACKNOWLEDGEMENTS

We gratefully acknowledge the funding support of the Utah Department of Agriculture and the following offices at Utah State University. The Department of Agricultural and Irrigation Engineering, the International Irrigation Center, the Department of Animal, Dairy and Veterinary Sciences, the Department of Soil Science and Biometerology, and the University Extension Services.

We appreciate the cooperation of Jim Paraskeva and Ken Wyatt of the Utah Department of Agriculture, as well as the efforts of the county extension agents in compiling the information on pesticide use and cropping areas. We are grateful for the help of the Soil Conservation Service and the U.S. Geological Survey in providing us with soil survey and hydrogeologic information. We acknowledge the software support and advice of Art Hornsby (University of Florida) and Bob Carsel (U.S.E.P.A). We appreciate the guidance given by Dr. Robert W. Hill and L. Niel Allen in the calculation of crop water requirements. Valuable help was also provided by Ricardo Melamed with data preparation, with graphic support coming from Grant Johnson and secretarial support from Jill Hunsaker, Sheridyn Stokes, Cheryl Johnson, and Tammy Griffeth.

1. 1. 1. 1. 1. 18.

TABLE OF CONTENTS

PART I - MAIN REPORT

_

ACKNOWLEDGMENTS	. ii
LIST OF TABLES	vi
LIST OF FIGURES	vii
ABSTRACT	viii
INTRODUCTION	1 1 2 3 3
PESTICIDES: AN OVERVIEW	5 5 7 9
	12
PROCESSES AND FACTORS INFLUENCING PESTICIDE MOVEMENT	14 15 17 18 19 20 21 22 23 23 24 24 25 26 27 28 28 29 29

.

Topography	29
ASSESSING POTENTIAL HAZARD OF PESTICIDES TO GROUNDWATER QUALITY IN UTAH	31
The Survey	31
Rapid Assessment of Groundwater Vulnerability	32
Evaluation of Screening Procedures	32
DRASTIC	32
SEEPPAGE	33
SOI	34
Selection of a Screening Procedure	34
Agricultural DRASTIC Index for Cropping Areas in Utah	36
Index Calculation	36
DRASTIC Factor Information	37
Depth to Groundwater	37
Net Recharge Rate	37
Aquifer Media, Vadose Zone, Hydraulic Conductivity	37
	38
	38
Example Calculation for Utah County	38
Results of Statewide Screening	42
COMPUTER SIMULATION OF PESTICIDE MOVEMENT	45
Simulation Models	45
Chemical Movement in layered Soil (CMLS)	45
Pesticide Root Zone Model (PRZM)	45
Groundwater loading and Erosion from Agricultural	
Management Systems (GLEAMS)	46
Model Selection	46
Basic Concepts and Assumptions Used in the CMLS Model	48
	49
Climate Data and Time Window Selection Climate Data	50
	ΓA
11me window Selection	52
Time Window Selection	52 53
Evapo-Transpiration Data	
Evapo-Transpiration Data	53
Evapo-Transpiration Data	53 54
Evapo-Transpiration Data	53 54 58
Evapo-Transpiration Data	53 54 58 59
Evapo-Transpiration Data	53 54 58 59 60
Evapo-Transpiration Data	53 54 58 59 60 60 61 61
Evapo-Transpiration DataIrrigation DataPesticide DataSoil DataSoil DataRooting Depth DataSoil Incorporation DataCOMPUTER SIMULATION OF PESTICIDE MOVEMENTSite Identification	53 54 58 59 60 60 61
Evapo-Transpiration DataIrrigation DataPesticide DataSoil DataSoil DataRooting Depth DataSoil Incorporation DataCOMPUTER SIMULATION OF PESTICIDE MOVEMENTSite IdentificationModel Application	53 54 58 59 60 60 61 61 61 61
Evapo-Transpiration Data	53 54 59 60 60 61 61 61
Evapo-Transpiration Data	53 54 58 59 60 61 61 61 61 64 66 66
Evapo-Transpiration Data	53 54 58 59 60 60 61 61 61 64 66
Evapo-Transpiration Data	53 54 58 59 60 61 61 61 61 64 66 66
Evapo-Transpiration Data	53 54 58 59 60 61 61 61 61 61 64 66 66 68
Evapo-Transpiration DataIrrigation DataPesticide DataSoil DataSoil DataRooting Depth DataSoil Incorporation DataSoil Incorporation DataSite IdentificationModel ApplicationRelation to Health StandardsSensitivity of ResultsOrganic Carbon Partition CoefficientHalf-Life Time	53 54 59 60 61 61 61 61 61 64 66 68 68 68

SUMMARY, CON	CLUSIONS, RECOMMENDATIONS					•	•	٠	•	82
	у									82
CONCLU	SIONS								•	85
	Pesticide Contamination of	Groundwater								85
	Procedure Applied in this	Study							•	85
										87
	ENDATIONS	sent Situation	· ·					÷		87
	Prevent Contamination									
REFERENCES				 ٠	•••	•	•	•	•	89
										.'
				'	4					

.

;

-

-

2

۷

TABLE OF CONTENTS

PART II - APPENDICES

ACKNOWLEDG	MENTS
ABSTRACT	
APPENDIX	
А	CMLS Analysis
В	Surveys Used in Simulation of Pesticide Movement
	in Utah
С	Library of Pesticides Used in Utah
D	Soil Library Used in Utah
Ε	Letters and Survey Form
F	Irrigation Schedules for Crops and Sub-regions

LIST OF TABLES

ŧ

TABLE			
	1.	Volume of U.S. Pesticides Used, By Class and Sector, 1985 Estimate (Source: EPA 1987).	1
	2.	Types of Pesticides	6
	3.	Pesticide Formulations	6
	4.	Lifetime Health Advisory (USEPA Office of Drinking Water,	-
		1987)	11
	5.	Agencies with Pesticide/Groundwater Regulations	13
	6.	Processes Influencing Pesticide Movement	15
	7.	Grouping of Factors Influencing Pesticide Movement	16
	8.	Geological Formation and Type of Porosity (Tood,	
		1980).	27
	9.	Net Recharges Used in DRASTIC Calculation	38
	10.	Agricultural DRASTIC Index for Utah County	40
	11	Range and Average Agricultural DRASTIC Values for Each	
		County	43
	12.	Zone, County, Weather Station Assignment	51
	13.		52
	14.	Crop Coefficients	55
	15.	On-Farm Application Efficiencies (Source: Utah	
	10	Department of Health, 1986).	57
	16.	Seasonal Irrigation Applications in Centimeters	58
	17.	Pesticide Data	59
	18.	Example of Soil Data	59
	19. 20.	Rooting Depths Destinide Meyamont to Selected Depths	60 64
	20.	Pesticide Movement to Selected Depths. Health Standard Ratio	65
	22.	Critical Area - Pesticide Combinations	69
	23.	Ranking of Chemicals Most Likely Reaching Depth of	05
	23.	Groundwater	77
	24.	Ranking of Chemicals at a Depth of 1.0 Meter	78
	25.		79
	26.		79
	27.	Ranking of Pesticide-Site Combinations Posing a Threat	
	4	to Groundwater Quality	
		· ····································	84

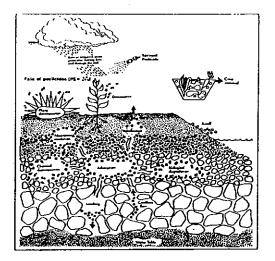
-

•

,

LIST OF FIGURES

Figure		
1.	Processes Influencing Pesticide Movement (Source:	
	Adapted from Rao (1986) and University of Wisconsin	
_	(1987)	14
2.	Zones of pollution potential	21
3.	Half-life and Organic Carbon Partition Coefficient Related to	
	Groundwater Pollution Potential	22
4.	Areas Covered by Published Soil Surveys (Original Draft by	
	State Soil Survey Staff).	39
5.	Cropping Areas in Utah County	40
6.	Agricultural DRASTIC Index for Utah County	42
7.	Zones of Relatively Uniform Climate Conditions.	50
8.	Computer Simulation Site Identification	62
9.	Water Application and Pesticide Movement	63
10.		67
11.	Sensitivity to values of $t_{1/2}$	68
12.		75
	Ranking of Areas of Concern	76
	Location of Potentially Hazardous Pesticide-Site	70
14.	Combinations.	86
		00


ABSTRACT

This study identifies agricultural pesticide usage in Utah. Processes and factors affecting pesticide movement to groundwater are analyzed. Agricultural DRASTIC, a rapid screening procedure, is used to identify sites potentially vulnerable to pesticide contamination. Pesticide movement at these sites is investigated using a one-dimensional simulation model, CMLS.

Predicted pesticide concentrations reaching the groundwater are compared to proposed health standards. Potentially hazardous site-pesticide combinations are identified and ranked. Suggested sampling sites are presented.

AGRICULTURAL PESTICIDE HAZARD TO GROUNDWATER IN UTAH

PART I: MAIN REPORT

by

Hubert Eisele Majid Ehteshami Richard C. Peralta Howard M. Deer Terry Tindall

IIC - 89/1A

Agricultural and Irrigation Engineering Dept. and University Extension Services Utah State University Logan Utah

April 1989

1

L. İ

Background

Pesticide sales in the U.S. are approximately 1.1 billion pounds annually. Table 1 shows their estimated use in agriculture, industries, communities and government, homes, and gardens.

TABLE 1. Volume of U.S. Pesticides Used, By Class and Sector, 1985 Estimate (Source: EPA 1987).

	(millions	(millions of pounds of active ingredients)			
	Herbicides ¹	Insecticides ²	Fungicides ³ .	Other ⁴	Total
Agriculture	525	225	51	60	861.0
Ind./Comm./Govt.	115	40	21	.1	176.1
Home & Garden	30	35	12	.1	75.1
Total	670	300	84	60.2	1112.2

The use of pesticides is an integral part of today's agriculture. There is no doubt that in many cases, pesticides safeguard crops from severe pest infestation, or increase yield by suppressing competing weed growth. Often, pesticides may make the difference between profits and losses in farming operations. However, pesticides, even in extremely low concentrations, can pose a risk to human health and 'to the environment. Applied to plant or soil surfaces, or injected into subsoil layers, pesticides may leach to the groundwater or may be washed off with surface water. Pesticide contaminated

surface water may reach groundwater, or vice versa, contaminated groundwater may surface and contribute to surface water pollution.

Once in the groundwater, pesticides may persist for years, rendering the water unsuitable for human and animal consumption. Effectively treating drinking water to reduce pesticide residues to acceptable levels, or restore groundwater quality, may be extremely difficult and expensive.

In many states, recent sampling revealed pesticide contamination of groundwater. Parsons (1988) based on a national survey notes:

"The principal criterion for whether pesticides had been detected in the groundwater in a state appears to be whether or not they have looked. The information on occurrences of pesticides in groundwater is burgeoning to the point that it is difficult to assemble an accurate overview of the nature and scope of the national problem."

The Problem

In Utah, groundwater is a valuable and necessary resource. Waddell (1987) states: "About 63 percent of Utah's population depends on ground water for drinking supplies". In rural areas, groundwater is often the only source of drinking water. However, in some of these areas, groundwater is close to the surface and therefore easily subject to contamination by agricultural chemicals. There may be up to 50,000 wells statewide, supplying water for various purposes.

In its "Groundwater Quality Protection Strategy" (1986), the Utah Department of Health calls for the identification of potential and existing groundwater quality problems. Taking water samples from existing wells is the obvious choice in assessing existing problems, however, comprehensive sampling of existing wells is not feasible. Therefore, an educated selection of representative sampling sites is desired.

Objectives and Limitations

The potential vulnerability of groundwater to pesticide contamination is dependent on many factors. Significant variation of the factors in time and space adds to the complexity of any analysis.

The objective of this study is to determine the areas in Utah where particular combinations of pesticides, soil and water management practices, soils and geology pose the greatest hazard to groundwater quality. Once identified, those areas may attract special attention in future water sampling and/or soil management programs.

This study does not address the potential hazards to groundwater quality due to:

- Pesticides applied in forests, rights-of-way and range land (the "Ground Water Quality Protection Strategy for the State of Utah" mentions that an estimated 25,000 pounds of active ingredients were used in 1980 in these locations);
- 2. Pesticides applied in home gardens;
- 3. Pesticides used in mosquito abatement programs in urban areas; and
- 4. Pesticide movement in horizontal direction.

The study assumes that pesticide applicators follow the instructions given on the product labels. Accidental spills and leakage of pesticides as well as inadequate disposal of containers are not addressed.

Methodology

Factual data on pesticide applications in Utah are needed to assess the potential hazard that pesticides may pose to groundwater. A survey, completed by extension personnel and pesticide retailers as part of this project, provides insight to statewide usage of pesticides.

An array of site specific factors affects pesticide movement on the surface and into groundwater. Rapid screening of this abundant data is required to separate potentially safe site-factor combinations from potentially hazardous site-factor combinations. The data will be analyzed in detail using a computer simulation model.

The following stepwise procedure will be adopted:

- 1. Collection of factual data on pesticide application including areas of pesticide use, crops pesticides are used on, types of pesticides used, and pesticide application practices;
- 2. Evaluation of factors affecting pesticide surface runoff and pesticide leaching to groundwater;
- Selection and application of a "hazard to groundwater" screening model;
- 4. Selection of a one-dimensional pesticide transport model and application of the model to sites identified by the screening model;
- 5. Regional comparison of predicted vertical pesticide movements and relation to health advisories; and
- 6. Identification of areas where pesticides might pose a threat to groundwater quality.

PESTICIDES: AN OVERVIEW

Types and Formulations

Pesticides are substances or mixtures of substances used to kill, destroy, repel, or regulate pests such as insects, rodents, birds, weeds, unwanted plant growth, molds, fungi, bacteria, and other microorganisms. They are chemicals that have biological activity against the pest to be controlled, and they can be toxic to man, animals, or the environment if sufficient dose and exposure occur from improper use or disposal.

Most pesticides now being used are organic and vary in molecular structure from simple to very complex. Inorganic pesticides were used mostly before the 1950's, although a few are still in use today.

There are many types of pesticides (Table 2) available in a variety of formulations (Table 3). As of 1986 the EPA registered approximately 45,000 products as pesticides, formulated from about 1,400 different active ingredient chemicals, manufactured or formulated by more than 3,400 different companies, and distributed by more than 29,000 distributors.

Pesticides are used extensively in agricultural, public health and environmental programs. Herbicides are used on nearly 90% of all agricultural acreage, while insecticides and fungicides are used on about 30 and 10 percent respectively. Both federal and state laws make users of pesticides responsible for properly applying their pesticides according to label directions and for properly disposing of excess pesticides and their containers.

Mechanisms of Toxicity

Pesticides have various mechanisms of toxicity. Many are contact poisons and affect the surface that they come in contact with, or affect animals

```
Acaricides - mites, ticks
Algicides - algae
Attractants - animals
Avicides - birds
Bactericides - bacteria
Desiccants - water removal
Defoliants - foliage removal
Disinfectants - microorganisms
Fumigants - insects, rodents, weeds
Fungicides - plant pathogens
Germicides - germs
Growth Regulators - insects, plants
Herbicides - weeds
Hormones - insects, plants
```

```
Insecticides - insects
Miticides - mites
Molluscicides - mollusks
Nematicides - nematodes
Ovicides - eggs
Pediculicides - lice
Pheromones - insects
Pisicides - fish
Predacides - predators
Repellents - animals
Rodenticides - rats, mice
Sanitizers - microorganisms
Sterilants - microorganisms
Wood Preservatives - fungi, insects
```

TABLE 3. Pesticide Formulations

Emulsifiable Concentrates Concentrate Solutions Ready to Use Solutions Dry Flowables Aerosols Pressurized Gases & Liquids Microencapsulations Invert Emulsions Soluble & Wettable Powders Granules Dusts Baits Volatile Solids & Liquids Pellets Tablets Water Dispersible Granules

(including insects) that come in contact with the treated surface. Some contact pesticides have no residual effect, while others have a variable residual period. Periods are usually less than 2 months, often only a few days. Some pesticides are systemic or translocatable and are absorbed and then transported internally throughout the system of either the plant or animal. Some pesticides are stomach poisons, affecting animals only after consumption.

Historic Background and Legislation

The use of chemical pesticides increased significantly near the end of the 19th century. At that time only a few simple formulas existed and pesticide products were made by many small companies and often prepared by the farmers themselves after mail ordering the basic active ingredients. Congress became concerned about the sale of substandard or fraudulent pesticides. In order to protect the farmer, the Federal Insecticide Act of 1910 was passed.

In 1947 the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) was passed. This act required pesticides to be registered with the USDA and required that they be labeled according to established standards. This law assumed that the pesticide user was a rational person and if sufficient information were provided through labeling, proper pesticide selection and use would occur. The focus of the law at this time was primarily on pesticide efficacy. Less concern was placed on effects to nontarget species and environmental protection.

In 1970 the Environmental Protection Agency (EPA) was formed and assigned the responsibility of enforcing FIFRA. EPA was also given the authority to establish tolerances for pesticide residues in edible foods, feed, and their packaging materials. The Food and Drug Administration (FDA) was charged with enforcing those tolerances by testing these items for chemical residues.

FIFRA was amended by the most detailed and comprehensive pesticide legislation in history, the Federal Environmental Pesticide Control Act (FEPCA) of 1972. The amendments recognized the need to protect the general public and environment from the potentially harmful effects of pesticides. The consumer protection objectives were maintained as well. The core of the amendments was the requirement that EPA deny registration to a pesticide unless it could determine that "when used in accordance with widespread and commonly accepted

practices it will not cause unreasonable adverse effects on the environment". The unreasonable adverse effect is further defined as "any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide".

This definition essentially required the EPA to conduct balanced risk versus benefit analyses for all pesticide uses. Congress recognized that pesticides will inherently cause some risks because of the type of biologically active chemicals that they are. Congress wanted that risk balanced against benefits derived from using pesticides.

In Utah, all pesticides that are sold or used must be registered by the Environmental Protection Agency (EPA) and the Utah Department of Agriculture. This requirement is found in the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) and the Utah Pesticide Control Act of 1979.

In addition to FIFRA, the following federal laws pertain to pesticide use and disposal: (Agricultural Chemicals in Ground Water 1987)

• <u>The Safe Drinking Water Act (SWDA)</u> is designed to ensure that public water systems provide water meeting minimum standards for protection of public health. As required by the Act, EPA establishes drinking water standards (Maximum Contaminant Levels) and water supply monitoring requirements for public water supplies to meet.

Under recent amendments to the Act, the Agency has been authorized to provide resources to States to establish "Wellhead Protection Areas" (WHPA) for public drinking water wells. Other recent amendments restrict underground injection of hazardous waste and establish a sole source aquifer demonstration program.

- <u>Clean Water Act (CWA)</u> The basic mission of the CWA is to restore and maintain the chemical, physical, and biological integrity of the nation's waters. EPA provides grants to States for development and implementation of State ground-water protection strategies. Under the CWA's nonpoint source authorities, EPA also provides financial assistance to States for nonpoint source monitoring/assessments, planning, program development, and demonstration projects.
- <u>The Resource Conservation and Recovery Act (RCRA)</u> regulates disposal of waste, including pesticides, which may create a hazard. Pesticide-containing wastes that are considered hazardous wastes under RCRA are subject to extensive regulatory requirements governing storage, transportation, treatment, and disposal.
- The Comprehensive Environmental Response, Compensation and Recovery <u>Act (CERCLA)</u> establishes a trust fund (Superfund) to finance government responses to releases or threats of releases of hazardous substances. However, if ground-water contamination results from normal application of pesticides, the law does not allow the Agency to recover costs from pesticide applicators or private users.

Health Risk and Health Advisory

Public concern about pesticides and their affects on human health are thriving, but how do pesticides really effect us? Two different health effects may be distinguished:

- 1. Short-term exposure to relatively high doses of various pesticides may induce an acute poisoning; and
- 2. Long term exposure to trace concentrations (a few parts per billion or even per trillion) in food, drinking water or the general environment, may induce chronic health effects.

Nowadays, concern is mainly focusing on the effects of long term exposure. Cancer, mutations, birth defects, and immunological changes are mentioned as possible effects of long term low level exposure. However, it is essential to

indicate that the mere presence of trace concentrations does not necessarily present an unreasonable risk. USEPA (1987) mentions in its proposed pesticide strategy:

"The level of risk posed by pesticide residues is dependent upon the levels and duration of human exposures to residues of pesticide and the toxicological significance of such exposure".

If a certain level of risk can be defined as acceptable, then it is possible to formulate health advisories. These advisories may indicate the pesticide concentration that can be consumed during a certain time period without anticipation of adverse health effects.

The Office of Drinking Water of the Environmental Protection Agency currently provides health advisories for 60 pesticides. This office developed one-day, ten-day, long term (approximately 7 years) and lifetime exposure limits based on non-carcinogenic end points of toxicity. For the chemicals that are known or probable carcinogens, concentration values are correlated with carcinogenic risk estimates. The acceptable risk is set at a level of 10^{-6} , this means that at the given level of exposure, one person in a million might contract cancer if exposed for his entire lifetime to the level given by the health advisory (USEPA Office of Drinking Water, 1987). Table 4 provides a listing of the Office's lifetime health advisories. The data in Table 4 currently have nonregulatory status. However, EPA may declare these values as <u>Maximum</u> <u>Contamination Levels</u> (MCL's), which are enforceable standards as defined under the Safe Drinking Water Act.

After carefully analyzing the calculation of health advisories, one may notice that considerable judgement is involved in defining acceptable risk and

Chemical Name	Cancelled or Severely Restricted	Health Advisory Level** · (ppb)
1,2-D	Ŷ	0.0013 *
1,3-D		0.20 *
2,4,5-T	Ý	21
2,4-D		70
2,4-DB		
Alachlor		1.5 *
Aldicarb		10
Aldrin		
Arsenic	Y	
Atraton		
Atrazine		3.0
BHC	Y	
Bromacil Camba Suman		80
Carbofuran	Y	36
Chlordane	Y	0.03 *
Chlorothalonil		1.5 *
Cyanazine	Y	9.0
DBCP DDT	T	0.02 *
Dacthal/DCPN		3500
Diazinon		0.63
Dicamba		9.0
Dieldrin	Y	0.00219 *
Dinoseb	Ý	7.0
Diuron	•	14
EDB	Y	0.0005 *
Endosulfan	·	0.0000
Endrin	Y	0.032
Ethoprop	-	••••=
Fonofos		14
Heptachlor	Y	0.076 *
Hexazinone		210
Lindane	Υ	0.026 *
Linuron		
Malathion		
Methamidophos		
Methomy1		175
Methyl parathion	÷	2.0
Metolachlor		10
Metribuzin		175
Oxamy1		175
PCNB		
PCP		220
Parathion		

`

.

TABLE 4.Lifetime Health Advisory (USEPA Office of Drinking Water, 1987)

Chemical Name	Cancelled or Severely Restricted	Health Advisory Level** (ppb)	-
Picloram		490	
Prometon		100	
Propazine		14	
Silvex	Y	52	
Simazine		35	
Sulprofos			
TDE	Y	0.031	
Toxaphene	Y		
Triallate			-
Trifluralin		2.0	

TABLE 4. Lifetime Health Advisory (cont.)

Lifetime exposure levels based on a 10^{-6} risk of causing cancer

**

Proposed Lifetime Health Advisory Level

acceptable contamination levels (e.g. extrapolation of results gained from laboratory tests with animals, selection of safety factors, definition of carcinogenic risk). Rao (1988) comments on this point and the formulation of regulatory guidelines:

"Risk assessment is judgement based on scientific data and provides a rational basis for quantifying the hazards of groundwater contamination. Risk management usually involves social, legal, economic, and political considerations. If a given level of excess risk is determined to be acceptable, especially in comparison with other risks that may be greater but are usually taken for granted in every-day life, then appropriate regulatory guidelines for preventing or minimizing groundwater contamination can be developed".

Authorities and Institutional Framework Related to Pesticide Usage

At the federal level, three agencies have jurisdiction over pesticides in groundwater. Table 5 gives an overview of these agencies.

Agency	Division	Activity
U.S. Department of Agriculture	 Extension Service Soil Conservation Service Agricultural Sta- bilization and Conservation Service Agricultural Research Service 	Assistance to landowner regarding pesticide selection, Research and pesticide application
U.S. Department of Interior	U.S. Geological Survey	Gathering hydro- geologic information on aquifers. Assessing water quality in aquifers.
Environmental Protection Agency	 Office of Ground- water Protection Office of Drinking Water Office of Water Regulations and Standards Office of Pesticide Programs 	Lead responsibility in protecting groundwater quality. Regulation of pesticides.

TABLE 5. Agencies with Pesticide/Groundwater Regulations.

.

,

PROCESSES AND FACTORS INFLUENCING PESTICIDE MOVEMENT

Processes Influencing Pesticide Movement

Several processes influence pesticide movement. Figure 1 and Table 6 give an overview of the processes involved.

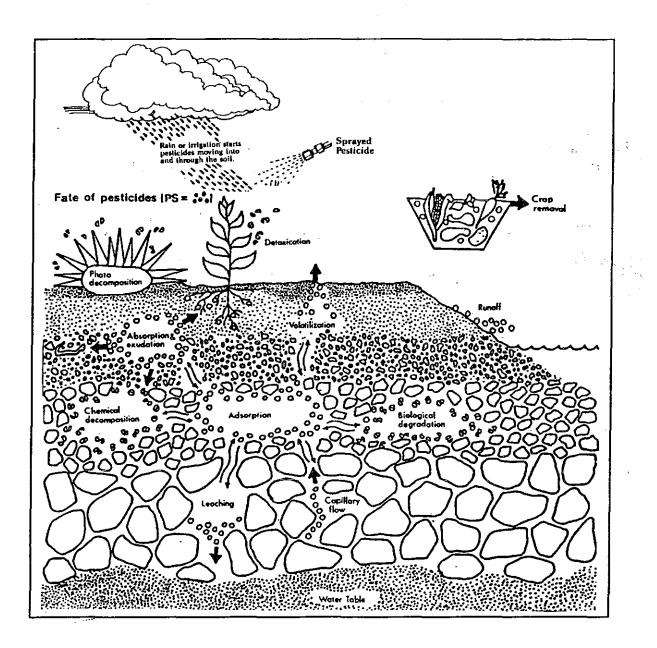


Figure 1. Processes Influencing Pesticide Movement (Source: Adapted from Rao (1983).

Main Category of processes	Sub Category of processes
Sorption	Adsorption Desorption
Dissipation (Degradation)	Photodecomposition Chemical Decomposition (Hydrolysis)
	Biological Degradation (Assimulation)
Volatilization	Diffusion
Application	Aerial Incorporated
Water Movement	Water Supply (Rainfall, Irrigation), Leaching
Water Removal	(Plant Uptake, Runoff), Evaporation
Plant Uptake	Transpiration

TABLE 6. Processes Influencing Pesticide Movement

Each process may be affected by several factors. Additionaly, processes as well as factors may be interdependent.

Factors Influencing Pesticide Movement Processes

Table 7 gives an overview of factors affecting pesticide movement and relates the factors to the movement processes. The listing and the linking to the processes is not all-inclusive. To the extent possible, the following discussion describes processes under the heading of the most important influencing factors.

Main Category of factors	Sub Category F of factors	Processes Affected
Physical-Chemical Properties of Pesticide	Half-Life (Persistence)	Dissipation, Plant Uptake
restrictue	Organic Carbon Partition Coef.	Sorption, Runoff, Leaching
	Solubility	Sorption, Runoff, Leaching
	Melting Point	Volatilization
Soil	Organic Matter	Sorption, Dissipation, Water Movement
	Texture	Water Movement, Sorption
	Structure	
	Clay Content	Sorption, Water Movement
	рН	Adsorption, Dissipation
	Moisture	Water Movement
	Temperature	Sorption, Degradation
Agricultural	Pesticide Applicati	on Plant Uptake
Practices and Plant Uptake	Soil Management	Water Management
	Irrigation	Water Movement, Dissipation

TABLE 7. Grouping of Factors Influencing Pesticide Movement

Main Category of factors	Sub Category Proce of factors	esses Affected
Hydro-Geology	Depth to Groundwater	Water Movement, Dissipation
	Geological Formation	IT
	Hydraulic Conductivity	U.
	Confining Beds	II
Climate	Rainfall	Water Movement, Dissipation, Plant Uptake
	Temperature, Sunshine	Volatilization, Plant Uptake, Dissipation
	Humidity	Plant Uptake, Volatilization
	Wind	Water Movement Volatilization
Topography	Slope	Water Movement, Run off

TABLE 7. (continued)

<u>Pesticide</u>

Physical-chemical properties, especially half-life time, bonding power (sorption) and solubility, are among the most important factors influencing pesticide movement.

...

Sorption and Physical-Chemical Bonding

Sorption may be defined as the chemical-physical bonding of a pesticide molecule to a solid surface such as a soil particle. Adsorption refers to the adherence of molecules, whereas desorption refers to the separation of molecules from soil particles. "The system strives toward attaining an equilibrium between adsorbed and desorbed phases based on the relative amounts of the pollutant in each of the solid, liquid, or vapor phases" (Wood, 1984, p. 21). Concentrations in the adsorbed phase and in the desorbed phase are related by the Freundlich isotherm:

$$S = K \star C^n \tag{1}$$

where: S

Concentration in the adsorbed phase (mass of contaminant per mass of adsorbent)

C = Concentration in the dissolved phase (mass of contaminant per volume of water)

K,n = Constants

Commonly, n is assumed to be equal to 1 and equation (1) may be written as:

 $K_{d} = S/C \tag{2}$

where K_d is the soil partition coefficient. K_d expresses the equilibrium condition between adsorbed mass and desorbed mass. Adsorption/desorption processes depend on the physical-chemical bonding power of the pesticide molecules as well as of the soil particles, and each soil may have a different K_d value. One approach to normalize the soil partition coefficient is to relate the K_d value to organic carbon in the soil:

$$K_{d} = K_{oc} * 0C \tag{3}$$

$$K_{oc} =$$

microgram pesticide adsorbed per g of organic carbon

microgram pesticide in solution per gram of solution

where:

 K_{d} = Soil partition coefficient

 K_{oc} = Organic carbon partition coefficient

OC = Organic carbon in as a fraction

 K_{oc} values can easily be measured in laboratory experiments, and organic carbon is routinely determined in soil laboratory analysis.

As one can see, by combining equations (2), (3) and (4), the higher the K_{ac} value, then the higher the concentration that is in the adsorbed phase, and the smaller the leaching potential of the pesticide. Adsorption can explain the often very slow migration of pesticides through soil.

Dissipation and Half-Life

The processes dissipation, degradation and persistence express the process of the disappearance of the pesticide from the soil surface or subsurface. The slower the dissipation or degradation of a pesticide, the longer its persistence. Persistence is usually expressed with the term half-life which is the time (in days) it takes for one half of the substance to be degraded or broken down to simpler compounds. Often, dissipation is expressed by a dissipation rate constant K_s. The half-life and the dissipation rate constant are related by the following equation:

$$K_{s} = 0.693 * 1/t_{1/2}$$
(5)

= Dissipation constant in days⁻¹ where: K_

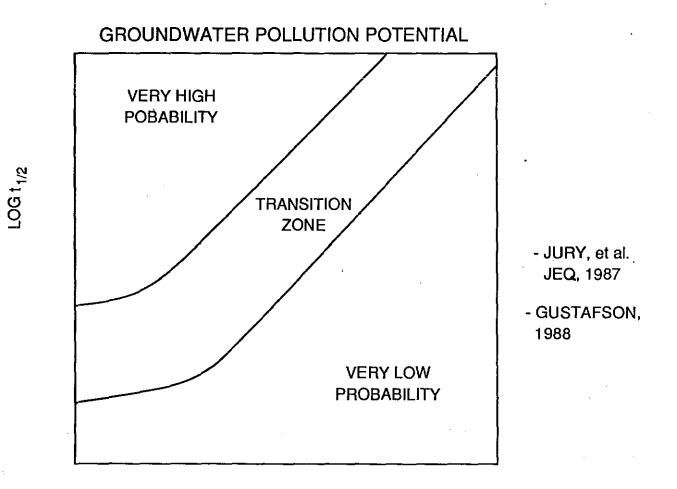
(4)

$t_{1/2}$ = Half-life time in days

Pesticide dissipation is based on a combination of processes. These include volatilization (the loss of compounds to the atmosphere), hydrolysis (acidicbasic reactions), and biotic and abiotic absorption. Experimental data indicate that pesticide dissipation is considerably faster from the soil surface than from the subsurface (Leonard et al., 1987), faster in the root zone than below the root zone, and much faster under unsaturated conditions than under saturated conditions (Carsel, 1984).

Pesticide dissipation depends on the chemical structure of the compound. Most breakdown products are less harmful than the original product, however, certain pesticides may produce potentially more hazardous breakdown products.

The pesticide data bank in Appendix C provides information on half-life values and organic carbon partition coefficients. Pesticides listed in this appendix are used in Utah.


<u>Solubility</u>

A pesticide's solubility value indicates its ability to dissolve in water. However, according to Leonard et al. (1988) "solubility will limit herbicide transport in leachage only for specific combinations of K_{oc} , S, and application rate".

Solubility is related to the organic carbon partition coefficient (K_{oc}) , except for a few pesticides having high crystal energy and high melting point (e.g. simazine). Therefore, leaching predictions do not necessarily require the knowledge of solubility values.

Physical-chemical leaching potential

A pesticide physical-chemical potential to leach depends on its persistence in soil and its lack of binding to the soil (USEPA, 1987). Hornsby (1988) combines the two influencing factors in a graphical representation as indicated in Figs. 2 and 3.

LOG K_{oc}

.



Figure 3. Half-life and Organic Carbon Partition Coefficient Related to Groundwater Pollution Potential (from Hornsby, 1988)

<u>Soils</u>

Organic matter content, texture, structure, pH, moisture content, and temperature may affect water movement in soil, runoff, sorption, dissipation, and plant uptake.

Organic Matter

Besides the organic carbon partition coefficient (K_{oc}) , organic matter is the most important factor influencing sorption processes. Organic matter molecules dominate the adsorption/desorption process of nonpolar organic compounds. Microorganisms "feed" on the hydro-carbons of the pesticides and absorb them. Equations (1), (2) and (3) indicate the influence of organic matter. Notice the use of the term organic carbon instead of organic matter in equation (3). Laboratory analysis of soil samples usually indicate organic carbon in percent of the total weight of the soil sample. In Utah it has been observed that organic matter content is about 1.7 times organic carbon content (personal communication with USU Soil Labratory, 1989).

<u>Texture</u>

Texture is defined as "the size of particles making up a soil " (Hansen ed al., 1980). Soil texture affects water movement and sorption processes. Soils with a high clay content have a low infiltration rate. On those soils, water and pesticide runoff may be high.

Texture affects the water holding capacity, the soil water available to the plant, and the pesticide/soil particle contact. A light textured soil generally has a low water holding capacity. Infiltration may easily exceed the water-holding capacity of the soil and water and pesticides may quickly move below the root-zone and possibly to the groundwater.

<u>Structure</u>

Structure is the size, shape, and arrangement of primary particles to form compound particles and the size, shape, and arrangement of compound particles. (Hansen et al., 1980). Structure and texture affect the pore volume in soils. Macro-pores may be mainly responsible for rapid transport of pesticides to deeper soil layers.

It is appropriate to mention in this context the phenomenon of "fingering". Fingering is the constriction of flows in the unsaturated zone to preferred flow paths (Hillel and Baker, 1988). Through macro-pores, fingering may rapidly transport pesticide to deeper soil layers.

<u>Clay Content</u>

Certain clays such as montmorillonites and smectites shrink and swell depending on soil moisture. The cracks formed on drying, close as the clay hydrates. However, initial wetting may rapidly move water and pesticides below the root zone. Aller et al. (1985) notes: "In general, the less the clay shrinks and swells, and the smaller the grain size, the less the pollution potential". Non-shrinking clays such as illites or kaolinites have a low pollution potential.

<u>Agricultural Practices</u>

Agricultural practices, including the method of applying pesticides, soil management and irrigation methods may have significant impacts on pesticide movement and plant uptake.

<u>Pesticide Application and Plant Uptake</u>

Pesticides may be applied as solids, solutions, dispersions, or emulsions to plant and/or soil surfaces. Using tillage equipment, some surface applied pesticides may be incorporated into soils.

Pesticide movement may be influenced significantly by foliar and root absorption, foliar wash-off, and volatilization from plant surfaces. To our knowledge, site independent data quantifying these values are not yet available.

Pesticide incorporation into soil affects pesticide movement. Often, organic matter affecting pesticide sorption is highest in the top few centimeters

24

. . of a soil. Direct application of pesticide below this top layer (e.g. to protect corn against rootworms) generally results in increased leaching of pesticides.

<u>Soil Management</u>

Infiltration, surface runoff and soil erosion affect pesticide leaching. Pesticides applied to plant or soil surfaces may be lost to runoff (in solution or attached to soil particles). Soil management practices, namely timing, frequency, depth, and direction of plowing and/or disking, as well as the treatment of crop residues immediately after harvest (no treatment, incorporation, burning), may influence the balance between infiltration and surface runoff. Obviously, contour plowing and disking increases surface retention of water and consequently infiltration. Burning of crop residues decreases resistance to surface flow and increases surface runoff and/or wind erosion.

One may argue that reduced infiltration and increased runoff reduces leaching to groundwater and therefore reduces pesticide movement to groundwater. This may hold true, on a very limited observation scale. However, surface runoff often infiltrates at a different place under less favorable conditions (rapid infiltration, reduced pesticide dissipation). Contamination of surface water should not be regarded as a lesser problem. Furthermore, certain pesticides need to infiltrate in order to reach their target.

<u>Irrigation</u>

Basin, border, furrow, sprinkler, and trickle irrigation are field application methods. Crop value, sophistication of the application method, and irrigation efficiency are often linked. Irrigation efficiency is said to be low, if a considerable part of the applied water is lost to runoff or deep-

percolation. It generally holds true that farmers tend to over-irrigate their crops if water availability is not restricted. In other words, farmers apply more water than the soil possibly can store in the root zone.

Since soil water and pesticide movement are directly related, overirrigation results in increased pesticide movement. Generally, the larger the water movement, the larger the pesticide movement. Careful timing of pesticide and irrigation applications and irrigation doses are required. In certain cases, an irrigation immediately after pesticide application may result in excess pesticide loss; in other cases, a light irrigation immediately after pesticide application may be required to transport the pesticide to its target place, the plant roots.

Chemigation involves the simultaneous application of agricultural chemicals and irrigation. Extreme care is recommended for the control of chemical and irrigation rates as well as for the mixing process. Olexa (1984) notes:

"Injection of crop management materials such as fertilizers and agrichemicals into an irrigation system which is not carefully designed and safely managed can result in serious groundwater contamination and legal consequences of significant magnitude".

Hydro-Geology

Depth to groundwater, geologic formation characteristics, hydraulic conductivity, and confining beds influence water movement and pesticide dissipation. While soil mainly influences vertical movement of water and surface runoff, geologic formation may influence vertical and horizontal water movement.

Depth to Groundwater

The larger the distance from the soil surface to the groundwater, the longer the pesticide dissipation opportunity. However, pesticide dissipation

is considerably slower below the root zone than in the root zone (reduced biotic absorption, less adsorption, lower temperature).

<u>Geological Formation and Hydraulic Conductivity</u>

1

Water movement in the unsaturated as well as in the saturated zone is related to pore space, which in turn depends on the geological formation. Table 8 gives an overview of geological formations and types of porosity.

1.

TABLE 8. Geological Formation and Type of Porosity (Todd, 1980).

Type of		Sedimentary		Igneous and Metamorphic	Volc	anic
Porosity	Consolidated	Unconsolidated	Carbonates		Consolidated	Unconsolidated
lotergranu]ar		Gravelly sand Clayey sand Sandy clay		Weathered zone of granite-gneiss	Weathered zone of basalt	Volcanic ejecta, blocks, and fragments Ash
intergranular and fraclure	Breccia Conglomerate Sandstone State	,	Zoogenic limestone Oolitic limestone Calcareous grit		Volcanic tuff Cinder Volcanic breccia Pumlce	
Fracture	·		Limestone Dolomite Dolomitic limestone	Granite Gneiss Gabbro Quartzite Diorite Schist Mica schist	Basalt Andesite Rhyolite	

Water and pesticide movement in formations with large clay content and only intergranular porosity may be extremely slow, whereas movement in fractured limestone may be very fast. For practical work in groundwater hydrology, the hydraulic conductivity is used. Todd (1980) formulates:

"The hydraulic conductivity of a soil or rock depends on a variety of physical factors, including porosity, particle size and distribution, shape of particles, arrangements of particles, and other factors" (p. 69).

The higher the hydraulic conductivity, the faster the water movement in the saturated zone.

Confining Beds

In certain areas, a confining bed restricts vertical flow. The confining layer may separate a shallow and a deep aquifer. It is assumed that the confining layer restricts pesticide movement into the deeper aquifer. However, interaction between the two aquifers is possible, and the mere existence of a confining layer does not always guarantee an absolute confinement.

Climate

Rainfall, temperature, sunshine hours, wind and humidity may affect pesticide movement.

<u>Rainfall</u>

Oliver (1987) notes:

"In most situations, rainfall will be the main driving force for pesticide movement through the soil, and if all other parameters are the same, deeper leaching would be expected at sites with greater rainfall" (p. 55).

For the arid West, this statement is modified to include "rainfall and irrigation".

Rainfall intensity, distribution, and timing after pesticide application have a significant impact on movement. Higher movement is expected in areas with frequent heavy rainfalls. Knisel et al. (1980) indicate that "pesticide removal from leaf surface is greatest if rainfall occurs within 24 hours after pesticide application" (CREAMS Manual p. 596).

Rainfall intensity and distribution affect surface runoff and erosion. A discussion of this topic is provided in the section "soils".

Temperature, Sunshine and Wind

Temperature, sunshine and wind affect water removal from soils, volatilization, and photodecomposition of pesticides. Water evaporation from the soil surface may actually initiate an upward movement of pesticides. Plant transpiration removes water (and pesticide) from the soil profile, and reduces downward movement.

Air temperature and sunshine affect soil temperature. The temperature dependence of dissipation processes is discussed under "soils". It is important to note that under frozen soil conditions, pesticide movement and dissipation are halted.

<u>Humidity</u>

Knisel et al. (1980) indicate that:

"High humidity has been reported to increase pesticide persistence on plants by facilitating foliar absorption through favoring stomatal opening and slowing drying time, and to decrease persistence by favoring volatilization" (CREAMS manual p. 596.

Topography

Topography, together with soil properties (infiltration), affect the distribution between water infiltrated into the soil and water lost to runoff. The steeper a slope, the higher the potential for runoff losses and soil erosion.

Pesticide may be washed off in solution or attached to soil particles. Leonard et al. (1988) relates the importance of runoff losses also to the half-life of pesticides. They note:

"Losses in runoff water were about 10 times greater from a heavy soil then from a sandy soil. Losses of runoff-transported, sediment-sorbed pesticides from the heavy soil were about 100 times greater than those from the sandy soil. For both soils, losses increased with increasing herbicide half-life. Losses were very low for K_{oc} smaller than 100 because in this K_{oc} range, the dominant pathway of herbicide transport from the surface soil layer is vertical with infiltrating rainfall rather than horizontal in runoff" (p. 212).

ASSESSING POTENTIAL HAZARD OF PESTICIDES TO GROUNDWATER QUALITY IN UTAH

The Survey

Accurate information on pesticide usage in Utah is required in order to assess the potential hazard to groundwater. Results of a survey conducted in 1978 were judged to be incomplete and outdated. Therefore, a new survey was designed and conducted.

When conducting a survey, one needs to select appropriate survey respondents in order to receive a representative picture of reality. Utah has about 13,600 farms (DelRoy, 1988). Surveying even five percent of them would have been impossible for the resources of this study. However, county agents of the Utah State University Cooperative Extension Service are familiar with farming operations in their counties. This source of information was utilized for the survey.

Data surveyed were:

1. Crop rotation for a particular farm

- 2. Crop:
- 3. Pesticide application:
- 4. Irrigation:

- Date of harvest

- Name

- Formulation
- Application date

- Planting date - Date of emergence - Date of maturity

- Application rate
- Method
- Rate

- Type

- Frequency
- Duration
- Starting date in season

5. Soil:

ů,

Survey forms and instruction guide are included in Appendix E.

Survey respondents were requested to provide information on their crop rotation. This was judged necessary since a intraseasonal cumulative effect of highly persistence pesticides and pesticide metabolites may occur. Pesticide metabolites are not analyzed in this study, although, survey results may be used for future studies. The survey respondents were also requested to sketch crop rotation patterns on 1:100,000-scale topographic maps.

Rapid Assessment of Groundwater Vulnerability

Pesticide hazard to groundwater depends on an array of site-specific factors and factor-combinations. Assessing groundwater vulnerability in a spatially extended and highly variable system such as the state of Utah, is bound to produce an overwhelming wealth of data. The use of a rapid assessment or screening procedure became absolutely essential. With its help, potentially safe site-factor combinations can be identified and excluded from further investigation, whereas potentially hazardous site-factor combinations can be targeted for intensive attention.

Evaluation of Screening Procedures

For the purpose of this study, three screening tools are evaluated: DRASTIC (Aller et al., 1985), SEEPPAGE (Moore et al., 1988), and SOI (Goss, 1988). A brief overview of the three procedures follows.

DRASTIC:A Standardized System for Evaluating Groundwater Pollution
Potential Using Hydro-Geologic Settings.Developed by:National Water Well Association / Environmental Protection
Agency

Purpose:	 To serve as a screening tool for the systematic evaluation of the relative vulnerability of areas to groundwater contamination.
	To help direct resources, waste disposal, and other land- use activities to appropriate areas.
Factors used:	 D = Depth to groundwater R = Net recharge A = Aquifer media S = Soil media T = Topography (slope) I = Impact of the vadose zone C = Hydraulic conductivity
Methodology:	Quantitative ranking of factors; weighted summation yields a total score.
Result:	Numerical value called DRASTIC index. The higher the index, the greater the groundwater pollution potential, however, the index is a relative value to be used only for comparative assessments.
SEEPPAGE:	A System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments.
Developed by:	Soil Conservation Service
Purpose:	 To serve as a screening tool early in the conservation planning process when sites for practices are being selected.
	 To allow the user to compare the relative risks of groundwater contamination among various sites and to select the most favorable site.
	 To identify when a specialist is needed, or when a more detailed, site-specific evaluation is necessary.
	 To provide insight on how either the site or the practice may need to be modified to provide for protection of groundwater.
Factors used:	 Horizontal distance between site and point of water use Land slope Depth to water table Vadose zone material Aquifer material Soil depth Attenuation potential of soil

33

.4

۰.

Methodology:	Quantitative ranking of factors; weighted summation yields a total score.
Result:	Numerical value called Site Index Number (SIN). The larger the SIN, the greater the pollution potential of the groundwater at the site. The SIN value is related to a pollution potential category; categories range from "very high" to "low".
<u>SOI</u> :	Soil Ratings for Pesticide Leaching and Surface Loss Potential.
Developed by:	Iowa State University / Soil Conservation Service
Purpose:	 To evaluate the relative potential loss of pesticides from soils due to leaching and surface runoff.
	 To serve as a screening tool to define zones where: a. Unacceptable losses occur regardless of management b. Unacceptable losses occur, but may be reduced to acceptable losses by management. c. Little losses occur regardless of management.
Factors used:	 Hydrologic soil group Organic matter of first soil horizon Half-life time of pesticide Organic carbon coefficient of pesticide Soil erosion factor K
Methodology:	Use of algorithms that were developed based on extensive computer simulations. Pollution category selection based on bench mark values.
Results:	 a. Soil leaching potential ranging from "high" to "nominal". b. Pesticide leaching potential ranging from "large" to "total use". c. Soil surface loss potential ranging from "high" to "nominal". d. Pesticide surface loss potential ranging from "large" to "small".

<u>Selection of a Screening Procedure</u>

Each of the three screening tools has its advantages and limitations. DRASTIC and SOI seem to reflect the backgrounds of their developers. All three methodologies exclude some factors that may play an important role in pesticide movement. However, especially when coupled with some steps external to the

34

methodology, each screening procedure may lead to the identification of potentially hazardous sites.

In order to select a screening tool for this study, the following criteria are used:

- Ease and rapidity of use while including factors important to pesticide movement;
- 2. Appropriateness for use at many different points in a large area; and
- 3. Ease with which results can be mapped.

DRASTIC is selected as the tool to be used because this methodology includes the influence factors "depth to groundwater" and "net recharge". The numerical results are conducive to point representation on large scale mapping.

SEEPPAGE represents soil influences on possible pesticide movement very well. However, the methodology is designed to be fairly situation and site specific. It uses the influence factor "distance to well". This factor is difficult to include in a statewide screening procedure. Furthermore, "distance to a well" does not address the problem of possible future use of the groundwater resource.

SOI is the only methodology that includes pesticide properties in the screening process. However, this study addresses the influence of chemical-physical properties on leaching in more detail subsequent to the screening process. Using only the soil component of SOI as screening procedure may not be sufficient.

Agricultural DRASTIC Index for, Cropping Areas in Utah

Index Calculation

The agricultural DRASTIC index is the weighted sum of seven factors that might affect pesticide movement. The index is calculated as:

Pollution Potential = $D_R * D_W + R_R * R_W + A_R * A_W + S_R * S_W + T_R * T_W + I_R * I_W * C_R * C_W$ (6) Where: The subscript R stands for rating, the subscript W stands for weight and: D = Depth to groundwater R = Net recharge A = Aquifer media S = Soil media T = Topography (slope) I = Impact of vadose zone

C = Hydraulic conductivity

The weights indicate the relative importance of each factor with respect to the other factors. Each DRASTIC factor has been assigned a relative weight ranging from 1 to 5. The most significant factors have the weight of 5; the least significant, a weight of 1. These weights are constants and may not be changed.

Each DRASTIC factor has a rating varying from 1 to 10. The highest pollution potential of a factor is expressed by the rating 10; the lowest by the rating 1; for example, a depth to the groundwater of 0 to 5 feet would yield the rating 10 whereas a depth to the groundwater of more than 100 feet would be linked to a rating of 1.

Weight and rating definition and selection are described in detail by Aller et. al. (1985). The interested reader is referred to this source of information. However, a word of caution needs to be spoken here: Two different DRASTIC indices exist, a general index and an agricultural index. The two indices differ in the weight selection. Results using the general index should not be compared to results using the agricultural index. This study uses the agricultural index.

DRASTIC Factor Information

As in almost any analysis, the quality of the pollution potential calculation depends on the quality of the input data. Input, in the case of the DRASTIC index calculation, is quantitative information concerning the DRASTIC factors. The quality of this information varies by region and county. Data comes from published sources supplemented by field information and best judgement. A brief discussion of DRASTIC factor information follows.

<u>Depth to Groundwater</u>. Depth to groundwater varies with time and location. At a given location, considerable fluctuations during a season and between seasons may be observed. In undulating terrain, spatial variation in depth to groundwater may be extremely pronounced.

Technical bulletins and basic data reports of the U.S. Geological Survey, 208 reports, and field information were used as information source. Some reports provide "depth to groundwater" mapping, whereas others list data on selected wells (including depth to water surface).

<u>Net Recharge Rate</u>. Net recharge rates depend on precipitation and irrigation. In most of Utah's agricultural areas, precipitation contributes 0 to 2 inches to net recharge. However, due to irrigation, total annual net recharge rates of ten exceed 10 inches (a value that yields the maximum DRASTIC rating). Therefore the selected efficiencies do not affect DRASTIC results. Table 9 indicates the net recharge selection.

Aquifer Media. Vadose Zone, Hydraulic Conductivity

Agriculture (especially irrigated agriculture) is mainly concentrated in valley floors and adjacent benches. Sediments of various granulometric

Crop	ET	On-Farm Efficiency	Deep Percolation Loss	Winter Recharge	Total Net Recharge
Fruit Trees	37"	80%	9.3"	2"	11.3"
Corn	23"	70%	9.9"	2"	11.9"
Small Grains	22"	65%	11.8"	2"	13.8"
Alfalfa	30"	60%	20.0"	2"	22.0"
Vegetables (single crop)	15"	80%	3.8"	2"	5.8"
Vegetables (double crop)	30"	80%	7.6"	2"	9.6"
Potatoes Dry Farming	. 17"	80%	4.3"	2" 2"	6.3" 2.0"

TABLE 9. Net Recharges Used in DRASTIC Calculation

composition dominate in those areas. Some technical bulletins and basic data reports reveal information on aquifer media and hydraulic conductivity; however best judgement plays an important role in assessing the quantitative values for aquifer and vadose characteristics.

<u>Soil Media</u>. Soil is a well documented DRASTIC factor. Detailed soil surveys are available for many regions. Figure 4 shows the areas covered by modern published soil surveys in Utah. In addition, old soil surveys provide complementary information, and a general soil map (scale 1:1,000,000) provides an overview on soils in Utah.

Topography. Topography maps are available for the entire state.

Example Calculation for Utah County

Data from Utah County are used to demonstrate the DRASTIC procedure as used in this study. Based on information provided by the survey, cropping areas are mapped as shown in Figure 5. Table 10 shows the calculation of the agricultural

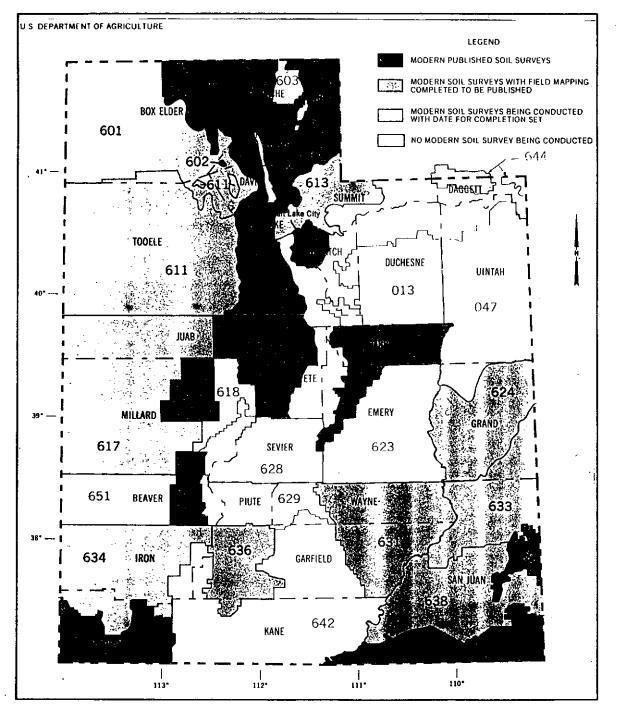


Figure 4. Areas Covered by Published Soil Surveys (Original Draft by State Soil Survey Staff).

14 A A A

DRASTIC index, and Figure 6 shows its geographical representation. Calculations in Table 10 are for the north-west part of Utah County's cropping area. The selection of the point density and point location is based on good judgement. Notice in the table the impact of low net recharge and large depth to groundwater.

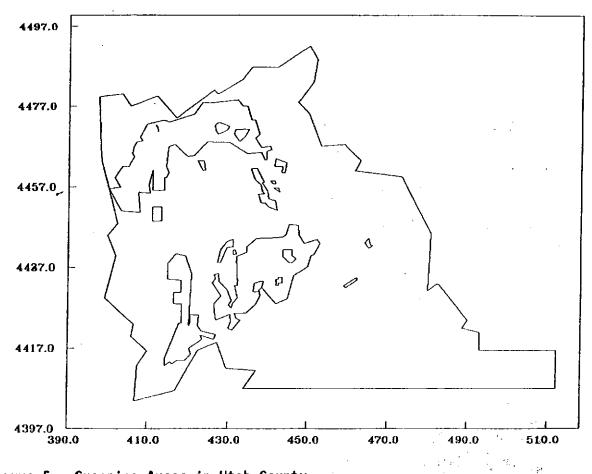


Figure 5. Cropping Areas in Utah County

No.	Coordi	nates	Deptl	h		Net	Rech	arge	Aquif	er M	ledia	Soil	Med	ia
	X	Y	(fṫ)	R	I	(In.)	R	Ī	Туре	R	Ι	Туре	R	I
1	411.0	4469.0	>100	1	5	2	1	4		6	18	SaL	6	30
2	408.0	4464.0	82	2	10	+10	9	36		6	18	L	5	25
3	406.0	4457.0	5	5	25	2	1	4		6	18	SaL	6	30
4	405.0	4453.0	80	2	10	2	1	4		6	18	SaL	6	30
5	413.0	4460.0	27	7	35	+10	9	36		6	18	SaL	6	30
6	409.0	4460.0	34	5	25	+10	9	36		6	18	SiL	4	20
7	418.0	4470.0	80	2	10	2	1	4		6	18	SiL	4	20
8	423.0	4473.0	80	2	10	+10	9	36		8	24	SiL	4	20
9	429.0	4469.0	18	7	35	+10	9	36		8	24	ScL	3	15
10	435.0	4472.0	10	9	45	+10	9	36		8	24	SiL	4	20
11	437.0	4466.0	16	7	35	+10	9	36		8	24	ScL	3	15
12	443.5	4462.7	20	7	35	+10	9	36		8	24	L	5	25

. . . . · ·

:

. .

•

TABLE 10. Agricultural DRASTIC Index for Utah County

TABLE 10. Continued

Topog	raphy	1	Vadose Zo	ne	Conductiv	vity	Total
(%)	Ŕ	I	Туре R	I	(ft/d) R	I	Index
2-4	8	24	6	24	4	8	113
2-4	8	24	6	24	4	8	145
2-5	7	21	6	24	4	8	130
2-5	7	21	6	24	- 4	8	115
2-5	7	21	6	24	4	8	172
0-2	10	30	6	24	4	8	161
2-4	8	24	6	24	4	8	108
1-3	9	27	6	24	4	8	149
1-3	9	27	6	24	4	8	169
1-3	9	27	6	24	4	8	184
1-3	9	27	6	24	4	8	169
1-3	9	27	6	24	4	8	179

R =	Rat	ing
-----	-----	-----

.

I = Index

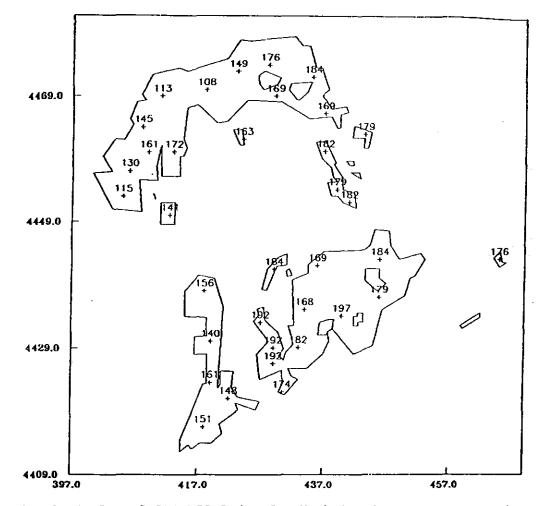


Figure 6. Agricultural DRASTIC Index for Utah County

Results of Statewide Screening

The results of the statewide screening for potential hazard to groundwater and map of cropping patterns are represented in Plates 1 and 2. Table 11 gives the lowest, highest and average agricultural DRASTIC value for each county.

Each value in the plate expresses the DRASTIC result for a particular point. To address the vulnerability of a spatially extended area, average index values over several points may be formulated. It generally holds true that the larger the number of points included in the averaging process, the larger the spacial extent of the area. One may attempt to formulate criteria on how many points should be included in the averaging processes, or what size of a sub-area should be analyzed for its potential vulnerability. However, no clear cut point number - area relationship is presented here. In this study, DRASTIC index locations are selected by an expert mind, and not by a pre-determined grid system. Averaging over too many points might disguise some problem areas (if very low values are included in the average). Averaging over too few points might not provide an indication for the spatial extent of the problem. Table 11 indicates for each county the minimum and maximum DRASTIC index, the number of points N analyzed in a county and average values including 5 points, 10 points, 15 points, 20 points, and all points of a county. Table 11 allows the following ranking of counties:

Highest Values: (>200)	Wayne, Daggett, Duchesne, Weber, Cache, Kane, Summit, Unitah.
Lowest Values: (<110)	Box Elder, Cache, Millard, Utah.
Highest 5 Point: (>190)	Wayne, Weber, Duchesne, Cache, Davis, Summit, Utah, Uintah.
	Weber, Wayne, Cache, Davis, Utah, Wasatch,Duchesne, Summit, Juab.
Highest 15 Point: (>180)	Weber, Cache, Wasatch, Utah, Sanpete, Duchesne
Highest 20 Point: (>180)	Weber, Wasatch, Cache, Utah

Total averages are not ranked, since a five point average in Daggett county would be compared to a 72 point average in Box Elder County.

County	Min.	Max.	5Pt.	10Pt.	15 Pt.	20Pt.	tot.ave.	N
Beaver	147	178	176.4	173.2	164.5	168.3	165.4	21
Box Elder	87	189	184.4	178.5	173.7	169.6	136.88	72
Cache	102	202	198.8	191.9	187.3	182.6	164.3	32
Carbon	162	184	175	-	-	-	171.0	8
Daggett	165	207	185.6	-	-	-	185.6	5
Davis	170	196	195	189.4	-	-	184.5	12
Duchesne	155	203	199.4	187.9	180.7	175.2	173.4	22
Emery	143	183	177	168	162	-	160.8	16
Garfield	134	187	178.2	164.2	-	-	158	13
Grand	163	188	178.8	176.2	-	-	173.2	14
Iroņ	138	183	179	174	170.6	165.6	163.2	22
Juab	129	196	186.8	182.2	179.4	172.6	158.8	33
Kane	145	202	187.6	177.6	-	· •	169.6	14
Millard	107	175	169.4	165.2	162.7	158.5	146.5	31
Morgan	125	197	182.2	196.0	-	-	165.0	· 13
Piute	152	188	184.8	180	-	-	175.3	14
Rich	142	194	184.9	181.1	176.3	-	172.3	17
Salt Lake	143	188	182.6	178.6	173.9	_ .	169.5	19
San Juan	130	181	169	161	158	-	150.8	20
Sanpete	137	194	188.6	196.1	182.5	178.8	173.8	25
Sevier	153	199	189.4	183.1	· –	-	177	14
Summit	148	201	192.2	185.8	178.5	173.6	169.1	28
Toole	155	194	186.4	181.6	-	-	174.4	15
Uintah	123	200	190	183.9	179.6	173.6	162	32
Utah	108	197	191.4	189.1	184	180.5	164.6	35
Wasatch	158	188	188	188	186.7	185.2	174.2	44
Washington	161	194	188.8	181.8	-	-	177.7	13
Wayne	146	209	202.4	195.8	-	187.3	183.7	17
Weber	180	203	201.6	198	195.1	192.7	192.1	21

TABLE 11. Range and Average Agricultural DRASTIC Values for Each County

The developers of the DRASTIC procedure emphasize that DRASTIC indices are relative values that should only be used for comparison purposes. Aller et al., (1985) do not link DRASTIC score to a descriptive statement about the pollution potential.

One may notice that indices represented in Plate 1 are generally rather high. However, the analysis in this study focuses only on agricultural areas. In these areas, net recharge to groundwater is strongly influenced by irrigation, and groundwater is often close to the surface. An agricultural DRASTIC calculation outside of agricultural areas (notice the apparent contradiction in this formulation) would in most cases result in rather low scores.

COMPUTER SIMULATION OF PESTICIDE MOVEMENT

The agricultural DRASTIC procedure described in the previous chapter identifies cropping areas in Utah, in which the application of pesticides may pose a potential hazard to groundwater quality. In those areas, further investigation, using a pesticide transport model, is required.

Simulation Models

In many studies, considerable effort needs to be devoted to the selection of an appropriate model. Wood (1984) expresses the model selection problem in the following way:

"On one hand, a high level of complexity requires a sizeable number of rate coefficients and mathematical descriptions of transformation processes, which must be identified on the basis of a limited amount of knowledge. On the other hand, a simplified model, although requiring very few parameters, may give a poor conceptual view of the system and add little insight into the pertinent process."

¥

Three models were considered for use in this study. A short description of the models follows.

<u>Chemical Movement in Layered Soil (CMLS)</u>. CMLS is a management model that can be used to make decisions regarding the behavior of agrichemicals in soils. The model estimates the location of the peak concentration of non-polar organic chemicals as they move through a soil in response to downward movement of water. The model also estimates the relative amount of each chemical still remaining in the soil at any time. CMLS is developed by Nofziger and Hornsby (1986).

<u>Pesticide Root Zone Model (PRZM)</u>. PRZM was originally developed to be used in EPA's pesticide registration program. The model simulates the vertical movement of pesticides in unsaturated soil, within and below the plant root zone, and extending to the water table. It uses generally available input data that are reasonable in spatial and temporal requirements. The model consists of hydrology and chemical transport components that simulate runoff, erosion, plant uptake, leaching, decay, foliar washoff, and volatilization of pesticide. PRZM is developed by Carsel et. al. (1984).

<u>Groundwater loading and Erosion from Agricultural Management Systems</u> (<u>GLEAMS</u>). GLEAMS was developed for field-size areas. The model evaluates effects of agricultural management systems on the movement of agricultural chemicals within and through the plant root zone. GLEAMS is an extension of the USDA CREAMS model. The model was developed for the USDA by Leonard et al., (1987).

Model Selection

The PRZM and the GLEAMS model were compared. Both models seemed to perform about equally well. However, for both models input value development is rather cumbersome and not conducive to the rapid analysis of a great number of different cases. It was therefore decided to: (a) prefer PRZM over GLEAMS and (b) to develop a user-friendly, interactive interface for the PRZM model. By means of this interface, the PRZM and the CMLS model are about on the same level of user-computer interaction, and can easily be composed. The following comparison criteria are used:

1. Accuracy in the prediction of pesticide movement;

2. Simulation time requirement;

3. Input value requirement; and

4. Accessibility of model output.

Both models have undergone limited performance testing; the PRZM model in New York, Wisconsin, Florida and Georgia; the CMLS model mainly in Florida. The PRZM model permits more parameter input values, however, an increased number of parameters does not necessarily increase adequacy.

Advantages of the CMLS model include the following, The mathematical solution used in the CMLS model is less complex than the one used in the PRZM model. Consequently, the simulation time requirement is much smaller when using the CMLS model (especially when simulating pesticide movement to depths of several meters). The CMLS model requires fewer input values. Pesticide and soil data are stored in a data base and are retrievable by name (an important feature in case of extensive, repeated simulation). The CMLS model displays results on the screen. Printing screens with selected output values permits one to avoid extensive file-keeping for later analysis.

Both models were used to simulate the movement of the insecticide carbofuran in Martini soil in Weber County (pesticide application: 1.12 kg/ha). Concentrations predicted by both models were very close.

The CMLS model was judged to be the appropriate tool to achieve the objective of this study which is to compare the potential hazard at various sites throughout Utah. However, it should be noted that the CMLS model might overpredict the movement of polar pesticide into soils with a higher cation exchange capacity.

Basic Concepts and Assumptions Used in the CMLS Model

The CMLS model integrates two basic concepts: (a) the movement of the chemical; and (b) the degradation of the chemical. In this model, chemicals move only in the liquid phase in response to soil-water movement. Water movement is calculated using a volume balance approach. Chemicals are exposed to adsorption processes and therefore advance in depth less far than water. A linear and reversible equilibrium adsorption model simulates the retardation of the chemical movement. The following equations are used to predict chemical movement:

$$dd_s = \frac{q}{R * T_{FC}}$$
(7)

$$R = 1 + \frac{BD * K_D}{T_{FC}}$$

$$K_{\rm D} = K_{\rm OC} \star 0C \tag{9}$$

(8)

where:

dd = Change in depth of the solute Amount of water passing the depth d. q = d, Depth of the solute front in a uniform soil = \mathbf{R}^{-} **Retardation** factor = Soil-water content on a volume basis at field capacity $T_{FC} =$ BD Soil Bulk Density = KD = Partition coefficient of the chemical in soil K_{oc}^{-} = Organic carbon partition coefficient Organic carbon content of the soil 00 =

Chemicals are exposed to degradation processes. The model predicts the fraction F of the applied chemical remaining in the entire soil profile as:

F = exp(-t *
$$\frac{\ln (2)}{t_{1/2}}$$
)

where: t = Elapsed time since the chemical was applied

 $t_{1/2}$ = Biological degradation half-life of the chemical

(10)

1.7

Pesticide movement predictions given by the CMLS model are based on the following assumptions (Nofziger and Hornsby, 1986):

- 1. All soil water residing in pore spaces participates in the transportation process. If this assumption is not valid and a portion of the soil water is bypassed during flow, the model underestimates the depth of the chemical front;
- Water entering the soil redistributes instantaneously to field capacity;
- 3. Root distribution is uniform with depth;
- 4. Upward movement of soil-water does not occur;
- 5. The adsorption process can be described by a linear, reversible equilibrium model; and
- 6. The half-life time for biological degradation is constant with time and soil depth.

Further explanations of these concepts and the user interaction of the CMLS model are given by Nofziger and Hornsby (1986 and 1988).

DATA PREPARATION

The CMLS model requires data on precipitation, evapo-transpiration, crop rooting depth, pesticide, soil, and pesticide application. Considerable effort has been devoted to the collection and preparation of these data.

Climate Data and Time Window Selection Climate Data

Utah is divided into zones of more or less uniform climate. The zonal boundaries are shown in Figure 7.

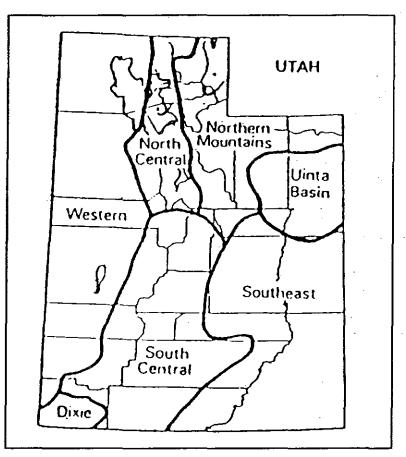


Figure 7. Zones of Relatively Uniform Climate Conditions.

For each zone, a weather station was selected based on recommendations of the State Climatologist (personal communication G. Ashcroft, 1989). It is

assumed that this station provides representative data for the entire zone. Table 12 gives an overview of zones, counties in a zone, and representative weather stations.

Zone	Counties	Weather Station
North Central	Box Elder Cache Weber Davis Salt Lake Utah	Ogden Sugar Factory
North West	Juab Tooele	Park Valley
Northern Mountains	Rich Morgan Summit Daggett Wasatch	Rando1ph
Uintah Basin	Uintah Duchesne	Fort Duchesne
South Western	Millard Beaver Iron	Delta
Dixie	Washington	St. George
South Central	SanPete Sevier Piute Wayne Garfield Kane	Richfield Radio KSVC
Southeast	Carbon Emery Grand San Juan	La Sal

TABLE 12. Zone, County, Weather Station Assignment

Daily data on precipitation, pan evaporation (if available), maximum and minimum temperature were obtained from the State Climatologist for the weather stations indicated in Table 12.

Time Window Selection

Pesticide movement is directly related to precipitation, however, precipitation varies considerably within and between seasons. An analysis of Ogden precipitation data from 1928 through 1986 reveals a seasonal minimum of 21.0 cm in 1966 and a seasonal maximum of 87.1 cm in 1983.

Weather data series provided by the State Climatologist vary considerably in length: Ogden Sugar Factory data cover the period from 1928 through 1986 whereas La Sal data cover only the period from 1978 through 1988.

In order to compare results throughout the state, pesticide movement should be analyzed at all locations for the same time period. To select an appropriate time period, we assume that after a six year period, based on a single application, movements of currently registered pesticides are below the technical limits of any detection equipment. Therefore, the maximum time window, for analyzing the movement of a single pesticide application, should not exceed six years.

Ogden Sugar Factory weather data are analyzed for the probability of exceeding certain seasonal rainfall. Results for the years 1980 through 1986 are shown in Table 13. The probability of an exceedance of 0.53 in 1981 means that about every second year, the seasonal total precipitation of 1981 is exceeded.

Year	Probability			
1980	0.09			
1981	0.53			
1982	0.07			
1983	0.02			
1984	0.32			
1985	0.77			
1986	0.11			

TABLE 13. Probability of Exceedance of Seasonal Rainfall

The probability of exceedance of the sum of:

a. Two seasons in a row starting in 1980 is 0.16;

b. Three seasons in a row starting in 1980 is 0.11;

c. Four seasons in a row starting in 1980 is 0.02;

d. Five seasons in a row starting in 1980 is 0.02.

However, major pesticide movement usually occurs during the first two years after application.

This study analyzes pesticide movement using climate data from 1980 through 1985. Results of the probability analysis indicate that this is a rather conservative choice. Analysis of a "dryer" time window would result in less pesticide movement. However, one must recognize the possibly important influence of irrigation. Seasonal irrigation applications usually exceed seasonal precipitation.

Evapo-Transpiration Data

Extensive research is conducted in the field of evapo-transpiration (ET), and numerous equations to calculate evapo-transpiration are presented in the literature. Hargreaves and Samani (1985) developed an approach that requires

only data on minimum and maximum temperature and information on the latitude of the location. Samani and Pessarkli (1986) have shown good accordance between real ET_p and calculated ET_p using the Hargreaves - Samani equation. For Utah, the equation for daily ET_p calculations may be formulated as:

$$ET_{p} = 0.0023 * R_{A} * TD^{1/2} * (TC + 17.8)$$
 (11)

$$\mathsf{ET}_{\mathsf{crop}} = \mathsf{K}_{\mathsf{c}} * \mathsf{ET}_{\mathsf{n}} \tag{12}$$

Where:

 $ET_p = Potential ET of alfalfa (mm)$

 $R_A = Extraterrestrial radiation (mm)$

TD = Temperature difference $T_{max} - T_{min}$ (C•)

TC = Average daily temperature (C•)

 ET_{crop} = Evapotranspiration of a given crop (mm)

 $K_c = Crop coefficient$

Extraterrestrial radiation may be expressed as a function of latitude. The interested reader is referred to Hargreaves and Samani (1985). Hill et. al. (1987) calculated K_c values for the Bear River drainage basin (Utah, Wyoming, Idaho). Based on his results, the K_c values indicated in Table 14 were used throughout the entire state.

One may argue that crop coefficients developed for northern Utah should not be used in the southern part of the state. However, the data in Table 14 are to our knowledge, the best available. Using questionable old data sets for the southern part of Utah was judged to be inappropriate.

Irrigation Data

Irrigation plays an important role in Utah's agriculture. Part of the irrigation water is lost to deep percolation, and contributes in a significant way to pesticide movement. Deep percolation and surface runoff loss

Crop	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC
Alfalfa	0.00	0.00	0.27	0.60	1.03	1.03	0.83	0.89	0.92	0.36	0.00	0.00
Spring Wheat	0.00	0.00	0.18	0,25	0.55	1.12	1.14	0.12	0.12	0.12	0.00	0.00
Winter Wheat	0.00	0.00	0.27	0.66	1.19	1.20	0.40	0.12	0.12	0.12	0.00	0.00
Corn	0.00	0.00	0.18	0,25	0.24	0.43	0.95	1.12	0.71	0.30	0.00	0.00
Vegetables	0.00	0.00	0.18	0.25	0.26	0.79	1.14	1.09	0.66	0.24	0.00	0.00
Potatoes, Onions	0.00	0.00	0.18	0.25	0.24	0.69	0.88	0.81	0.40	0.24	0.00	0.00
Orchards	0.00	0.00	0.25	0.37	0.71	0.97	1.02	1,08	0.97	0.87	0.00	0.00

÷

ţ

TABLE 14. Crop Coefficients

are implicitly expressed in the on-farm application efficiency, which may be defined for a single irrigation event as:

$$E_{a} = \frac{V_{s}}{V_{a}}$$
(13)

where:

 $E_a = On$ farm application efficiency $V_s =$ Total volume stored in root zone $V_a =$ Total volume applied

Table 15 shows data on on-farm application efficiencies. For the purpose of this study, on-farm irrigation efficiencies (considering only water stored in the root zone and water lost to deep percolation) are 50%, independent of field application systems. Actual efficiencies may be better or worse, depending on location and field application method. Fifty percent is considered to be a conservative estimate.

The zones shown in Figure 7 are used as zones of uniform irrigation water requirement. Seasonal net irrigation water requirement is calculated as the average difference between crop evapotranspiration and precipitation during the cropping period. The average seasonal irrigation application is assumed equal to the net requirement divided by the application efficiency. Table 16 indicates the total seasonal irrigation applications per irrigation zone based on a 50% application efficiency.

COUNTY		(Percent)	(Percent)	(1000's)	Acres in Group Systems (1000's)	Acres Irrigated Total (1000's)
BEAVER	32	42	76	8	20	28
BOX ELDER	23	28	82	30	87	117
CACHE	26	30	87	0	101	101
CARBON	24	29	82	0	14	14
DAGGETT	21	28	75	0	10	10
DAVIS	30	. 35	85	0	32	32
DUCHESNE	26	33	80	0	72	72
EMERY	26	30	85	0	37	37
GARFIELD	20	38	80	0	25	25
GRAND	30	35	85	1	3	4.
IRON	32	38	84	31	17	48
JUAB	31	40	78	4	24	28
KANE	30	46	65	4	4	8
MILLARD	· 36	40	89	8	92	100
MORGAN	26	33	79	2	9	11
PIUTE	25	32	77	8	16	24
RICH	21	28	75	0	48	48
SALT LAKE	30	35	85	0	43	43
SAN JUAN	24	30	80	1	7	8
SANPETE	28	33	85	0	82	82
SEVIER	28	33	85	7	52	59
SUMMIT	24	30	80	17	23	40
TOOELE	25	32	78	7	11	18
UINTAH	26	33	80	6	73	79
UTAH	36	42	85	10	90	100
WASATCH	26	34	76	6	21	27
WASHINGTON	35	44	80	0	18	18
WAYNE	30	36	83	8	13	21
WEBER	30	38	8	0	44	44
STATE	28	37	80	158	1088	1246
	Watabasa	W. takes J	Stanishe		······································	

2

ī

TABLE 15. On-Farm Application Efficiencies (Source.: Utah Department of Health, 1986).

Source Utah Department of Agriculture Impation Statistics

Weighted Average

.

Weighted Straight Average

Average

Zone	Alfalfa	Alfalfa Corn Wheat Veg		Vegetables	Potatoes, Orchards Onions	
North Central	120	115	64	100	75	140
Northern Mountains	120	115	64	100	75	140
Uintah Basin	150	130	100	130	90	160
South Central	140	120	90	120	90	160
South East	130	105	70	100	100	140
South West	150	130	100	140	100	170
Dixie	200	140	120	160	120	160

TABLE 16. Seasonal Irrigation Applications in Centimeters

Pesticide Data

Two pesticide dependent values are related to pesticide movement and degradation in soil: the organic carbon partition coefficient (K_{oc}) used to predict absorption processes, and the half-life time ($t_{1/2}$) used to calculate degradation processes. The data used in this study are based on "materials from the water quality workshop presented in Fort Worth, Texas" (1988) by the Soil Conservation Service and the Extension Service. Note that different sources provide different K_{oc} and $t_{1/2}$ values for the same pesticide. Appendix C gives an alphabetical listing by common name of all pesticides analyzed in this study. Table 17 shows an example of this listing.

Pesticide Library Cont.	Use	Health Advisory(ppb)
Common Name :ALACHLOR Partition Coefficient :190 mg/g OC Half-Life :14 days Trade Name :ALANEX Trade Name :PILLARZO Trade Name :LASSO Trade Name :.	Η	1.5

TABLE 17. Pesticide Data

<u>Soil Data</u>

The soil influences adsorption and water movement processes. Organic carbon affects adsorption. Volumetric water content, field capacity, wilting point, bulk density and saturation affect water movement. Generally, values vary by layer. Table 18 shows soil data for the example of a Hillfield soil.

TABLE 18.	Example	of	Soil	Data
-----------	---------	----	------	------

Soil Name : HILLFIELD			Identifier : UT0394			
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) a
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturatio
1	0.08	2.48	1.44	23.0	11.0	41.2
2	0.25	1.77	1.44	23.0	11.0	41.2
3	0.46	1.03	1.45	22.0	10.0	41.2
4	0.79	0.65	1.35	25.0	12.0	41.2
5	1.27	0.20	1.45	18.0	8.0	41.2
ē	1.63	0.10	1.45	18.0	8.0	41.2

A complete listing (in alphabetical order of soil name) used in this study is given in Appendix D.

Modern soil surveys provide the data required. However, as of today, only about 25% of Utah is covered by published surveys. Figure 4 shows the areas for which modern soil surveys are presently available. Soil data on unpublished surveys are found with the SCS. These data, a soil map 1:1,000,000 (Wilson et al., 1975), and old surveys are also used in this study.

Rooting Depth Data

Through their rooting system crops extract water and pesticide from the soil profile and reduce downward movement of the chemical. Rooting depths depend on many factors, may be site specific, and vary from season to season. However, in this study, rooting depth is treated as a site independent, constant value. Table 19 gives an overview of the rooting depths used.

TABLE 19. Rooting Depths

Crop	Rooting Depth in Meters				
Alfalfa	1.50				
Corn	0.90				
Small Grains	1.10				
Onions	0.30				
Potatoes	0.80				
Vegetables	0.60				
Trees	1.20				

<u>Soil Incorporation Data</u>

Pesticide adsorption processes are directly dependent on the organic carbon content of the soil. Generally, the organic carbon content is highest in the top layer of a soil. Incorporation (application) of a pesticide below this layer may result in increased leaching. However, certain pesticides need to be incorporated in order to reach their target. Pesticide incorporation data are given in the original survey response provided by extension agents.

COMPUTER SIMULATION OF PESTICIDE MOVEMENT

Site Identification

The agricultural DRASTIC procedure identifies areas that based on their hydro-geological setting (depth to groundwater, recharge rate, slope, soil and geological properties), may be vulnerable to groundwater contamination. However, contamination does not necessarily have to occur in these areas. Much depends on the agricultural practices in general, and the pesticide and its application in particular.

Figure 8 shows for each county the location of elevated potential hazard to groundwater. For each of these locations extensive computer simulation analysis is undertaken.

Model Application

Using the CMLS model, the site-specific movement of pesticides identified in the survey (Appendix B) is calculated. A sample analysis is demonstrated here. The insecticide diazinon is applied to corn on Vineyard soil. The application is in the month of may. Figure 9 shows the insecticide movement in soil, and irrigation and precipitation events for approximately six years.

For this site, Table 20 indicates traveling times (in days after application) to depth of 1.0 m, 1.5 m, 2.0 m, and 3.0 m, and the relative amount of pesticide remaining in the soil profile at that time. The absolute amount remaining in the soil profile is calculated as the relative amount times the initial pesticide application.

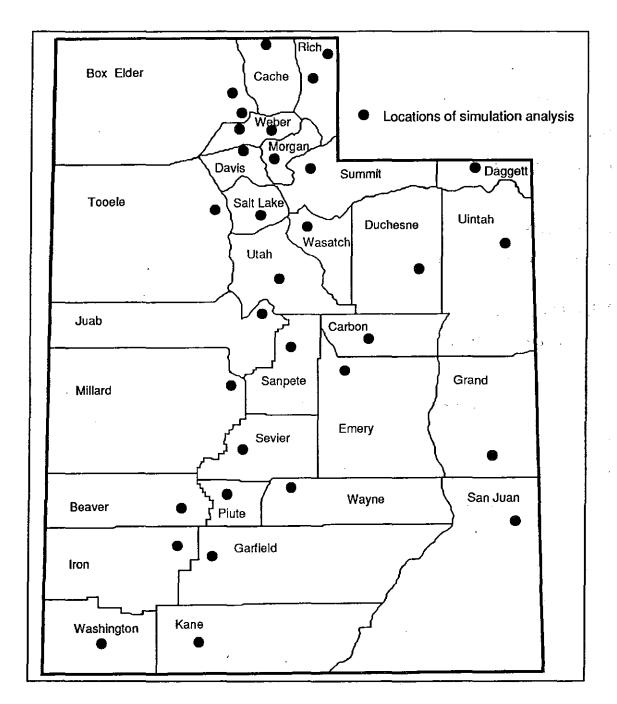


Figure 8. Computer Simulation Site Identification

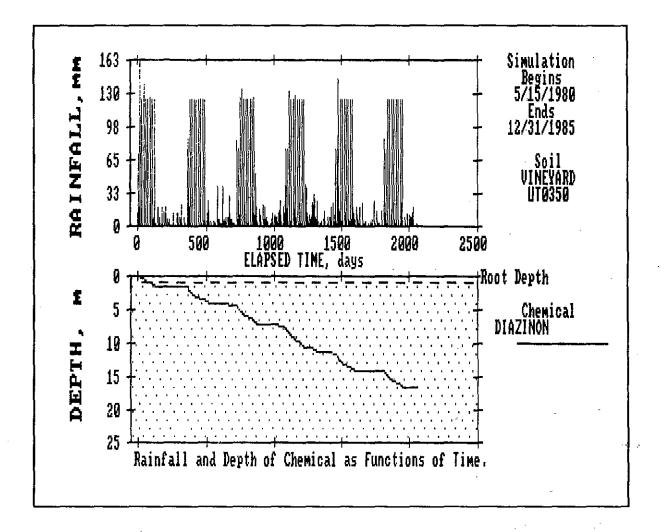


Figure 9. Water Application and Pesticide Movement

The CMLS model allows data output only for four preselected depths per run. If pesticide movement to a depth of 3.0 m is significant, an additional analysis with preselected depths of 5.0 m, 10.0 m, 15.0 m, and 20.0 m is undertaken. The interpretation of the simulation results includes the most likely depth to

groundwater. However, the selection of data output depth is independent of distance to groundwater. The adoption of this concept is based on the fact that

TABLE 20. Pesticide Movement to Selected Depths.

Chemical	DIAZINON
Pertition Coefficient, Koc, (#1/g DC)	85
Application date, (month/day/year)	5/15/80
Ending date, (month/day/year)	12/31/85
Application depth, (m)	0.00
Rooting depth, (m)	0.90
Time (days) to 1.00 4	92
Time (days) to 1.00 m Relative Amount Remaining	. 0.1194
Time (days) to 1.50 m	316
Relative Amount Remaining	0.0007
Time (dave) to 2.00 m	371
Time (days) to 2.00 m Relative Amount Remaining	0.0002
Time (davs) to 3.00 m	426
Time (days) to 3.00 m Relative Amount Remaining	5.3E-005

depth to groundwater is often subject to important spatial and temporal variation.

A comprehensive overview on pesticide movement simulations is given in Appendix A.

Relation to Health_Standards

Pesticide movement predictions are expressed in relative or absolute amounts of pesticide remaining in the unsaturated soil profile. Amounts are expressed in kilograms per hectare, whereas health standards, as listed in Table 4, are in parts per billion. To crudely convert absolute amounts in the unsaturated zone to parts per billion, one must assume that: 1- whatever mass, of pesticide reaches some specified unsaturated depth in the soil will also reach ground water beneath saturated capillary zone at the same depth, without further reduction in mass; 2- pesticide will mix uniformly in the aquifer to some assumed depth of water; and 3- there is insignificant lateral movement of the ground water. The assumptions are necessary because CMLS computes movement of the pesticide only in the unsaturated zone. Assuming a mixing depth of one decimeter of water, the following conversion holds true:

$$1 \text{ kg/ha} = 10^3 \text{ ppb}$$
 (14)

Although this approach gives high estimates of concentrations, it is useful for relative comparisons. In this approach if the porosity of the aquifer material is 0.3, the mixing depth of the pesticide is (1 dm)/0.3=3.33 dm, if the porosity is 0.003, this is 333.3 dm. Currently, 38 EPA suggested health standards are available to the authors of this study. Pesticide concentrations in the top layer of groundwater are compared to these standards and a ratio is calculated as:

$$Ratio_{Depth} = \frac{Concentration of Pesticide}{Health Standard}$$
(15)

Table 21 shows an extract of Appendix A. The chemical carbofuran is analyzed for a site in Carbon County.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Corn	Diazinon/	1.12	1.0	92	.1194	134	0.63	212
	Dianon		1.5	316	.0007	0.8		1.2
		1	2.0	371	.0002	0.2		0.4
			3.0	426	5.3E-5	0.1		0.1

TABLE 21. Health Standard Ratio

Notice that the pesticide reaches the depth of one meter after 92 days, and that at this time the concentration of the pesticide computed via the crude approach described above in ground water is 134 ppb. This amount is about 212 times higher than the health advisory. Notice also that the pesticide reaches a depth of three meters after 426 days movement through the unsaturated zone. At this time the estimated concentration is far below the limit set by the health advisory. Thus the concentration in ground water that will result is very dependant on the depth to ground water.

Sensitivity of Results

The CMLS model's prediction of chemical movement is based on such parameters as:

a.	Chemical properties:	Carbon partition coefficient, half-life time;
b.	Soil properties:	Depth of soil layer, organic carbon content, bulk density, water content at different matric potentials;

с.	Evapotranspiration:	Temperature;
----	---------------------	--------------

d. Irrigation:	Volume, frequency;
----------------	--------------------

e. Pesticide application: Quantity, date, soil incorporation; and

f. Rooting depth: Vertical crop root depth.

All parameters are treated as constants. However, most parameters depend on an array of influences and are variable in time and space. The influence of parameter fluctuation on pesticide movement is demonstrated for the examples of organic carbon partition coefficient, half-life time and irrigation.

<u>Organic Carbon Partition Coefficient</u>. The literature contains a large range of values for the organic carbon partition coefficient K_{oc} . Figure 10

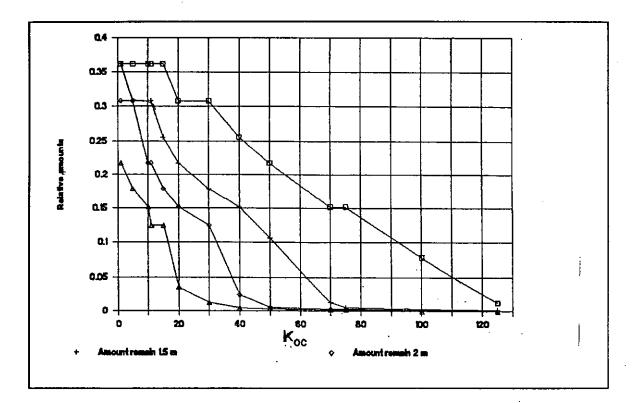


Figure 10. Sensitivity to values of $K_{\rm oc}$

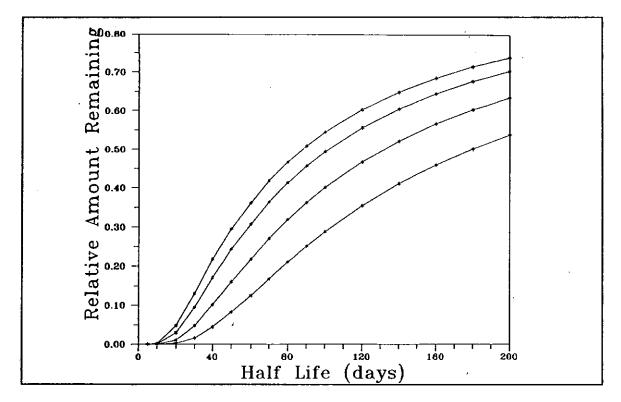


Figure 11. Sensitivity to values of $t_{1/2}$

shows pesticide movement to a depth of 1.0 m, 1.5 m, 2.0 m, and 3.0 m in response to different K_{oc} - values.

Results in Figure 10 reflect light textured soil conditions (martini soil in Weber County), and a constant pesticide half-life time of (curves are from top to bottom, respectively) 60 days (as for hexazinone).

<u>Half-Life Time</u>. Similar to K_{oc} , research studies indicate a large range of half-life time ($t_{1/2}$) values for a given pesticide. Figure 11 shows pesticide movement to a depth of 1.0 m, 1.5 m, 2.0 m, and 3.0 m in response to different $t_{1/2}$ values. Results in Figure 11 reflect the same soil conditions as in Figure 10, (curves are from top to bottom respectively) a constant K_{oc} of 11 (as for hexazinone).

<u>Interpretation</u>. Current analysis of pesticide movement is based on parameter estimates that are not always as accurate as desired. For certain pesticide - site combinations movement is highly sensitive to parameters such as k_{oo} , $t_{1/2}$, and irrigation. Therefore, it is not likely that field measurements will correspond exactly with model-predicted pesticide movement. However, results of a simulation study may very well be used for relative comparisons of pesticide application sites and pesticides used at these sites.

RESULTS OF THE SIMULATION ANALYSIS

Overview and Ranking of Concerns

A comprehensive listing of predicted pesticide movement is given in Appendix A. Table 22 summarizes, in alphabetical order, site/location pesticide combinations that should attract increased concern. The results in the table are expressed as a ratio of pesticide concentration over health

Site/County			d Concentr		lth Stan	dard
(Likely Depth to groundwater)	Pesticide	or ppb a 1.Om	at depths 1.5m	01 2.0m	3.Om	5.Om
25 ¹ /Beaver	Carbofuran	14.2	10.9	7.9	4.4	-
(D=3.0)	Hexazinone Atrazine	1.9 8.8	1.6 5.5	1.4 2.7	1.0 0.1	-
4/Box Elder (D=3.0m)	Carbofuran Atrazine	6.6 3.6	1.6	-	-	-
	Oxydemeton-Methy	1 46.2ppb	0.01ppb	-	-	-
1/Cache	Carbofuran	3.1	2.6	2.1	- 7	-
(D=2.4m)	Hexazinone Metribuzin	1.0 0.1	0.9 0.1	0.9 0.1	0.7	-
	2,4-D	2.7	2.7	1.4	-	_
	Dicamba	12.1	4.3	4.3	1.9	-
	Alachlor	2.2	-	-	-	-
	Atrazine	214.0	128.0	8.2	5.4	0.22
	Metolachlor	3.6	_	_	~	-
	Cyanazine	3.6	1.2	-	-	-
	Metsulfuron Chlorsulfuron	3.0ppb		2.5ppb	0.4ppb	-
	Phorate	12.0ppb 0.4ppb	12.0ppb 0.1ppb	7.4ppb	5. 1ppb	-
	EPTC	0.4ppb 0.5ppb	-		-	-
20/Carbon	Carbofuran	9.0	5.1	3.7	_	_
(D=3.6m)	Dicamba	3.5	1.8	-	-	-
13/Daggett (D=2.0m)						
8/Davis	Carbofuran	4.5	0.1		_	-
(D=1.5m)	Hexazinone	2.4	2.0	1.7	0.6	-
. /	Metribuzin	0.8	0.3	-	-	-
	Aldicarb	70.6	31.4	14.0	-	~
	Bentazone	140.0ppb	70.0ppb	34.9ppb		

,

TABLE 22. Critical Area - Pesticide Combinations

¹Numbers refer to Figure 12.

.

Site/County	· · · ·				alth Stan	dard
(Likely Depth to groundwater)	Pesticide	or ppb a 1.Om	at depths 1.5m	of 2.Om	3.Om	5.Om
15/Duchesne (D=3.Om)	Atrazine Diazinon	6.9 0.7	4.9 0.3	2.8 0.1	0.1	. -
	Dicamba	7.1	3.2	3.2	1.6	-
	2,4-DB Amine	182.8ppb	69.2 ppb	69.2ppb	8.1ppb	· · · -
22/Emery (D=2.4m)				÷		
30/Garfield (D=3.0m)	Carbofuran Dicamba	13.9 14.8	10.1 7.4	5.7 1.6	-	-
	2,4-DB Amine	56.9ppb	17.5ppb	6.6ppb		-
24/Grand	Hexazinone	6.6	4.7	4.7	3.3	-
(D=3.0)	Metribuzin Dicamba	0.7 3.4	0.5 0.8	0.4	0.1	-
	Atrazine	10.5	6.5	3.9	0.1	•
	Naptalam	19.5ppb	3.Oppb	0.3ppb		
29/Iron	Metribuzin	0.5	0.3	0.2		-
(D=3.0m)	Hexazinone 2,4-D Acid	3.1 0.1	2.2	1.9	0.9	-
	Aldicarb	100.8	0.1	-	-	ē., ¹⁷⁷
	2,4-DB Amine	15.7ppb	2.Oppb	0.7ppb		-
18/Juab	Carbofuran	5.9	4.5	2.5	-	-
(D=2.0m)	Dicamba Diazinon	1.9 56.9	0.4 20.6	0.1	- -	-
32/Kane	Simazine	6.6	0.5	0.4	0.2	_
(D=3.0m)	Metribuzin	1.4	1.0	0.5	0.2	-
	2,4-DB Amine	225.1ppb	85.3ppb2	26.2ppb	1.2ppb	-

Site/County	D	Computed Concentration/Health Standard				
(Likely Depth to groundwater)	Pesticide	or ppb 1.Om	at depths 1.5m	of 2.0m	3.Om	5.Om
21/Millard	Carbofuran	14.3	8.2	5.9	_	_
(D≃3.Om)	Hexazinone	3.1	2.6	2.2	1.3	-
• •	Metribuzin	2.6	2.1	1.3	0.5	-
	Trifluralin Dicamba	0.2 23.8	13.1	3.0	0.1	-
	2,4-DB Amine			20.2ppb	1.0ppb	
	Oxydemeton-M Chlorsulfuro			- 6.3ppb	-	-
9/Morgan	Hexazinone	4.7	3.3	3.3	1.9	0.2
(D=2.4m)	Dicamba	5.5	2.8	2.8	-	-
	Atrazine	0.5	-	-	-	-
26/Piute (D=3.0)	Carbofuran	7.9	6.1	-	-	-
3/Rich	Dicamba	1.9	0.4	0.4	-	·. _
(D=3.Om)	Diazinon	0.5	-	-	-	-
	Diuron	9.2	4.5	4.1	-	-
12/Salt Lake	Hexazinone	5.0	3.5	0.8	0.2	0.1
(D=4.2m)	Atrazine	3.2	0.2	0.2	-	-
	Carbofuran	15.9	9.0	2.8	-	-
28/San Juan (D=10.5m)			· · · · ·			
19/SanPete	2,4-D Ester	3.5	1.7	0.4	-	_
(D=1.5m)	Carbofuran	9.9	7.4	5.7	2.3	-
	Metribuzin	0.9	0.6	0.4	0.2	-
	Atrazine	8.7	4.3	3.0	0.1	-
	2,4-D Acid	0.3	-	-	-	-
	Dicamba	7.8	1.7	0.8	-	-

TABLE 22. Continued

71

.

. .

Site/County	B 11 11	Computed Concentration/Health Standard					
(Likely Depth to groundwater)	Pesticide	or pp 1.Om	b at depth 1.5m	ns of 2.0m	3.Om	5.Om	
23/Sevier	Hexazinone	1.9	1.6	1.4	0.8		
(D=1.5m)	Metribuzin	0.5	0.3	0.2	0.1	-	
	Carbofuran Atrazine	37.5 151.6	21.4 7.6	12.0 5.4	5.2 0.1	-	
	Dicamba	20.9	10.5	4.7	0.2	-	
	Barban	145.1	100.3ppb	72.5ppb	-		
10/Summit	Hexazinone	0.6	0.5	0.4	_		
(3.Om)	2,4-D Acid	1.4	_	~	-	· _	
	Carbofuran	4.0	-	· _	-	- ' ;	
11/Tooele (D=3.0m)	Simazine	0.3	0.2	0.2	-	-	
16/Uintah	Hexazinone	3.1	2.2	1.9	1.3	-	
(D=1.8m)	Metribuzin	0.8	0.6	0.4	-		
	Atrazine 2,4-D Acid	6.9 1.7	4.2 0.6	2.5	0.1	-	
		1.,		·			
17/Utah	Atrazine	5.4	4.2	2.5	0.1	_ ·	
(D=2.4m)	2,4-D Acid	0.9	0.3	-	-	-	
	Diazinon	212.0	1.2	0.4	0.1	- **	
	Dicamba	9.5	3.4	1.5	0.8	-	
14/Wasatch (1.5m)	Carbofuran	0.7	_	-	-	- -	
31/Washington	Hexazinone	2.25	1.84	1.84	1.3		
(D=3.0m)	Metribuzin	0.38	0.38	0.27	0.1	·	
27/Wayne	Carbofuran	13.1	10.1	7.4	<u> </u>		
(D=4.5m)	Dicamba	17.2	1.8	0.4	-	-	

72

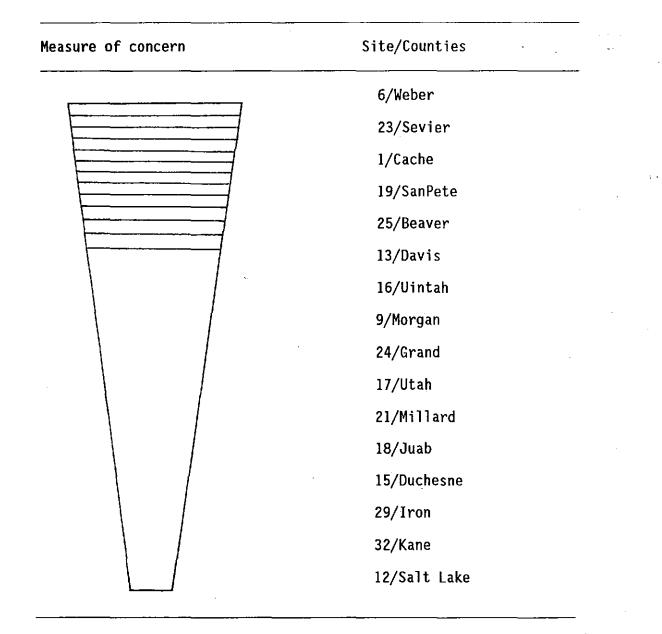
. .

Site/County (Likely Depth to	Pesticide	Computed Concentration/Health Standar or ppb at depths of					
groundwater)		1.Om	1.5m	2.Om	3.Om	5. Om	
6/Weber	Carbofuran	5.4	4.4			_	
(D=1.5m)	Metribuzin	0.8	0.5	0.1	-	-	
. ,	Hexazinone	1.9	1.9	1.4	0.8	0.8	
	Metolachlor	204.5	77.8	53.5	15.62	-	
	2-4,Acid	4.4	1.7	1.7	0.2	-	
	Fonofos	0.1	-	-	-	-	
	EPTC	0.1ppb					
	Bentazone	159.2ppb	-	-	-	-	

3

standard value. If health standards are not established, results are expressed as concentrations in parts per billion. Results reflect a single pesticide application and pesticide movement in the time period 1980 to 1985.

Groundwater tables are often subject to important temporal and spatial variation. Table 22 displays the most likely distance to the water table for the selected sites. Concentrations are predicted for five different depths aiding the reader to develop a feel for the likelihood of contaminant reaching the water table. As discussed in the previous section, any pesticide simulation deeper than a specified depth is valid only if the water table depth is below that depth.


Figure 13 aids interpretation of Table 22. The figure provides a listing of sites in decreasing order of concern. This order may change with changes in groundwater depth. Although, 'county names are used instead of site names, the listing applies to the sites in the counties (see Figure 8 for site identification).

Tables 23, 24, and 25 show a ranking of pesticide-location combinations and three different depths respectively: (a) at the most likely depth to groundwater; (b) at a depth of one meter; and (c) at a depth of three meters. The ratio of pesticide concentration over health standard is used as ranking criteria. If health standards are not established, ranking occurs according to concentrations in parts per billion. Table 26 shows the bounds that are used to establish Tables 23 through 25.

Figure 12. Numbering/Site Identification of Simulated Sites

."

Figure 13. Ranking of Areas of Concern

.

4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone25/Beaver100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne	Ratio or ppb	Pesticide	Site/County
21.4Carbofuran23/Sevier10.5Dicamba23/Sevier8.2Atrazine1/Cache7.6Atrazine23/Sevier7.4Carbofuran19/SanPete4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone23/Sevier1.42, 4-D1/Cache1.5/Buchesne8/Davis8.1 ppb2, 4-DB Amine15/Duchesne	77.8	Metolachlor	6/Weber
10.5Dicamba23/Sevier8.2Atrazine1/Cache7.6Atrazine23/Sevier7.4Carbofuran19/SanPete4.4Carbofuran6/Weber4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver	31.4	Aldicarb	8/Davis
8.2Atrazine1/Cache7.6Atrazine23/Sevier7.4Carbofuran19/SanPete4.4Carbofuran6/Weber4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier		Carbofuran	23/Sevier
7.6Atrazine23/Sevier7.4Carbofuran19/SanPete4.4Carbofuran6/Weber4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.3Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone21/Millard1.0Hexazinone23/Sevier100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne	10.5	Dicamba	23/Sevier
7.4Carbofuran19/SanPete4.4Carbofuran6/Weber4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne	8.2	Atrazine	1/Cache
4.4Carbofuran6/Weber4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.3Larbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone25/Beaver100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne	7.6		23/Sevier
4.4Carbofuran25/Beaver4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver			
4.3Dicamba1/Cache4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone25/Beaver100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier100.3 ppbBarban23/Sevier			
4.3Atrazine19/SanPete4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone25/Beaver100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
4.2Atrazine16/Uintah3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver			
3.3Hexazinone9/Morgan3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver		····	
3.3Hexazinone24/Grand2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver		-	
2.8Dicamba9/Morgan2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver			
2.5Carbofuran18/Juab2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver		-	
2.2Hexazinone16/Uintah2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
2.1Carbofuran1/Cache1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
1.9Hexazinone6/Weber1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier8/Davis100.3 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
1.72, 4-D Acid6/Weber1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier8/Davis70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
1.7Dicamba19/SanPete1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DBAmine			
1.72, 4-D Ester19/SanPete1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier70.0 ppb Bentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne		•	
1.6Dicamba15/Duchesne1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier70.0 ppb Bentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
1.6Hexazinone23/Sevier1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver100.3 ppb Barban23/Sevier70.0 ppb Bentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
1.42, 4-D1/Cache1.3Hexazinone21/Millard1.0Hexazinone25/Beaver			
1.3Hexazinone21/Millard1.0Hexazinone25/Beaver			
1.0Hexazinone25/Beaver100.3 ppbBarban23/Sevier70.0 ppbBentazone8/Davis8.1 ppb2, 4-DB Amine15/Duchesne			
100.3 ppb Barban 23/Sevier 70.0 ppb Bentazone 8/Davis 8.1 ppb 2, 4-DB Amine 15/Duchesne			
70.0 ppb Bentazone 8/Davis 8.1 ppb 2, 4-DB Amine 15/Duchesne		nexaz mone	25/ Deaver
70.0 ppb Bentazone 8/Davis 8.1 ppb 2, 4-DB Amine 15/Duchesne	100.2	Devel en	00 /6 '
8.1 ppb 2, 4-DB Amine 15/Duchesne			
		2, 4-DB Amine Chlorsulfron	15/Duchesne 1/Cache

TABLE 23. Ranking of Chemicals Most Likely Reaching Depth of Groundwater

77

,

Ratio or ppb	Pesticide	Site/County	
214.0	Atrazine		
212.0	Diazinon	17/Utah	
204.5	Metolachlor	6/Weber	
151.6	Atrazine	23/Sevier	
100.8	Aldicarb	29/Iron	
70.6	Aldicarb	8/Davis	
56.9	Diazinon	18/Juab	
37.5	Carbofuran	23/Sevier	
20.9	Dicamba	23/Sevier	
17.2	Dicamba	27/Wayne	
15.9	Carbofuran	12/Salt Lake	
14.8	Dicamba	30/Garfield	
14.3	Carbofuran	21/Millard	
14.2	Carbofuran	25/Beaver	
13.9	Carbofuran	30/Garfield	
13.1	Carbofuran	27/Wayne	
12.1	Dicamba	1/Cache	
10.5	Atrazine	24/Grand	
522.6 ppb	2, 4-DB Amine	21/Millard	
225.1 ppb	2, 4-DB Amine	32/Kane	
182.8 ppb	2, 4-DB Amine	15/Duchesne	
159.2 ppb	Bentazone	6/Weber	
145.0 ppb	Barban	23/Sevier	
140.0 ppb	Oxydemeton-Methyl		
56.9 ppb	2, 4-DB Amine	30/Garfield	
46.2 ppb	Oxydemeton-Methyl		
19.5 ppb	Naptalam	24/Grand	
15.7 ppb	2, 4-DB Amine	29/Iron	
12.0 ppb	Chlorsulfuron	1/Cache	

TABLE 24. Ranking of Chemicals at a Depth of 1.0 Meter

Ratio or ppb	Pesticide	Site/County	
5.4	Atrazine	1/Cache	
5.2	Carbofuran	23/Sevier	
4.4	Carbofuran	25/Beaver	
3.3	Hexazinone	24/Grand	
2.3	Carbofuran	19/SanPete	
1.9	Hexazinone	9/Morgan	
1.9	Dicamba	1/Cache	
1.6	Dicamba	15/Duchesne	
1.3	Hexazinone	16/Uintah	
1.3	Hexazinone	21/Millard	
1.0	Hexazinone	25/Beaver	
0.9	Hexazinone	29/Iron	
0.8	Dicamba	17/Utah	
0.8	Hexazinone	6/Weber	
0.8	Hexazinone	23/Sevier	
0.7	Hexazinone	1/Cache	
0.6	Hexazinone	8/Davis	
0.5	Metribuzin	21/Millard	
8.1 ppb 5.1 ppb	2, 4-DB Amine Chlorsulfron	15/Duchesne 1/Cache	

TABLE 25. Ranking of Chemical at a Depth of 3.0 Meter

2

ą •

· ·

. . 4 .

. .

TABLE 26. Bounds U	sed in C	Chemical R	lanking
--------------------	----------	------------	---------

:

÷

	Concentration in ppb (if no health standards)	
>1.0	>5.0	
>10.0	>10.0	
>0.5	, > 0.5	
	>10.0	

Interpretation of Results

Important contamination of extremely shallow aquifers can be expected. Interpretation of Appendix A and Tables 23 through 25 indicate that from the 64 chemicals applied in Utah (according to the survey):

a. 29 may reach, at certain locations, a depth of 1.0m;

b. 23 may reach this depth in important concentrations;

c. 22 may reach, at certain locations, a depth of 3.0m;

d. 18 may reach this depth in important concentrations;

e. 20 may reach, at certain locations, the most likely depth of groundwater; and

f. 13 may reach this depth in important concentrations.

In the simulations, only few chemicals reach a depth of 5.0 meters in significant concentrations. However trace concentrations of many chemicals may be subject to a deep leaching process.

Results shown in Table 23 through 25 are relative values. They allow one to compare the different sites and different pesticides. However, because of parameter uncertainty, it is very unlikely that field measurements will be in close agreement with the predicted values.

Results are computed for locations shown in Figure 8. These areas are identified by the DRASTIC procedure as potentially vulnerable areas. In comparison to other areas in a given county, these areas may often have a lighter textured soil and/or a higher than average groundwater table. However, soil is a highly variable media in space and characteristics of soil water and pesticide movement may change drastically within a short distance. Furthermore, macropores, which are not considered in this study, may cause unexpectedly rapid and deep movement of pesticide.

This study is based on information provided in the pesticide survey (Appendix B). It may well be that pesticide application practices are subject to change and that complementary analysis is required in case of such a change. Results do not reflect possible contamination as a consequence of accidental spills or application rates higher than those generally recommended.

The analysed sensitivity of pesticide movement due to changes in the organic carbon partition coefficient and half-life value has shown the important influence of these parameters. Change in assessment of the physical-chemical properties of a pesticide or in irrigation practices and efficiencies may lead to alternate pesticide movement patterns. An increase in the organic carbon partition coefficient, a decrease in half live time, and an increase in irrigation efficiency may all lead to a decrease in pesticide movement.

This study does not consider pesticide contamination of surface water and possible rapid infiltration of contaminated surface water. Such a process, when occurring in the recharge area, may lead to pesticide contamination of deep confined aquifers.

SUMMARY, CONCLUSIONS, RECOMMENDATIONS

SUMMARY

Pesticide application patterns need to be known in order to assess the pesticide hazard to groundwater quality. A survey conducted within this study identifies the use of different pesticides in Utah. The resulting site specific information and pesticide library are given in the Appendices.

Sorption, dissipation, volatilization, application, water movement, water removal, and plant uptake are identified as processes affecting pesticide movement. Processes may be interdependent, and each one may depend on several factors. For the purpose of this study, factors are classified in categories. The main category includes pesticide properties, soil, agricultural practices, hydro-geology, climate, and topography.

Assessing potential groundwater contamination in a spatially extended system requires producing and evaluating an overwhelming amount of data. A screening procedure called agricultural DRASTIC was used to rapidly evaluate potential hazard to groundwater. The procedure is based on hydro-geological factors such as depth to groundwater, recharge rate, aquifer media, soil media, topography, vadose zone characteristics, and hydraulic conductivity of the aquifer. All influence factors are rated and combined into a weighted numerical value termed agricultural DRASTIC index. Plate 1 displays DRASTIC values for all agricultural areas in Utah. The highest index values for single points can be observed in locations in Wayne, Daggett, Duchesne, Weber, Cache, Kane, Summit, and Uintah Counties. Averages from several points are formulated to address the potential vulnerability of extended areas. The following hazard ranking can be established:

82.

Highest 5 point averages:

Highest 10 point averages:

Wayne, Weber, Duchesne, Cache, Davis, Summit, Utah, Uintah.

Weber, Wayne, Cache, Davis, Utah, Wasatch, Duchesne, Summit, Juab.

Highest 15 point averages:

Highest 20 point averages: Weber, Wasatch, Cache, Utah.

The DRASTIC procedure, in its attempt to identify potentially hazardous zones, does not include pesticide related data such as rate, application date, incorporation, and physical-chemical properties of the pesticide itself. A simulation model known as CMLS-model (Chemical Movement in Layered Soil) is used to predict potential pesticide movement. CMLS is a one-dimensional management model that can be used to make decisions regarding the behavior of agrichemicals in soil. The model estimates the location of peak concentrations of pesticides in response to water movement.

CMLS is applied at the sites that are identified by DRASTIC as potentially hazardous. Based on an extensive series of computer simulations, it may be stated that from the pesticides applied in Utah:

a. 29 may reach, at certain locations, a depth of 1.0 meter;

b. 23 may reach this depth in important concentrations;

c. 22 may reach, at certain locations, a depth of 3.0 meters;

d. 18 may reach this depth in important concentrations;

e. 20 may reach, at certain locations, the most likely depth to groundwater; andf. 13 may reach this depth in important concentrations.

Table 27 gives a ranking of the pesticide-site combinations that most likely might pose a threat to groundwater quality.

Rank	Pesticide	Site/County	Rank	Pesticide	Site/County
1	Metolachlor	6/Weber	18	Carbofuran	18/Juab
2	Aldicarb	8/Davis	19	Hexazinone	16/Uintah
3	Carbofuran	23/Sevier	20	Carbofuran	1/Cache
4	Dicamba	23/Sevier	21	Hexazinone	6/Weber
5	Atrazine	1/Cache	22	2,4-D Acid	6/Weber
6	Atrazine	23/Sevier	23	Dicamba	19/Sanpte
7	Carbofuran	28/Sanpete	24	2,4-D Ester	19/Sanpete
8	Carbofuran	6/Weber	25	Dicamba	15/Duchesne
9	Carbofuran	25/Beaver	26	Hexazinone	23/Sevier
10	Dicamba	1/Cache	27	2,4-D Acid	1/Cache
11	Atrazine	28/Sanpete	28	Hexazinone	21/Millard
12	Barban	23/Sevier	29	Hexazinone	25/Beaver
13	Bentazone	8/Davis	30	Chlorsulfuron	1/Cache
14	Atrazine	16/Uintah	31	Aldicarb	29/Iron
15	Hexazinone	9/Morgan	32	2,4-DB Amine	21/Millard
16	Hexazinone	24/Grand	33	Oxydemeton-Methy	21/Millard
17	Dicamba	9/Morgan			

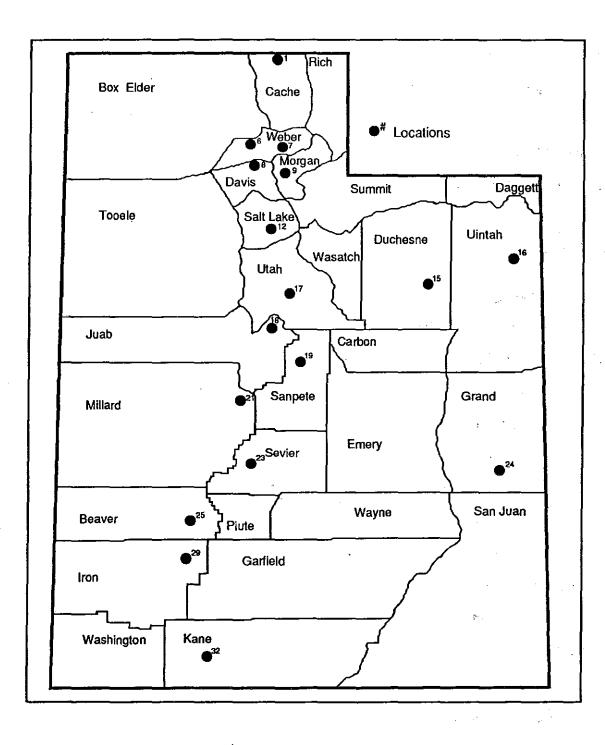
TABLE 27. Ranking of Pesticide-Site Combinations Posing a Threat to Groundwater Quality

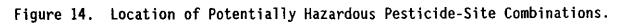
, *

However, soil is a highly variable media, depth to groundwater varies in time and space, irrigation efficiencies depend on farmers, and the chemicalphysical properties of many pesticides are not very clearly known. Furthermore, macropores, which are not considered in this study, might lead to unexpectedly rapid and deep movement of pesticides. Therefore, pesticides not included in Table 27 may be found at sites other than those listed.

CONCLUSIONS

Pesticide Contamination of Groundwater


In Utah, contamination of shallow groundwater can be expected. Based on a screening procedure using hydro-geological factors, agricultural areas in Weber, Wayne, Cache, Davis, Utah, Wasatch, Duchesne, Summit, and Juab Counties should be considered as most vulnerable to groundwater contamination.


Extensive computer simulation of pesticide movement, at locations identified by the screening procedure, allows ranking of areas according to their combined pesticide-site contamination potential. Sixteen sites are identified and ranked in Figure 14.

The site ranking is highly dependent on the distance to the groundwater. However, this distance is not always well known, and rankings may be changed with changing depth to groundwater.

<u>Procedure Applied in this Study</u>

The two step procedure applied in this study represents a valid approach for assessing potential groundwater contamination in a spatially extended system. The first step, screening a large number of sites, allows reduction of the

number of sites to investigate, thereby focusing attention on the potentially hazardous sites. The second step, simulating pesticide movement, allows ranking of the potentially hazardous pesticide-site combinations.

RECOMMENDATIONS

Sampling to Assess the Present Situation

Sampling of groundwater for pesticide contamination is imperative, however, objectives of a sampling program need to be established with care. One may look for:

- A particular pesticide such as aldicarb or diazinon, or for a broad range of different pesticides;
- b. Pesticides in deep or shallow aquifers; and
- c. pesticides in groundwater supplying public water supplies or providing drinking water to individual farms.

Once the objectives are clearly identified, sampling priorities can be established. Sampling for a variety of pesticides may utilize the information given in Figure 14.

Sampling for particular pesticide might be oriented according to the listing in Table 27. In that case one would search for aldicarb contamination in Davis and Iron Counties. One would seek atrazine contamination in Cache, Sevier, Sanpete, and Uintah Counties.

Once sampling areas are identified, the selection of sampling wells and sampling times require special attention. The results of a sampling program depends on the "careful selection" of sampling sites and sampling times. Remember that the likelihood of finding pesticides in water samples from shallow

Remember that the likelihood of finding pesticides in water samples from shallow aquifers:

- 1. Decreases with increasing depth to the groundwater;
- Decreases with increasing distance between the pesticide application site and the sampling site;
- 3. Increases with decreasing irrigation efficiency;
- 4. Depends on pesticide application and irrigation timing; and
- 5. Is virtually nil if the pesticide is applied downstream (in terms of groundwater flow) from the sampling site.

Prevent Contamination

Results of this study indicate that pesticide selection and agricultural practices such as pesticide incorporation, irrigation, and the time of pesticide application can significantly influence pesticide movement. These influences should be investigated further and quantified. In addition, site-specific strategies should be developed in order to prevent pesticide movement to groundwater.

REFERENCES

Aller, L., T. Bennett, J.H. Lehr, R.J. Petty 1985. "DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings". <u>U.S Environmental Protection Agency.</u>

Appel, Cynthia, L. David W. Clark, and Paul E. Fairbanks. 1982. "Selected hydrologic data for Norther Utah Valley, Utah, 1935-82". <u>U.S. Geological Survey.</u>

Baker, C.H. Jr. 1970. "Water resources of the Heber-Kamas-Park City area, northcentral, Utah". <u>U.S. Geological Survey.</u>

Barnes, R.P. and M. G. Croft. 1986. "Ground water quality protection strategy for the state of Utah". <u>Utah Dept. of Health.</u>

Bjorklund, L.J. 1969. "Reconnaissance of the groundwater resources of the upper Fremont River Valley, Wayne County, Utah". <u>U.S. Geological Survey.</u>

Bjorklund, L.J. and L.J. McGreevy. 1971. "Groundwater resources of Cache Valley, Utah and Idaho". <u>U.S. Geological Survey.</u>

Bjorklund, L.J. and L.J. McGreevy. 1973. "Selected hydrologic data, lower Bear River drainage basins, Box Elder County, Utah". <u>U.S. Geological Survey.</u>

Bjorklund, L.J., C.T. Sumsion, and G.W. Sandberg. 1977. "Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah". <u>U.S. Geological Survey.</u>

Bjorklund, L.J. and L.J. McGreevy. 1974. "Groundwater resources of the lower Bear River drainage basin, Box Elder County, Utah". <u>U.S. Geological Survey.</u>

Blanchard, P.J. 1986. "Groundwater conditions in the Lake Powell area, Utah". <u>U.S. Geological Survey.</u>

Boke, E.L. and K.M. Waddell. 1972. "Groundwater conditions in the East shore area, Box Elder, Davis and Weber Counties, Utah, 1960-69". <u>U.s. Geological</u> <u>Survey.</u>

Bolke, E.L. and C.T. Sumsion. 1978. "Hydrologic reconnaissance of the Fish Springs Flat are, Tooele, Juab, and Millard Counties, Utah". <u>U.S. Geological</u> <u>Survey.</u>

Bolke, E.L. and Don Price. 1972. "Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah". <u>U.S. Geological Survey.</u>

Bolke, E.L., and Don Price. 1972. "Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah". <u>U.S. Geological Survey.</u> Canter, L.W., R.C. Knox and D.M. Fairchild. 1988. "Ground Water Quality Protection". Lewis Publishers Inc. Capizzi, D. 1988. "Water quality technical workshop". <u>U.S. Dept. of Ag. and</u> <u>S.C.S.</u>, Fort Worth, Tx. Oct. 3-7.

Carpenter, C.H., G.B. Robinson, Jr., and L.J. Bjorklund. 1964. "Selected hydrologic data, upper Sevier River basin, Utah". <u>U.S. Geological Survey.</u>

Carpenter, C.H. and R.A. Young. 1963. "Groundwater data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah". <u>U.S. Geological Survey.</u>

Carsel, R.C., N. Smith, L.A. Mulkey. 1984. "User manual for the pesticide root zone model (PRZM)". <u>U.S Environmental Protection Agency.</u>

Cordova, R.M., G.W. Sandberg, and Wilson McConkie. 1972. "Groundwater conditions in the central Virgin River Basin, Utah". <u>U.S. Geological Survey.</u>

Cordova, R.M. 1978. "Groundwater conditions in the Navajo Sandstone in the central Virgin River basin, Utah". <u>U.S. Geological Survey.</u>

Bjorklund, L.J., C.T. Sumsion, and G.W. Sandberg. 1978. "Groundwater resources of the Parowan-Cedar City drainage basin, Iron County, Utah". <u>U.s. Geological</u> <u>Survey.</u>

Cordova, R.M. 1981. "Groundwater conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone". <u>U.S. Geological</u> <u>Survey.</u>

Cordova, R.M. 1969. "Selected hydrologic data, southern Utah and Goshen Valleys, Utah". <u>U.S. Geological Survey.</u>

Cordova, R.M. 1970. "Groundwater conditions in southern Utah Valley and Goshen Valley, Utah". <u>U.S. Geological Survey.</u>

DelRoy, A. 1988. "Water quality technical workshop". Ogden, Utah. <u>U.S. Dept of</u> <u>Agriculture and Soil Conservation Servive.</u>

Deway, H. 1988. "Water quality technical workshop". Fort Worth, Tx. Oct. 3-7. <u>U.S. Dept of Agriculture and Soil Conservation Servive.</u>

Enright Michael and Walter F. Holmes. 1982. "Selected ground-water data, Sevier Desert, Utah, 1935-82". <u>U.S. Geological Survey.</u>

Gates, Joseph S., Judy I. Steiger, and Ronald T. Green. 1984. "Groundwater reconnaissance of the central Weber River area, Morgan and Summit Counties, Utah". <u>U.S. Geological Survey.</u>

Goss, Don. 1988. "SOI: Soil ratings for pesticide leaching and surface loss potentials". <u>Soil conservation service. U.S. Dept of Agriculture.</u>

Hahl, D.C. and J.C. Mundorff. 1968. "An appraisal of the quality of surface water in the Sevier Lake Basin, Utah". <u>U.S. Geological Survey.</u>

Hansen, V.E., O.W. Israelsen, G.E. Stringham. 1980. "Irrigation principales and practices". <u>John Wiley and Sons.</u> New York.

Hargreaves, G.H., Z.A. Samani. 1985. "Reference crop evapotranspiration from ambient air temperature". Presented at Winter Meeting American Society of Agricultural Engineering, Hyatt Regency, Chicago IL.

Hely, A.G., R.W. Mower, and C.A. Horr. 1968. "Hydrologic and climatologic data, 1967, Salt Lake County, Utah". <u>U.S. Geological Survey.</u>

Hely, A.G., R.W. Mower, and C.A. Harr. 1971. "Summary of water resources of Salt Lake County, Utah". <u>U.S. Geological Survey.</u>

Hill, R.W., C.E. Brockway, R.W. Burman, L.N. Allen, C.W. Robison. 1987. "Field verification of empirical method for estimating depletion". Research Peport 125. Appendices F and G. <u>Utah Agricultural Experiment Station</u>. Utah state university, Logan, Utah.

Hillel, D. and R.S. Baker. 1988. "A descriptive theory of fingering during into layered soils". <u>Soil Science</u>, Vol.146 No.1.

Holmes, W.F. 1984. "Groundwater hydrology and projected effects of groundwater withdrawals in the Sevier Desert, Utah". <u>U.S. Geological Survey.</u>

Holmes, W.F., K.R. Thompson, and Michael Enright. 1972. "Water resources with emphasis on ground water of the Park City area, Utah, Summit County". <u>U.S.</u> <u>Geological Survey.</u>

Hood, J.W. 1977. "Hydrologic evaluation of the upper Duchesne River Valley, northern, Uinta Basin area, Utah". <u>U.S. Geological Survey.</u>

Hood, J.W. and D.J. 1984. "Patterson Bedrock aquifers in the northern San Rafael Swell area, Utah, with special emphasis on the Navajo Sandstone". <u>U.S. Geological</u> <u>Survey.</u>

Hood, J.W. and T.W. Danielson. 1979. "Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah". <u>U.S. Geological Survey.</u>

Hood, J.W. 1971. "Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah". <u>U.S. Geological Survey.</u>

Hood, J.w. 1972. "Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah". <u>U.S. Geological Survey.</u>

Hood, J.W. and T.W. Danielson, 1980. "Bedrock aquifers in the lower Dirty Devil River basin area, Utah with special emphasis on the Navajo Sandstone". <u>U.S.</u> <u>Geological Survey.</u>

Hood, J.W., J.C. Mundorff, and Don Price. 1976. "Selected hydrologic data, Uinta Basin area, Utah and Colorado". <u>U.S. Geological Survey.</u>

Hood, J.W. 1976. "Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado". <u>U.S. Geological Survey.</u>

Hornsby, A.G. 1988. "Water quality technical workshop". Fort Worth, Tx. Oct. 3-7. <u>U.S. Dept of Agriculture, Soil Conservation Servive and Extention service.</u>

Jury, M.A., D.D. Focht, and W.J. Farmer. 1987. "Evaluation of Pesticide Ground Water Pollution Potential from Standard Indices of Soil-Chemical Adsorption and Biodegradation". <u>Journal of Environmental Quality</u>, 16:422-426.

Knisel, W.G. 1980. "CREAMS: A field scale model for chemical, runoff and erosion from agricultural management systems". <u>U.S. Dept. of Agriculture, Science and</u> <u>Educational Administration ,Conservation.</u> Research report No.26, 643pp.

Leonard, R., W. Knisel, "Weed Technology". 1988.

Leonard, R., W. Knisel, D. Still. 1987. "GLEAMS: Groundwater loading effects of agricultural management systems". <u>U.S. Dept of Agriculture.</u>

Leonard, R.A., W.G. Knisel, F.M. Davis and A. W. Johnson. 1988. "Modeling pesticide metabolite transport with CREAMS". <u>ASCE, Irrigation and Drainage.</u>

Leonard, R.A., W.G. Knisel, D.A. Still. 1987. "GLEAMS: Ground Water Loading Effect of Agricultural Management Systems". <u>ASAE</u>, vol. 30, No. 5, 1403-1418.

McGreevy, L.J. and L.J. Bjorlund. 1970. "Selected hydrologic data, Cache Valley, Utah and Idaho". <u>U.S. Geological Survey.</u>

Moore, J.S. 1988. "SEEPAGE: A system for early evaluation of the pollution potential of agricultural groundwater environments". <u>Soil Conservation Service,</u> <u>Northeast National Technical Center,</u> Chester, Pa.

Mower, R.W. 1978. "Hydrology of the Beaver Valley area, Beaver County, Utah, with emphasis on ground water". <u>U.S. Geological Survey.</u>

Mower, R.W. 1978. "Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on groundwater". <u>U.S. Geological Survey.</u>

Nofziger, D.L. and A.G. Hornsby. 1986. "A Microcomputer-based Management Tool for Chemical Movement in Soil". <u>Applied Agricultural Research</u>, 1:50-56.

Nofziger, D.L. and A.G. Hornsby. 1988. "Chemical Movement in Layered Soils: User's Manual". <u>Agricultural experiment station division of agriculture oklahoma</u> <u>state university.</u>

Nofziger, D.L. and A.G. Hornsby. 1986. "A Microcomputer-Based Management Tool for chemical movement in soil". <u>Applied Agricultural Research</u>, vol.1, No.1, pp 50-56

Olexa, M.T. 1984. "Regulations governing the use of agricultural pesticides". Pesticide impact and assessment project manual. No.3. Oliver, G.R. 1987. "Agriculture, The Environment, and Leaching", <u>Proceedings of</u> a conference held on agricultural chemicals and groundwater protection.

Parsons, D.W. 1988. Extension Bulletin. <u>Oregano State University Extension</u> <u>Services.</u>

Rao, P.S.C., R.S. Mansell, L.B. Baldwin, and M.F. Laurent. 1983. "Pesticides and thier Behavior in Soil and Water. Soil Science Fact Sheet, Sept. 1983. <u>Florida cooperative extension service, Uinv. of Florida.</u>

Rao, P.S.C., M.P. Rao, and B.S. Anderson. 1988. "Organic Pollution In Groundwater: 2. Risk Assessment". Soil Science Fact Sheet, March 1988. <u>Florida</u> <u>cooperative extension service, Uinv. of Florida.</u>

Robinson, G.B. Jr. 1968. "Selected hydrologic data, San Pitch River drainage basin, Utah". <u>U.S. Geological Survey.</u>

Samani, Z.A., M. Pessarakli. 1986. "Estimating Potential Crop evapotranspiration with minimum data in Arizona". <u>ASAE</u> Vol.29, No. 2, pp 522-524. Stephens, J.C. 1976. "Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah". <u>U.S. Geological Survey.</u>

Stephens, J.C. 1977. "Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah". <u>U.S. Geological Survey.</u>

Street, J.C. and R. D. Gibson. 1978. "Utah Agricultural Pesticide Using Survey". Utah Pesticide Impact Assessment Program. <u>Utah State University, Logan, Utah.</u>

Subitzky Seymour 1962. "Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface water, northern Utah Valley, Utah County, Utah". <u>U.S. Geological Survey.</u>

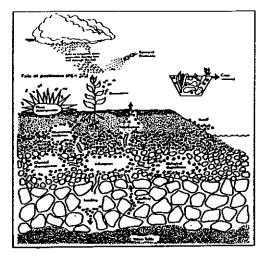
Sumsion, C.T. 1971. "Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah". <u>U.S. Geological Survey.</u>

Todd, D.K. 1980. "Ground water hydrology". 2ed., <u>Willy</u>, New York.

U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances. 1987. "Agricultural chemicals in ground water: Proposed pesticide strategy". U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances.

Waddell, K.M. 1987. "Utah ground water quality". <u>U.S. Geological Survey</u>, Open-File Report 87-0757.

Waddell, K.M., J.E. Dodge, D.W. Darby, and S.M. Theobald. 1980. "Selected hydrologic data, Price River'Basin, Utah, water years 1979 and 1980". <u>U.S.</u> <u>Geological Survey.</u>


Waddell, K.M., R.L. Seiler, M. Santini, and D.K. Solomon. "Groundwater conditions in Salt Lake Valley, utah, 1969-83, and predicted effects of increased withdrawals from wells". <u>U.S. Geological Survey.</u> Wilson, L., M.E. Olsen, T.B. Hutchings, A.R. Southard and A.J. Erickson. 1975. "Soils of Utah". <u>Agricultural experiment station</u>, <u>Bulletin 492</u>. <u>Utah State</u> <u>University</u>, Logan, Utah.

Wood, E.F., R.A. Ferrara, W.G. Gray and G.F. Pinder. "Groundwater contamination rom hazardous wastes". <u>Prentice-Hall, Inc.</u>, Englewood Cliffs, New Jersey 07632, 1984.

AGRICULTURAL PESTICIDE HAZARD TO GROUNDWATER IN UTAH

1

PART II: APPENDICES

by

Hubert Eisele Majid Ehteshami Richard C. Peralta Howard M. Deer Terry Tindall

IIC - 89/1B

Agricultural and Irrigation Engineering Dept. and University Extension Services Utah State University Logan Utah

April 1989

ł .

L.,

APPENDIX A

÷,

CMLS Analysis

,

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(pp	Ratio b)
Alfalfa	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	42 56 73 64	0.4553 0.3503 0.2547 0.1425	509.9 392.3 285.3 159.6	36	14.2 10.9 7.9 4.4
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	1676 1676 1676 1676	- - -			
	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	88 102 118 149	0.3618 0.3078 0.2558 0.1788	405.2 344.7 286.5 200.3	210	1.9 1.6 1.4 1.0
Corn	Atrazine/ Aatrex	2.24	1.0 1.5 2.0 3.0	384 426 488 775	0.0118 0.0073 0.0036 0.0001	26.4 16.4 8.1 0.2	3	8.8 5.5 2.7 0.1
	2,4-D Amine	0.84	1.0 1.2 2.0 3.0	360 421 452 725	1.5E-11 2.1E-13 2.5E-14 1.5E-22		70	
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	45 75 106 684	0.4304 0.2454 0.1373 0.0008	482.0 274.8 153.8 0.9	36	13.4 7.6 4.3 2.5E-

CMLS-Analysis: Beaver County (1/1)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(pp	Ratio b)
Alfalfa	Pronamide/ Kerb	1.12	1.0 1.5 2.0 3.0	2035 2035 2035 2035 2035	- - -		52	
	2,4-DB Amine	1.68	1.0 1.5 2.0 3.0	301 381 442 746	87E-10 3.4E-12 4.9E-14 3.5E-23			
	EPTC/Eptam	4.48	1.0 1.5 2.0 3.0	842 1117 1559 2107	3.6E-9 1.5E-12 2.3E-16			
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	1681 1681 1681 1681	- - -			
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	83 159 401 569	0.2112 0.0509 0.0005 2.3E-5	236.54 57.0 0.56	1.58	6.57 0.02
	Metribuzin/ Sencor,Lexone	1.12	1.0 1.5 2.0 3.0	278 326 529 674	0.0016 0.0005 4.9E-6 1.7E-7	1.79	175	0.01
Corn	Alachlor/ Lasso	3.36	1.0 1.5 2.0 3.0	539 842 1151 1559	2.6E-12 7.9E-19 1.8E-25 3.0E-34		1.5	
	Cyanazine/ Bladex	2.24	1.0 1.5 2.0 3.0	463 812 1098 1517	1.1E-7 6.0E-13 3.0E-17 1.5E-23		9	
	Atrazine/ Aatrex	2.24	1.0 1.5 2.0 3.0	463 798 1087 1507	0.0048 9.9E-5 3.5E-6 2.7E-8	10.75 0.22	3	3.58 0.07

LS-Analysis: Box Elder County (1/4)

3

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	2,4-D Acid	0.84	1.0 1.5 2.0 3.0	97 356 370 646	0.0012 1.9E-11 7.3E-12 3.6E-20		70	
	Oxydemeton- Methyl/Metasy	0.56 stox-R	1.0 1.5 2.0 3.0	72 319 345 543	0.0825 1.6E-5 6.4E-6 6.7E-9	46.2 0.01		
	Propargite/ Omite	1.90	1.0 1.5 2.0 3.0	2005 2005 2005 2005				
12	Disulfoton/ Disyston	0.56	1.0 1.5 2.0 3.0	2005 2005 2005 2005	- - - -		0.3	
√inter Small Gi	rains							
	Disulfoton/ Disyston	1.12	1.0 1.5 2.0 3.0	1893 1893 1893 1893			0.3	
	Dimethoate/ Cygon	0.42	1.0 1.5 2.0 3.0	145 453 614 887	4.3E-5 3.3E-20 3.9E-27 7.2E-39			
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	145 391 494 735	4.3E-5 1.7E-12 1.3E-15 7.5E-23		70	
	Bromoxynil/ Brominal	0.56	1.0 1.5 2.0 3.0	1686 1686 1686 1686	- - -			

CMLS-Analysis: Box Elder County (2/4)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Onions	DCPA/ Dacthal	1.12	1.0	2051 2051			3500	
:	Bucchul		2.0 3.0	2051 2051	-			
	Oxyfluorfen/ Goal	0.28	1.0 1.5	2051 2051	-			
			2.0 3.0	2051 2051 2051	- -			
	Bromoxynil/	0.42	1.0	2051	-			
	Brominal		1.5 2.0 3.0	2051 2051 2051	- -			
	Parathion/	0.84	1.0	2009	-			
	Thiophos	:	1.5 2.0 3.0	2009 2009 2009	-			
	Azinphos- Methyl/Guthion	0.84	1.0 1.5	2009 2009	-			
	nethy ly dati i on		2.0 3.0	2009 2009	-			
	Methyl- Parathion/	0.56	1.0 1.5	2009 2009	-		2	
	Penncap-M Metafos		2.0	2009 2009 2009	-			
Apples/ Cherries/ Peaches	Dormant Oil ⁄	0.84	1.0 1.5 2.0 3.0					
	Azinphos- Methyl/Guthion	2.80	1.0 1.5 2.0 3.0	2041 2041 2041 2041 2041	- - -			
	Benomyl/ Benlate		1.0	2041 2041	-			
	DENIGLE	, k	2.0 3.0	2041 2041 2041	-			

LS-Analysis: Box Elder County (3/4)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
<u></u>	Phosmet/ Imidan	4.48	1.0 1.5 2.0 3.0	1934 2025 2025 2025 2025	1.5E-6			

CMLS-Analysis: Box Elder County (4/4)

1. ž

, ·.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(pj	Ratio b)
Alfalfa	Parathion/ Thiophos	0.84	1.0 1.5 2.0 3.0	1363 1560 1943 2046	4.9E-30 2.0E-34 1.7E-42	4.1E-27		
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	123 133 144 387	0.0998 0.0828 0.0674 0.0007	112 93 75 0.8	. 36	3.1 2.6 2.1 0.02
	Malathion/ Calmathion	1.68	1.0 1.5 2.0 3.0	<2020 <2020 <2020 <2020 <2020	- - - -		•	
	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	144 153 153 174	0.1895 0.1708 0.1708 0.1340	212 191 191 150	210	1.0 0.9 0.9 0.7
	Metribuzin/ Sencor, Lexon	0.56 e	1.0 1.5 2.0 3.0	153 163 174 417	0.0292 0.0231 0.0179 6.5E-5	16 13 10	175	0.09 0.07 0.06
Dry Land Winter Wheat	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	529 626 682 939	1.2E-16 1.4E-19 2.9E-21 5.4E-29		70	
	Metsulfuron/ Ally	0.0043	1.0 1.5 2.0 3.0	659 894 929 1112	0.0222 0.0057 0.0047 0.0016	0.10 0.02 0.02		
	Chlorsulfuron, Glean	/ 0.027	1.0 1.5 2.0 3.0	341 619 691 892	0.0004 6.1E-7 1.2E-7 1.1E-9	0.01		
Irrigated Small Grains	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	41 41 57 326	0.1693 0.1693 0.0846 7.4E-7	190 190 95	70	2.7 2.7 1.4

.

. •

MLS-Analysis: Cache County (1/3)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(p	Ratio b)
	Metsulfuron/ Ally	0.0043	1.0 1.5 2.0 3.0	62 78 92 427	0.6970 0.6373 0.5898 0.0849	3.0 2.7 2.5 0.4		
	Chlorsulfuron/ Glean	0.027	1.0 1.5 2.0 3.0	35 35 56 72	0.4454 0.0454 0.2742 0.1895	12.0 12.0 7.4 5.1	1 1	ä
	Dicamba/ Banvel	0.14	1.0 1.5 2.0 3.0	5 26 26 42	0.7807 0.2760 0.2760 0.1250	109 39 39 18	9	12.1 4.3 4.3 1.9
Corn	Phorate/ Thimet	1.73	1.0 1.5 2.0 3.0	1122 1245 1502 1959	0.0002 6.9E-5 9.5E-6 2.8E-7	0.4 0.1	2	• .
	Fonofos/ Dyfonate	1.12	1.0 1.5 2.0 3.0	787 874 1110 1359	0.0001 4.1E-5 2.7E-6 1.5E-7	•0.11	14	0.01
	Fensulfothion/ Dasanit		1.0 1.5 2.0 3.0		·			•
	Alachlor/ Lasso	3.36	1.0 1.5 2.0 3.0	139 349 406 456	0.0010 3.1E-8 1.9E-9 1.6E-10	3.4	1.5	2.2 6.9 [.] 10 ⁻¹
	Atrazine/ Aatrex	2.24	1.0 1.5 2.0 3.0	108 153 390 426	0.2872 0.1708 0.0110 0.0073	643 383 25 16	3.0	214 128 8.2 5.4
Dual	Metolachlor/	2.24	1.0 1.5 2.0 3.0	119 377 392 467	0.0162 2.1E-6 1.3E-6 9.4E-8	36 4.7-3	10	3.6

CMLS-Analysis: Cache County (2/3)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Ratio Advise(ppb)
	Cyanazine/ Bladex	2.24	1.0 1.5 2.0 3.0	122 153 400 442	0.0146 0.0050 9.5E-7 2.2E-7	33 11 0.002	9 3.6 1.2
	EPTC/ Eptam	4.48	1.0 1.5 2.0 3.0	386 411 472 750	0.0001 7.5E-5 1.8E-5 3.0E-8	0.5	
	Atrazine and Metolachlor/B	ісер	1.0 1.5 2.0 3.0			:	
Vege- table	Trifluralin/ Treflan	1.12	1.0 1.5 2.0 3.0	1836 >2066 >2066 >2066	1.2E-8		2.0
Apples	Propargite/ Omite		1.0 1.5 2.0 3.0	>2066 >2066 2066 2066			
	Phosalone/ Zolone		1.0 1.5 2.0 3.0	>2066 >2066 >2066 >2066			

MLS-Analysis: Cache County (3/3)

te. Alter

9

i i

•.

.

CMLS-Analysis:	Carbon	County	(1/	2)
----------------	--------	--------	-----	----

Сгор	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	66 97 114 431	0.2904 0.1625 0.1182 0.0003	325.25 182 132.38 0.34	36	9.03 5.06 3.68 0.01
	Methidathion/ Supracide	1.12	1.0 1.5 2.0 3.0	1878 >2061 >2061 >2061	1.2E-27 - - -		: 8- ., ••	
	2,4 - D Ester	0.84	1.0 1.5 2.0 3.0	>2035 >2035 >2035 >2035 >2035	- - -		70	
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	>2039 >2039 >2039 >2039 >2039	- - -			
	Chlorpyrifos/ Lorsban	1.12 /	1.0 1.5 2.0 3.0	2071 2071 2071 2071 2071				
Corn	2,4-D Acid	0.84	1.0 1.5 2.0 3.0	87 360 390 435	0.0024 1.5E-11 1.8E-12 8E-14		70	
Corn	2,4-D Ester	0.84	1.0 1.5 2.0 3.0	>2034 >2034 >2034 >2034 >2034	- - -		70	
	Glyphosate/ Roundup	2.24	1.0 1.5 2.0 3.0	>2081 >2081 >2081 >2081 >2081	- - -		700	
Small Grains	2,4-D - Acid	1.12	1.0 1.5 2.0 3.0	44 395 409 499	0.0474 1.3E-12 4.9E-13 9.5E-16		70	

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
	Dicamba/	0.14	1.0	30	0.2264	31.7	9	3.52
	• Banvel		1.5 2.0 3.0	44 379 409	0.1132 7.1E-9 1.6E-9	15.85		1.76

"LS-Analysis: Carbon County (2/2)

CMLS-Analysis:	Davis	County	(1/3)
----------------	-------	--------	-------

Crop		uantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Carbofuran/ Furadan (I)	1.12	1.0 1.5 2.0 3.0	103 346 360 421	0.1452 0.0015 0.0012 0.004	162.62 1.68 1.34 0.45	36	4.52 0.05 0.04 0.01
	Sethoxydim/ Poast	0.42	1.0 1.5 2.0 3.0	93 107 169 411	2.5E-6 3.6E-7 6.7E-11 1.8E-25			
	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	71 87 101 190	0.4403 0.366 0.3114 0.114	493.14 409.92 348.77 124.77	210	2.35 1.95 1.66 0.59
Corn	Metolachlor/ Dual	2.24	1.0 1.5 2.0 3.0	422 626 745 863	4.4E-7 3.8E-1 6.1E-12 1E-13		10	
	Alachlor/ Alanex, Lasso	3.36	1.0 1.5 2.0 3.0	406 529 735 801	1.9E-9 4.2E-12 1.6E-16 6E-18		1.5	
	Cyanazine/ Bladex	0.67	1.0 1.5 2.0 3.0	392 467 626 771	1.3E-6 9.4E-8 3.8E-10 2.5E-12		9	
Potatoes	Metolachlor/ Dual	2.24	1.0 1.5 2.0 3.0	487 740 775 909	4.7E-8 7.3E-12 2.2E-12 2.1E-14		10	
	Metribuzin/ Sencor, Lexone	0.56	1.0 1.5 2.0 3.0	59 108 326 389	0.2558 0.0825 0.005 0.001	143.25 46.2 0.28	175	0.82 0.26 1.6E-3
	Azinphoz-Methyl/ Guthion	0.42	1.5 2.0	2030 2030 2030 2030 2030	- - -			

MLS-Analysis:	Davis	County	(2/3)	
---------------	-------	--------	-------	--

Crop	Pesticide ((Common/Trade))uantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise	
	Aldicarb/ Temik	2.24	1.0 1.5 2.0 3.0	50 85 120 387	0.3150 0.1403 0.0625 0.0001	705.6 314.27 140 0.22		70.56 31.43 14.0 0.02
Onions	DCPA/ Dacthal	11.2	1.0 1.5 2.0 3.0	2096 2096 2096 2096 2096	- - -		3500	
	Oxyfluorfen/ Goal	0.28	1.0 1.5 2.0 3.0	2066 2066 2066 2066	- - -			• •
	Methyl Parathion/ Penncap-M	0.56	1.0 1.5 2.0 3.0	2035 2035 2035 2035 2035	- - -		2	•
	Fluazifop-Butyl/ Fusilade	0.28	1.0 1.5 2.0 3.0	2066 2066 2066 2066	- -			
linter Iheat		0.50	1.0	1507	0.05.45		70	
	2,4-D Ester	0.56	1.0 1.5 2.0 3.0	1527 1696 1696 1696	9.8E-45 - - -		70	
	Triallate/ Fargo	1.12	1.0 1.5 2.0 3.0	1918 1918 1918 1918 1918	- - -			
	Difenzoquat Avenge		;					
	-	1.12	1.0 1.5 2.0 3.0	1726 1726 1726 1726	- - -			

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Ratio Advise(ppb)
	Carbary]/ Sevin	1.68	1.0 1.5 2.0 3.0	770 934 1122 1633	7.7E-34 6.8E-41 7E-45 7E-45		700
Snap B	Beans						, f
	Bentazone / Basagran	1.12	1.0 1.5 2.0	30 40 50	0.1250 0.0625 0.0315	140 70 34.94	۰ ۴ ₂ ,
	Trifluralin/ Treflan	0.84	1.0 1.5 2.0 3.0	2091 2091 2091 2091 2091	- - · -		2
	Malathion/ Carbofos	1.12	1.0 1.5 2.0 3.0	2009 2009 2009 2009 2009	- -		· · · .

CMLS-Analysis: Davis County (3/3)

. .

14

.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	2,4-DB Amine	1.68	1.0 1.5 2.0 3.0	32 46 46 77	0.1088 0.0412 0.0412 0.0048	182.78 69.22 69.22 8.06		· .
	Methyl- Parathion/ Metafos, Penncap-M	0.56	1.0 1.5 2.0 3.0	2020 2020 2020 2020 2020			2	
	Malathion/ Carbofos	1.4	1.0 1.5 2.0 3.0	2020 2020 2020 2020 2020				
Corn	Atrazine/ Aatrex	2.69	1.0 1.5 2.0 3.0	421 451 499 786	0.0077 0.0055 0.0031 0.0001	20.71 14.8 8.34 0.27	-3	6.9 4.93 2.78 0.09
	EPTC/ Eptam	4.48	1.0 1.5 2.0 3.0	772 816 878 1181	1.8E-8 6.5E-9 1.5E-9 1.4E-12	8.06E-	-5	
	2,4-DB Amine	1.68	1.0 1.5 2.0 3.0	41 57 88 133	0.0583 0.0192 0.0022 9.9E-5	97.94 32.26 3.7 0.17		
	Diazinon/ Dianon	2.24	1.0 1.5 2.0 3.0	370 400 448 721	0.0002 9.7E-5 3.2E-5 5.8E-8	0.45 0.22 0.07 1.3E-4	0.63	0.71 0.34 0.11 2.06E-
Small Grains	Dicamba/ Banvel	0.14	1.0 1.5 2.0 3.0	16 32 32 46	0.4529 0.2051 0.2051 0.1025	63.4 28.7 28.7 14.4	9.0	7.1 3.2 3.2 1.6
	2,4-DB Amine	2.24	1.0 1.5 2.0 3.0	32 46 46 381	0.1088 0.0412 0.0412 3.4E-12	243.71 92.29 92.29 7.62E	-9	

4

^MLS-Analysis: Duchesne County (1/1)

•

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Ratio Advise(ppb)
Alfalfa	Methidathion/ Supracide	0.84	1.0 1.5 2.0 3.0	1518 1836 1914 >2035	1.7E-22 4.8E-27 3.7E-28 -		
	Glyphosate/ Roundup	1.68	1.0 1.5 2.0 3.0	>2070 2070 2070 2070 2070	-	t."	700
Corn	EPTC/ Eptam	3.36	1.0 1.5 2.0 3.0	771 849 863 1152	1.8E-8 3E-8 2.2E-9 2.8E-12		• • • •
	2,4-D Amine	0.56	1.0 1.5 2.0 3.0	370 418 452 721	7.3E-12 2.6E-13 2.5E-24 2E-22		70
4e1 on s	Bensulide/ Prefar	0.56	1.0 1.5 2.0 3.0	>2066 2066 2066 2066	- - -		
	Naptalam/ Alanap	3.36	1.0 1.5 2.0 3.0	57 76 97 392	0.0035 0.0005 6.7E-5 1.4E-17	11.76 1.68	
	Trifluralin/ Treflan	0.84	1.0 1.5 2.0 3.0	>2038 2038 2038 2038 2038	- - -		2
	Chlorothalonil Bravo	/	1.0 1.5 2.0 3.0	>2028 2028 2028 2028 2028	- - -		1.5
Apples/ Peaches	Azinphos-Meth Guthion	y]/2.24	1.0 1.5 2.0 3.0	1913 >2020 2020 2020 2020	4E-15 - - -	x	

CMLS-Analysis: Emery County (1/2)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
<u>-</u>	Glyphosate/	1.68	1.0	>2061	_		700	
	Roundup		1.5	>2062	-			
	•		2.0	>2061	-			
			3.0	>2061	-			

<u>,</u> .

ł

· :

LS-Analysis: Emery County (2/2)

17

i

۰ :

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppl	Ratio)
Alfalfa	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	43 60 91 394	0.4468 0.3250 0.1818 0.0006	500.4 364 203 0.7	36	13.9 10.1 5.7 1.9E-2
	2,4-DB Amine	1.12	1.0 1.5 2.0 3.0	43 60 74 394	0.0508 0.0156 0.0059 1.4E-12	56.9 17.5 6.6		
	Dicamba/ Banvel	0.56	1.0 1.5 2.0 3.0	29 43 74 378	0.2379 0.1190 0.0256 7.5E-9	133.2 66.6 14.3 4.2E-6	9	14.8 7.4 1.6 4.7E-7
	Gylyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	1673 1673 1673 1673	- - -		700	

CMLS-Analysis: Garfield County (1/1)

٩.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Malathion/ Carbofos	1.40	1.0 1.5 2.0 3.0	>2041 >2041 >2041 >2041 >2041				
	Hexazinone/ Velpar	1.68	1.0 1.5 2.0 3.0	16 46 46 77	0.8312 0.5878 0.5878 0.4108	1396 988 988 690	210	6.6 4.7 4.7 3.3
	Metribuzin/ Sencor, Lexone	0.84	1.0 1.5 2.0 3.0	82 96 113 158	0.1504 0.1088 0.0735 0.0260	126 91 62 22	175	0.7 0.5 0.4 0.1
	Pronamide/ Kerb	2.24	1.0 1.5 2.0 3.0	1705 >1888 >1888 >1888	7.8E-18	-	52	- - -
	Sethoxydim/ Poast	0.53	1.0 1.5 2.0 3.0	66 83 114 431	0.0001 1.0E-5 1.4E-7 1.1E-26	0.1 - -	* * [*] . * .	
Small Grains	2,4-D Ester	1.06	1.0 1.5 2.0 3.0	>2056 >2056 >2056 >2056	- - -		70	
	2,4-D Amine	1.06	1.0 1.5 2.0 3.0	396 426 506 791	1.2E-12 1.5E-13 5.9E-16 1.5E-24	- - -	70	· .
	Dicamba/ Banvel	0.14	1.0 1.5 2.0 3.0	31 61 61 426	0.2155 0.0488 0.0488 6.9E-10	30.2 6.8 6.8	9.0	3.4 0.8 0.8 -
Corn	2,4-D Amine	0.84	1.0 1.5 2.0 3.0	365 395 440 730	1.0E-11 1.3E-12 5.7E-14 1.1E-22	- - -	70	

'_S-Analysis: Grand County (1/3)

-19

.

ł

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	Cyanazine/ Bladex	3.36	1.0 1.5 2.0 3.0	406 453 517 832	7.7E-7 1.5E-7 1.7E-8 3.0E-13	- , - -	9.0	
	Atrazine/ Aatrex	2.69	1.0 1.5 2.0 3.0	385 427 472 776	0.0117 0.0072 0.0043 0.0001	31.5 19.4 11.6 0.3	3.0	10.5 6.5 3.9 0.1
Melons	Bensulide/ Prefar	6.72	1.0 1.5 2.0 3.0	>2096 >2096 >2096 >2096	- - -	2 - 2 - 2 - - -	-	
	Naptalam/ Alanap	3.36	1.0 1.5 2.0 3.0	52 71 92 387	0.0058 0.0009 0.0001 2.3E-17	19.5 3.0 0.3	-	i.
	Trifluralin/ Treflan	0.84	1.0 1.5 2.0 3.0	>2056 >2056 >2056 >2056		- - -	2.0	
	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	>2056 >2056 >2056 >2056		- - `-	700	· · ·
Orchards	Dormant Oil		1.0 1.5 2.0 3.0	1536 1901 >2100 >2100	9.8E-45 -	- - - -		
	Diazinon/ Dianon	5.0	1.0 1.5 2.0 3.0	136 167 197 487	0.0432 0.0211 0.0105 1.3E-5	216 106 53 0.1	0.63	343 168 83 0.1
	Endosulfan/ Thiodan		1.0 1.5 2.0 3.0	>2100 >2100 >2100 >2100 >2100	- - -	- - -	-	

: : '

CMLS-Analysis: Grand County (2/3)

20

194 g. -

LS-Analysis: Grand County (3/3)

. **.**

····

÷

Crop	Pesticide Quantity (Common/Trade) (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	Fenvalerate/	1.0	>2100	_		. -	
	Pydrin	1.5	>2100	. –	-		
		2.0	>2100	-	-		
		3.0	>2100	-	-		
	Azinphos-Methyl/	1.0	1536	2.8E-12	-	-	
	Guthion	1.5	1901	4.9E-15			
		2.0	>2100	-	_		
		3.0	>2100	-	-		
	Propargite/	1.0	>2100	_	_	-	
	Omite	1.5	>2100	-	_		
		2.0	>2100	-	_		
		3.0	>2100	-	-		
	Chlorpyrifos/	1.0	>2100	_	-	-	
	Lorsban	1.5	>2100	-	-		
	· · · ·	2.0	>2100	-	-	•	
		3.0	>2100	-	-		
	Daminozide/	1.0	61	0.0024	-	_	
	Alar	1.5	105	3.1E-5	-		
		2.0	153	2.6E-7	-		
		3.0	197	3.4E-9	-		

٠

.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Parathion/ Thiophos	1.12	1.0 1.5 2.0 3.0	>2034 >2034 >2034 >2034 >2034	- - - -		-	
	Permethin/ Pounce, Ambush	1.12 1	1.0 1.5 2.0 3.0	>2034 >2034 >2034 >2034 >2034	- - -	- - -		
	Metribuzin/ Sencor	0.56	1.0 1.5 2.0 3.0	77 108 122 456	.168 .082 .059 2.7E-5	94.1 45.9 28.6 -	175	0.5 0.3 0.2
	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	47 77 91 153	.581 .41 .35 .17	651 459 392 190	210	3.1 2.2 1.9 0.9
	2, 4-DB Amine Salt	1.12	1.0 1.5 2.0 3.0	61 91 108 426	.014 .0018 .0006 1.5E-19	15.7 2.0 0.7	· · · · ·	·
Small Grains	2, 4-D Acid	.56	1.0 1.5 2.0 3.0	61 91 91 442	.014 .0018 .0018 9.4E-14	7.8 1.0 1.0	70	0.1
Potatoes	Aldicarb/ Temik	3.36	1.0 1.5 2.0 3.0	52 370 387 457	.3008 .0002 .0001 2.6E-5	1008 0.7 0.3	10	100.8 0.1
	Metribuzin/ Sencor	.84	1.0 1.5 2.0 3.0	92 387 417 761	.11 .0001 6.5E-5 2.3E-8	92.4 0.1	175	0.5
	Permethrin/ Pounce	1.12	1.0 1.5 2.0 3.0	>2061	- - -	- - -		

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Carbofuran/ Furadan	0.56	1.0 1.5 2.0 3.0	52 66 97 417	0.3775 0.2904 0.1625 0.0004	211.4 162.6 91 0.2	36	5.9 4.5 2.5 6.2E-3
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	2051 2051 2051 2051 2051	-		÷.,	
	Methidathion / Supracide	0.56	1.0 1.5 2.0 3.0	1832 2015 2015 2015 2015	5.5E-27 - - -		, i ·	
	Hexazinone/ Velpar	0.56	1.0 1.5 2.0 3.0			۰.	210	
Corn	2,4-D Amine	0.84	1.0 1.5 2.0 3.0	376 699 725 817	4.8E-12 9.4E-22 1.5E-22 2.5E-25		70	
	Fonofos/ Dyfonate	7.84	1.0 1.5 2.0 3.0	1528 2045 2045 2045 2045	2.2E-8 - - -		. 14	
e	Dicamba/ Banvel	0.28	1.0 1.5 2.0 3.0	56 87 346 390	0.0625 0.0135 3.6E-8 4.1E-9	17.5 3.8	9	1.9 0.4
Small Grains	2,4-D Acid	0.84	1.0 1.5 2.0 3.0	30 44 379 409	0.1250 0.0474 3.9E-12 4.9E-13		70	
	Dicmba/ Banvel	0.56	1.0 1.5 2.0 3.0				9	

.

'LS-Analysis: Juab County (1/2)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
Dryland Winter		·· <u>·······</u>				· · · · · · · · · · · ·	<u> </u>	
Wheat	2,4-D Acid	0.84	1.0	>1655	-		70	:
	,		1.5	>1655	-			
			2.0	>1655	-			
			3.0	>1655	-			
	Dicamba/Banvel	0.28	1.0	>1686	-		9	
	Droumbuy burror		1.5	>1686	. .		2	
			2.0	>1686	-			
			3.0	>1686	-			
Apples								· ·
	Diazinon/ Dianon	1.12	1.0 1.5 2.0 3.0	119 193 422 514	0.0320 0.011 5.8E-5 1E-6	35.8 13	.63	56.9 20.6
	Azinphos-Methy	1/1.12	1.0	1909	4.3E-15		· .	
	Guthion		1.5	2030	-			
			2.0	2030	-			
			3.0	2030	-			

CMLS-Analysis: Juab County (2/2)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	2,4-DB Amine	1.68	1.0 1.5 2.0 3.0	29 43 60 105	0.1340 0.0508 0.0156 0.0007	225.12 85.34 26.21 1.18	· · ·	
	Simazine/ Princep	0.56	1.0 1.5 2.0 3.0	96 378 408 456	0.4118 0.0304 0.0230 0.0148	230.6 17 12.9 8.3	35	6.6 0.5 0.4 0.2
• •	Metribuzin/ Sencor, Lexone	1.12	1.0 1.5 2.0 3.0	66 82 113 144	0.2176 0.1504 0.0735 0.0359	243.7 168.4 82.3 40.2	175	1.4 1.0 0.5 0.2
	Malathion/ Carbofos	1.4	1.0 1.5 2.0 3.0	1673 1673 1673 1673	- - -	• •		

.

÷

.

.

"LS-Analysis: Kane County (1/1)

•

.

۲.

.

.

CMLS-Analysis:	Millard	County	(1/3)
----------------	---------	--------	-------

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	2,4-DB Amine	2.24	1.0 1.5 2.0 3.0	21 37 68 113	0.2333 0.0769 0.0090 0.0004	522.59 172.26 20.16 0.9		······································
	Carbofuran/ Furadan	0.84	1.0 1.5 2.0 3.0	26 56 73 377	0.6144 0.3503 0.2547 0.0009	516.1 294.3 213.9 0.8	36	14.3 8.2 5.9 2.1E-2
	Hexazinone/ Velpar	1.68	1.0 1.2 2.0 3.0	83 97 113 158	0.3833 0.3261 0.2711 0.1612	643.9 547.8 455.4 270.8	210	3.1 2.6 2.2 1.3
	Metribuzin/ Sencor, Lexone	1.12	1.0 1.5 2.0 3.0	83 113 127 189	0.1469 0.0735 0.0532 0.0127	164.53 82.32 59.6 14.22	175	0.94 0.47 0.34 0.08
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	497 834 1200 -	2.1E-11 1.2E-18 1.6E-26	- - -		
	Trifluralin/ Treflan	2.24	1.0 1.5 2.0 3.0	888 1270 1953 -	0.0002 3.5E-6 4.0E-9 -	0.4 - -	2 -	0.2
	DCPA/ Dacthal	8.96	1.0 1.5 2.0 3.0	2071 2071 2071 2071 2071	- - -			3500
Corn	Glyphosate/ Roundup	1.12	1.0 1.5 2.0 3.0	2081 2081 2081 2081 2081	- - -			700
	Dicamba/ Banvel	0.45	1.0 1.5 2.0 3.0	15 27 57 133	0.4758 0.2627 0.0595 0.0014	214.1 118.2 26.8 0.6	9	23.8 13.1 3.0 0.1

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Ratio Advise(ppb)
	Oxydemeton- Methyl/ Metasystox-R	0.56	1.0 1.5 2.0 3.0	40 88 102 361	0.2500 0.0474 0.0292 3.7E-6	140 26.5 2.9E-2	
-	2,4-DB Ester	0.67	1.0 1.5 2.0 3.0	829 1194 1560 >2046	1.1E-25 1.1E-36 9.8E-45 -		Ţ
Small Grains	2,4-DB Ester	0.84	1.0 1.5 2.0 3.0	874 1502 1883 >2066	4.9E-27 9.8E-45 9.8E-45 -		
	Dicamba/ Banvel	0.14	1.0 1.5 2.0 3.0	20 41 57 385	0.3715 0.1313 0.0595 5.3E-9	52.0 18.4 8.3	9 5.8 2.0 0.9
	Triallate/ Fargo	1.4	1.0 1.5 2.0 3.0	2066 2066 2066 2066	- , - - -		· ·
	Glyphosate/ Roundup	1.12	1.0 1.5 2.0 3.0	2091 2091 2091 2091 2091	- - -		. • 700 •
	MCPA/ Weedone	0.67	1.0 1.5 2.0 3.0	690 1493 1872 2041	1.2E-11 1.0E-15 1.6E-19 -	-	3.6
	Chlorsulfuron, Glean	/ 0.02	1.0 1.5 2.0 3.0	32 32 46 381	0.4774 0.4774 0.3455 0.0002	9.5 9.5 6.9 4E-3	
Potatoes	Metribuzin/ Sencor, Lexon	0.84 e	1.0 1.5 2.0 3.0	27 36 57 97	0.5359 0.4353 0.2679 0.1063	450.2 365.7 225.0 89.3	175 2.6 2.1 1.3 0.5

Millard County (2/3)

,¥ ,

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	Chlorothalonil, Bravo	/ 0.56	1.0	2003 2003	1.7E-27	-	1.5	
			2.0 3.0	2003 2003	-			
	Maneb/	2.24	1.0	1403	6.4E-36	-		·
	Dithane		1.5	1799	1.1E-44			
			2.0 3.0	2003 2003	-			
			3.0	2003	-			
Dryland	Glyphosate/	1.12	1.0	1928	-		700	
Small	Roundup		1.5	1928	_ `			-
arains	•		2.0	1928	-			
			3.0	1928	-			
	2,4-DB	0.84	1.0	>1701	-	- <u>-</u>	ал (1) 1 — Пара	
	Ester		1.5	>1701	-	1		
			2.0	>1701	-			
			3.0	>1701	-			
	Dicamba/	0.14	1.0	1701	-		9	:
	Banvel		1.5	1701	-			
			2.0	1701	· -			
			3.0	1701	-			
	Chlorsulfuron/	0.02	1.0	1701	-			
	Glean		1.5	1701	-		<i>4</i> -	
			2.0	1701	-			
			3.0	1701	-			
\quatic	Petroleum Disti	llate			-	:	 •	

CMLS-Analysis: Millard County (3/3)

Prometon/Pramitol

Xylene

^MLS-Analysis: Morgan County (1/2)

- -

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	1706 1706 1706 1706		···· ·	700	. •
	Hexazinone/ Velpar	1,68	1.0 1.5 2.0 3.0	46 76 76 124	0.578 0.4156 0.4156 0.2387	987.5 678.21 698.21 401.02	210	4.7 3.32 3.32 1.91
	Malathion/ Carbofos	1.4	1.0 1.5 2.0 3.0	1665 1665 1665 1665				
Dry Land ∛heat	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	868 1007 1021 1262	7.4E-27 4.9E-31 1.8E-31 1E-38		70	
	Dicamba/ Banvel	0.14	1.0 1.5 2.0 3.0	608 646 873 1014	8.4E-11 1.3E-14 1.7E-19 1.6E-22		9	1.31E-1
	Carbaryl/ Sevin		1.0 1.5 2.0 3.0	2030 2030 2030 2030			700	
(rrigate Small Grains	ed 2,4-D Acid	1.12	1.0 1.5 2.0 3.0	293 370 400 559	1.5E-9 7.3E-12 9.1E-13 1.5E-17		70	
	Dicamba/ Banvel	0.14	1.0 1.5 ,2.0 3.0	21 35 35 370	0.3536 0.1768 0.1768 1.1E-8	49.5 24.75 24.75 1.54E-0	9	5.5 2.75 2.75 1.7E-7
	Carbaryl/ Sevin		1.0 1.5 2.0 3.0	1204 1466 1600 2030	7E-4 7E-45 7E-45	5	700	

CMLS-Analysis:	Morgan County	(2/2)
		$\chi = \chi = \chi$

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Potatoes	Disulfoton/	4.48	1.0	>2061		-	0.3	· <u> </u>
	Disyston		1.5	>2061	2			
	•		2.0	>2061	·			
			3.0	>2061				
Corn	Atrazine/	2.69	1.0	657	0.0005	1.35	3	0.45
	Aatrex		1.5	746	0.0002		• • • • •	
	·		2.0	793	0.0001			
			3.0	983	1.2E-5			

j.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(p	Ratio pb)
Alfalfa	Ghyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	1686 1686 1686 1686	- - - -	• • •	700	· ·
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	73 87 376 407	0.2547 0.1960 0.0009 0.0005	285.3 219.5 1	36	7.9 6.1 2.8E-2
	Parathion	0.56	1.0 1.5 2.0 3.0	1660 1660 1660 1660	-	2000 1		
Corn	2,4-D Acid	1.06	1.0 1.5 2.0 3.0	102 349 361 391	0.0009 3.1E-11 1.4E-11 1.7E-12		70	
Small Grains	2,4-D Acid	1.06	1.0 1.5 2.0 3.0	40 354 375 405	0.0625 2.2E-11 5.1E-12 6.4E-13		70	÷,

.S-Analysis: Piute County (1/1)

. . .

i

• . •

31

.

.

1. 1.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	2061 2061 2061 2061			700	
	2,4-DB Amine	1.12	1.0 1.5 2.0 3.0	168 346 390 580	8.8E-6 3.8E-11 1.8E-12 3.5E-18			
Small Grains	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	66 380 431 675	0.0103 3.6E-12 1.1E-13 4.8E-21	11.54	70	0.01
	Dicamba/ Banvel	0.10	1.0 1.5 2.0 3.0	36 66 66 431	0.1682 0.0381 0.0381 5.4E-10	16.82 3.81 3.81 5.4E-8	9	1.87 0.42 0.42 6.E-9
	Glyphosate/ Roundup	4.2	1.0 1.5 2.0 3.0	2061 2061 2061 2061			700	
Small Fruits	Malathion/ Carbofos	1.5	1.0 1.5 2.0 3.0	2039 2039 2039 2039 2039				
	Diazinon/ Dianon	1.7	1.0 1.5 2.0 3.0	379 585 699 724	0.0002 1.3E-6 9.7E-8 5.4E-8	0.34	0.63	0.54
	Diuron/ Karmex	2.24	1.0 1.5 2.0 3.0	1353 1693 1728 1928	0.0573 0.0279 0.0259	128.35 62.5 58.02	14	9.17 4.46 4.14

CMLS-Analysis: Rich County (1/1)

S-Analysis:	Salt	Lake	County	(1/3)
	Qu i U	LANC	oounoy	*/ ¥/

. .

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	2096 2096 2096 2096 2096	- - - -		700	
	2,4-DB Amine	1.68	1.0 1.5 2.0 3.0	144 321 387 448	4.6E-5 2.2E-10 2.2E-12 3.3E-14			
、	Sethoxydim/ Poast	0.47	1.0 1.5 2.0 3.0	318 348 379 591	7.2E-20 1.1E-21 1.5E-23 2.6E-36			
	Hexazinone/ Velpar	1.68	1.0 1.5 2.0 3.0	41 72 200 345	0.6227 0.4353 0.0992 0.0186	1046.14 731.3 166.66 31.25		4.98 3.48 0.79 0.15
əmall Grains	2,4-D Amine	1.12	1.0 1.5 2.0 3.0	740 791 894 1105	5.3E-23 1.5E-24 1.2E-27 5.4E-34		70	
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	47 61 396 519	0.0385 0.0146 1.2E-12 2.4E-16	_ •	70	
	Disulfoton/ Disyston	1.12	1.0 1.5 2.0 3.0	2025 2025 2025 2025 2025	- - -		0.3	
Corn	Atrazine/ Aatrex	2.69	1.0 1.5 2.0 3.0	488 725 747 853	0.0036 0.0002 0.0002 5.3E-5	9.68 0.54 0.54		3.23 0.18 0.18
	Metolachlor/ Dual	3.36	1.0 1.5 2.0 3.0	725 761 822 1080	1.2E-11 3.5E-12 4.2E-13 5.6E-17	:	10	

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	36 66 128 375	0.5095 0.2904 0.0909 0.0009	570.64 325.25 101.81 1.01	36	15.85 9.03 2.83 0.03
Dryland Winter Wheat	Chlorsulfuron/ Glean	0.027	1.0 1.5 2.0 3.0	641 697 954 1107	3.7E-7 1E-7 2.7E-10 7.8E-12		•	
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	695 955 1068 1320	1.2E-21 1.8E-29 7.1E-33 1.8E-40		70	
Vege- tables (cucumber Sweet Cor		6.72	1.0 1.5 2.0 3.0	2061 2061 2061 2061 2061	- - -			, · ·
SWEEL COI	"EPTC/ Eptam	4.48	1.0 1.5 2.0 3.0	854 1086 1127 1233	2.7E-9 1.3E-11 4.9E-12 4.2E-13			·
	Permethrin/ Pounce, Ambush	0.22	1.0 1.5 2.0 3.0	2000 2000 2000 2000	- - -			- -
	Alachlor/ Lasso	4.48	1.0 1.5 2.0 3.0	673 751 798 1043	3.4E-15 7.1E-17 6.9E-18 3.7E-23		1.5	
Comatoes	Trifluralin/ Treflan	1.12	1.0 1.5 2.0 3.0	2066 2066 2066 2066	- - -		2	
Apples, Pears	Diazinon/ Dianon	9 gal	1.0 1.5 2.0 3.0	214 432 457 576	0.0071 4.6E-5 2.6E-5 1.7E-6		0.63	

CMLS-Analysis: Salt Lake County (2/3)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
	Azinphos-	2.80	1.0	2061				
	Methyl/		1.5	2061	-			
	Guthion		2.0	2061	-			
			3.0	2061	-			
	Triadimefon/	0.28	1.0	858	5E-13			
	Bayleton		1.5	1018	1.3E-15			·.
	-		2.0	1100	1.7E-16			
			3.0	1239	1.7E-18			

÷

LS-Analysis: Salt Lake County (3/3)

.

•

•

-

.

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent Health Ratio (ppb) Advise(ppb)
	d 2,4-D Acid	1.12	1.0	46	0.0412	70
Wheat			1.5	48	0.0359	. e'
			2.0	128	0.0001	
			3.0	411	4.2E-13	
	Dicamba/	0.14	1.0	32	0.2051	
	Banvel		1.5	46	0.1025	
			2.0	84	0.0156	
			3,0	381	6.4E-9	
Drv Land	2,4-D Acid	1.12	1.0	473	5.8E-15	70
Wheat	2,10 1.010	1.16	1.5	929	1.1E-28	
				>1676	-	
				>1676		
	Dicamba/	0.14	1.0	136	0.0012	9
	Banvel		1.5	515	8.4E-12	
			2.0	1598	4.4E-35	
			3.0	>1676	-	

ĺ

CMLS-Analysis: San Juan County (1/1)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
Alfalfa	2,4-D Ester	1.12	1.0 1.5 2.0 3.0	35 52 83 370	0.2195 0.1051 0.0274 1.1E-7	245.84 117.71 30.69 1.23E-2	70	3.51 1.68 0.44 1.76E-6
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	61 77 91 139	0.3189 0.2363 0.1818 0.0740	357.17 264.66 203.62 82.88	36	9.92 7.35 5.66 2.3
	Metribuzin/ Sencor, Lexone	1.12	1.0 1.5 2.0 3.0	87 101 118 163	0.1340 0.0969 0.0655 0.0231	150.08 108.53 73.36 25.87	175	0.86 0.62 0.42 0.15
Corn	Phorate/ Thimet	1.73	1.0 1.5 2.0 3.0	2061 2061 2061 2061	- - - -			
	Atrazine/ Aatrex	2.24	1.0 1.5 2.0 3.0	386 447 478 767	0.0116 0.0057 0.0040 0.0001	25.98 12.77 8.96 0.22		8.66 4.26 2.99 0.07
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	56 87 334 346	0.0206 0.0005 8.8E-11 3.8E-11	23.07	70	0.33
	Dicamba/ Banvel	0.56	1.0 1.5 2.0 3.0	42 73 87 346	0.0135	70 15.06 7.56	9 .	7.78 1.67 0.84
	2,4-D Ester	1.12	1.0 1.5 2.0 3.0	35 35 349 386	0.2195 0.2195 2-7E-7 5.5E-8	245.84 245.84 3.02E-4	70	3.51 4.32E-0
Crucifer Crops	Systox/Dementon	I	1.0 1.5 2.0 3.0	52 66 380 417	0.3008 0.2176 0.0002 6.5E-5			

. . : : : :

LS-Analysis: San Pete County (1/1)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(pp	Ratio b)
Alfalfa	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	88 102 118 163	0.3628 0.3078 0.2558 0.1521	405.2 344.7 286.5 170.4	210	1.9 1.6 1.4 0.8
	Metribuzin/ Sencor, Lexono	0.84 e	1.0 1.5 2.0 3.0	102 118 149 194	0.0949 0.0655 0.0320 0.0113	79.5 5.5 26.9 9.5	175	0.5 0.3 0.2 0.1
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	30 44 61 106	0.5701 0.4385 0.3189 0.1373	638.5 491.1 357.2 153.8	36	17.7 13.6 9.9 4.3
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	1331 1331 1331 1331 1331	-			
Corn	Atrazine/ Aatrex	2.24	1.0 1.5 2.0 3.0	138 397 427 752	0.2031 0.0102 0.0072 0.0002	454.9 22.8 16.1 0.4	3	151.6 7.6 5.4 0.1
	Dicamba/ Banvel	0.56	1.0 1.5 2.0 3.0	22 36 52 114	0.3365 0.1682 0.0762 0.0035	188.4 94.2 42.7 2	9	20.9 10.5 4.7 0.2
	Trimethacarb/ Broot	1.73	1.0 1.5 2.0 3.0	380 406 467 772	3.6E-12 6E-13 8.7E-15 5.8E-24	6.2E-9		
	Fonofos/ Dyfonate	1.12	1.0 1.5 2.0 3.0	116 1228 1563 2066	2.7E-6 6.9E-7 1.4E-8	3E-3	4	2.2E-4
	Carbofuran/ Furadan	2.24	1.0 1.5 2.0 3.0	27 57 88 133	0.6030 0.3438 0.1923 0.0828	135.7 770.1 430.8 185.5	36	37.5 21.4 12.0 5.2

. ur

CMLS-Analysis: Sevier County (1/3)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Ratio Advise(ppb)
	Phorate/ Thimet	1.73	1.0 1.5 2.0	1518 1914 2066	8.4E-6 4.0E-7	3.0	2066
	Terbufos/ Counter	1.73	1.0 1.5 2.0 3.0	2066 2066 2066 2066		5.0	0.18
Small Grains	Triallate/ Fargo	1.68	1.0 1.5 2.0 3.0	2096 2096 2096 2096			
	Barban/ Carbyne	0.42	1.0 1.5 2.0 3.0	46 62 76 390	0.3455 0.2387 0.1727 0.0001	145.1 100.3 72.5 4.2E	-2
	Diclofop/ Hoelon	1.4	1.0 1.5 2.0 3.0	2066 2066 2066 2066			
	Difenzoquat/ Avenge	1.12	1.0 1.5 2.0 3.0	2066 2066 2066 2066			
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	56 39 407 735	0.0206 1.7E-12 5.6E-12 7.5E-23	70	
Carrots	Trifluralin/ Treflan	0.42	1.0 1.5 2.0 3.0	2010 2010 2010 2010		2	
Fruit Trees	Phosmet/ Imidan	8.96	1.0 1.5 2.0 3.0	1078 1201 1522 2039	5.9E-17 8.4E-19 1.2E-23		

^MLS-Analysis: Sevier County (2/3)

Crop		uantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
	Azinphos-Methy], Guthion	/ 1.68	1.0 1.5 2.0 3.0	1430 1967 1962 2039	1.7E-11 9.6E-13 1.7E-15			
						,	1. 1. 1. 1. 1.	-

CMLS-Analysis: Sevier County (3/3)

į

199, 80

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(p	Ratio opb)
Alfalfa	Glyphosate/ Roundup	2.24	1.0 1.5 2.0 3.0	2061 2061 2061 2061	<u></u>		700	
	Promamide/ Kerb	1.96	1.0 1.5 2.0 3.0	1374 1770 1877 1877	1.6E-14 1.7E-18	3.14E-1	1 52	• • .
	Hexazinone/ Velpar	1.4	1.0 1.5 2.0 3.0	203 217 247 437	0.0958 0.0815 0.0576 0.0064	134.12 114.1 80.64 8.96	210	0.64 0.54 0.38 0.04
Small Grains	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	35 370 400 735	0.0884 7.3E-12 9.1E-13 7.5E-23	99.01 [.]	70	1.41
	Carbofuran/ Furadan	0.28	1.0 1.5 2.0 3.0	35 370 400 751	0.5191 0.0010 0.0006 7.8E-7	145.35 0.28	36	4.04 0.01

.

i

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	EPTC/ Eptam	4.48	1.0 1.5 2.0 3.0	817 899 1166 1518	6.3E-9 1.5E-9 2.0E-12 5.4E-16		- - - -	
	Paraquat/ Gramoxone	1.12	1.0 1.5 2.0 3.0	>1737 >1737 >1737 >1737 >1737	- - -	- - -	-	
	Parathion/ Thiophos	84	1.0 1.5 2.0 3.0	>2112 >2112 >2112 >2112 >2112	- - -		- - -	
	Simazine/ Princep	3.36	1.0 1.5 2.0 3.0	614 645 676 979	.0034 .0026 .0019 .0001	11.4 8.7 6.4 0.3	35	0.3 0.2 0.2
Corn	Fonofos/ Dyfonate	ofos/ 1.12 1.0 >2073 14	14	-				
	Terbufos/ Counter	3.75	1.0 1.5 2.0 3.0	>2073 >2073 >2073 >2073 >2073	- - -	- - -	0.18	
	Cyanazine/ Bladex	3.36	1.0 1.5 2.0 3.0	505 794 839 1129	2.5E-18 1.1E-12 2.4E-13 1.0E-17	- - -	9.0	
Small Grains	2,4-D Amine	. 56	1.0 1.5 2.0 3.0	421 735 772 868	2.1E-13 7.5E-23 5.8E-24 7.4E-27	- - -	70	
	MCPA/ Weedone	.84	1.0 1.5 2.0 3.0	>2066 >2066 >2066 >2066 >2066	- - -	- - -	3.6	

CMLS-Analysis: Tooele County (1/1)

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	47 77 91 122	0.5810 0.4108 0.3495 0.2443	650.72 460.1 391.44 273.62	210	3.1 2.19 1.86 1.3
	Metribuzin/ Sencor, Lexone	0.84	1.0 1.5 2.0 3.0	77 91 108 412	0.1688 0.1221 0.0825 7.3E-5	141.79 175 102.56 69.3 0.06	175	0.81 0.59 0.40 3.5E-4
	Parathion/ Thiophos	0.56						
	Malathion/ Carbofos	1.4	1.0 1.5 2.0 3.0	1660 1660 1660 1660				
Corn	Atrazine/ Aatrex	2.52	1.0 1.5 2.0 3.0	416 458 503 807	0.0082 0.0050 0.0030 8.9E-5	20.66 12.6 7.56 0.22	3	6.89 4.2 2.52 0.07
	2,4-D Acid	0.84	1.0 1.5 2.0 3.0	66 97 344 370	0.0103 0.0012 4.4E-11 7.3E-12	8.65	70	0.12
Small Grains	2,4-D Acid	1.06	1.0 1.5 2.0 3.0	32 46 360 397	0.1088 0.0412 1.5E-11 1.1E-12	115.33 43.67	70	1.65 0.62

(1, 2, 2)

.

43

,

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Quantity (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	>2096 >2096 >2096 >2096 >2096	- - - - -	-	700	- <u>-</u>
Corn	Atrazine/ Aatrex	1.68	1.0 1.5 2.0 3.0	401 423 467 766	.0097 .0075 .0045 .0001	16.3 12.6 7.6 0.2	3.0	5.4 4.2 2.5 0.1
·	2,4-D Acid	.28	1.0 1.5 2.0 3.0	63 63 77 107	.0127 .0127 .0084 .0006	3.6 3.6 2.4 0.2	70	0.1 0.1 -
	Diazinon/ Dianon	1.12	1.0 1.5 2.0 3.0	92 316 371 426	.1194 .0007 .0002 5.3E-5	134 0.8 0.2 0.1	0.63	212 1.2 0.4 0.1
Small Grains	2,4-D Acid	.56	1.0 1.5 2.0 3.0	32 46 360 397	.1088 .0412 1.5E-11 1.1E-12	61 23 - -	70	0.9 0.3 -
	Difenzoquat/ Avenge	.84	1.0 1.5 2.0 3.0	>2056 >2056 >2056 >2056	- - -			
	Dicamba/ Banvel	.14	1.0 1.5 2.0 3.0	10 31 47 61	.6095 .2155 .0976 .0488	85 30 13.7 6.8	9.0	9.5 3.4 1.5 0.8
Dry Land Wheat	Chlorsulfuron/ Glean	.018	1.0 1.5 2.0 3.0	524 647 869 1038	5.5E-6 3.2E-7 1.9E-9 3.8E-11	- - - -		
Orchards	Diazinon/ Dianon	5.6	1.0 1.5 2.0 3.0	94 138 350 442	.114 .041 .0003 3.7E-5	638 230 1.7 0.02	0.63	1013 364 2.7

44

. .

1.2

LS-Analysis: Wasatch County (1/1)

5 -

Сгор	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Ratio Advise(ppb)
Alfalfa	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	203 356 370 431	0.0223 0.0013 0.0010 0.0003	24.98 1.46 1.12	36 0.69 0.04
Small Grains	Glyphosate/ Roundup	2.23	1.0 1.5 2.0 3.0	1943 1943 1943 1943			700

. .

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Hexazinone	1.5	1.0 1.5 2.0 3.0	100 117 117 147	0.315 0.258 0.258 0.183	472.5 338.2 338.2 274.5	210	2.25 1.849 1.849 1.307
	Metribuzin	1.0	1.0 1.5 2.0 3.0	117 117 131 161	0.067 0.067 0.0485 0.0242	67 67 48.5 24.2	175	0.3829 0.3829 0.2771 0.1383
	Chlorpyrifos	0.25	1.0 1.5 2.0 3.0	1735 1735 1735 1735 1735				
	Parathion	0.5	1.0 1.5 2.0 3.0	487 821 1171 1735	3.4E-11 2.2E-18 6.6E-26	1.7E-8 1.1E-15 3.3E-23		
Orchards	; Aziaphos- Methyl	3.0	1.0 1.2 2.0 3.0	778 1093 1560 2068	1.4E-6 5.9E-9 1.8E-12	4.2E-3 1.77E-5 5.4E-9	i	

CMLS-Analysis: Washington County (1/1)

- 4

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent. (ppb)	Health Advise(ppb)	Ratio
Alfalfa	Glyphosate/ Roundup	3.36	1.0 1.5 2.0 3.0	1543 1543 1543 1543 1543			700	
	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	46 60 77 380	0.4224 0.3050 0.2363 0.0008	0 364.0 3 264.7	13.1 10.1 7.4 2.5E-2	
	Parathion/ Thiophos	0.56	1.0 1.5 2.0 3.0	1644 1644 1644 1644	8.3E - -	-33		
Corn	Dicamba/ Banvel	Banvel 1.5 71 0.029 2.0 102 0.000	0.2360 0.0297 0.0064 3.1E-8	154.6 16.6 3.6	9	17.2 1.8 0.4		
	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	57 96 102 361	0.0192 0.0013 0.0009 1.4E-1	1	70	
Smalĺ Grains	2,4-D Acid	1.12	1.0 1.5 2.0 3.0	25 25 339 376	0.1768 0.1768 6.2E-1 4.8E-1		70	

MLS-Analysis: Wayne County (1/1)

CMLS-Analysis:	Weber	County	(1/4)
----------------	-------	--------	-------

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio)
Alfalfa	Carbofuran/ Furadan	1.12	1.0 1.5 2.0 3.0	115 358 592 843	0.1160 0.0012 1.5E-5 1.4E-7	129.92 1.34	36 36	3.61 0.04
	Metribuzin/ Sencor, Lexono	1.12	1.0 1.5 2.0 3.0	123 168 533 884	0.0583 0.0206 4.5E-6 1.3E-9	65.3 23.07	175	0.37 0.13
	Hexazinone/ Velpar	1.68	1.0 1.5 2.0 3.0	88 62 221 497	0.3618 0.3078 0.0778 0.0032	607.82 517.1 130.7 5.38	210	2.89 2.46 0.62 0.03
Corn	Fonofos/ Dyfonate	4.48	1.0 1.5 2.0 3.0	1335 1335 1335 1335 1335	-			
12-2-2	Metolachlor/ Dual	3.36	1.0 1.5 2.0 3.0	432 781 1521 2076	0.1895 0.0494 0.0030 -	636.72 165.98 10.08		63.67 16.6 1.01
√inter √heat	2,4-D Acid	1.40	1.0 1.5 2.0 3.0	22 36 36 66	0.2176 0.0825 0.0825 0.0103	304.64 115.5 115.5 14.42	70	4.35 1.65 1.65 0.21
Dnions	DCPA/ Dacthal	11.2	1.0 1.5 2.0 3.0	1011 1011 1011 1011	- - -		3500	
	Oyxfluorfen/ Goal	0.56	1.0 1.5 2.0 3.0	2061 2061 2061 2061	- - -			
	Methyl-Parathi Metafos Penncap-M	on/ 0.56	1.0 1.5 2.0 3.0	244 289 320 372	3.3E-25 1E-29 7.8E-33 4.7E-38			

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio
	2,4-D Acid	1.4	1.0 1.5 2.0 3.0	40 375 405 648	0.0625 5.1E-12 6.4E-13 3.1E-20		70	· · · · · · · · · · · · · · · · · · ·
Green Beans	Trifluralin/ Treflan	0.84	1.0 1.5 2.0 3.0	1511 2012 2061 2061	3.2E-7 2.2E-9 - -		2	
	EPTC/ EPTAM	3.36	1.0 1.5 2.0 3.0	381 400 745 1085	0.0002 9.7E-5 3.3E-8 1.3E-11	0.67	т.,	
	Bentazone/ Basagran	0.84	1.0 1.5 2.0 3.0	24 280 339 359	0.1895 3.7E-9 6.2E-11 1.6E-11	159.18		
	Malathion/ Carbofos	1.68	1.0 1.5 2.0 3.0	2005 2005 2005 2005	-	۲.		
Apples, Pears	Methidathion/ Supracide		1.0 1.5 2.0 3.0	2016 2107 2107 2107 2107	1.3E-29 - -		· , · ·	<u>-</u>
	Azinphos-Meth Guthion	y1/	1.0 1.5 2.0 3.0	2020 2020 2020 2020 2020	- - -		ч. Ч	
	Benomyl/ Benlate	·	1.0 1.5 2.0 3.0	2015 2015 2015 2015 2015	-			

^MLS-Analysis: Weber County (2/4)

49

٤

· ; '

Peaches Apricots	Endosulfan/							
-	Endosulfan/							<u> </u>
	Thiodan							
	Chlorpyrifos/ Lorsban					·		
	Chlorothalonil Bravo	1/						
Spring Barley	Carbary]/		1.0	740	1.5E-32		700	
	Sevin		1.5	1084	7E-45			
			2.0 3.0	1471 2035	7E-45 -			
-			5.0	2035	-			
reen							-	
eans	Trifluralin/ Treflan	0.84	$\begin{array}{c} 1.0 \\ 1.5 \end{array}$	2061 2061	-		2	(
	ilei lali		2.0	2061	-			(
			3.0	2061	-			
nions				. Av			· · ·	:
	DCPA/	11.2	1.0	1376	. –		3500	
	Dacthal		1.5 2.0	1376 1376	-			
			3.0	1376				· · · · · · · · · · · ·
	Neu-innhae /	0 56	1 0	100	4 55 14			
	Mevinphos/ Phosdrin	0.56	$\begin{array}{c} 1.0 \\ 1.5 \end{array}$	133 245	4.5E-14 236E-25			
	14030111		2.0	299	9.9E-31			
			3.0	320	7.8E-33			
reen eans	Trifluralin/	0.84	1.0	2061	-		2	
	Treflan		1.5	2061	-		-	
			2.0	2061	-			
			3.0	2061	-		-	
lfalfa	Carbofuran/	1.12	1.0	94	0.1719	192.53	36	5.35
	Furadan	_	1.5	104	0.1425	159.6		4.43
			2.0 3.0	358 402	0.0012 0.0005	1.34 0.56		0.04 0.02

CMLS-Analysis: Weber County (3/4)

50

· · .

Crop	Pesticide (Common/Trade)	Quantity (kg/ha)	Depth (m)	Time (days)	Rel. Amount	Concent (ppb)	Health Advise(ppb)	Ratio)
	Metribuzin/ Sencor, Lexon	1.12 e	1.0 1.5 2.0 3.0	93 107 168 383	0.1166 0.0844 0.0206 0.0001	130.59 94.53 23.07 0.11	175	0.75 0.54 0.13
	Hexazinone/ Velpar	1.12	1.0 1.5 2.0 3.0	88 88 118 163	0.3618 0.3618 0.2558 0.1521	405.22 405.22 286.5 170.35	210	1.93 1.93 1.36 0.81
Corn	Fonofos/ Dyfonate	4.48	1.0 1.5 2.0 3.0	757 863 1335 1335	0.002 4.7E-5 -	0.90	14	0.06
	Metolachlor/ Dual	3.36	1.0 1.5 2.0 3.0	129 380 477 797	0.6085 0.2315 0.1593 0.0465	2044.56 777.84 535.25 156.24	10	204.46 77.78 53.52 15.62

^MLS-Analysis: Weber County (4/4)

.

.

Ţ

APPENDIX B

: -

Surveys Used in Simulation of Pesticide Movement in Utah

by

Howard M. Deer

unty: Beaver (1 of 1)

Crop/Year P	esticide/Type L	bs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Alfalfa/2-7	Hexazinone/H and	0.5-1.0	March/1	L
	Carbofuran/I or	0.5	May/3	F
	Methyl Parathion/I or	0.5	May/4	E
	Chlorpyrifos/I	0.5-1.0	May/4	WP
Field Corn/8-9	Atrazine/H and	2.0	Preplant, Preemergent, or Post Emergent	F or WP
	2,4-D/H and	0.5-0.75 a.e.	June/3	L
	Carbofuran/I	1.0	Planting	G
Small Grains/10	2,4-D/H	0.5 a.e.	Spring	L

H = Herbicide a.i. = active ingredient E = Emulsifiable Concentrate I = Insecticide a.e. = acid equivalent F = Flowable G = Granular L = Liquid WP = Wettable Powder

ż

County: Box Elder (1 of 4)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	Pronamide/H	1.0	June	WP
	and			~
	2,4-DB/H	1.0 a.e.	May-June	L
	or			
	ЕРТС/Н	3.0	March	E
lfalfa/2	Metribuzin/H	0.75	October or March	ı F
	and			
	Methyl Parathion/I	0.5	May	F
	or			
	Carbofuran/I	0.75	May	F
lfalfa/3-5	5 None			Ć
ield	Alachlor/H	3.0	March-April	E
orn/6-7	or			
	Cyanazine/H	2.0	March-April	F
	or			
	Atrazine/H	2.0	Preplant, Preemergent or Post Emorgant	WP
	or		Post Emergent	
	2,4-D/H	0.5-0.75 a.e.	June	L
	and			
• •		,		
= Herbici = Insecti		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable F = Flowable L = Liquid WP = Wettable Powd	
Υ.	•			
		. •		

unty: Box Elder (2 of 4

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Field	Oxydemeton-Methyl/1	0.5	July	E or L
Corn/6-7 continued	and/or			
	Propargite/A	1.7	July	E
	and/or			
	Disulfoton/I	0.75	July	E
	and			·
	Carbofuran/I	1.0	Planting	F or G
	or			
	Fonofos/I	1.0	Planting	E or G
Fall Wheat or Barley/ 9	Disulfoton/I	0.25-1.0	Planting	E or G
	or		2. 199	-
	Dimethoate/I (Wheat)	0.25-0.375	Planting	• . E
	and			
	2,4-D/H	0.24-0.95 a.e.	May-June	L
	or			
	Bromoxynil/H	0.25-0.5	May-June	Ĺ
	and			
	Triallate/H	1.25	Fall or Spring	E
	or		· 4	
	Diclofop/H	1.0	Fall or Spring	E
A = Acarici H = Herbici = Insecti	de a	.i. = active ingredient .e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid	Concentrat

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
or				
Spring Wheat/8-9	Same pesticide app	lications, but different ap	plication dates.	
Onions/10	DCPA/H	10.0	Preplant	F or WP
	and/or			
	Oxyfluorfen/H	0.12-0.25	May	Ε
	and/or			
	Bromoxynil/H	0.25-0.375	May	L
	and			
(Each insecticide is applied	Parathion/I	0.75	June, July, or	E
	or		August	-
during one season for	Azinphos-Methyl/I	0.5-0.75	June, July, or	WP
a total of at least 3	or		August	
applica- tions) '	Methyl Parathion/I	0.5	June, July, or August	F
Dry and	Trifluralin/H	0.5	April, May or Jur	ie E
Snap Beans	and			
	EPTC/H	3.0	April, May or Jun	ie E
	or			
	Metolachlor/H	2.0	April, May or Jun	e E
	or	,		
	Bentazon/H	1.0	July	а Ц
	and			
i = Herbicio [= Insectio		.i. = active ingredient .e. = acid equivalent	E = Emulsifiable C F = Flowable L = Liguid	oncentrate

County: Box Elder (3 of 4)

56

.

unty: Box Elder (4 of 4)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk Formulat	ion	
Dry and Snap Beans	Fenvalerate/I	0.112	July, August, or ⊨ E September		
continued	and				
	Benomy1/F	0.75	July or August WP		
Dryland	Disulfoton/I	0.25-1.0	Planting E or	G	
Small Grains/1	or		14 -	· ·	
	Dimethoate/I (Wheat)	0.25-0.375	Planting E		
Fallow/2	None				
Apples,	Dormant Oil/I	6-9 gal/acre	April/1 E		
Cherries, and Peaches	and	,			
	Benomy1/F	0.5	May WP		
	and		3 applications		
	Azinphos-Methyl/I	0.75-1.25	May/5-August/2 WP		
	or		4 applications		
	Phosmet/I (Peaches)	4.0	June and July WP 2 applications		
	х.		e de la compañía de l		
			٠ .		

F = Fungicide = Insecticide

.

a.i. = active ingredient a.e. = acid equivalent

,

E = Emulsifiable Concentrate

4

G = Granular WP = Wettable Powder

County: Cache (1 of 4)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1-6 (About 20%	Hexazinone/H	0.5-1.5	November or Apri	1 L
treated with	or			
herbicide)	Metribuzin/H	0.375-1.0	November or Apri	1 F
	and			
(About 10- 20% treated	Parathion/I	0.25-0.5	May/5-June/1	E
with	or			
insecticide)	/ Carbofuran/I	0.5-1.0	May/1-2	F
	or			
	Malathion/I	1.25	June/3	E
Small Grains/7-9 (About 90%	2,4-D/H	0.24-0.95 a.e.	May-June	L
	and			(
reated ith herb-	Dicamba/H	0.09-0.125	May-June	L
ide)	or			
t.	Chlorsulfuron/H	0.019	April	F
	or			
	Metsulfuron/H	0.004	April	F
	and			
	Diclofop/H	0.75-1.25	Fall or Spring	Ε
lso reated	or			
ith Miclofop,	Triallate/H	1.0-1.5	Fall or Spring	E
zoquat)	or			
	Difenzoquat/H	0.625-1.0	Fall or Spring	L
I = Herbicio = Insectio			E = Emulsifiable F = Flowable L = Liquid	Concentrate (

ł

58

÷,

inty: Cache (2	ot	4)
----------------	----	----

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Field	Atrazine/H	1.2-2.4	PP, PEE or POE	L or WP
Corn/10 (About 95%	or			· .
treated with herb-	Cyanazine/H	1.25-2.0	PP or PEE	F
icide)	or			
	Alachlor/H	2.5-4.0	PP or PEE	E
	or			,
	Metolachlor/H	1.5-3.0	PP or PEE	E
	or			
	EPTC plus Safener/H	3.0-6.0	Preplant	΄ Έ
<i>,</i>	and			· · ·
	2,4-D/H	0.5-0.75 a.e.	Post Emergent	L
Dryland	2,4-D/H	0.24-0.95 a.e.	May-June	L
Wheat/1	and			
	Chlorsulfuron/H	0.019	April	F
	or			
	Metsulfuron/H	0.004	April	F
Fallow/2	None			
Field Corn	Atrazine/H	1.2-2.4	PP, PEE or POE	L or WP
(About 95% treated	or			
with herbicide)	Cyanazine/H	1.25-2.0	PP or PEE	F
H = Herbici I = Insecti P = Prepl E = Preem YOE = Post	cide a ant ergent	.i. = active ingredient .e. = acid equivalent	E = Emulsifiable Concentrate F = Flowable L = Liquid WP = Wettable Powder	

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk F	ormulation
Field Corn	or			
continued	Alachlor/H	2.5-4.0	PP or PEE	E
	or		-	
	Metolachlor/H	1.5-3.0	PP or PEE	E
	or			
	EPTC plus Safener/H	3.0-6.0	Preplant	Ε
	and			
	2,4-D/H	0.5-0.75 a.e.	Post Emergent	L.
	and			
(About 40-	Fonofos/I	0.75-1.0	May/1	G
50% treated with	or			(
insecticide) Phorate/I	1.2oz/1000 row ft	May/l	G
	or			
	Fensulfothion/I	0.5-1.0	May/l	G
	Trifluralin/H	0.5-0.75	Preplant	E
lelons, Tomatoes,	or			
or Sweet Corn	EPTC/H	3.0-4.0	Preplant	E
\pples	Azinphos-Methyl/I	0.5-1.0	June, July, Augus	t WP
	and/or		3 applications	
	Parathion/I	0.75-1.0	June, July, Augus	t WP
	and/or		3 applications	
I = Herbicic I = Insectic PP = Prepla PEE = Preeme POE = Post E	cide a. ant ergent	i. = active ingredient e. = acid equivalent	E = Emulsifiable Co G = Granular L = Liquid WP = Wettable Powden	

-. .

County: Cache (3 of 4)

ounty: Cache (4 of 4)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk Form	nulation
Apples continued	Diazinon/I and/or	2.0-3.0	June, July, August 3 applications	WP
	Phosmet/I and/or	2.0-3.0	June and July 2 applications	WP
	Phosalone/I and/or	1.0-1.5	June and July 2 applications	WP
	Propargite/A	1.5	June, July, August 3 applications	WP
Cherries	Diazinon/I and/or	1.0-2.0	June, July, August 6-8 applications	WP
	Dimethoate/I and/or	1.0-2.0	June, July, August 3 applications	E
	Malathion/I	2.0	June, July, August 6-8 applications	WP

A = Acaricide I = Insecticide a.e. = acid equivalent 61 E = Emulsifiable Concentrate WP = Wettable Powder

,

County:	Carbon	(1	of	1)	
---------	--------	----	----	----	--

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1-6	Carbofuran/I	0.5-1.0	May/2-3 or June/1	F
	or Methidathion/I	0.25	May/2	E
	or Chlorpyrifos/I	0.5	Apri1/4	WP
	or			
	Parathion/I	0.5	June/1	_ E
Field Corn/7-9	2,4-D/H	0.5-0.75 a.e.	May-June	L
Alfalfa/1-5	Carbofuran/I	0.5	June/1	F
0ats/6-7	2,4-D/H and	0.24-0.95 a.e.	June/1	L (
	Dicamba/H	0.09-0.125	June/1	L

H = Herbicide I = Insecticide	a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable Concentrate F = Flowable L = Liquid WP = Wettable Powder
		Ň

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/W	k Formulation
Alfalfa/ 1-10	Carbofuran/I	0.25-1.0	June	F
	or			
	Methyl Parathion/I	0.5	June	E
	or			
	Malathion/I	1.25	June	Ε
Small	None			
Grains/ 11-12				$(\frac{1}{2},\frac{1}{2},\frac{1}{2})$
			*	
			÷	
			, то су	
				- .
			· · · .	. <u>,</u>
			÷	÷

County: Davis (1 of 2)

Onions/1	DCPA/H	10.0	April/1	WP
	or			
	Oxyfluorfen/H	0.12-0.25	May/1	ε
	and	· · · · · · · · · · · · · · · · · · ·		
	Fluazifop/H	0.1-0.25	May/1	E
	and		· · · ·	
	Methyl Parathion/	I 0.5	June, July or	F
	or		August	- 14 (14) - 14 (14) - 14 (14)
	Parathion/I	0.75	June, July or	E
	or		August	
	Azinphos-Methyl/I	0.5-0.75	June, July or August	WP
all theat (2)	Triallate/H	1.0	September/4	E
lheat/2	or			
	Difenzoquat/H	1.0	April/2	L
	and			
	2,4-D/H	0.5 a.e.	May/2	L
	and			
	Carbary]/I	0.5	June/1	L
	or			
	Malathion/I	0.25-0.5	June/1	E
	Trifluralin/H	0.5-0.75	April/2 and	E
(Two rops)	or		July/2	
= Herbicio = Insectio		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable Cor F = Flowable L = Liquid WP = Wettable Powder	ncentrate (

.

unty: Davis (2	of	2)
---------------	---	----	----

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Snap Beans/ 3 (Two		0.75-1.0	May/2 and August/2	L
Crops) continued	and			
continuca	Malathion/I	1.0	July/1 and September/2	. Ε
Potatoes/1	Metolachlor/H	2.0	May/1	E
(Small Grains	or			
Alternat- ively)	Metribuzin/H	0.5	May/1	F
	and		÷.,	
	Azinphos-Methyl/I	0.375	June/2	WP
	and			
	Aldicarb/I,N	2.0	April/4	G
ield	Melotachlor/H	2.0	May/1	E
Corn/2	or			
	Alachlor/H	3.0	May/1	E
	or		4.	
	Cyanazine/H	0.6	May/1	L
Alfalfa/3	None			
Alfalfa/	Hexazinone/H	1.0	April/1	L
1-8	or			
	Sethoxydim/H	0.375	April/4	E
	and	,		
	Carbofuran/I	0.5	June/3	F
H = Herbicio I = Insectio = Nematic	cide	a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid WP = Wettable Por	

•

County: Duchesne (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1-5	2,4-DB/H	0.5-1.5 a.e.	May/4	L
	and			
	Malathion/I	0.94-1.25	June	E
	and/or			
	Methyl Parathion/I	0.0625-0.125	June	E
Field	Atrazine/H	1.2-2.4	April/3	L or WP
Corn/6-7	and/or			
	2,4-D/H	0.5-0.75 a.e.	May/1	L
	or			
	EPTC plus Safener/H	3.0-4.0	April/3	Ε
	and/or		* · · · · · · · · · · · · · · · · · · ·	i (
	Diazinon/I	1.0-2.0	Planting	G or WP
Small Grains/8	2,4-D/H	0.24-0.95 a.e.	May/5 or	L
	and/or		June/1-2	
	Dicamba/H	0.09-0.125	May/3-5 or June/1-2	L.

H = Herbicidea.i. = active ingredientE = Emulsifiable ConcentrateI = Insecticidea.e. = acid equivalentG = Granular

L = Liquid WP = Wettable Powder Į

^nunty: Emery (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk Fo	rmulation	
Alfalfa/1	Glyphosate/H	1.5 a.e.	May/1	L	
Alfalfa/2-7	Methidathion/I	0.75	June/1	E	
	or				
	Carbofuran/I	0.25-1.0	May	F	
Field	2,4-D/H	0.5 a.e.	July/2	L	
Corn/8-9	and/or				
	EPTC plus Safener/H	3.0	May/2	E.	
Small Grains/10	None		-	~	
Alfalfa/1	Glyphosate/H	1.5 a.e.	May/1	L	
¹falfa/2-5	Methidathion/I	0.75	June/1	, E.	
	or				
	Carbofuran/I	0.25-1.0	May	F	
Melons/6-7	Naptalam/H	1.5-3.0	Preplant	L	
	and/or				
(Only	Bensulide/H	4.0-6.0	Preplant	E	
occasion- ally	and/or				
used)	Trifluralin/H	0.5-0.75	Post Emergent	E	
	and/or				
	Chlorothalonil/F	1.3	May-June	WP	
Peaches and Apples	Azinphos-Methyl/I	0.4	May, June, July,	WP	
	and		and August 4 applications		
	Glyphosate/H	0.75-3.75 a.e.	June/1	L	
r = Fungicio H = Herbicio I = Insectio	de a	.i. = active ingredient .e. = acid equivalent	E = Emulsifiable Co F = Flowable L = Liquid WP = Wettable Powder		

County: Garfield (1 of 1)

rop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
lfalfa/1	Glyphosate/H	2.0-3.0 a.e.	Preplant	L .
lfalfa/2-5	None			
lfalfa/6 About 200 cres reated)	Hexazinone/H	1.0	Fall or Spring	L
lfalfa/ -10	Parathion/I	0.25	June	Ε
About 75%	or	<i>,</i> , ,	•	
anguitch alley reated)	Carbofuran/I	0.25	June	F *
mall rains/ 1-12	None		• •	
				(
		· · · ·		
			,	
			· .	
:		,	, s., s., s.	
			• ·	

I = Insecticide

a.i. = active ingredient a.e. = acid equivalent

(

- F = Flowable L = Liquid

inty: Grand (1 of 2)

. .

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1-7	Hexazinone/H	0.5-1.5	March/2	L .
	or			· · ·
(Very	Metribuzin/H	0.375-1.0	March/2	L
little herbicide	or			
usage)	Pronamide/H	0.75-1.0	Fall	Ł
	or			
	Sethoxydim/H	0.19-0.47	Spring, Summer	Ε
	and		or Fall	
	Malathion/I	1.0-1.5	As Needed	E
Small	2,4-D/H	0.24-0.95 a.e.	Spring	L
Crains/8-9	and/or			
	Dicamba/H	0.09-0.125	Fall or Spring	L
Field Corn/10-11	Atrazine/H	1.2-2.4	Preplant, Preemergent, or Post Emergent	L
	or			
	2,4-D/H	0.5-0.75 a.e.	Post Emergent	L
	and			
or	Cyanazine/H	1.25-3.0	Preemergent	L
Melons/ 10–11	Bensulide/H	4.0-6.0	May/1	Έ
10-11	and			
	Naptalam/H	1.5-3.0	May/1	L
	and			
<u>.</u>		· •		
= Herbicio I = Insectio		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable L = Liquid	Concentrate
		69		

.

County: Grand (2 of 2)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre $^{\circ\circ}$	Applied Mnth/Wk	Formulation
Melons/ 10-11	Trifluralin/H	0.5-0.75	June/1	E
continued	and			
	Glyphosate/H	2.0 a.e.	October/1	. L

H = Herbicide

. .

a.i. = active ingredient a.e. = acid equivalent

E = Emulsifiable Concentrate L = Liquid

· · ·

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None			· · · · · · · · · · · · · · · · · · ·
Alfalfa/	Metribuzin/H	0.5	Spring or Fall	F
2-10	or			
	Hexazinone/H	1.0	Spring or Fall	$ \mathbf{F} = \mathbf{E}_{\mathbf{F}} + \mathbf{E}_{\mathbf{F}}$
	or			
	2,4-DB/H	0.5-1.5 a.e.	Spring	L
	or			
	None			
	and		1	· , · ·
	Parathion/I	1.0	June/1	È
all ains/11- 12	2,4-D/H	0.5 a.e.	Spring	L
	and			
	Parathion/I	1.0	June/1	E
Potatoes/ 1-4	Metribuzin/H and	0.75	Мау	F
	Aldicarb/I,N	2.0-3.0	May/1-2	G
Alfalfa/	Metribuzin/H	0.5	Spring or Fall	F
5-10	or			
H = Herbici I = Insecti N = Nematic	cide	a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid	Concentrate
		71		

County: Iro	n (2	01	Z)
-------------	------	----	----

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
	Hexazinone/H	1.0	Spring or Fall	L
	or			
	2,4-DB/H	0.5-1.5 a.e.	Spring	L
Small	2,4-D/H	0.5 a.e.	Spring	L
Grains/11- 12	and			
	Parathion/I	1.0	June/1	E
Potatoes	Metribuzin/H	0.75	May	F
	and			
	Aldicarb/I,N	2.0-3.0	May/1-2	G

:

H = Herbicide I = Insecticide N = Nematicide A.i. = active ingredient a.e. = acid equivalent H = Flowable G = Granular L = Liquid 72

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
lfalfa/1 lfalfa/ 2-8	None Hexazinone/H	0.5	March/1	
-0	and			
	Carbofuran/I	0.25-0.5	May/2	F
	or			алан айман алан алан алан алан алан алан алан а
·	Methyl Parathion/I	0.25-0.5	May/3	aM tore at€s ata
ield	2,4-D/H	0.5-0.75 a.e.	June/3	L
orn/9-11	and/or		€.	
	Dicamba/H	0.25-0.5	June/2	 L
	and		$\tau(x_{12}) \approx$	
	Fonofos/I	0.75	May/4	, · · · · · · · · · · · · · · · · · · ·
mall	2,4-D/H	0.5-0.75 a.e.	May/5-June/1	L
ains/ _2-13	and			
	Dicamba/H	0.25-0.5	May/5-June/1	L
ryland	2,4-D/H	0.5-0.75 a.e.	May/3	L
mall rains/1	and			
	Dicamba/H .	0.125-0.25	May/3	L
	and/or			
	Chlorsulfuron/H	0.01-0.02	Fall	F
allow/2	None			·
pples	Diazinon/I	4.0-6.0	April/1	 WP
PP.05	and	,		
	Azinphos-Methyl/I	1.0	May/2, June/2, July/2, August 4 applications	WP /2
= Herbic = Insect		.i. = active ingredient .e. = acid equivalent	E = Emulsifiabl F = Flowable G = Granular L = Liquid WP = Wettable Po	
- ,* - 4		73		

County: Kane (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None			•
Alfalfa/ 2-10	Metribuzin/H	0.375-1.0	Spring	L
(Metribuzin used near	and		•	•
Kanab; others near	Malathion/I	0.5	May/3 or June/1	E
Mt. Carmel)		•,	·	
	2,4-DB/H	0.5 a.e.	May/2	Ľ
	or			
	Simazine/H	0.8-1.6	Spring	WP
Small Grains/ 11-12	None		: . ·	•
				(

E = Emulsifiable Concentrate L = Liquid WP = Wettable Powder (H = Herbicide I = Insecticide a.i. = active ingredient a.e. = acid equivalent

74

(

°⊃unty:	Millard	(1	of	3)	

(2,4-D and Dicamba and applied in previous Dic year) and 2,4 and Car Alfalfa/2-7 Hex or Met and Car or	camba/H 1 1-DB/H	0.75 a.e. 0.10 1.20 a.e.		August/3 August/3	·
Dicamba and applied in previous Dic year) and 2,4 and Car Alfalfa/2-7 Hex or Met and Car or	camba/H 1 1-DB/H			August/3	L
previous Dic year) and 2,4 and Car Alfalfa/2-7 Hex or Met and Car or	1 1-DB/H			August/3	L
and 2,4 and Car Alfalfa/2-7 Hex or Met and Car or	I-DB/H	1.20 a.e.			
and Car Alfalfa/2-7 Hex or Met and Car or		1.20 a.e.			
Car Alfalfa/2-7 Hex or Met and Car or	J			May/4	L
Alfalfa/2-7 Hex or Met and Car or					
or Met and Car or	rbofuran/I	0.75		May/3	F
Met and Car or	kazinone/H	1.0-2.0		March/2	L
and Car or					
. Car or	tribuzin/H	0.4-1.0		March/2	F .
or	1				•
	rbofuran/I	0.75		May/3	F
Par					
	rathion/I	0.5		May/3	E
and	i				
(In seed alfalf	fa for dodder	control)			
Tri	ifluralin/H	2.0		March/2-3	E ·
or					
DCP	PA/H	8.0		April/4	WP
H = Herbicide I = Insecticide)	a.i. = active ingred a.e. = acid equivale	dient ent	E = Emulsifiable F = Flowable L = Liquid WP = Wettable Pow	
		:			
		75			
	·				

.

County: Millard (2 of 3)

на на Стал

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Small	МСРА/Н	0.60 a.e.	May/4	L
Grains/8	or			
	2,4-D/H	0.75 a.e.	May/1	L
	and			
	Dicamba/H	0.1	May/1	. L
	and			
	Triallate/H	1.25	October/2	E
	or	·	or May/1	· · ·
	Chlorsulfuron/H	0.02	May	F
Field	Glyphosate/H	1.0 a.e.	Preplant	e L
Corn/9	and			· .
	2,4-D/H	0.6 a.e.	May/4	· L
	and			
-	Dicamba/H	0.4	May/1-3	j L
	and			•.
·	Oxydemeton-Methyl/I	1.5-2.0	July/1	<u>;</u> } Е
Potatoes/10	Metribuzin/H	0.75	May/2	F
	and			
	Chlorothalonil/F	1.5-2.0	July-August	: WP
	and			
		2		

unty: Millard (3 of 3)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Dryland	2,4-D/H	0.75 a.e.	May/1	. L
Small Grains/1	and		·* .	
	Dicamba/H	0.1	May/1	L
	or			
	Chlorsulfuron/H	0.02	May/4	• F -
Fallow/2	Glyphosate/H	1.0 a.e.	September	L

= Herbicide

a.i. = active ingredient a.e. = acid equivalent F = Flowable L = Liquid

County: Morgan (1 of 1)

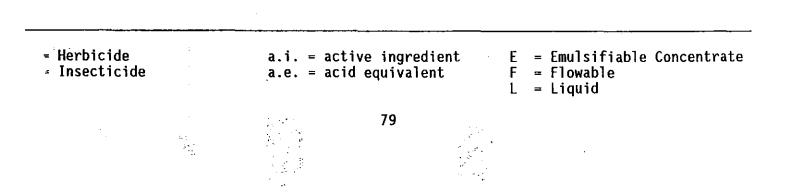
Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	Glyphosate/H	0.75-2.0 a.e.	April/4	L
Alfalfa/2-7	Hexazinone/H	0.5-1.5	April/4	L
	and			
	Malathion/I	1.0-1.5	June/2	• E
Barley or	2,4-D/H	0.5 a.e.	June/2	L
Oats/8-9	and/or			
	Dicamba/H	0.5	June/2	L
	and			
	Carbofuran/I	0.25	June/2	F
Dryland Alfalfa/1	Glyphosate/H	0.75-3.0 a.e.	September/2	L
Dryland Alfalfa/2-9	Malathion/I	1.0-1.5	June/2	E
Dryland Wheat/10-11	2,4-D/H	0.5 a.e.	June/2	L
	and/or	e 11		
	Dicamba/H	0.5	June/2	L
	and			
	Carbary]/I	0.25	June/2	L
Field Corn	Atrazine/H	2.0-2.4	May/4	L

H = Herbicide I = Insecticide

- a.i. = active ingredient E = Emulsifiable Concentrate a.e. = acid equivalent F = Flowable L = Liquid •

inty: Piute (1 of 1)

÷


,

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	Glyphosate/H	0.125 a.e.	May/1	L
Alfalfa/2	Parathion/I	0.375-0.5	June/3	E
	or			
	Carbofuran/I	0.125-0.25	June/3	s Filiar i
Alfalfa/3-4	4 None			
Alfalfa/5	Parathion/I	0.375-0.5	June/3	E
	or			× ,
	Carbofuran/I	0.125-0.25	June/3	F
Alfalfa/6	None			. `
Small Grains/	2,4-D/H	1.0 a.e.	June/2	.L
Field Corn/9	2,4-D/H	1.0 a.e.	June	L

.. . .

<u>.</u>

. .

County: Rich (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk F	ormulation
Alfalfa/1	Glyphosate/H	1.0 a.e.	Preplant	Ĺ
	and		, ;	• •
	2,4-D/H	0.75 a.e.	Preplant	L
Alfalfa/ 2-10	None		et e star and	
Small	2,4-D/H	0.75 a.e.	11457 =	
irains/ 1-12	and/or		۰۰ د ۱۰۰۰ ۲۰	
	Dicamba/H	1.0-1.5	May/2	L
Dryland Small Grains/1-4	2,4-D/H	0.75 a.e.	May/2	L
	and/or		<u>ક</u> ું	r.
	Dicamba/H	1.0-1.5	May/2	L (
allow/5	Glyphosate/H	0.5-1.0 a.e.	May/2	L symp
mall ruits	Malathion/I or	1.75	As Needed	E
	Diazinon/I	1.0	As Needed	E or WP
	and			
	Diuron/H	2.0	September/3	WP
		,		
= Herbici = Insecti		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable Co L = Liquid WP = Wettable Powder	(

County: Salt Lake (1 of 2)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	Glyphosate/H	2.0-3.0 a.e.	April/1	L
	or			
	2,4-DB/H	0.5-1.5 a.e.	May-June	L
	or			÷
· .	Sethoxydim/H	0.188-0.469	July-August	E
Alfalfa/2-6	Sethoxydim/H	0.188-0.469	July-August	E care
	or			,
	2,4-DB/H	0.5-1.5 a.e.	July-August	L .
	or			
4.	Hexazinone/H	0.5-1.5	Spring or Fall	L
Small (T.O.	2,4-D/H	0.24-0.95 a.e.	May/2-4	L
11ns/7-8	and		• •	
	Disulfoton/I	0.75-1.0	As Needed	E or G
Dryland Wheat or	2,4-D/H	0.24-0.95 a.e.	May/1-3	, _
Barley/1	or			
	Chlorsulfuron/H	0.01-0.02	May/l-4	F
	and			
	Disulfoton/I	1.0	As Needed	E or G
Fallow/2	None			
Corn/1-3	Atrazine/H	1.2-2.4	May/1-3	L
	or			
	Metolachlor/H	1.5-3.0	May/1-3	L
= Herbici I = Insecti		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable F = Flowable	e Concentrate
			G = Granular L = Liquid	·
		81 ····		

i

ź

County: Salt Lake (2 of 2)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Corn/1-3 continued	and			
continued	Carbofuran/I	1.0	May/1-3	G
Small Grains/4-5	2,4-D/H	0.24-0.95 a.e.	May/2-4	L
urams/ 4- J	and			
	Disulfoton/I	0.75-1.0	As Needed	E or G
Cucumbers	Bensulide/H	5.0	May/2	E
Sweet Corn	Alachlor/H	4.0	May/2	Ε
	or			
	EPTC plus Safener/H	4.0	May/2	Ε
	and			
	Permethrin/I	0.2	July/5	Ε (
Tomatoes	Trifluralin/H	1.0	July/1	E
Apples and Pears	Dormant Oil/I	6-9 gallons	March/1-2	L
i cui s	and			<u>.</u> *
	Diazinon/I	4.0	March/1-2	WP
	or			
	Endosulfan/I	4.0	March/1-2	WP
	and			
1	Azinphos-Methyl/I	2.0	May/2	E
	and		and August/2	. !
	Triadimefon/F	0.25	April/1 and July/4	WP
F = Fungicio I = Herbicio [= Insectio	de a.	.i. = active ingredient .e. = acid equivalent	E = Emulsifiable G = Granular L = Liquid WP = Wettable Pow	

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk Formulation
Wheat	2,4-D/H and/or	0.25-1.0 a.e.	Post Emergent L
	Dicamba/H	0.1	Post Emergent L
Alfalfa and/or Grass	None		
Safflower	None		
		·	
			- - -
			ž ¹ 5 ¹
		, 1	*
		· · · · · ·	
		• • • • •	
	-		
= Herbici	ide	a.i. = active ingredient a.e. = acid equivalent	L = Liquid
<i>1</i>		83	

.

•

unty: San Juan (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None		· · · · · · · · · · · · · · · · · · ·	
Alfalfa/2-6	Metribuzin/H	0.375-1.0	Fall or Spring	F
	and			
	Carbofuran/I	1.0	June/1	F
Small Grains/7-8	2,4-D/H	0.24-0.95 a.e.	June/2	L
Alfalfa/1	None			······································
Alfalfa/2-6	Metribuzin/H	0.375-1.0	Fall or Spring	F ;
	and			
	Carbofuran/I	1.0	June/1	F
Field	Atrazine/H	1.2-2.4	May/4	L
Corn/7-8	and			(
	2,4-D/H	0.24-0.95 a.e.	June/3	L
	and			
	Dicamba/H	0.25-0.5	June/3	L
	and			
or	Phorate/I	1.2 oz/1,000 row ft.	Planting	G
Cabbage Ind Cauli-	Bacillus thuringenesis/I	1.0-2.0 quarts	As Needed	L
flower/7-8	and			
	Oxydemeton-Methyl/I	0.375-0.5	As Needed	E
Small Grains/9-10	2,4-D/H	0.24-0.95 a.e.	June/2	L
= Herbicic = Insectic		.i. = active ingredient .e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid	Concentrate (

^ounty: Sevier (1 of 2)

.

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None	х.		<u></u>
Alfalfa/2-8	Hexazinone/H	1.0	March/1	Ľ
	or			
	Metribuzin/H	0.75	March/1	F
	or			:
	None		· · · .	
	and			
	Carbofuran/I	0.5-1.0	May/3	F
	or			
	Parathion/I	0.25-0.5	May/2-3	, E
	or			
	None			
Field	Atrazine/H	2.0	April/4	L or WP
Corn/9-15	and/or			· ·
	Dicamba/H	0.5	May/2	E E
	and			
	Trimethacarb/I	1.2oz/1000 row ft	May/l	G
	or			
	Fonofos/I	0.75-1.0	May/1	G
	or			· · · · · · · · ·
	Carbofuran/I or	, 2.0-3.0	May/1	G
H = Herbicide I = Insecticide		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid WP = Wettable Pow	

County: Sevier (2 of 2)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Corn/9-15	Phorate/I	1.2oz/1000 row ft	May/1	G
continued	or			
	Terbufos/I	1.2oz/1000 row ft	May/1	G
Small	Triallate/H	1.0-1.5	April/1	E or G
Grains/16	or			
	Barban/H	0.25-0.375	April/4	۰ E
	or			· .1
	Diclofop/H	0.75-1.25	April/4	E
	or			
	Difenzoquat/H	0.7-1.0	May/1	L
	and/or		~	•
	2,4-D/H	0.5-0.95	May/3	L
	or None		÷	-\$
Carrots	Trifluralin/H	0.375	March-June	E
	and			
	Linuron/H	1.5-3.0	6 weeks after Trifluralin	E
Potatoes	None	······		
Apples, Apricots, Cherries,	Azinphos-Methyl/I	1.5	June/1, July/1, August/1 3 applications	WP
and Peaches	or	<i>i</i>		
	Phosmet/I	4.0-6.0	June/1&3, July/1 August/1&3 6 applications	&3, WP
= Herbicio = Insectio		a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable G = Granular L = Liquid WP = Wettable Powd	(
		86		

unty: Summit (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation	
Alfalfa/1	Glyphosate/H 2.0 a.e. Preplant		Preplant	L	
Alflafa/2-6 (About 15% treated)	Pronamide/H or	1.75	November/2	, WP	
	Hexazinone/H	1.25	November/2	, L	
Barley/7-8 (About 60% treated with herbi-	2,4-D/H ·	0.25 a.e.	June/2	L A	
cide and 20% treated with insect icide)	Carbofuran/I -	0.25	June/2	F .	
or		•	÷		
its/7-8	2,4-D/H	0.25 a.e.	June/2	L,	

= Herbicide _ = Insecticide

.

a.i. = active ingredient a.e. = acid equivalent

, ۰.

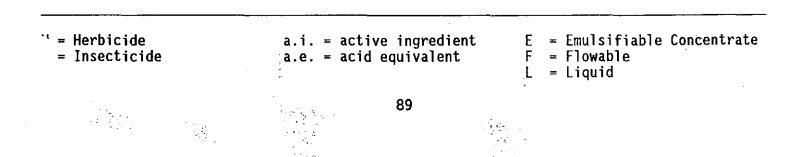
F = Flowable L = Liquid WP = Wettable Powder

· · · 2·

÷.

а <u>і</u>

•


.

County: Tooele (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	EPTC/H	2.0-3.0	Preplant	G
Alfalfa/2-7	Paraquat/H	1.0	March/4	L
	and/or			
	Simazine/H	1.0	October/3-4	G
	and		U.	
(Insect-	Malathion/I	1.25	May/3	Ε
icide applied in	or			
only l year)	Methyl Parathion/I	0.5	May/3	E .
	or			۰. ۴.,
	Carbofuran/I	0.25-1.0	May/3	F
Small	2,4-D/H	0.5 a.e.	May/3	L (
Grains/8	or			· · · · · ·
	MCPA/H	0.25-0.75 a.e.	Spring	L
	or			
	Bromoxynil + MCPA/H	0.25-0.5 a.i. and a.e.	Fall or Spring	L
Small Smains/9	None			
ield	Cyanazine/H	1.25-3.0	Apri]/4	L
orn/10-11	and			
	Fonofos/I	0.75-1.0	April/4	G
	or			
	Terbufos/I	1.2 oz/1,000 row ft	April/4	G
= Herbicid = Insectic		.i. = active ingredient .e. = acid equivalent	E = Emulsifiable F = Flowable G = Granular L = Liquid	Concentrate (
		88		

unty: I	Uintah 🛛	(1 of	° 1))
---------	----------	-------	------	---

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/	Hexazinone/H	1.0	Fall or Spring	Ľ
1-10	or			·
	Metribuzin/H	0.75	Fall or Spring	F
	and			•
(Insect-	Parathion/I	0.5	June	E
icides not used every	or			
year)	Malathion/I	1.25	June	E
	or			
	Carbofuran/I	0.5	June	F
Field	Atrazine/H	2.25	Preplant,	L
Corn/11			Preemergent or Post Emergent	[.]
Field	2,4-D/H	0.25 a.e.	June/1-2	L
Corn/12	and/or		- · · · ·	
	Dicamba/H	0.25-0.5	June/1-2	а на с на н
Small Grains/13	2,4-D/H	0.24-0.95 a.e.	Post Emergent	ل ، ،

÷

,

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	Glyphosate/H	2.0 a.e.	April	L
Alfalfa/2-5 (About 10%	Hexazinone/H	0.5	Fall or Spring	L
treated with herb-	and			7
icide)	Carbofuran/I	0.5-1.0	May/2	F
Corn/6-7	Atrazine/H	1.5	Preplant, Preemergent or Post Emergent	L or WP
	and/or		TUST Emergent	
	2,4-D/H	0.25 a.e.	June	L
	and			
	Diazinon/I	1 oz/1,000 row ft	May/1	G
Small	2,4-D/H	0.5 a.e.	May	L
Grains/8-9	and			(
·	Difenzoquat/H	0.75	April	L •
Alfalfa/1	Glyphosate/H	2.0 a.e.	May	. L
	Hexazinone/H	0.5	Fall or Spring	L.
(About 10% treated	and			
with herb- icide)	Carbofuran/I	0.5-1.0	May/2	F
Small	2,4-D/H	0.5 a.e.	May	L
irains/9-10	and/or			
	Dicamba/H	0.125	May	Ĺ
	and	,		
H = Herbicic [= Insectic		a.i. = active ingredient a.e. = acid equivalent	F = Flowabl G = Granula L = Liquid WP = Wettabl	ir (

÷ ,

County: Utah (1 of 2)

90

•

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Application Date For	mulation
Small Grains/9-10 continued	Difenzoquat/H and	0.75	April	L
:	Chlorsulfuron/H	0.016	April	Fanalena Liet
Apples and Cherries	Azinphos-Methyl/I or	1.0-2.0	June/1, June/4, July/3, August/2 4 applications	WP
	Parathion/I (Apples) and	3.0-4.0	June/1, June/4, July/3, August/2 4 applications	Ε
	Propargite/A (Apples) and .	5.0	June/3, July/3, August/4 3 applications	WP
:	Benomyl/F or	0.5-1.5	May/1,3; June/1,3; July/1 5 applications	WP
· · ·	Triadimefon/F	0.25-0.5	May/1,3; June/1,3; July/1 5 applications	WP

 \sim

A = Acaricidea.i. = active ingredientE = Emulsifiable Concentrater = Insecticidea.e. = acid equivalentF = FlowableFungicideL = LiquidWP = Wettable Powder

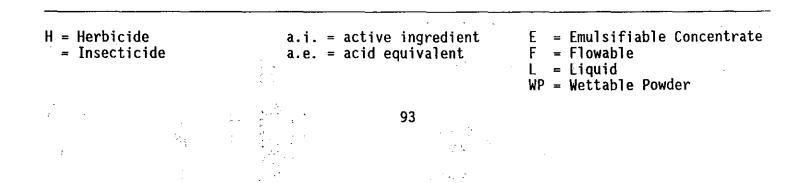
÷

- 4

```
91
```

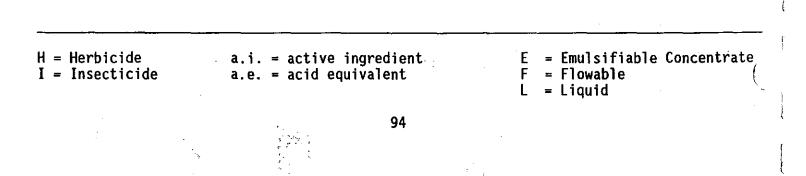
County: Wasatch (1 of 1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None			
Alfalfa/2-7 (About 10% treated)	Carbofuran/I	0.25-1.0	June/3	F
Small Grains/8-9	Glyphosate/H	2.0-3.0 a.e.	September/1	L


t.

-,

H = Herbicide I = Insecticide a.e. = acid equivalent 92


÷

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/1	None			·
(About 20- 25% treated	Hexazinone/H or	1.0-2.0	February/4	. L ·
with Hexaz- inone and less than	Metribuzin/H	0.4-1.0	February/4	F
5% with Metribuzin)	and		· <u>•</u>	
nour ibuz iny	Chlorpyrifos/I	0.25	April/1	E
	or	· .	- • • • •	
	Parathion/I	0.50	April/1	E
Small Grains/5-6	None			vv 9
⁻ield ∂rn or Sorghum/7	None	. 4		
Peaches	Azinphos-Methyl/I	2.0-4.0	May/3 and June/ 2 applications	/1 WP

County:	Wayne	(1	0f-	1)

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Lbs a.i. or a.e./Acre Applied Mnth/Wk	Formulation
Alfalfa/1-2	None			
Alfalfa/3	Carbofuran/I	0.5	June/4	F
	or			
	Parathion/I	0.5	July/1	E
Alfalfa/4-5	None			-
Alfalfa/6	Glyphosate/H	1.0 a.e.	October/1	L
Small Grains/7-8	2,4-D/H	0.75-1.0 a.e.	June/1-3	L
or			· .	
Field	Carbofuran/I	0.5	May/5	F
Corn/7-8	and			<i>i</i>
	2,4-D/H	0.5-0.75 a.e	June/1	L (
	and			
	Dicamba/H	0.25	June/1	L

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulation
Alfalfa/l	Carbofuran/I	0.75	June/3	F .
Alfalfa/2	None			
Alfalfa/3	Hexazinone/H	1.0	June/1	L
Alfalfa/4-6	None			
Spring Barley/7-8	2,4-D/H	0.5-0.75 a.e.	June/1	L
Alfalfa/1	Carbofuran/I	0.5-1.0	June/2	5 2 F
Alfalfa/2	Metribuzin/H	0.4-1.0	February/4	L
Alfalfa/3-6	None		· .	· · · · · · · · · · · · · · · · · · ·
Field	Fonofos/I	0.5	May/1	G
Corn/7	and		• • • •	
	Metolachlor/H	1.5-3.0	April/4	E
Wheat/8	2,4-D/H	0.5-0.75 a.e.	May/3	L
Onions/1	DCPA/H	10.0	March/4	WP
	and			
	Oxyfluorfen/H	0.25	May/2	E
	and			
	Methyl Parathion/I	0.5	July/2	F
	and			·
	Mevinphos/I	0.5	July/4	L
Fall Barley/2	2,4-D/H	0.5-0.75 a.e.	June/1	L

= Herbicide _ = Insecticide

County: Weber (1 of 2)

a.i. = active ingredient a.e. = acid equivalent

95

E = Emulsifiable Concentrate F = Flowable G = Granular L = Liquid WP = Wettable Powder

Crop/Year	Pesticide/Type	Lbs a.i. or a.e./Acre	Applied Mnth/Wk	Formulatior
Snap Beans/3	Trifluralin/H	0.75	May/2	E
	or			_
	EPTC/H	3.0	May/2	Ε
	and			· .
	Bentazon/H	0.75	June/3	L,
	and		· · · ·	
	Malathion/I	1.50	July/1	E
Apricots and	Dormant Oil/I	7 gal/acre	March/2	L
Peaches	and			•
	Endosulfan/I	1.0	March/2	WP
	and			
	Chlorpyrifos/I	0.5	June/4	E
	and			*
	Chlorothalonil/F	2.5	October/3	F
pples and	Dormant Oil/I	6 gal/acre	March/3	L
ears	and			
	Methidathion/I	1.0	March/3	E
	and			
	Azinphos-Methyl/I	2.0	June/3 - August/2	2 WP
	and	,	4 applications	
	Benomy1/F	0.5	June/4 and July/2 2 applications	2 WP
= Fungici = Herbici = Insecti	de	a.i. = active ingredient a.e. = acid equivalent	E = Emulsifiable (F = Flowable L = Liquid WP = Wettable Powde	

County: Weber (2 of 2)

· · · · ·

.

ì

APPENDIX C Library of Pesticides Used in Utah

Pesticide Library		Use ¹	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:2,4-D ACID :20 mg/g OC :10 days :DACAMINE :. 	H	70
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:2,4-D ESTER :1000 mg/g OC :10 days :AQUA KLEEN :WEEDONE :EMULSAMINE :.	H	70
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:2,4-D AMINE SALT :109 mg/g OC :10 days :WEEDAR :. 	Η	70
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:2,4-DB AMINE SALT :20 mg/g OC :10 days :. 	Η	70
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:2,4-DB ESTER :1000 mg/g OC :10 days :BUTYRAC ESTER :BUTOXONE :.	Η	70

Library of Pesticide Used in Utah

¹ I-Insecticide; H-Herbicide; F-Fungicide; G-Growth Regulator; M-Miticide

1

Pesticide Library Cont.	Use	Health Advisory(ppb)
Common Name: ALACHLORPartition Coefficient:190 mg/g OCHalf-Life:14 daysTrade Name:LASSOTrade Name:PILLARZOTrade Name:ALANEXTrade Name:.	H	1.5
Common Name:ALDICARBPartition Coefficient:30 mg/g OCHalf-Life:30 daysTrade Name:TEMIKTrade Name:TEMIK15GTrade Name:OMS 771Trade Name:UC21149	I	10
Common Name:ATRAZINEPartition Coefficient:160 mg/g OCHalf-Life:60 daysTrade Name:AATREXTrade Name:GRIFFEXTrade Name:ATRANEXTrade Name:ATRANEXTrade Name:VECTAL SC	H	3
Common Name:AZINPHOS-METHYLPartition Coefficient:1000 mg/g OCHalf-Life:40 daysTrade Name:GUTHIONTrade Name:.Trade Name:.Trade Name:.Trade Name:.	I	
Common Name:BARBANPartition Coefficient:30 mg/g OCHalf-Life:30 daysTrade Name:CARBYNETrade Name:.Trade Name:.Trade Name:.Trade Name:.	Ι	
Common Name:BENOMYLPartition Coefficient:2100 mg/g OCHalf-Life:100 daysTrade Name:BENLATETrade Name:Trade Name:Trade Name:Trade Name:Trade Name:Trade Name:	F	

Pesticide Library Con		Use	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BENSULIDE :10000 mg/g OC :60 days :PREFAR :.	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BENTAZONE :35 mg/g OC :10 days :BASAGRAN :.	H •	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BROMOCIL :72 mg/g OC :106 days :HYVAR XL :BOROCIL :UREABOR :HYVAR X	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:BROMOXYNIL :1000 mg/g OC :14 days :BROMINAL :.	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CARBARYL :229 mg/g OC :7 days :SEVIN :.	I	700
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CARBOFURAN :29 mg/g OC :37 days :FURADAN :BAY 70143 :YALTOX :CURATERR	I	36

Pesticide Library Cont	· · · · · · · · · · · · · · · · · · ·	Use	Health Advisory(ppb)	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CHLOROTHALONIL :1380 mg/g OC :20 days :BRAVO :.	F	1.5	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CHLORPYRIFOS :6070 mg/g OC :63 days :LORSBAN :DURSBAN :BRODAN :ERADEX	Ι		
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CHLORSULFURON :1 mg/g OC :30 days :GLEAN :TELAR :.	H		
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:CYANAZINE :168 mg/g OC :20 days :BLADEX :FORTROL :SD 15418 :WL 19805	H	9	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DAMINOZIDE :10 mg/g OC :7 days :ALAR :B-NINE :KYLAR :.	G		
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DCPA :5000 mg/g OC :100 days :DACTHAL :.	H	3500	

Pesticide Library Cont		Use	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DEMENTON :51 mg/g OC :30 days :METASYSTOX :. :.	Ι	35
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DIAZINON :85 mg/g OC :30 days :SPECTRACIDE :DIANON :BASUDIN :.	I	.63
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DICAMBA :2 mg/g OC :14 days :BANVEL D :BANEX :DIANAT :WEEDMASTER	H	9
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DICLOFOP :48500 mg/g OC :10 days :HOELON :.	H	(
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name Trade Name	:DIFENZOQUAT :100000 mg/g OC :90 days :AVENGE :. :.	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DIMETHOATE :8 mg/g OC :7 days :CYGON :. :.	I	

Pesticide Library Cont		Use	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DISULFOTON :1603 mg/g OC :5 days :DISYSTON :DITHIOSYSTOX :THIODEMETON :DITHIODEMETON	I 	.3
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:DIURON :383 mg/g OC :328 days :KARMEX :UROX D :DIREX 4L :DIUROL	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:ENDOSULFAN :200000 mg/g OC :43 days :THIODAN :.	Ι	(
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:EPTC :280 mg/g OC :30 days :EPTAM :.	H	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:FENVALERATE :100000 mg/g OC :50 days :PYDRIN :.	I	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:FLUAZIFOP-P-BUTYL :3000 mg/g OC :20 days :FUSILADE :.	Η	
: :			

,

103

Pesticide Library Cont	t	Use	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:FONOFOS :680 mg/g OC :60 days :DYFONATE :N-2790 :.	Ĭ	14
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:GLYPHOSATE :10000 mg/g OC :30 days :ROUNDUP :.	700	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:HEXAZINONE :11 mg/g OC :60 days :VELPAR :.	H	210
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:MALATHION :1797 mg/g OC :1 days :CYTHION :CALMATHION :CARBOFOS :MERCAPTOTHION	I	140
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:MANEB :1000 mg/g OC :12 days :DITHANE :MANEB :.	F	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:MCPA :1000 mg/g OC :30 days :WEEDONE :.	Н	3.6

Pesticide Library Cont	t	Use	Health Advisory(ppb)	6 (4) §
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:METHIDATHION :780 mg/g OC :21 days :SUPRACIDE :. 	Ι		
Common Name Partition Coefficient Half-Life	:METHYL PARATHION :5102 mg/g OC :5 days	I	2	
Trade Name Trade Name Trade Name Trade Name	:METAFOS :PARATHION-METHYL :DEVITHION :NITROX 80			
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:METOLACHLOR :200 mg/g OC :20 days :DUAL :.	Н	10	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:METRIBUZIN :41 mg/g OC :30 days :LEXONE :SENCOR :.	Н	175	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:METSULFURON :61 mg/g OC :120 days :ALLY :ESCORT :.	Η		
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:MEVINPHOS :1 mg/g OC :3 days :PHOSDR'IN :.	I		

. :

÷×,

t	Use	Health Advisory(ppb)
:NAPTALAM :30 mg/g OC :7 days :ALANAP :.	H	
:OXYDEMETON-METHYL :1 mg/g OC :20 days :MSR :METASYSTOX :.	I	
:OXYFLUORFEN :100000 mg/g OC :30 days :GOAL :. :.	H	
:PARAQUAT :100000 mg/g OC :3600 days :GRAMOXONE :. :.	Н	· (
:PARATHION :1000 mg/g OC :14 days :THIOPHOS :BLADAN :ORTHOPHOS :PANTHION	H.	35
:PERMETHRIN :10600 mg/g OC :30 days :POUNCE :AMBUSH :. :.	Ι	
	:NAPTALAM :30 mg/g OC :7 days :ALANAP : : : : :OXYDEMETON-METHYL :1 mg/g OC :20 days :MSR :METASYSTOX : : : : : : : : : : : : : : : : : : :	:NAPTALAM H :30 mg/g 0C 7 days :ALANAP . :. . <td:.< td=""> .</td:.<>

Pesticide Library Cont	t	Use	Health Advisory(ppb)
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:PHORATE :1000 mg/g OC :90 days :THIMET :RAMPART :AGRIMET :GEOMET	I	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:PHOSMET :740 mg/g OC :20 days :IMIDAN :.	I.	
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:PROMETON :300 mg/g OC :120 days :PRAMITOL :.	Н	100
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:PRONAMIDE :990 mg/g OC :30 days :KERB :. 	Н	52
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:PROPARGITE :8000 mg/g OC :20 days :COMITE :OMITE :.	М	u
Common Name Partition Coefficient Half-Life Trade Name Trade Name Trade Name Trade Name Trade Name	:SETHOXYDIM :50 mg/g OC :5 days :POAST :.	H	

۲

Pesticide Library Cont.	Use	Health Advisory(ppb)
Common Name:SIMAZINEPartition Coefficient:138 mg/g OCHalf-Life:75 daysTrade Name:AQUAZINETrade Name:PRINCEPTrade Name:SIMADEXTrade Name:SIM-TROL	H	35
Common Name:TERBUFOSPartition Coefficient:3000 mg/g OCHalf-Life:5 daysTrade Name:COUNTERTrade Name:Trade Name:Trade Name:Trade Name:Trade Name:Trade Name:	I	. 18
Common Name:TRIALLATEPartition Coefficient:3600 mg/g OCHalf-Life:60 daysTrade Name:FARGOTrade Name:.Trade Name:.Trade Name:.	H	3
Common Name:TRIADIMEFONPartition Coefficient:273 mg/g OCHalf-Life:21 daysTrade Name:BAYLETONTrade Name:Trade Name:Trade Name:Trade Name:Trade Name:Trade Name:Trade Name:	F	
Common Name:TRIFLURALINPartition Coefficient:1400 mg/g OCHalf-Life:70 daysTrade Name:TREFLANTrade Name:TREFANOCIDETrade Name:ELANCOLANTrade Name:TRIM	Η	2
Common Name:TRIMETHACARBPartition Coefficient:200 mg/g OCHalf-Life:10 daysTrade Name:BROOTTrade Name:.Trade Name:.Trade Name:.Trade Name:.Trade Name:.	Ι	

APPENDIX D

.

.

.

 $\sim \infty$

٤.

Soil Library Used in Utah

Soil Library Used in Utah

Soil Nam Horizon	e : ABR Depth	AHAM Organic Carbon	Identi Bulk Density	ifier : UTO] Volumetric	132 Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1 2 3 4	0.20 0.84 1.35 1.60	0.10 0.20 0.10 0.10	1.45 1.45 1.45 1.45 1.45	25.0 25.0 25.0 25.0	13.0 13.0 13.0 13.0	43.0 43.0 43.0 43.0
Soil Nam	e : DUC		Identi Rulk Donsity	ifier : DU1 Volumetric	Water Cont	ent. (%) at
HOrizon		(%)	(Mg/cu meter)			
	(m)	(%)	(ny/cu meter)	-0.01 18 u		
1 2 3 4 5	0.15 0.30 0.40 0.50 0.60	5.00 1.00 0.50 0.20 0.10	1.45 1.50 1.50 1.50 1.50	17.0 17.0 17.0 17.0 17.0	8.0 8.0 8.0 8.0 8.0	40.0 40.0 40.0 40.0 40.0
Soil Nam	e : GEN	IOLA	Identi	ifier : UT14	475	
Horizon	Depth	Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1 2 3 4 5 6 7 8 9 10	0.18 0.33 0.48 0.58 0.79 0.86 0.94 1.02 1.07 1.17	0.80 1.86 0.35 0.29 0.23 0.23 0.30 0.17 0.23 0.10	1.35 1.35 1.35 1.40 1.35 1.40 1.40 1.40 1.35 1.35	19.0 19.4 20.8 22.7 19.5 21.9 15.2 17.4 19.5 19.5	10.5 11.3 7.4 7.6 13.1 9.0 10.3 5.0 11.3 11.3	43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
Soil Nam	e : GRA	ND		ifier : GRN		ont (91) at
Horizon	Deptn	Organic Carbon	BULK Density	volumetric	water cont	ent, (%) at
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1 2 3 4 5	0.15 0.30 0.40 0.50 0.60	1.20 1.00 0.50 0.20 0.10	1.45 1.45 1.45 1.45 1.45	22.0 22.0 22.0 22.0 22.0 22.0	8.0 8.0 8.0 8.0 8.0	40.0 40.0 40.0 40.0 40.0

110

Soil Nam Horizon	le : HAR Denth	RISBURG Organic Carbon		ifier : UTUC Volumetric		ent. (%) at
101 1201	Depen	-			-	
	(m)	(%)	(Mg/cu meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.05	0.22	1.70	13.0	5.5	40.0
2	0.41	0.14	1.66	13.5	6.0	` 40.0
3	0.66	0.09	1.69	13.5	6.0	40.0
4	0.89	0.21	1.59	13.5	6.5	40.0
5	0.99	0.10	1.59	13.5	6.5	40.0
Soil Nam	e : HIL	LFIELD	Ident	ifier : UTO3	394	4
		Organic Carbon	Bulk Density	Volumetric	Water Cont	ent, (%) at
	(m)	(%)	(Mg/cu_meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.08	2.48	1.44	23.0	11.0	41.2
2	0.25	1.77	1.44	23.0	11.0	41.2
3	0.46	1.03	1.45	22.0	10.0	41.2
4	0.79	0.65	1.35	25.0	12.0	41.2
5	1.27	0.20	1.45	18.0	8.0	41.2
6	1.63	0.10	1.45	18.0	8.0	41.2
Cadl Nom		n	Televe		-00	
Soil Nam				ifier : UTO		
Horizon	Deptn	Organic Carbon	Bulk Density	volumetric	water cont	ent, (%) at
	(m)	(%)	(Mg/cu_meter)	-0.01 MPa	-1.5 MPa	Saturation
1	0.10	1.69	1.40	24.0	8.1	43.0
2	0.20	0.81	1.40	26.0	10.0	43.0
2 3 4	0.33	0.89	1.40	27.0	9.9	43.0
4	0.53	0.36	1.40	25.0	8.6	43.0
5 6	0.74	0.49	1.50	23.0	7.8	43.0
6	0.97	0.34	1.45	24.0	8.0	43.0
7	1.52	0.30	1.26	30.0	12.0	43.0
~				~~~~		
8	1.62	0.10	1.26	30.0	12.0	43.0
8 Soil Nam			1.26			43.0
Soil Nam	ie : KAN		1.26 Ident	30.0 ifier : KA1	12.0	
Soil Nam	ie : KAN	E	1.26 Ident	30.0 ifier : KA1 Volumetric	12.0 Water Cont	ent, (%) at
Soil Nam Horizon	ne : KAN Depth (m)	E Organic Carbon (%)	1.26 Ident Bulk Density (Mg/cu meter)	30.0 ifier : KAl Volumetric -0.01 MPa	12.0 Water Cont -1.5 MPa	ent, (%) at
Soil Nam Horizon 1	ie : KAN Depth	E Organic Carbon	1.26 Ident Bulk Density	30.0 ifier : KA1 Volumetric	12.0 Water Cont -1.5 MPa 8.0	ent, (%) at Saturation
Soil Nam Horizon 1	ne : KAN Depth (m) 0.15	E Organic Carbon (%) 1.00 0.50	1.26 Ident Bulk Density (Mg/cu meter) 1.50 1.50	30.0 ifier : KA1 Volumetric -0.01 MPa 18.0 18.0	12.0 Water Cont -1.5 MPa 8.0 8.0	ent, (%) at Saturation 40.0
Soil Nam Horizon	ne : KAN Depth (m) 0.15 0.30	E Organic Carbon (%) 1.00	1.26 Ident Bulk Density (Mg/cu meter) 1.50	30.0 ifier : KA1 Volumetric -0.01 MPa 18.0 18.0 18.0 18.0	12.0 Water Cont -1.5 MPa 8.0 8.0 8.0 8.0	ent, (%) at Saturation 40.0 40.0
Soil Nam Horizon 1 2 3	ne : KAN Depth (m) 0.15 0.30 0.60	E Organic Carbon (%) 1.00 0.50 0.30	1.26 Ident Bulk Density (Mg/cu meter) 1.50 1.50 1.50	30.0 ifier : KA1 Volumetric -0.01 MPa 18.0 18.0	12.0 Water Cont -1.5 MPa 8.0 8.0	ent, (%) at Saturation 40.0 40.0 40.0

111

•

Identifier : IR1 Soil Name : IRON Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 24.0 8.1 43.0 1.40 1.69 0.10 1 43.0 26.0 10.0 1.40 2 0.20 0.81 3 1.40 27.0 9.9 43.0 0.33 0.89 25.0 8.6 43.0 4 0.36 1.40 0.53 5 1.50 23.0 7.8 43.0 0.74 0.49 43.0 24.0 1.45 8.0 6 0.97 0.34 12.0 43.0 7 0.30 1.26 30.0 1.52 43.0 30.0 12.0 8 0.10 1.26 1.62 Identifier : UT0395 Soil Name : KIDMAN Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 40.0 18.0 6.4 1 0.28 1.20 1.52 18.5 6.4 40.0 0.70 1.52 2 0.43 40.0 20.0 6.9 0.53 0.80 1.53 3 7.0 1.54 22.0 40.0 4 0.40 0.69 21.5 40.0 0.20 5.3 5 1.40 0.94 40.0 0.20 1.45 21.5 5.7 1.24 6 40.0 4.4 1.42 18.0 7 1.47 0.10 Identifier : UT0306 Soil Name : KOVICH Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 25.0 13.0 43.0 11.00 1.50 0.03 1 43.0 2.60 1.50 23.0 13.0 0.28 2 1.50 43.0 26.0 15.0 1.30 3 0.61 1.55 23.0 43.0 4 14.0 0.74 0.60 1.60 13.0 43.0 22.0 5 1.04 0.70 13.0 43.0 0.10 1.60 22.0 6 1.14 Identifier : UT0583 Soil Name : LASIL Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 50.0 13.0 2.10 1.42 33.0 0.15 1 2 1.44 33.0 14.3 50.0 0.23 1.50 36.0 50.0 1.44 14.7 3 0.33 0.80 50.0 4 1.40 20.4 38.0 0.48 0.50 50.0 37.0 18.0 5 0.58 0.50 1.42 50.0 40.0 18.0 6 0.91 0.40 1.42 50.0 1.43 37.0 16.5 7 1.12 0.40 50.0 38.0 16.8 8 1.52 1.45 0.40

Soil Name : LAYTON Identifier : UT0338 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 0.18 0.70 1.55 12.5 40.0 1 3.7 2 0.38 0.50 1.55 13.0 4.0 40.0 3 0.58 0.20 1.55 14.0 4.5 40.0 4 0.74 0.20 1.55 12.5 4.0 40.0 5 1.54 1.04 0.10 12.0 3.3 40.0 6 1.52 1.68 0.10 8.0 1.7 42.0 -Soil Name : LEWISTON Identifier : UT0546 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 0.25 0.60 1.55 1 14.0 7.0 41.0 2 0.33 0.42 1.66 11.0 16.0 41.0 3 0.39 1.59 22.0 41.0 0.56 14.0 4 0.81 0.16 1.64 12.0 18.0 41.0 5 1.52 1.58 0.08 12.0 6.0 41.0 Soil Name : MANDERFIELD Identifier : UTU001 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (%) (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) 1 0.13 1.62 1.45 22.6 16.3 43.0 2 0.41 0.64 1.40 20.5 11.1 43.0 3 0.61 0.60 1.45 20.8 10.1 43.0 4 0.84 0.29 1.45 22.0 10.0 43.0 5 1.17 0.26 1.45 19.0 10.0 43.0 6 1.52 0.20 1.45 5.5 18.7 43.0 7 1.62 0.10 1.45 18.7 43.0 5.5 Soil Name : MARTINI Identifier : UT0404 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 0.13 1.80 1.28 1 18.0 9.0 40.0 2 0.38 0.60 1.46 40.5 14.5 8.0 3 0.48 0.10 1.55 4.5 9.0 40.0 4 1.14 0.60 1.44 17.0 9.0 40.0 , 5 1.78 0.50 1.52 14.0 8.0 40.0 6 1.88 0.10 1.52 40.0 14.0 8.0

Soil Name : MONTICELLO

Identifier : UT0454

Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 1.52 22.0 13.0 41.0 1 0.08 1.33 1.52 20.0 12.0 41.0 0.20 0.81 2 25.0 14.0 41.0 1.50 3 0.41 0.56 43.0 16.0 27.0 4 0.27 1.45 0.81 43.0 27.0 15.0 5 0.16 1.43 1.14 43.0 1.50 25.0 14.0 6 1.42 0.16 25.0 14.0 43.0 1.50 7 1.52 0.10 Identifier : UTU002 Soil Name : PENOYER Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 43.0 13.0 1.00 1.45 24.0 0.10 1 2 1.20 1.40 25.0 13.0 43.0 0.23 43.0 1.52 19.0 10.0 0.58 0.60 3 43.0 11.0 1.46 23.0 4 1.04 0.18 43.0 5 1.52 0.06 1.40 22.0 11.0 Identifier : PI1 Soil Name : PHAGE Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 40.0 0.05 1.08 1.50 15.0 8.0 1 1.50 18.0 10.0 40.0 1.42 2 0.23 40.0 12.0 0.91 1.50 27.0 3 1.02 40.0 1.50 19.0 8.0 4 1.42 0.10 Identifier : UT0480 Soil Name : RAVOLA Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 13.0 43.0 1.45 25.0 0.20 1.00 1 43.0 25.0 15.0 2 1.52 0.50 1.45 1.45 25.0 15.0 43.0 3 1.62 0.10 Identifier : UT0709 Soil Name : SALERATUS Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 45.0 25.0 15.0 1.40 0.15 1.00 1 35.0 45.0 1.14 20.0 2 0.50 1.30 30.0 15.0 45.0 3 1.52 0.20 1.30 45.0 1.30 30.0 15.0 4 0.10 1.62

Soil Name : SEVIER Identifier : SE1 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 1.00 10.0 1 0.15 1.35 20.0 43.0 0.30 20.0 10.0 43.0 2 0.70 1.35 3 0.30 1.35 8.0 43.0 0.60 20.0 4 0.90 0.20 1.35 43.0 20.0 10.0 5 1.00 0.10 1.35 20.0 10.0 43.0 Soil Name : SUMMIT Identifier : UTE1229 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 1 0.15 1.00 1.40 25.0 12.0 43.0 2 0.30 0.70 1.40 25.0 12.0 43.0 3 0.60 0.30 1.40 25.0 12.0 43.0 4 0.90 0.20 1.40 43.0 25.0 12.0 5 1.00 0.10 1.40 25.0 12.0 43.0 Soil Name : SUNSET Identifier : UT0076 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 0.43 1.20 1.40 27.0 14.0 43.0 1 1.30 49.0 2 1.14 0.70 23.0 10.0 3 1.60 0.10 1.55 10.0 5.0 40.0 Soil Name : TEBBS Identifier : UTE1041 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (m) (%) (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation 0.15 1.00 25.0 12.0 43.0 1 1.40 2 0.70 1.40 25.0 0.30 12.0 43.0 0.30 3 0.60 1.40 25.0 12.0 43.0 4 0.90 0.20 1.40 25.0 12.0 43.0 5 1.00 0.10 1.40 43.0 12.0 25.0 Soil Name : THATCHER Identifier : UT0752 Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (m) (%) (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation 1 0.33 1.50 1.25 30.0 15.0 49.0 2 0.79 0.70 1.35 35.0 21.0 41.0 3 1.52 0.20 1.45 22.0 12.0 43.0 4 0.10 1.62 1.45 22.0 12.0 43.0

Identifier : TOO1 Soil Name : TOOELE Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 49.0 15.0 1.25 30.0 0.33 1.50 1 * 41.0 21.0 1.35 35.0 2 0.79 0.70 22.0 12.0 43.0 3 0.20 1.45 1.52 43.0 22.0 12.0 1.45 4 1.62 0.10 Identifier : UT0350 Soil Name : VINEYARD Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 40.0 8.0 0.18 0.81 1.70 16.0 1 40.0 0.33 0.47 1.70 16.0 8.0 2 17.0 9.0 40.0 1.70 0.61 0.31 3 9.0 40.0 1.70 18.0 4 0.21 0.89 40.0 5 1.07 0.21 1.70 19.0 10.0 1.70 16.0 8.0 40.0 6 1.52 0.12 Identifier : UI1 Soil Name : UINTA Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 15.0 43.0 28.0 5.00 1.35 0.08 1 40.0 8.0 1.55 15.0 2 0.28 1.00 35.0 25.0 17.0 3 1.07 0.30 1.63 17.0 4 0.10 1.63 25.0 35.0 1.17 Identifier : UT0415 Soil Name : WARMSPRINGS Horizon Depth Organic Carbon Bulk Density Volumetric Water Content, (%) at (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (%) (m) 40.0 10.0 1 0.20 0.80 1.62 17.0 2 0.38 0.30 1.62 19.0 12.0 40.0 13.0 40.0 0.10 18.0 3 1.64 0.61 40.0 16.0 10.0 1.68 4 0.94 0.10 40.0 7.0 5 1.52 0.10 1.65 13.0 Identifier : WA1 Soil Name : WAYNE Bulk Density Volumetric Water Content, (%) at Horizon Depth Organic Carbon (Mg/cu meter) -0.01 MPa -1.5 MPa Saturation (m) (%) 1.35 10.0 43.0 20.0 0.15 1.00 1 43.0 20.0 10.0 2 1.35 0.30 0.70 43.0 3 0.30 1.35 20.0 8.0 0.60 43.0 5 0.10 1.35 20.0 10.0 1.00

APPENDIX E

Letters and Survey Form

, **'**

· ·

÷

.

 \cdot .)

. .

117

,

MEMORANDUM

TO: County Agricultural Agents

FROM: Howard Deer

DATE: December 7, 1988

SUBJECT: Pesticide Hazards to Ground Water Quality in Utah

At our Annual Extension Conference considerable emphasis was placed on the need for a Water Quality Initiative for Utah. As a part of that effort a research project was initiated to analyze the hazards that agricultural chemicals pose to Utah's ground water. The initial phase of this research is to determine those locations in Utah that are at greatest risk of ground water contamination by pesticides. This will be accomplished by interfacing data on pesticide usage with soil and hydrologic factors. This process will identify specific areas in the state where hazards exist and will be followed by ground water sampling and analysis for pesticides.

In order to accurately identify these locations we need to have county specific information on cropping and pesticide usage. The completion of the enclosed survey form and map will make this possible. Use separate survey forms for each crop, but combine all cropping locations onto the one map. If the maps you receive from us don't cover all of your county's crop areas, please contact us right away so that we can send you additional maps. If you don't have some of the information requested please give us your best estimate. Be sure to keep a copy of your completed survey forms.

Please give it your best try at your earliest convenience. Please feel free to call if you have questions about this request. Your time and efforts are appreciated greatly. Thank you.

cc: R. Peralta G. Olson

SURVEY ON AGRICULTURAL PRACTICES IN UTAH

DEPARTMENT OF AGRICULTURAL AND IRRIGATION ENGINEERING, UTAH STATE UNIVERSITY, LOGAN, UTAH OCTOBER 1988

INFORMATION GUIDING THE COMPLETION OF THE QUESTIONNAIRE

1. Description of Crop Rotation and Year in Crop Rotation

At a given location (field), crops may change as frequently as once every 40 days (vegetables), or once every 15 to 20 years (fruit trees). The survey respondent is expected to describe typical crop rotations encountered in his county. For a given field, he should describe which crop follows which one; for example, "Corn / Wheat / Sorghum" might be the crop rotation at a certain location.

Each page of the questionnaire is dedicated to only one crop. Using the above example, the first page of the questionnaire would be filled with information concerning corn and in "Year in Crop Rotation", "First" would be circled. Then, a second questionnaire page would be used to provide information concerning wheat and "Second" would be circled in "Year in Crop Rotation". Then, a third page would be used to describe agricultural practices related to Sorghum, and "Third" would be circled in "Year in Crop Rotation".

In the here described crop rotation, on a given field, crops change annually. However, it may well be that double cropping per year may take place. Then, the first crop would be described on the first page of the questionnaire, and the second crop would be described on the second page.

On both pages "First" would be circled as "Year in Crop Rotation".

In order to keep questionnaire pages in chronological order, the investigators suggest to staple all questionnaire pages applying to a certain crop rotation together.

2. <u>Pesticide Applied</u>

One page of the questionnaire allows the indication of four pesticide applications per crop. An additional page may be used, if more than four pesticide applications per crop occur. The survey respondent may then indicate in "Crop Name" the continuation of the previous page.

3. <u>Formulation</u>

The formulation may be "Granulate", "spray", a.s.o.

4. <u>Soil Management</u>

The investigators are interested in receiving information on tillage and soil conservation practices.

5. <u>Fertilizer Applied</u>

One page of the questionnaire allows the indication of four fertilizer applications per crop. An additional page may be used, if more than four fertilizer applications per crop occur. The survey respondent may then indicate in "Crop Name" the continuation of the previous page.

SURVEY ON AGRICULTURAL PRACTICES IN UTAH

County:	Date(M/D/Y):///
Name of Survey Respondent:	
Description of Crop Rotation ⁽¹⁾ :	
Crop Indicated on this Sheet:	
Typical Soil Type:	

Crop Development Stage	Pesticides Applied	Remarks	Irrigation
Approximate Date (week/	Name:		Field Application
month) of:	Formulation:		Method(Sprinkler, Trickle, Furrow,
			Border, Basin, Cen-
Planting :/	Date (week/month):/	•	ter Pivot, Flood):
Emergence:/	Rate (lbs. A.1. /acre):	And / Or	
Naturity :/	Name:		Application Depth of
			Water per Irrigation
Karvest :/	Formulation:		(in inches):
	Date (week/month):/		
	Rate (lbs. A.I. /acre):	And / Or	
			Number of Irrigations
	Name:		Applied to this Crop:
	Formulation:		
	Date (week/month):/		Duration of one Irri-
			gation (hours/acre):
	Rate (lbs. A.I. /acre):	And / Or	

	Name:		
			Approximate Date of
	Formulation:		First Irrigation for
	Date (week/month):/		this Crop (W/N):
	Rate (lbs. A.I./acre):	And / Or	

(1) Indicate in parentheses the number of years this crop is grown [e-g. Alfalfa (7), Corn (2), Small Grains (1)].

Department of Agricultural & Irrigation Engineering, and the Cooperative Extension Service, Utah State University Logan, Utah.

APPENDIX F

· · · · · ·

Irrigation Schedules for Crops and Sub-regions

IRRIGATION OF ALFALFA

<u>Planting Season</u>

. 				<u> </u>	4	
_Date	N. <u>Central</u>	S. Central	 Uintah Basin	South W.	South E.	Dixie
09/01 09/10 09/20 10/01	150 100 100 100	180° 125 125 125 125	195 130 130 130	195 130 130 130	160 120 120 120	
	· · · · · · · · · · · · · · · · · · ·			<u></u>		

۰,

Following Season

05/15	75	80	85	85	90	145
06/01	150	180	195	195	j 160	215
06/15	150	180	195	j 195	j 160	215
07/01	150	180	195	j 195	160	215
07/15	150	180	195	195	160	215
08/01	150	180	195	195	160	215
08/15	150	j 180	j 1 95	j 195	j 160	215
09/01	150	160	165	165	165	215
09\15	75	80	80	80	90	150
TOTAL	1200	1400	1500	1500	1300	2000

IRRIGATION OF CORN

Date	N. Central	S. Central		South W.	South E.	 Dixie
 05/10	75	80	90 .	90	90 .	100
05/20	75	80	90	90	90 ···	
06/01	125	130	140	140	90	150
06/15	125	130	140	140	90	150
07/01	125	130	140	140	120	150
07/15	125	130	140	140	120	150
08/01	125	130	140	140	120	150
08/15	125	130	140	140	120	150
09/01	125	130	140	140	120	150
09/01	125	130	140	140	90	150
TOTAL	1150	1200	1300	1300	1050	1140

IRRIGATION OF WINTER WHEAT

<u>Date</u>	N. Central	S. Central	<u>Uintah Basin</u>	<u>South W.</u>	South E.	Dixie
05/25	150	225	250	250	175	200
06/05	150	225	250	250	175	250
06/15	190	225	250	250	175	250
07/01	150	225	j 250	j 250	175	250
07/15	150	225	250	250	175	250
TOTAL	640	900	1000	1000	700	1200

- -

IRRIGATION OF VEGETABLES

Date	N. Central	S. Central	 Uintah Basin	South W.	South E.	 Dixie
						1
05/10	50	60	67	74	50	100
05/15	50	60	67	74	50	100
05/20	50	60	67	74	50	100
05/25	50	60	67	74	50	100
05/30	80	96	104	112	80	120
06/04	80	96	104	112	80	120
06/09	80	96	104	112	80	120
06/14	80	96	104	112	80	120
06/19	80	96	104	112	80	120
06/24	80	96	104	112	80	120
06/29	80	96	106	112	80	j 120
07/04	80	96	104	112	80	j 120
07/09	80	96	103	110	80	120
07/14	80	96	103	110	80	120
						i
TOTAL	1000	1200	1300	1400	1000	1600

IRRIGATION OF ONIONS

<u>Date</u>	N. Central	<u>S. Central</u>	<u>Uintah Basin</u>	South W.	South E.	Dixie
05/01	50	60	60	l 1 65	65	75
05/10	50	60	60	65	65	j 75
05/20	50	60	60	j 70	70	j 90
06/01	75	j 90	90	j 100 .	100	120
06/10	75	j 90	90	100	j 100	120
06/20	75	j 90	90	100	100	j 120
07/01	75	j 90	90	100	į 100	120
07/10	75	90	90	100	100	j 120
07/20	75	j 90	90	100	j 100	120
08/01	75	j 90	90	100	100	1.120
08/10	75	90	90	100	100	120
TOTAL	750	900	 900	1000	 1000	1200

IRRIGATION OF ORCHARDS

 Date	N. Central	S. Central	Uintah Basin	South W.	South E.	 Dixie
	75	00	00	00	75	
05/01	75	90	90	90	75	90
05/15	100	120	120	125	100	120
06/01	125	150	150	155	125	150
06/15	125	150	150	160	125	150
07/01	125	150	150	160	125	150
07/15	125	150	150	160	125	j 150 j
08/01	125	150	150	160	125	150
08/15	125	150	150	160	125	150
09/01	125	150	150	160	125	150
09/15	125	150	150	160	125	150
10/01	125	150	150	160	125	150
10/15	100	100	150	160	125	150
TOTAL	1400	1600	1600	1700	1400	1600
		•				