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D′ (12), ranging between values of 0 (a fully
random association) to 1 (a complete association
between allele pairs). Because the underlying model
assumes random mating within the population
from which the sample was taken, it is only ap-
propriate to calculate this statistic for the Leeds
sample.D′was high (>0.5) for all markers across
the 1.4-Mb sequence examined, defining a region
of approximately 400 kb where D′ > 0.9, with a
maximum D′ at locus c (Fig. 2). Interpolation of
D′ values at loci b, c, and d suggests that the
genetic polymorphism controlling the morph phe-
notype is located within 100 kb on either side of
locus c. Further consideration of the “missing”
(repulsion-phase) haplotypes separately for carbo-
naria and typica (Table 2) emphasizes the deficit
of repulsion-phase carbonaria haplotypes across
all six loci. In contrast, typica haplotypes show
only weak deficits of carbonaria-type marker
alleles, which is consistent with the view that
these alleles were segregating in the population
before the genesis of carbonaria. At loci a and b,
the deficit for typica is greater because the
carbonaria-type alleles (C and A, respectively)
were rare in the ancestral population. These two
loci suggest that carbonaria-to-typica haplotype
introgression has been weak.

Bombyxmori chromosome 17 and its orthologs
in other lepidopterans are rich in major color-
patterning genes, such as blackmoth andwildwing
spot (13). These Bombyx mori genes do not map
closely to the carbonaria locus (fig. S5). However,
Bicyclus anynana LG17 contains two pigment-
patterning mutants, 067 and Bigeye, that both af-
fect eyespot size, with Bigeye predicted to reside
within the carbonaria region (14). The Bigeye and
carbonaria phenotypes are clearly very different,
but they share a large increase in the proportion of
melanized scales. The carbonaria core region also
overlaps the mimetic patterning locus in four
Heliconius species, collectively referred to as the
Yb-P-Yb/Sb-Cr locus (15–17). The B. betularia
genes identified in this region so far correspond
entirely with those described for theYb-P-Yb/Sb-Cr
region.Amajor feature distinguishing Heliconius
forms is the amount and distribution of black,
as with the various B. betulariamorphs (4). This
unlikely coincidence suggests that the control of
melanin pattern formation in these deeply diverged
lepidopteransmay have a common genetic basis,
the functional units ofwhich have yet to be identified.

The rapid spread of an initially unique haplo-
type, driven by strong positive selection, is expected
to generate the profile of linkage disequilibrium
we have observed (18), establishing that UK in-
dustrial melanism in the peppered moth was
seeded by a single recent mutation that spread to
most parts of mainlandBritain and also colonized
the Isle of Man (fig. S4). Paradoxically, although
the carbonaria morph is now strongly disadvan-
tageous and consequently rare in the United King-
dom, the rapidity of its decline (19) has minimized
the eroding effect of typica introgression on the
molecular footprint of strongly positive selection
created during its ascendency.
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The Selaginella Genome Identifies
Genetic Changes Associated with
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Vascular plants appeared ~410 million years ago, then diverged into several lineages of which
only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the
genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular
plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the
transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than
the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded
extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in
posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of
the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

Selaginella moellendorffii, like all lycophytes,
has features typical of vascular plants, in-
cluding a dominant and complex sporo-

phyte generation (Fig. 1, A and B) having vascular
tissues with lignified cell types. Lycophytes also
share traits with nonseed plants, most notably
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the release of haploid spores (Fig. 1C) from the
sporophyte and a gametophyte generation that
develops independently of the sporophyte. Be-

cause the lycophytes are an ancient lineage that
diverged shortly after land plants evolved vascular
tissues (Fig. 2A) (1), we sequenced the Selag-

inella genome to provide a resource for identify-
ing genes that may have been important in the
early evolution of developmental and metabolic
processes specific to vascular plants.

The Selaginella genome was sequenced by
whole-genome shotgun sequencing (2). The as-
sembled genome size (212.6 Mbp) is twice that
determined by flow cytometry (3), indicating that
the assembled genome includes two haplotypes
of ~106 Mbp that are 98.5% identical at the nu-
cleotide level. A deduced haplotype has 22,285
predicted protein-coding genes, of which 37% are
supported by expressed sequence tag sequences,
and 58 microRNA (miRNA) loci (2, 4). The Se-
laginella genome lacks evidence of an ancient
whole-genome duplication or polyploidy (2), un-
like all other sequenced land-plant genomes (5–7).
Gene density in Selaginella and Arabidopsis,
which has a slightly larger genome size, is very
similar (2), and both genomes have gene-poor
regions rich in transposable elements (TEs) and
other repetitive sequences (2). Although fewer
genes and smaller introns (2) contribute to a
genome size smaller than Arabidopsis, this is
offset by a greater proportion of TEs in Selag-
inella (37.5% versus 15% in Arabidopsis) (2).
Long terminal repeat retrotransposons are the
most abundant TEs, occupying one-third of the
Selaginella genome (2).

Plant TEs and MIRNA loci are important
sources of small RNAs (sRNAs) that function
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Fig. 1. Selaginella morphology. (A) The diploid sporophyte body. Bar, 10 mm. (B) A shoot with two ranks of
microphylls (“leaves”) and strobili. Each microphyll of a strobilus has either a mega- or a microsporangium
where mega- or microspores are produced. Bar, 2 mm. (C) An orange microspore on top of a dark megaspore.
These single-celled haploid spores represent the beginning of the independent haploid gametophyte
generation. The microgametophye produces motile sperm and the megagametophyte eggs. Bar, 0.1 mm.
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to epigenetically regulate TE and gene activity
(8). Several observations suggest that some as-
pects of epigenetic or posttranscriptional gene
regulation in Selaginella are unique among plants.
For one, the proportion of sRNAs 23 to 24 nu-
cleotides (nt) in length is extraordinarily small in
the Selaginella sRNA population (2) compared
to angiosperms (9). Nearly three-quarters of the
Selaginella sRNAs (4) map to MIRNA loci and
are predominantly 21 nt in length (2). In angio-
sperms, 24-nt siRNAs, which are generated pri-
marily from TEs, function to silence TE activity
through the RNA-dependent DNA methylation
pathway (10–12) and accumulate massively in
specific cells of the female gametophyte (13).
Because the Selaginella sRNA population was
generated from sporophytic tissues, the 24-nt
siRNA pathway may only be deployed during
gametophyte development in Selaginella. A sec-
ond distinction is the absence of DCL4, RDR6,
and MIR390 loci in Selaginella, which are re-
quired for the biogenesis of trans-acting siRNAs
(tasiRNAs) in angiosperms (2). Their absence
suggests that tasiRNA-regulated processes in an-
giosperms, including leaf polarity (14) and de-
velopmental phase changes in the sporophyte
(15, 16), are regulated differently in Selaginella,
and possibly reflects the independent origins of
foliar organs in the lycophyte and angiosperm
lineages (17, 18). Finally, the Selaginella plas-
tome sequence reveals an extraordinarily large
number of RNA-edited sites (2), as do other
lycophyte organellar genomes (19, 20). This co-
incides with an exceptionally large number of PPR
genes in Selaginella (>800) (2), some of which
guide RNA editing events in angiosperms (21).

Because Selaginella is a member of a vascular
plant lineage that is sister to the euphyllophytes,
we used comparative and phylogenetic approaches
to identify gene origins and expansions coinciding
with evolutionary innovations and losses in land
plants. To identify such genes without regard to
function, we compared the proteomes of the green
alga Chlamydomonas, the moss Physcomitrella,
Selaginella, and 15 angiosperm species; identified
gene families that are related by homology by

hierarchical clustering (2); and then mapped
them onto a phylogenetic tree (Fig. 2B). The
3814 families with gene members present in
all plant lineages define the minimum set of
genes that were likely to be present in the com-
mon ancestor of all green plants and their de-
scendants and include genes essential for plant
function. The transition from single-celled green
algae to multicellular land plant approximately
doubled the gene number with the acquisition of
3006 new genes. The transition from nonvas-
cular to vascular plant is associated with a gain
of far fewer new genes (516) than the transition
from a basal vascular plant to a basal euphyllophyte
whose descendants include the angiosperms (1350).
These numbers show that the evolution of traits
specific to euphyllophytes or angiosperms re-
quired the evolution of about three times more
new genes than the transition from a plant hav-
ing a dominant gametophyte and simple, leaf-
less, and nonvascularized sporophyte (typified
by modern bryophytes) to a plant with a dom-
inant, vascularized, and branched sporophyte
with leaves.

In a second approach, we analyzed the phylog-
enies of genes known to function in Arabidopsis
development (2). We identified 424 monophyletic
groups of developmental genes, each group con-
taining putatively all genes descended from a
common land-plant ancestral gene (table S6).
Selaginella and Physcomitrella genes are present
in 377 (89%) and 356 (84%) of the 424 land-plant
orthologous gene groups, respectively, indicat-
ing that the common ancestor of land plants had
most of the gene families known to direct an-
giosperm development. Conspicuous expansions
of families within different lineages resulted in
different numbers of land-plant orthologs in each
genome (table S6). The 27 vascular plant-specific
orthologous groups likely represent genes asso-
ciated with developmental innovations of vascu-
lar plants. Among them are genes regulating the
meristem (CLV1 and CLV2), hormone signaling
(GID1 and CTR1), and flowering (TFL2 and
UFO). Homologs of genes involved in the spec-
ification of xylem (NST and VND) (22) and

phloem (APL) (23) in Arabidopsis are present in
Physcomitrella and Selaginella, suggesting that
the developmental programs for patterning and
differentiation of vascular tissues were either
present in, or co-opted from, preexisting genetic
programs in the ancestral land plant. The 43
groups lacking genes from Physcomitrella and
Selaginella (table S6) likely identify genes that
were necessary for euphyllophyte or angiosperm
developmental innovations. Among this group are
genes that regulate light signaling (FAR1, MIF1,
OBP3, and PKS1), shoot meristem development
(AS2 and ULT1), hormone signaling and biosyn-
thesis (BRI1, BSU1, ARF16, ACS, and ACO),
and flowering (HUA1, EMF1, FT, TFL1, and
FD). Altogether, these results suggest that the
evolutionary transitions from a nonvascular plant
to a vascular angiosperm included the stepwise
addition of components of some developmental
pathways, especially those regulating meristem
and hormone biology, as previously noted for
the gibberellin signaling pathway (24, 25).

Genes involved in secondary metabolism
were also investigated because plants synthe-
size numerous secondary metabolites that they
use to interact with their environment. Three gene
families involved in their biosynthesis, includ-
ing those encoding cytochrome P450-dependent
monooxygenases (P450s), BAHD acyltransfer-
ases (BAHDs), and terpene synthases (TSs), were
analyzed. The largest of these in Selaginella is
the P450 family, accounting for 1% of its pre-
dicted proteome (table S7) (2). All three families
show similar evolutionary trends, with the in-
ferred ancestral vascular plant having a small
number of genes that radiated extensively but
independently within the lycophyte and angio-
sperm lineages (figs. S6 to S13). BAHD and TS
genes, which are known to be involved in the
biosynthesis of volatile odorants, are apparent
only in seed plants (figs. S12 to S13), likely re-
flecting the coevolution of seed plants with ani-
mals that pollinate flowers or disperse seeds. The
independent diversification of these gene fami-
lies plus the large number of Selaginella genes
suggest that Selaginella not only has the po-
tential to synthesize a repertoire of secondary
metabolites that rivals the angiosperms in com-
plexity, but that many of them are likely to be
unique. Some have been shown to be of phar-
maceutical value [e.g., (26)].

We have used the compact Selaginella ge-
nome sequence to uncover genes associated with
major evolutionary transitions in land plants. Un-
derstanding their functions in Selaginella and
other taxa, as well as acquiring the genome se-
quences of other informative taxa, especially
charophytes, ferns, and gymnosperms, will be key
to understanding the evolution of plant form
and function.
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Chromatin “Prepattern” and Histone
Modifiers in a Fate Choice for
Liver and Pancreas
Cheng-Ran Xu,1 Philip A. Cole,2 David J. Meyers,2 Jay Kormish,1* Sharon Dent,3 Kenneth S. Zaret1†

Transcriptionally silent genes can be marked by histone modifications and regulatory proteins
that indicate the genes’ potential to be activated. Such marks have been identified in pluripotent
cells, but it is unknown how such marks occur in descendant, multipotent embryonic cells that
have restricted cell fate choices. We isolated mouse embryonic endoderm cells and assessed
histone modifications at regulatory elements of silent genes that are activated upon liver or
pancreas fate choices. We found that the liver and pancreas elements have distinct chromatin
patterns. Furthermore, the histone acetyltransferase P300, recruited via bone morphogenetic
protein signaling, and the histone methyltransferase Ezh2 have modulatory roles in the
fate choice. These studies reveal a functional “prepattern” of chromatin states within multipotent
progenitors and potential targets to modulate cell fate induction.

Early pluripotent cells of the mammalian
embryo develop into multipotent endo-
derm, ectoderm, and mesoderm germ

layers. In pluripotent cells, silent genes that
will be activated later in development often
exist with histone modifications and/or bound
transcription factors that reflect the chroma-
tin being “poised” for activity (1–3). It is un-

clear whether such poised states exist for silent
genes in germ layer cells and, if so, whether
genes poised for different tissue fates exhibit
different chromatin features. Furthermore, it is
not known whether enzymes that establish chro-
matin states can control germ layer fate choices.
Embryonic germ layer cells are few in number,
they have not been purified, and chromatin
analysis on small cell populations is challeng-
ing (4 ). Yet germ layer cells represent the first
lineage-restricted, multipotent progenitors of
the embryo and a paradigm for all subsequent
fate decisions.

Ventral foregut endoderm cells undergo a fate
choice for liver or ventral pancreas progenitors
(5, 6). FoxA1 or FoxA2, GATA4 or GATA6,
vHNF1, and Hnf6 (also known as Oc1) are nec-
essary in the endoderm for both liver and ventral
pancreas induction (7 ). In the absence of any

set of the factors, the earliest liver marker genes
Alb1, Afp, and Ttr and the ventral pancreas tran-
scription factor gene Pdx1 fail to be activated, or
expression is delayed, and tissue buds fail to form
(7). It is not clear how the same group of factors
can be necessary for both liver and ventral
pancreas and how signaling promotes the differ-
ent fates. We sought to map chromatin states at
silent liver- and pancreas-specific regulatory se-
quences in endoderm cells, to discover the factors
or relevant histone-modifying enzymes, and
test the enzymes’ functions in the liver-versus-
pancreas decision.

We used fluorescence-activated cell sorting
(FACS) with the ENDM1 antibody to isolate ven-
tral foregut endoderm cells from embryonic day
8.25 (E8.25) mouse embryos with four to six
somite pairs (4-6S) (8) (fig. S1), just prior to the
induction of hepatic and pancreatic fates (5, 9).
We also used the liver-specific antibody Liv2 to
isolate nascent hepatoblasts expressingAlb1,Afp,
and Ttr from E9.5 embryos (fig. S2) (10). Chro-
matin marks in ENDM1+ and Liv2+ populations
were identified with a low–cell number chroma-
tin immunoprecipitation (ChIP) protocol (4) for
H3K9acK14ac,H3K4me2,H3K4me3,H3K9me3,
H3R17me2a, H3K27me3, H3K36me2, H3K36me3,
H3K79me2, H4K20me3, H3T3ph, H3S10ph,
the histone variant H2A.Z, and the chromatin re-
modelers Brg1 and SNF2. We assessed the liver-
specific promoter and enhancer of Alb1 (11, 12),
the liver-specific promoters of Afp and Ttr genes
(13, 14), and the I, II, III, and IV upstream ele-
ments and local promoter of the pancreatic de-
termination gene Pdx1 (fig. S3). The I, II, and III
upstream elements and promoter of Pdx1 recon-
stitute pancreas-specific activation (15); the IV
element may function later (16, 17). All of the
target genes are silent in endoderm cells, and only
the liver genes become activated in hepatoblasts.
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