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ABSTRACT 

Substrate Binding and Reduction Mechanism of Molybdenum Nitrogenase 

 

by 

 

Zhiyong Yang, Doctor of Philosophy 

Utah State University, 2013 

 

Major Professor: Dr. Lance C. Seefeldt 

Department: Chemistry and Biochemistry 

Nitrogenase is responsible for biological nitrogen fixation. The most studied 

nitrogenase is molybdenum nitrogenase. Combining genetic, biochemical, and 

spectroscopic methods, several advances toward understanding substrate binding and 

reduction mechanism of nitrogenase have been achieved. 

One major goal of this dissertation was aimed at understanding the N2 binding 

and reduction mechanism catalyzed by nitrogenase. A dihydride intermediate with two 

bridging hydrides bound to the FeMo-cofactor at E4 state was proposed as the key 

intermediate for N2 binding and activation. The 
95

Mo-ENDOR characterization of this E4 

intermediate revealed that the Mo ion does not interact with the hydride ligands, 

suggesting that each hydride ligand bridges two Fe ions. When N2 binds to the 

FeMo-cofactor, one equivalent of H2 is produced. The N2-dependent incorporation of 
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D2-derived deuterium into ethylene product of acetylene reduction during nitrogenase 

turnover strongly supports the proposed reductive elimination mechanism for N2 binding 

and activation at E4 state and confirms the mechanistic role of obligatory H2 loss. 

Once bound to the FeMo-cofactor, N2 was proposed to be stepwise reduced to 

ammonia through diazene and hydrazine intermediates. Two EPR-active common 

intermediates have been freeze-trapped during turnover of an altered MoFe protein with 

diazene, methyldiazene, and hydrazine as substrates. Pulsed ENDOR characterization of 

these two intermediates led to the assignment of the FeMo-cofactor bound ligands as –

NH2 and NH3, respectively. These results support a proposed N2 reduction mechanism 

with unification of Lowe-Thorneley kinetic model and the alternating pathway.  

The other major goal was aimed at expanding nitrogenase catalysis toward other 

substrates. It was found that the α-70 amino acid residue of MoFe protein has a steric 

effect on the carbon monoxide (CO) coordination to the FeMo-cofactor. Further study 

revealed that CO can be reduced and coupled to form hydrocarbons by remodeled 

molybdenum nitrogenase. Moreover, carbon dioxide (CO2) was also found to be 

catalytically reduced to form methane by a remodeled molybdenum nitrogenase. The 

unprecedented formation of both propane and propylene was observed from the reductive 

coupling of CO2 and acetylene, supporting a plausible coupling mechanism based on two 

adjacent substrate binding sites.  

(288 pages) 
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PUBLIC ABSTRACT 

Substrate Binding and Reduction Mechanism of Molybdenum Nitrogenase 

 

by 

 

Zhiyong Yang, Doctor of Philosophy 

Utah State University, 2013 

 

Major Professor: Dr. Lance C. Seefeldt 

Department: Chemistry and Biochemistry 

As a key constituent of proteins, nucleic acids, and other biomolecules, nitrogen is 

essential to all living organisms including human beings. Dinitrogen represents the 

largest pool of nitrogen, about 79% of the Earth’s atmosphere, yet it is unusable by most 

living organisms due to its inertness. There are two ways to fix this inert dinitrogen to 

usable ammonia. One is the industrial Haber-Bosch process, which needs to be conducted 

at high temperature and pressure. This process uses a lot of the non-renewable fossil fuel 

as the energy source. The other major pathway is the biological nitrogen fixation carried 

out by some microorganisms called diazotrophs. The usable nitrogen output from this 

biological pathway ultimately supports an estimated 60% of the human population’s 

demand for nitrogen. 

The catalyst responsible for the biological nitrogen fixation is called nitrogenase, 

the most studied form of which contains molybdenum and iron in its active center, so 
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called molybdenum nitrogenase. The work in this dissertation attempts to understand how 

this biological catalyst breaks down dinitrogen to ammonia by application of different 

modern techniques. Firstly, an approach was developed to understand the stepwise 

reduction mechanism of dinitrogen to ammonia by molybdenum nitrogenase.  

The second goal of my research is to understand the roles of iron and 

molybdenum centers in nitrogenase function. My results using carbon monoxide as a 

probe for genetically modified molybdenum nitrogenase indicate that iron should be the 

metal sites functioning for nitrogen fixation. This is further supported by another study 

aimed at understanding the role of molybdenum during nitrogenase functioning. 

Moreover, an approach was developed to understand the mechanism for the 

obligatory production of hydrogen gas when nitrogenase activates dinitrogen for 

reduction. The same study also suggests possible pathways for the addition of 

hydrogenous species to nitrogen to produce ammonia. 

As part of this work, we also found that remodeled nitrogenases can use 

poisonous carbon monoxide and greenhouse-gas carbon dioxide to produce useful 

hydrocarbons by coupling one or more small molecules, which is hard to be achieved by 

other catalysts. Further study of these new reactions might give us deep insights on 

nitrogenase mechanism and inspire scientists to design better catalysts for relevant 

industrial processes.  
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CHAPTER 1 

INTRODUCTION1 

Nitrogen Fixation 

Fixed nitrogen (N) is a fundamental constituent of basic building blocks of life 

such as nucleotides for DNA and amino acids for proteins (1). Dinitrogen (N2) is the 

major constituent (79%) of the Earth's atmosphere, representing the largest global pool of 

nitrogen. While nitrogen is essential to all life, the vast reservoir of dinitrogen in the 

atmosphere is unusable by most organisms (1, 2). This is largely a consequence of the 

high bond dissociation energy for the N2 triple bond (3), making the breaking of this bond 

and "fixation" of the nitrogen to a form usable to living organisms energetically 

challenging. Dinitrogen can be fixed with considerable energy input by addition of 

electrons and protons to yield two ammonia (NH3) molecules, so called nitrogen fixation. 

In the industrial Haber-Bosch process for fixing dinitrogen, the reaction is carried out at 

high temperatures (~ 450 oC) and pressures (> 200 atm) in the presence of an iron catalyst, 

with the electrons and protons coming from H2 (2, 4–6). This process is extremely energy 

demanding, utilizing approximately 1% of the total fossil fuel used globally (7). However, 

the ammonia produced through this process is the precursor of the majority of 

nitrogenous fertilizers produced today. 

                                                            
1 Part of text and figures in this chapter is reproduced from these publications: (1) Coauthored by Zhi-Yong 
Yang, Karamatullah Danyal, and Lance C. Seefeldt (2011) Mechanism of Mo-dependent nitrogenase, 
Methods in Molecular Biology 766, 9-29 as a chapter in Nitrogen Fixation: Methods and Protocols edited 
by Markus W. Ribbe. Copyright 2011 Springer Science+Business Media, LLC. With kind permission of 
Springer Science+Business Media; and (2) Coauthored by Lance C. Seefeldt, Zhi-Yong Yang, Simon 
Duval, and Dennis R. Dean (2013) Nitrogenase reduction of carbon-containing compounds, Biochimica et 
Biophysica Acta (BBA) – Bioenergetics http://dx.doi.org/10.1016/j.bbabio.2013.04.003. Copyright (2013), 
with permission from Elsevier.    
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The other major pathway for nitrogen fixation is through the action of 

microorganisms (called diazotrophs (8)) that carry out a process called biological 

nitrogen fixation (6, 8) discovered more than 120 years ago (9, 10). The fixed nitrogen (N) 

from this process accounts for approximately 60% of the total fixed N input from N2 into 

the global biogeochemical nitrogen cycle (11) with the most of the remaining from the 

Haber-Bosch process (2, 12, 13). Biological nitrogen fixation is catalyzed by a complex 

metalloenzyme called nitrogenase (14, 15), found in the bacterial and archaeal domains 

of life (16, 17). The biosynthesis of nitrogenases is a complex process requiring the 

participation of many gene products (Nif, Vnf, or Anf) (18–23).  

Three major classes of nitrogenase have been reported, with a key difference 

among the classes being the identity of the heterometal contained in their active site metal 

cluster (14, 15, 24).  The most widely distributed and best-studied class of nitrogenase is 

the molybdenum (Mo)-dependent nitrogenase (or Mo-nitrogenase), which appears to be 

the paradigm for nitrogenases (14, 20, 22, 25–35). The active site of Mo-dependent 

nitrogenase, an iron and molybdenum containing metal cluster, is designated to “FeMo-

cofactor” (FeMo-co) (36–38). The other two classes of nitrogenase contain V or Fe atom 

in place of Mo (15, 39), which are often referred to “alternative” nitrogenases.  The 

alternative nitrogenases are less efficient at N2 reduction when compared to Mo-

dependent nitrogenase (15, 39, 40). Given that most of the mechanistic information 

known about nitrogenases is for the Mo-dependent enzyme, this dissertation will focus on 

this enzyme. 
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Mo-dependent Nitrogenase: Overview 

The two component proteins of the Mo-dependent nitrogenase are called the iron 

(Fe) protein (or dinitrogenase reductase) and the molybdenum-iron (MoFe) protein (or 

dinitrogenase) (Figure 1-1). These two component proteins work together to catalyze the 

reduction of dinitrogen in a complex reaction with an ideal reaction stoichiometry shown 

in equation 1-1 (41). 

 N2 + 8e- + 16MgATP + 8H+  2NH3 + H2 + 16MgADP + 16Pi    (eqn. 1-1) 

Since the first report of the cell-free enzyme preparation in 1960 (42), a 

breakthrough in understanding nitrogenase mechanism came from the X-ray crystal 

structures of the component proteins solved individually (43–63) and in couple (64–67). 

In this section, general information about the Fe protein, the MoFe protein, and the 

interaction between the two proteins will be reviewed. 

Fe Protein 

The Fe protein is a homodimer (coded by the nifH gene) with a molecular mass of 

approximately 64,000 Da (47, 68).  It contains two nucleotide (MgATP or MgADP) 

binding sites, one on each subunit, and a single [4Fe-4S] cluster that bridges the two 

subunits (Figure 1-1) (47, 68). The Fe protein is the physiological reductant of the MoFe 

protein that catalyzes substrate reduction. In addition to delivering electrons to the MoFe 

protein, the Fe protein also is known to function in the maturation of the MoFe protein 

and in the bioassembly of the active site metal cluster called FeMo-cofactor (20, 69). This 

maturation role for the Fe protein does not appear to require electron transfer or the ATP 

hydrolysis function (14). 
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Figure 1-1.  Mo-nitrogenase with cofactors. Shown is one functioning half of the Mo-

dependent nitrogenase. The top shows the Fe protein (left) and an αβ-dimer half of the 

MoFe protein (right). Shown below are the metal clusters and ATP, with Fe in rust, S in 

yellow, C in gray, O in red, N in blue, and Mo in magenta. Reproduced from PDB 2AFK. 

Redox properties of the [4Fe-4S] cluster−The Fe protein contains a single [4Fe-

4S] cluster that serves as a carrier of electrons. The X-ray structure of the Fe protein 

revealed that this cluster is symmetrically ligated between the two Fe protein subunits, 

with each subunit contributing two cysteine ligands (Figure 1-1). The [4Fe-4S] is known 

to access three redox states (eqn. 1-2) (14, 70–72).  
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(eqn. 1-2) 

 The 1+ oxidation state (FeRed) of the [4Fe-4S] cluster is the dominant state of the 

purified enzyme in the presence of the reductant dithionite (S2O4
2-) (73–75). The 1+ 

oxidation state of the [4Fe-4S] cluster can be reversibly oxidized by the removal of one 

electron, achieving the 2+ oxidation state (FeOx), with the iron atoms distributed as 2Fe2+ 

and 2Fe3+ (75–77). This reversibility allows the establishment of the midpoint reduction 

potential (Em) for the [4Fe-4S]2+/1+ redox couple using voltametric and coulometric 

methods (78–80). The values of Em are dependent on the organism from which the Fe 

protein is purified and the presence or absence of bound nucleotides (14). The Em for the 

[4Fe-4S]2+/1+ couple of the Fe protein from Azotobacter vinelandii is measured to be -300 

mV in the absence of nucleotides (eqn. 1-2) (77, 81). Upon addition of MgATP and 

MgADP, the Em value shifts negative to -430 and -440 mV, respectively (81). It is well 

established from kinetic and spectroscopic studies that the [4Fe-4S]2+/1+ redox couple of 

the [4Fe-4S] cluster in the Fe protein is functional during nitrogenase catalysis (14, 28, 

70).  

The Fe protein binds nucleotides−Early work on nitrogenase revealed that the Fe 

protein could bind nucleotides and that the hydrolysis of nucleotides by the nitrogenase 

complex was critical to the transfer of an electron from the Fe protein to the MoFe 

protein (28, 82). The Fe protein binds two nucleotides, one to each subunit. The 

nucleotide binding sites on the Fe protein are on the opposite end of the Fe protein from 

the [4Fe-4S] cluster (51, 53, 58, 59, 61, 64–67). A divalent metal is required for the 

binding of nucleotides to the Fe protein. While a number of different metals will work, it 
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is thought that Mg2+ is the physiologically relevant metal (83). While the Fe protein binds 

MgATP, it shows undetectable rates of hydrolysis in the absence of the MoFe protein 

(70). It is only after the Fe protein binds to the MoFe protein that hydrolysis is activated. 

This observation has been explained from examination of X-ray structures of the Fe 

protein with bound nucleotides as the movement of a likely catalytic base into place to 

activate hydrolysis following Fe protein binding to the MoFe protein.  

Nucleotide binding induces protein conformational changes in the Fe 

protein−There is ample evidence showing that the binding of nucleotides to the Fe 

protein induces conformational changes to the protein structure that impact many aspects 

of its function. For example, the binding of MgATP or MgADP to the Fe protein shifts 

the Em for the [4Fe-4S]2+/1+ redox couple to more negative potentials by about -120 mV 

(described above). It is clear that these changes are not the result of nucleotides binding 

directly to the [4Fe-4S] cluster, but rather a result of nucleotide induced protein 

conformational changes impacting the cluster over a distance. The nucleotide binding 

sites are located approximately 15 Å away from the [4Fe-4S] cluster (51, 53, 58, 59, 61, 

64–67). Recent studies using both small angle X-ray scattering (SAXS) and X-ray 

crystallography provide clearer pictures of the larger structural changes induced in the Fe 

protein upon nucleotide binding (84).   

MoFe Protein 

The MoFe protein is an 22 heterotetramer (Mr ~ 240,000 Da) with the  and  

subunits encoded by the nifD and nifK genes, respectively (14, 20, 32, 68, 69). Each  

dimeric unit contains two unique metalloclusters: a P-cluster ([8Fe-7S]) and a FeMo-
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cofactor ([7Fe-9S-Mo-C-(R)-homocitrate]) (27, 44, 49, 60). The FeMo-cofactor is 

embedded solely in the -subunit, while the P-cluster is located at the interface between 

the  and  subunits (43, 46) (Figure 1-1). Each -unit appears to function as a 

catalytic half. 

P-cluster−Early Mössbauer spectroscopic studies of the MoFe protein revealed 

that the P-cluster was composed of eight ferrous Fe atoms in the resting state in the 

presence of dithionite (termed the PN state) (85). The X-ray structures revealed the nature 

of this unusual cluster (Figure 1-2) as being composed of two cubic [4Fe-4S] subclusters 

sharing a common sulfide ligand at one corner (43, 44, 46, 54, 63). Each Fe atom is 

coordinated by two or three sulfide ligands and one terminal or bridging cysteinyl ligand 

from a cysteine residue in the  or  subunit. Upon oxidation, one of the cubic units is 

opened up with two Fe-S bonds (Fe5-S1 and Fe6-S1) being cleaved and two novel Fe6-O 

and Fe5-N bonds being formed. Further, a serinate-O (-188Ser) and a backbone amide-N 

(-88Cys) become ligands to Fe atoms (Figure 1-2) (63). 

From in vitro studies using dye oxidants, it has been shown that the resting state 

of the P cluster (PN) can be oxidized by up to three electrons (P1+, P2+, and P3+) (eqn. 1-3) 

(86–89). The Em values measured for these redox couples are shown for the A. vinelandii 

MoFe protein in equation 1-3 (77, 90, 91). 

 
(eqn. 1-3) 
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Figure 1-2. Structure of P-cluster in oxidized and reduced states. The reduced state (PN) 

of the P-cluster (panel A) and the oxidized state (POX) of the P-cluster (panel B) are 

shown (3MIN.pdb and 2MIN.pdb, respectively). 

Because both P1+ and P2+ oxidation states are usually populated in oxidized states 

of the MoFe protein, these two oxidiation states are often collectively referred to as the 

POx state. The P3+ oxidation state is not reversible, so is not believed to be functioning 

during catalysis. Recently, magnetic circular dichroism (MCD) spectroscopic study of the 

P1+ state from a MoFe protein variant (92) suggested that the P-cluster could be viewed 

as two coupled 4Fe clusters and that it could donate either one or two electrons to FeMo-

cofactor by using one or both of its 4Fe halves (93). 

FeMo-cofactor—the active site of nitrogenase−The FeMo-cofactor (36), also 

called the M-cluster (Figure 1-3), is the site for substrate binding and reduction of Mo-

dependent nitrogenase. The structure of FeMo-cofactor was established when the X-ray 

structure of the MoFe protein was solved (27). The early structure revealed a 
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heterometallocluster with a composition [7Fe-9S-Mo-X-(R)-homocitrate] with the first 

assignment of the interstitial X as a light atom (C, N, or O) bound to each of the central 6 

Fe atoms (48). ENDOR studies have suggested that it is not an exchangable N atom, but 

have left open the possibility that it is a non-exchanging N or C atom (94–96). Likewise, 

a number of previous calculations support the presence of X, but do not provide a 

definitive assignment for X (97–101). Recently, the interstitial atom has been 

conclusively assigned to a C atom by a 1.0 Å-resolution structure and ESEEM 

spectroscopy (49), X-ray emission spectroscopy (XES) of MoFe protein (102) with the 

methyl group in S-adenosyl methionine (SAM) as the C-source (103). The results from 

tracing the fate of the 13C- and 14C-labeld interstitial carbide ligand in the protein under 

turnover conditions showed that this carbide is non-exchangable (94) and cannot be used 

as a substrate and incorporated into the products (104). 

The FeMo-cofactor is ligated to the peptide matrix through one cysteine ligand 

(α-275Cys) bound to the Fe atom at one end and through one histidine ligand (α-442His) 

bound to the Mo atom at the other end. The six Fe atoms in the middle part are arranged 

as a prismatic structure with each Fe atom coordinated by three sulfide atoms. 

Homocitrate provides two oxygen atom (C1 carboxylate and C3 hydroxylate) ligands to 

the Mo (105, 106). Thus, the overall structure of the FeMo-cofactor can be viewed as one 

[4Fe-3S-C] cubane and one [Mo-3Fe-3S-C] cubane that are connected by three bridging 

sulfides with one shared µ6-C atom at the center. 
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Figure 1-3. FeMo-cofactor and key residues. Shown is the FeMo-cofactor with key 

MoFe protein amino acid side chains. Colors are Fe in rust, S in yellow, C in gray, O in 

red, N in blue, and Mo in magenta. PDB: 2AFK. 

FeMo-cofactor can be reversibly oxidized or reduced from its resting state. The 

resting state of FeMo-cofactor (MN) occurs in the MoFe protein isolated in the presence 

of dithionite. This state is paramagnetic with a rhombic S = 3/2 spin EPR signal (107). 

Treatment of the MoFe protein with oxidizing dyes results in the one electron oxidation 

to the MOx state (85, 86). The MOx state is diamagnetic (S = 0) and EPR silent. The Em for 

the MOx/N redox couple is about -40 mV (108). The MN state can be reduced. Incubation 

with the Fe protein in the presence of MgATP and dithionite results in the reduction of 

FeMo-cofactor to an MR state with an interger spin (S  1) state that is EPR silent (109, 

110). The Em for the MN/R redox couple has not been measured, but has been estimated as 

-465 mV (111). The oxidation states of the Fe atoms and the Mo atom in the resting state 

of FeMo-cofactor (MN) have been examined by Mössbauer and ENDOR spectroscopies. 
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The Mössbauer study suggested an assignment of [Mo4+, 3Fe3+, 4Fe2+, 9S2-] (110), which 

is supported by calculations using a model with the interstitial atom (112). The 57Fe 

ENDOR study suggested an assignment of [Mo4+, 1Fe3+, 6Fe2+, 9S2-] for two electron 

reduced state relative to the resting state FeMo-cofactor (113, 114).  In Chapter 5 of this 

dissertation, we found that the oxidation state of Mo is +4 after accumulations of four 

electrons as two bridging hydrides to FeMo-cofactor.  

Fe Protein-MoFe Protein Complex Formation and Electron Transfer  

 During the catalytic cycle, an Fe protein binds transiently to one MoFe protein  

unit. Several structures of the complex of the Fe protein bound to the MoFe protein reveal 

the interfaces where the Fe protein and MoFe protein dock (64–67). These structures 

place the P cluster directly in-line and between the Fe protein [4Fe-4S] cluster and the 

FeMo-cofactor (Figure 1-1). The distance between the [4Fe-4S] cluster and the P-cluster 

varies depending on the nucleotide bound state of the Fe protein, leading to a model 

wherein one role of nucleotides is to alter this electron transfer distance and therefore the 

electron transfer rate. The arrangement of the three metalloclusters suggests an electron 

transfer chain from the [4Fe-4S] cluster to the P-cluster and from P-cluster to the FeMo-

cofactor, with P-cluster as an mediator during electron transfer (67). 

Recently, a proposed model for the nitrogenase macroscopic mechanism indicates 

that Fe protein binding to the MoFe protein induces large protein conformational changes 

(~800 Å2) within the two proteins that gate the electron transfer (ET) events (33, 115). 

The first ET event is proposed to involve intramolecular ET from the resting P cluster (PN) 

to the resting FeMo-cofactor (MN), resulting in an oxidized P cluster (P1+) and a reduced  
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Figure 1-4. The deficit-spending model for electron transfer events in Mo-dependent 

nitrogenase. Colors are Fe in rust, S in yellow, C in gray, O in red, N in blue, and Mo in 

magenta. PDB: 1FP6 and 2AFK. 

FeMo-cofactor (MR) (116) (Figure 1-4). In the second ET event, Fe protein transfers an 

electron to the oxidized P1+ cluster, resulting in reduction of the P cluster back to the PN 

state and oxidized Fe protein.  This model has been designated the “deficit-spending” 

model to reflect the creation of an electron deficit at the P cluster that is then backfilled. 

Recent results support ATP hydrolysis following the electron transfer events (117), 

although this sequence has yet to be definitively established. The cycle is completed by 

the dissociation of the Fe protein from the MoFe protein (118). A reduced and MgATP-

bound Fe protein then associates again to the partially reduced MoFe protein, and the 

cycle of electron transfer and ATP hydrolysis is repeated to accomplish the accumulation 

of sufficient electrons to affect substrate binding and reduction (32).   
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Mo-dependent Nitrogenase: Substrates and Inhibitors 

 Mo-dependent nitrogenase can catalyze the reduction of a wide range of 

substrates using multiple electron/proton (e-/H+) transfer via the association-dissociation 

process of the Fe protein and MoFe-protein. While the physiological substrates for 

nitrogenase are N2 and protons, a variety of other small compounds containing multiple 

bonds have been demonstrated to be substrates (14, 32, 119, 120). Nitrogenase-catalyzed 

substrate reduction is summarized in Table 1-1. Substrates relevant to this dissertation 

research will be discussed in this section.  

N-Compounds as Substrates 

 Dinitrogen (N2)−The most important physiological substrate for all nitrogenases 

is N2, which can be quantitatively reduced to two NH3 with no observed “leaked” 

intermediates for Mo-dependent nitrogenase (Table 1-1) (121). During N2 reduction by 

the V-nitrogenase, a trace amount of hydrazine has been reported as one product other 

than NH3 (122). One key feature of N2 reduction catalyzed by Mo-dependent nitrogenase 

is the obligatory evolution of one H2 per N2 reduced (41). The mechanism for this 

obligatory H2 evolution will be discussed in the following sections and in Chapter 5. 

 Diazene (HN=NH)−In 2007, diazene was reported as a substrate for Mo-

dependent nitrogenase by using a in situ generation method from azodiformate (123). The 

4 e-/H+ reduction of diazene produced two equivalents of NH3 (Table 1-1). The reduction 

of diazene is inhibited by H2, which is also a competitive inhibitor of N2 reduction. This 

result indicates that diazene enters at an early step in the N2 reduction pathway for 

nitrogenase. Previous studies demonstrated that diazene analogs methyldiazene (CH3-



 14 

N=NH), dimethyldiazene (CH3-N=N-CH3) and diazirine (CH2N2) are also substrates for 

nitrogenase (Table 1-1) (124, 125). 

 Hydrazine (H2N-NH2)−The 2 e-/H+ reduction of hydrazine to produce two 

equivalents of NH3 was confirmed by Davis in 1980 (Table 1-1) (126). Recently, it was 

shown that substitution of the α-70Val residue around FeMo-cofactor with a smaller side 

chain can enhance the specific activity of hydrazine reduction catalyzed by Mo-

dependent nitrogenase (127). 

 The application of diazene, methyldiazene, and hydrazine as substrates in 

understanding N2 reduction mechanism will be discussed in the following sections and in 

Chapters 2 and 3. 

Proton (H+) Reduction and HD Formation Reactions 

 Protons are the other physiological substrate of all nitrogenases (14, 15). 

Dihydrogen (H2) is the only product of nitrogenase-catalyzed two-electron reduction of 

two protons in the absence of other substrates (Table 1-1). Furthermore, H2 is directly 

involved in nitrogenase catalysis in two other ways (14): (i) H2 is a competitive inhibitor 

of N2 reduction (128, 129) and an inhibitor of diazene (HN=NH) reduction (123). 

However, H2 does not inhibit the reduction of any other nitrogenase substrates (130); (ii) 

H2 evolution appears to be obligately associated with N2 binding and/or reduction with a 

stoichiometry of one H2 released when one N2 reduced to two NH3 (equation 1-1) (41). 
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Table 1-1. Substrates for nitrogenases. 
Substrate Reaction Nitrogenase References 

Nitrogen-nitrogen substrate reduction 
Dinitrogen NN + 6H+ + 6e- → 2NH3 Mo, V, Fe (14, 15) 

 NN + 4H+ + 4e- → H2N-NH2 V (122) 
Diazene HN=NH + 4H+ + 4e- → 2NH3 Mo (123) 
Hydrazine H2N-NH2 + 2H+ + 2e- → 2NH3 Mo (126) 
Azide N3

- + 3H+ + 2e- → NN + NH3 Mo and V (131–133) 
 N3

- + 9H+ + 8e- → 3NH3 Mo and V (130, 133, 134) 
Hydrazoic acid HN3 + 6H+ + 6e- → H2N-NH2 + NH3 Mo (134, 135) 
Nitrous oxide N2O + 2H+ + 2e- → NN + H2O Mo (129, 136, 137) 
Nitrite NO2

- + 7H+ + 6e- → NH3 + 2H2O Mo (138) 
    
Hydrogenous substrate reduction 
Proton 2H+ + 2e- → H2 Mo, V, Fe (14, 15) 
Dideuterium D2 + 2H+ + 2e- + ‘M-N2’ → 2HD + M + N2 Mo (137) 
    
Carbon-carbon substrate reduction 
Acetylene HCCH + 2H+ + 2e- → CH2=CH2 Mo, V, Fe (139–143) 

 HCCH + 4H+ + 4e- → CH3–CH3 Mo, V, Fe (140–146) 

Propyne CH3CCH + 2H+ + 2e- → CH3CH=CH2 Mo (147–149) 

1-Butyne C2H5CCH + 2H+ + 2e- → C2H5CH=CH2 Mo (147, 148, 150) 

2-Butyne CH3CCCH3 + 2H+ + 2e- → cis-CH3CH=CHCH3 Mo (151) 

Propargyl alcohol HCCCH2OH + 2H+ + 2e- → CH2=CHCH2OH Mo (149) 

Propargyl amine HCCCH2NH2 + 2H+ + 2e- → CH2=CHCH2NH2 Mo (152) 

Allene CH2=C=CH2 + 2H+ + 2e- → CH3CH=CH2 Mo (153) 
Ethylene CH2=CH2 + 2H+ + 2e- → CH3–CH3 Mo and V (154, 155) 
Cyclopropene Mo (156) 

3,3-Difluorocyclopropene 

 

Mo (157) 

 
Carbon-nitrogen substrate reduction 
Hydrogen cyanide HCN + 2H+ + 2e- → [CH2=NH] + H2O → CH2O + NH3  Mo and V (133, 158) 

 HCN + 4H+ + 4e- → CH3–NH2 Mo and V (131, 133, 148, 158) 

 HCN + 6H+ + 6e- → CH4 + NH3 Mo and V (131, 133, 148, 158) 

 2HCN + 8H+ + 8e- → C2H4 + 2NH3 Mo (158, 159) 

 2HCN + 10H+ + 10e- → C2H6 + 2NH3 Mo (158, 159) 

Cyanamide NC–NH2 + 6H+ + 6e- → CH3–NH2 + NH3 Mo and V (160) 

 NC–NH2 + 8H+ + 8e- → CH4 + 2NH3 Mo and V (160) 

Alkyl nitriles RCN + 6H+ + 6e- → RCH3 + NH3 
(R = CH3, C2H5 and n-C3H7) 

Mo and V (147, 148, 161) 

 CH3CH2CN + 4H+ + 4e- → CH2=CH–CH3 + NH3 Mo (148) 

Acrylonitrile CH2=CH–CN + 6H+ + 6e- → CH2=CH–CH3 + NH3 Mo and V (148, 161, 162) 

 CH2=CH–CN + 8H+ + 8e- → CH3–CH2–CH3 + NH3 Mo and V (148, 161, 162) 

cis-But-2-ene-1-nitrile cis-CH3CH=CH–CN + 6H+ + 6e- → cis- or trans-CH3CH=CHCH3 

                                                             or CH3CH2CH=CH2 + NH3 

Mo (147) 

 cis-CH3CH=CH–CN + 8H+ + 8e- → CH3CH2CH2CH3 + NH3 Mo (147) 

trans-But-2-ene-1-nitrile trans-CH3CH=CH–CN + 6H+ + 6e- → trans-CH3CH=CHCH3 
                                                                 or CH3CH2CH=CH2 + NH3 

Mo (147) 

 trans-CH3CH=CH–CN + 8H+ + 8e- → CH3CH2CH2CH3 + NH3  (147) 

But-3-ene-1-nitrile CH2=CHCH2–CN + 6H+ + 6e- → CH3CH2CH=CH2 + NH3 Mo (147) 

 CH2=CHCH2–CN + 8H+ + 8e- → CH3CH2CH2CH3 + NH3 Mo (147) 

HC CH

H2
C + 2H+ + 2e- or CH3CH=CH2

H2C CH2

H2
C

HC CH

F2
C + 4H+ + 4e- CH3CF=CH2 + HF

HC CH

F2
C + 6H+ + 6e- CH3CH=CH2 + 2HF
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Isonitriles RNC + 4H+ + 4e- → RNH–CH3 (R = CH3) Mo (135) 

 RNC + 6H+ + 6e- → RNH2 + CH4 
(R = CH3 C2H5, and CH2=CH-) 

Mo (148, 159, 163) 

 2RNC + 8H+ + 8e- → 2RNH2 + CH2=CH2 
(R = CH3 C2H5, and CH2=CH-) 

Mo (135, 148, 159, 164) 

 2RNC + 10H+ + 10e- → 2RNH2 + CH3–CH3 
(R = CH3 C2H5, and CH2=CH-) 

Mo (135, 148, 159, 164) 

 3CH3NC + 12H+ + 12e- → 3CH3NH2 + CH3CH=CH2 Mo (165) 

 3CH3NC + 14H+ + 14e- → 3CH3NH2 + CH3–CH2–CH3 Mo (165) 

 CH3CN + 2H+ + 2e- → [CH3N=CH2] + H2O → CH2O?? + CH3NH2 Mo (135) 

 CH3NC + CO + 8H+ + 8e- → CH3NH2 + CH2=CH2 + H2O (???) Mo (135, 159, 166) 

 CH3NC + CO + 10H+ + 10e- → CH3NH2 + CH3–CH3 + H2O (???) Mo  

Diazirine Mo (125) 

 Mo (125) 

Dimethyldiazene CH3N=NCH3 + 6H+ + 6e- → CH3NH2 + NH3 + CH4 Mo (125) 
    
Carbon-chalcogen substrate reduction 
Carbon monoxide CO + 6H+ + 6e- → CH4 + H2O Mo and V (167) 

 2CO + 8H+ + 8e- → CH2=CH2 + 2H2O Mo and V (167, 168) 

 2CO + 10H+ + 10e- → CH3–CH3 + 2H2O Mo and V (167, 168) 

 3CO + 12H+ + 12e- → CH3CH=CH2 + 3H2O Mo and V (167, 168) 

 3CO + 14H+ + 14e- → CH3CH2CH3 + 3H2O Mo and V (167–169) 

 4CO + 16H+ + 16e- → CH3CH2CH=CH2 or (CH3)2C=CH2 + 4H2O Mo and V (167) 

 4CO + 18H+ + 18e- → CH3CH2CH2CH3 + 4H2O Mo and V (167) 

Carbonyl sulfide S=C=O + 2H+ + 2e- → CO + H2S Mo (170) 
Carbon dioxide O=C=O + 2H+ + 2e- → CO + H2O Mo (170) 
 O=C=O + 2H+ + 2e- → HCOOH Mo (119) 
Carbon disulfide S=C=S + ?H+ + ?e- → C?? + ?H2S Mo (171) 
Thiocyanate S=C=N- + 3H+ + 2e- → HCN + H2S Mo (171) 

Cyanate O=C=N- + 3H+ + 2e- → HCN + H2O Mo (171) 

 O=C=N- + 3H+ + 2e- → CO + NH3 Mo (171) 

 

 

 

In the presence of D2, nitrogenase can catalyze the N2-dependent HD formation 

(128, 130, 172, 173, 137). In the presence of any other nitrogenase substrates, no HD 

formation was observed (137, 174). There are three key constraints for nitrogenase 

catalyzed N2-dependent HD formation reaction: (i) For every two equivalents of HD 

formed under turnover conditions in the presence of N2 and D2, two electrons diverted 

from N2 reduction and two H+ from solvent are required (Table 1-1) (14, 128, 172, 174); 

N N

H2
C + 6H+ + 6e- CH3NH2 + NH3

N N

H2
C + 8H+ + 8e- CH4 + 2NH3
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(ii) During the formation of HD, only a negligible amount of D+ (~2% D of the produced 

HD) is released to solvent (174); (iii) HD formation under N2/D2 requires the enzyme 

with a FeMo-co-bound N-N species at the level of N2H2 or beyond (130), which was 

proposed since the discovery of the HD exchange reaction (14, 137). 

In Chapter 5 of this dissertation, a proposed reductive elimination mechanism has 

been developed to explain the obligatory H2 evolution upon N2 binding, H2 inhibition of 

N2 reduction, and all constraints for HD formation catalyzed by Mo-nitrogenase.  

C-Compounds as Substrates  

Alkynes as substrates−Among the earliest studies on isolated nitrogenase was the 

observation by Dilworth that nitrogenase could reduce acetylene (HC≡CH) by two 

electrons and two protons to yield ethylene (H2C=CH2) (Table 1-1) (139, 175). This 

discovery contributed to the realization that nitrogenase could reduce a number of 

“alternative” substrates other than just the physiological substrates N2 and protons (14). It 

was observed that Mo-dependent nitrogenase has the capacity to reduce acetylene by two 

electrons to yield ethylene, with very little production of the four electron reduced 

product ethane (H3C-CH3) (144–146, 176). In contrast, it has been shown that both the V- 

and Fe-dependent forms of nitrogenase can catalyze the reduction of acetylene by either 

two or four electrons, yielding ethylene or ethane, respectively (140–143, 155). 

Nevertheless, ethylene is the most abundant reduction product for all of the nitrogenases 

when acetylene is used as the substrate. Although the Mo-dependent nitrogenase does not 

have a significant ability to reduce acetylene by four electrons to yield ethane, the 

enzyme can be remodeled by amino acid substitution such that it gains the capacity for 

measurable formation of ethane as a reduction product (177).    
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Early investigations of the stereochemistry of H-atom addition to acetylene 

catalyzed by nitrogenase also provide important mechanistic insights about how 

acetylene is bound and reduced. Analysis of the stereochemistry of the product (cis- or 

trans-) 1,2-dideuteroethylene (HDC=CDH) formed during reduction of acetylene in the 

presence of D2O or during the reduction of dideuteroacetylene (DC≡CD) in H2O revealed 

primarily the cis-product (139, 155, 166, 178). The stereo-selectivity of this reaction is 

dependent on the concentration of acetylene concentration (179). This observation 

revealed that reduction of bound acetylene occurs by the addition of both protons to the 

same side of the bound acetylene (180). An enzyme-bound 2-vinyl intermediate has 

been proposed to explain this stereochemistry, with H atom addition to one face of the 

bound acetylene. This stereospecificity can be perturbed by amino acid substitutions 

around the active site of Mo-nitrogenase (130). In Chapter 5 of this dissertation, the 

proposed hydrogenation mechanisms of acetylene will be presented. 

In addition to acetylene, several other alkynes have been investigated as substrates 

for nitrogenase (Table 1-1). For example, both propyne (CH3-C≡CH) and 1-butyne 

(CH3CH2-C≡CH) were found to be reduced by 2 e-/H+ to the corresponding alkenes at 

very slow rates (147, 148, 181). The triple bonds in propargyl alcohol and propargyl 

amine are also reduced by nitrogenase to yield the corresponding double-bond 

compounds (Table 1-1), which have provided valuable probes for gaining insight into 

where and how alkyne substrates interact with FeMo-cofactor during catalysis (149, 152, 

182).  

Carbon-chalcogen substrates−Nitrogenase can also reduce carbon-chalcogen 

substrates such as carbon dioxide (CO2), carbonyl sulfide (COS), carbon disulfide (CS2), 



 19 

thiocyanite (CSN-) and cyanite (CON-) (Table 1-1) (170, 171). It was shown that 

nitrogenase can reduce both C=S and C=O bonds (210). The observation that COS 

interacts with nitrogenase as an inhibitor of acetylene reduction (183) led to the study of 

the reduction of COS by nitrogenase (171). These studies demonstrated that nitrogenase 

could catalyze the 2 e-/H+ reduction of a new class of compounds. The C=S bound in 

COS is reduced to form the products CO and H2S. In light of these observations it was 

shown by kinetic analysis and EPR spectroscopy for the COS structural analogues, that 

the 2 e-/H+ reduction of the C=S bond of CSN- results in H2S and HCN, and the 2 e-/H+ 

reduction of the C=O and C=N in CON- results in H2O, HCN and CO, NH3, respectively 

(171). Finally it was demonstrated that CS2 can be an inhibitor of nitrogenase reduction 

reaction and total electron flow but also be reduced to H2S and an unknown CS species 

(170, 171). Before this dissertation research, there is no other product characterized from 

CO2 reduction. In Chapter 8, CO2 reduction to methane and coupling with acetylene to 

form propylene using remodeled nitrogenase as catalyst will be presented. 

In addition to these C-containing substrates, carbon monoxide (CO) was early 

shown to be an inhibitor of wild type molybdenum nitrogenase-catalyzed reactions 

except for proton reduction (14, 184, 185). In the presence of CO, electron flux through 

nitrogenase is diverted to proton reduction. CO has been known as an inhibitor of 

nitrogenase-catalyzed substrate reduction for a long time, but not as a substrate of 

nitrogenase. Recently, it was found that vanadium nitrogenase is able to catalyze the 

reduction and coupling of two or three CO molecules at very low rates forming C2 

(ethylene, H2C=CH2, and ethane, CH3-CH3) and C3 (propane, H3C-CH2-CH3) 
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hydrocarbons (168). Shortly after, propylene (H3C-CH=CH2) was found  as an additional 

product of CO reduction by V-nitrogenase in D2O assays (169). 

In this dissertation, the steric effect around FeMo-cofactor on CO binding was 

studied using stopped-flow FTIR (SF-FTIR) (see Chapter 6). Moreover, it was found that 

remodeled molybdenum nitrogenase can reduce and couple CO to produce hydrocarbons 

(see Chapter 7). 

Remodeling Nitrogenase: Effect of Amino Acid Substitution  

on Nitrogenase Catalysis  

A key recent advance in understanding nitrogenase reduction of substrates has 

been the recognition that it is possible to change the size of substrates that can be reduced 

by Mo-nitrogenase by remodeling the MoFe protein environment surrounding the FeMo-

cofactor (29, 30, 32).  In the genetic screen for an altered form of the MoFe protein that 

has the ability to discriminate between binding of acetylene (excluded) and N2 

(unaffected), it was surprising that one substitution yielding this phenotype resulted in 

replacement of the α-69Gly residue by 69Ser (186). The reason this result was surprising 

was because α-69Gly is not in the first shell of non-covalent interactions with the FeMo-

cofactor. Rather, it is located adjacent to α-70Val, which closely approaches a particular 

Fe-S face of the FeMo-cofactor (Figure 1-5).  This led us to suspect that α-69Gly serves as 

part of a switch mechanism that exquisitely controls the position of the α-70Val side chain, 

thereby controlling access to the active site. Indeed, when the side chain of α-70Val was 
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Figure 1-5. Position of α-69Gly and α-70Val. Shown are the locations of α-69Gly and α-

70Val near the FeMo-cofactor, with the van der Waals surface of the surrounding protein 

shown as mesh. Colors are Fe in rust, S in yellow, C in gray, O in red, N in blue, and Mo 

in magenta. PDB: 2AFK. 

progressively shortened by substitution with Ala or Gly, (without substitution of α-69Gly), 

progressively larger alkynes (propyne and butyne) were able to access the active site and 

be reduced (149, 151, 152, 187). It was also found that as access to the active site for 

reduction of larger substrates was increased, the ability to reduce smaller substrates was 

diminished. Thus, it appears there are three possible roles for the amino acid “shrubbery” 

surrounding the FeMo-cofactor in the reduction process. The first of these is to make the 

“hot spot(s)” for catalysis available to a particular substrate. The second could be to lock 

the substrate in place for progressive reduction steps, indicating a dynamic role for the α-

69Gly and α-70Val residue positions. Recent work with MoFe proteins containing amino 
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acid substitutions are providing strong evidence that the 4Fe-4S face gated by α-70Val and 

α-96Arg is the site of substrate (or inhibitor) binding on FeMo-cofactor (Figure 1-3 and 1-

5) (25, 30, 32). For example, substitution of the arginine (Arg) at α-96 position by leucine 

(Leu) in MoFe protein resulted in the interaction of acetylene and cyanide with the 

resting state FeMo-cofactor (188). A third related aspect could involve intermediate 

stabilization through amino acid chain functional groups. It would appear that locking 

down the substrate is particularly important for those substrates that must accept a 

relatively large number of electrons for complete reduction, such as N2.  

Several early studies examined the roles of α-195His in nitrogenase catalysis 

(Figure 1-3) (130, 144, 189–191). Substitution of the α-195His residue by glutamine 

resulted in a variant of the MoFe protein that cannot effectively reduce N2 or azide (N3
-), 

but which retained full rates of reduction of acetylene and protons. From these studies, it 

was concluded that α-195His might participate in delivery of protons during reduction of 

nitrogen containing substrates. Using freeze quench technique, slowing down proton 

delivery by substituting for α-195His has been exploited to trap presumed intermediate 

states during the reduction of a number of substrates including hydrazine (N2H4) (127, 

192), diazene (HN=NH) (123), and methyldiazene (MeN=NH) (124, 192) (Table 1-2), 

which are important for understanding the N2 reduction mechanism of nitrogenase (see 

the following section and Chapter 2 and Chapter 3). It is clear that α-195His is not the sole 

source of protons for substrate reduction as the rates of reduction of other substrates 

remain undisturbed when this residue is substituted (130). Moreover, substitution of the 

valine (Val) at α-70 position by isoleucine (Ile) can help to trap a hydride-bound 

intermediate (Table 1-2) during turnover under Ar (193). 
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Table 1-2. Important variants of MoFe protein and and EPR parameters of the resulting 
intermediates with different substrates in the turnover state. 
MoFe protein Substrate EPR parameters References 

Wild type Dinitrogen (N2) S = 1/2, g = 2.08, 1.99, 1.97 (192, 194) 

Wild type Carbon monoxide (lo-CO) S = 1/2, g = 2.09, 1.97, 1.93 (195–197) 

Wild type Carbon monoxide (hi-CO) S = 1/2, g = 2.17, 2.06 (195–197) 

α-70ValIle Proton (H+) S = 1/2, g = 2.14, 2.00, 1.96 (193) 

α-70ValAla Propargyl alcohol (HCCCH2OH)  S = 1/2, g = 2.12, 2.00, 1.99 (182, 198) 

α-195HisGln Acetylene (HCCH) S = 1/2, g(a) = 2.12, 1.98, 1.95 (199) 

α-195HisGln Methyldiazene (CH3N=NH)  S = 1/2, g = 2.08, 2.02, 1.99 (124, 192) 

α-70ValAla/α-195HisGln Diazene (HN=NH) S = 1/2, g = 2.09, 2.01, 1.93 (123) 

α-70ValAla/α-195HisGln Hydrazine (H2N-NH2) S = 1/2, g = 2.09, 2.01, 1.93 (127, 192) 

 

 

 

 In this dissertation, remodeling nitrogenase is a key method used to understand 

the N2 reduction mechanism (see the following section, Chapter 2 and Chapter 3) and 

substrate binding sites (see Chapter 4 and Chapter 6). It is also used to expand the 

reactivity of molybdenum nitrogenase toward reduction and coupling reactions of CO 

and CO2 (see Chapter 7 and Chapter 8). 

Mo-Dependent Nitrogenase: Mechanistic Aspects on Substrate  

Binding and Reduction 

 Important aspects of the nitrogenase mechanism includes: (i) defining exactly 

how and where substrates bind; (ii) understanding how electrons are accumulated; (iii) 

defining the N2 reduction mechanism with characterization of the redox state of FeMo-

cofactor and chemical nature of the reduced nitrogenous species along the reduction 



 24 

pathway; (iv) figuring out the mechanism of hydrogenation of substrate reduction; and (v) 

understanding the roles of the peptide matrix during nitrogenase catalysis. 

Substrate/Inhibitor Binding Sites  

Earlier studies indicate that the FeMo-cofactor has multiple binding sites for some 

substrates and inhibitors (14, 200), but the precise location of substrate binding is still 

being pursued (29, 30, 32). For example, kinetic studies with the substrate acetylene were 

interpreted as the FeMo-cofactor presenting two binding sites (179, 200). 

There are many possibilities for the substrate binding sites: (i) the Mo atom; (ii) 

one or more of the central Fe atom(s); and (iii) some combination of Fe, S and Mo atoms. 

All these hypotheses can find support from either experimental or theoretical studies (29). 

For example, studies of biomemitic Mo complexes (201, 202) and the isolated FeMo-

cofactor (203) indicate that the Mo atom might be involved in substrate binding in 

nitrogenase function. However, Fe is the catalytic metal in the catalyst used for the 

industrial Haber-Bosch process for NH3 formation, and there are V and Fe-only 

nitrogenases that reduce N2 but do not have Mo (15). Recently, based on the combined 

genetic, biochemical, spectroscopic (e.g., ENDOR, EXAFS and IR) and molecular 

dynamic modeling approaches (30, 32), there is growing evidence for the binding of 

carbon monoxide (113, 204–208), hydrides (127), alkynes (182, 186, 198), and 

nitrogenous compounds (123, 124, 127, 192, 194) to one or more of the Fe atoms in the 

central portion of FeMo-cofactor (Figure 1-5). As yet, no experimental results have 

illustrated binding of any substrate or intermediate to Mo, although this possibility has 

not been ruled out. The role of Mo ion during nitrogenase catalysis is still not clear. The 

role of Mo and Fe in FeMo-cofactor for substrate binding will be further explored in 
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Chapter 4 and Chapter 6 of this dissertation using 95Mo-ENDOR and SF-FTIR, 

respectively. 

Accumulating Electrons on FeMo-cofactor  

One of the key challenges in understanding the nitrogenase mechanism is to 

explain how the FeMo-cofactor accumulates multiple electrons to activate the system for 

the binding and subsequent reduction of N2 and other substrates. A simple notation to 

designate how many electrons have been transferred into the resting MoFe protein is 

helpful (called the Lowe-Thornelely (abbreviated as LT) kinetic model) (Figure 1-6) 

(209–214). The number of electrons accumulated within one half of the MoFe protein 

(one  dimeric unit) is designated by the nomenclature En (n = 0-8) with the subscript n 

indicating the number of electrons received from Fe protein and E0 representing the 

resting state MoFe protein (MN). A condition of the deficit-spending ET model described 

above (116) is that all electrons passed to the MoFe protein from the Fe protein must 

accumulate on the FeMo-cofactor or one of its bound activated intermediate states (34).  

The results of a number of kinetic studies have allowed construction of a MoFe-

protein cycle as shown in Figure 1-6. As noted in the cycle, there is good evidence 

indicating that different substrates bind to different reduction states (En) of the MoFe 

protein. In the absence of other substrates, H2 is released from E2, E3, and E4 state 

(Figure 1-6). Dinitrogen is modeled to bind to E3 or E4 state (209), which is accompanied 

by the release of one equivalent of H2 (41, 215). In the absence of N2, the less reduced E1 

and E2 states are achieved, which are sufficient for proton binding and reduction to H2. 
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Figure 1-6. Modified Lowe-Thorneley (LT) kinetic scheme for reduction of N2. In this 

scheme, the En represents one functional  dimeric unit, which has been reduced by n 

electrons relative to the resting state E0. The composition and molecular structures of 

nitrogenous intermediate at different En states, such as E5 and E6, are unknown and 

represented by NxHy with x = 1 or 2, and y = 0-4. The possible steps to release the first 

NH3 are indicated by dashed arrows and red question marks. 

The non-physiological substrate acetylene is modeled to bind to the E1 or E2 state for 

reduction to ethylene (216). The binding of different substrates to different redox states 

and binding sites of the MoFe protein can result in confusing inhibition patterns (29). For 

example, the inhibition of N2 reduction by acetylene appears to be non-competitive, while 

the inhibition of acetylene reduction by N2 appears to be competitive (185). This apparent 

contradiction can be explained by the fact that acetylene binds to the less reduced E2 state 

whereas N2 binds to more reduced states (209). Thus, acetylene appears to be a non-

competitive inhibitor of N2 reduction and N2 a competitive inhibitor of acetylene 
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reduction. Experimental evidence explaining these observations at a molecular level can 

be found in Chapter 5 of this dissertation. 

Spectroscopic Characterization of Freeze-Trapped Intermediates 

The shortcomings of the kinetic-study-based LT kinetic model include that there 

is no information about (i) the molecular structure of individual intermediates, (ii) the 

mechanism of accumulation of electrons/protons on FeMo-cofactor and addition to bound 

substrates, and (iii) the partition of accumulated electrons between the P clusters, FeMo-

cofactor, and bound intermediates. These features limit the understanding of substrate 

binding and reduction mechanism of nitrogenase at a molecular level. 

As described before, a number of important intermediates have been trapped and 

characterized as EPR-active complexes with FeMo-cofactor bound substrate-derived 

ligands (Table 1-2). Characterization of the En states of these intermediates and fitting 

them into the LT kinetic model is the key to understanding the substrate reduction 

mechanism. Pulsed EPR spectroscopy has been widely used in the characterization of 

these trapped intermediates during turnover (31). ENDOR/ESEEM analysis of nuclei 

(e.g., 1/2H-, 13C-, or 15N-ENDOR, and 14/15N-ESEEM) can determine the molecular 

structure of the substrate-derived ligands and the number of electrons residing on the 

ligands in the EPR active intermediates (31, 114, 123). 57Fe- and 95Mo-ENDOR study of 

the intermediates can give information about the valences of the metal ions in the FeMo-

cofactor and the redox states of the cofactor, which in turn give information about the 

electrons residing on the FeMo-cofactor (31, 114, 217). This information directly 

contributes to establishing the “electron inventory,” seeking to determine the number (n) 

of electrons and protons that have been delivered to the MoFe protein to form an En state 
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in LT model (Figure 1-6) by partitioning n into four parts: (i) those that reside on the 

substrate-derived ligand bound to FeMo-cofactor; (ii) those reside on FeMo-cofactor; (iii) 

the number of released protons and electrons through liberation of H2 and reduced 

substrate (e.g., NH3); and (iv) the electrons that P cluster has donated to FeMo-cofactor 

(31, 114). Recently, a relaxation protocol using a temperature step annealing of the 

trapped states as a way to gradually and systematically observe a trapped intermediate 

relax while monitoring the appearance of new intermediates and ultimately the 

reappearance of the FeMo cofactor resting state (31, 218) was developed. This relaxation 

approach compensates for the difficulty of analyzing the 57Fe ENDOR spectra caused by 

the slow 57Fe nuclear relaxation (31). These spectroscopic techniques are applied to 

understand the reduction mechanisms of nitrogenous substrates (see Chapter 2 and 3, and 

the following sections) and the role of Mo (see Chapter 4) in this dissertation. 

Application of the methods described above has led to key understanding of some 

of the freeze-trapped intermediates (Table 1-2). For example, the intermediate (S = ½) 

trapped under low-CO condition is a complex with one bridging CO bound to two Fe 

atoms of FeMo-cofactor with the enzyme at E2 state (31, 114). However, the trapped 

intermediate in the presence of acetylene is a complex with an ethylene ligand bound 

“side-on” to one of Fe atom of two-electron reduced FeMo-cofactor, that is, the enzyme 

is at E4 state (31, 114). 

Other spectroscopic methods, such as Mössbauer (110) and EXAFS (219) 

spectroscopies, have also been used to characterize the freeze trapped nitrogenase 

intermediates. A recent Mo- and Fe-EXAFS study of freeze trapped samples with 

propargyl alcohol as substrate clearly suggests that the product allyl alcohol binds to one 
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of the Fe atom, not Mo atom of the FeMo-cofactor (219). Because both EPR active and 

silent intermediates exist in the freeze trapped samples, it is very hard to interpret the 

spectra from these studies and assign the En state for a specific intermediate. IR-

monitored photolysis and SF-FTIR have also been applied to understand the nitrogenase 

mechanism (207, 208, 220–222). A study using SF-FTIR to understand CO binding to 

FeMo-cofactor can be found in Chapter 6. 

N2 Binding and Reduction Mechanism 

To understand the molecular mechanism of N2 reduction of nitrogenase, three 

features must be established: (i) the “reaction pathway,” an enumeration of the states that 

arise during the conversion of reactants to products, (ii) the molecular structures of these 

intermediates, and (iii) a kinetic scheme, in this case the LT scheme, that incorporates 

information about the kinetics/dynamics of conversion among these intermediates and the 

electron inventory of each intermediate. Combining the understanding of the binding sites 

and binding mode of the intermediates along the reaction pathway, a fully understood 

mechanism could be established. 

The coupling of electron transfer to protonation to yield metal hydride(s) at the 

FeMo-cofactor is a key postulate in the LT kinetic model for nitrogenase catalysis (210), 

especially for N2 binding and subsequent reduction (Figure 1-6). But there has been no 

direct experimental evidence for such intermediates. Until recently, the first observation 

of the metal hydride(s) intermediate is from the proton-trapped state by the α-70Ile 

substituted MoFe protein during turnover under Ar (193), which has  been definitively 

assigned to the 4-electron reduced state of the FeMo-cofactor (E4) (217, 218, 223). 

Surprisingly, it was found that in this multiply reduced state, the metal core of the FeMo-
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cofactor, is in the same oxidation state as the resting state (E0) (223). This apparent 

contradiction was explained when it was discovered that the trapped E4 state under Ar has 

two Fe-bound bridging hydrides (see Chapter 4 and Figure 1-7) (223). Thus, it appears 

that electrons are located on the bound metal-hydrides, leaving the metal core of the 

FeMo-cofactor in the resting oxidation state. Such “parking” of electron pairs on metal 

bound hydrides indicates that FeMo-cofactor might formally access only two oxidation 

states during the catalytic process (33). Temperature step annealing study monitored by 

EPR revealed that the relaxation of this E4 hydride intermediate to the resting E0 state is 

through an E2 intermediate by stepwise releasing of two H2 (Figure 1-6) (218).  

 

 

Figure 1-7. Metal hydrides and the FeMo-cofactor. Shown are provisional binding sites 

for bridging hydrides (H-) and protons (H+) on one 4Fe-4S face of the FeMo-cofactor. All 

hydrogen species are highlighted in red. 
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Recently, a “reductive elimination” model has been proposed wherein N2 binding 

to the E4 state involves the loss of two metal-bound hydrides as H2, with electron and 

proton addition to the bound N2 resulting in a metal-bound diazene (34). Experimental 

evidence supporting this model has been obtained in Chapter 5 of this dissertation. 

Once N2 binds to FeMo-cofactor (designated as M, Figure 1-8), it will be 

subsequently reduced by hydrogenation with e-/H+ (H-atom). Recently, the N2 reduction 

pathways have been divided into two major classes. In a “distal” (D) pathway, the 

formation of two NH3 is completed through two cycles of sequential addition of three H-

atoms to each nitrogen atom with the N-N bond cleaved after the first three H-atoms 

addition (Figure 1-8). This D pathway (also called Chatt cycle (201)) is supported by 

inorganic Fe and Mo metal complexes (201, 202, 224). This contrasts with an 

“alternating” (A) pathway in which H-atoms add alternately to the two nitrogen atoms of 

N2 before the N-N bond cleavage when one H-atom addition to the metal-bound 

hydrazine intermediate (31, 32). The A pathway is favored by computational studies 

(225–227) and several hints from biological studies of the Mo-dependent nitrogenase as 

described next.  

One of the most important features of the nitrogenase N2 reduction mechanism is 

the observation that, once bound, N2 is quantitatively converted to 2 NH3, with no 

observed “leaked” intermediates for Mo-nitrogenase (121). However, trace amount of 

N2H4 was detected as a product from acid or base quenching of the intermediate during 

N2 reduction (121, 212). During N2 reduction by the V-nitrogenase, a trace amount of 

hydrazine has been reported (122). Thus, Mo-dependent nitrogenase is designed to bind 

N2 and conduct multiple rounds of reduction and protonation without the release of semi-
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reduced states. However, this feature, the ability to capture a substrate for multiple rounds 

of reduction, can be changed when HCN, the isoelectronic counterpartner of N2, is used 

as the substrate. The reduction of HCN by Mo-dependent nitrogenase can produce 

CH2=NH, CH3-NH2, and CH4 and NH3 as products (158, 228), which are isoelectronic to 

the HN=NH, H2N-NH2, and two NH3 intermediate and products on the A pathway for N2 

reduction (Figure 1-8). Moreover, both diazene (123) and hydrazine (126) are substrates 

for Mo-dependent nitrogenase. A diazene-bound state has been suggested as a key 

intermediate for N2-dependent HD formation reaction (130). All these biological studies 

favor the A pathway for N2 reduction catalyzed by Mo-dependent nitrogenase. 

Due to the different molecular structures of the N2-derived ligands and possible 

redox state of metal centers between the “diazenido” M-N=NH and “amido” M-NH2 

along the two reduction pathways (Figure 1-8), the enzymatic pathway of N2 reduction 

would be revealed if these intermediates could be characterized by spectroscopic methods, 

such as EPR and ENDOR. The breakthrough in freeze-trapping the EPR-active 

intermediates of nitrogenous substrates (e.g. N2) during turnover makes this strategy 

feasible (Table 1-2). Before this dissertation research, four such EPR-active (S = 1/2) 

intermediates have been trapped for different nitrogenous substrates and different MoFe 

protein variants during steady-state turnover: (i) N2 as an early stage substrate for wild 

type MoFe protein (192, 194); (ii) CH3N=NH (124, 192) and HN=NH (123) as middle 

stage substrates for -195Gln and -70Ala/-195Gln MoFe protein, respectively; (iii) H2N-

NH2 as late stage substrate for -70Ala/-195Gln MoFe protein (127, 192). Further 

characterization using pulsed ENDOR spectroscopies leads to some key features of these  
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Figure 1-8. Stepwise reduction of N2 following the “distal” (D) (left) and “alternating” 

(A) pathways (right). M represents FeMo-cofactor without specifying the change of the 

redox state. The representations do not imply specific binding modes and the source of 

electrons and protons (e-/H+). The proposed entry points for N2, diazene and hydrazine 

are shown to the right.  
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intermediates (31, 32): (i) The trapped intermediate complex during N2 reduction appears 

to be a nonprotonated N bound to FeMo-cofactor, which would represent an earlier stage 

intermediate in the pathway (192, 194). (ii) The other three intermediate complexes 

trapped during reduction of CH3N=NH, HN=NH, and H2N-NH2 reduction contain a 

substrated-derived [-NHx] moiety bound to FeMo-cofactor (123, 124, 127, 192). (iii) The 

[-NHx] moieties in trapped intermediates with diazene and hydrazine substrates has very 

indistinguishable 15N and 1H ENDOR spectroscopic characteristics (123). These 

observations suggest that diazene and hydrazine enter the A reduction pathway evidenced 

by generating a common intermediate during Mo-dependent nitrogenase-catalyzed N2 

reduction (31, 32).    

These studies have advanced our understanding of where and how substrates 

interact with the nitrogenase active site. Many other mechanistic insightful questions 

remain to be resolved. For example, is the N-N bond broken (Figure 1-6 and 1-8) in the 

trapped nitrogenous species characterized so far? What is the binding mode (e.g. side-on 

or end-on) of the substrate-derived ligands if the N-N bond is not cleaved? What is the 

level of reduction of the trapped states? What is the level of hydrogenation of the 

substrate-derived ligands in these intermediates? Does any intermediate migrate among 

the metals (Fe and Mo) during the course of substrate binding or reduction? Answers to 

some of these outstanding questions mentioned above have been solved in Chapter 2 and 

Chapter 3 of this dissertation using ENDOR/ESEEM/HYSCORE techniques. 
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Possible Mechanisms for Hydrogenation of Substrates 

There are several different possible mechanisms for how substrates could be 

reduced by nitrogenase including through hydride insertion at an electron-deficient center, 

protonation of an electron-rich center, or reductive elimination reactions between the 

adjacent metal-hydride (M-H) and metal-ligand (M-X, X = C, N, O, or S etc.) bond. 

Enzyme bound hydride has been suggested as a key intermediate for N2 reduction (121) 

for a long time and is the basis for the LT kinetic model (210). The recent discovery of 

bridging metal-hydrides (193) in nitrogenase suggests a reductive elimination mechanism 

for H2 evolution upon N2 binding (34), although a direct role has yet to be established 

(226, 227, 229).  

Thus, several questions remain to be answered about the roles of such hydrides 

including: (i) do hydrides attack bound substrates? (ii) Is there a stepwise proton coupled 

electron transfer of the bound substrate or protonation of the reduced substrate-derived 

anionic ligand bound to the metallic active center? And (iii) is there a reductive 

elimination reaction of the M-H and M-X to form X-H species? As these different 

possible mechanisms are considered, it is important to appreciate that nitrogenase 

catalysis might use different hydrogenation mechanisms at different steps for different 

substrates. For example, the production of both cis- and trans-isomer products from 

acetylene reduction (180) can be explained by the insertion of an acetylene molecule into 

an M-H on FeMo-cofactor. This mechanism might also explain the observation that 

acetylene completely inhibits proton reduction (147), by intercepting the M-H that is 

destined to make H2. Recently, molecular-level mechanisms for hydrogenation of 

acetylene have been supported by experimental results in Chapter 5 of this dissertation. 
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Summary 

In summary, the nitrogenase mechanism has been significantly expanded in the 

past 50 years. An understanding of different mechanistic aspects at a molecular level is 

not yet crystal clear. Guided by those outstanding questions described above, my 

dissertation research will focus on understanding the substrate binding and reduction 

mechanism of molybdenum nitrogenase using a combination of genetic, biochemical and 

spectroscopic approach. The data presented in this dissertation are usually diverse, 

covering several aspects to understand: (i) the metal sites for substrate/inhibitor binding 

and reduction on FeMo-cofactor (Chapter 4 and Chapter 6); (ii) the mechanism of N2 

binding and reduction (Chapter 2, 3, and 5); (iii) the hydrogenation mechanism of Mo-

dependent nitrogenase-catalyzed substrate reduction (Chapter 5); (iv) the effects of amino 

acid substitution around FeMo-cofactor on substrate/inhibitor binding and reduction of 

Mo-dependent nitrogenase (Chapter 2, 3, 4, 6, 7, and 8). 
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CHAPTER 2 

ENDOR/HYSCORE STUDIES OF THE COMMON INTERMEDIATE TRAPPED 

DURING NITROGENASE REDUCTION OF N2H2, CH3N2H, AND N2H4 SUPPORT 

AN ALTERNATING REACTION PATHWAY FOR N2 REDUCTION2 

ABSTRACT 

 Enzymatic N2 reduction proceeds along a reaction pathway comprised of a 

sequence of intermediate states generated as a dinitrogen bound to the active-site iron-

molybdenum cofactor (FeMo-co) of the nitrogenase MoFe protein undergoes six steps of 

hydrogenation (e-/H+ delivery). There are two competing proposals for the reaction 

pathway, and they invoke different intermediates. In the ‘Distal’ (D) pathway, a single N 

of N2 is hydrogenated in three steps until the first NH3 is liberated, then the remaining 

nitrido-N is hydrogenated three more times to yield the second NH3. In the ‘Alternating’ 

(A) pathway, the two N’s instead are hydrogenated alternately, with a hydrazine-bound 

intermediate formed after four steps of hydrogenation and the first NH3 liberated only 

during the fifth step. A recent combination of X/Q-band EPR and 15N, 1,2H ENDOR 

measurements suggested that states trapped during turnover of the α-70Ala/α-195Gln MoFe 

protein with diazene or hydrazine as substrate correspond to a common intermediate 

(here denoted I) in which FeMo-co binds a substrate-derived [NxHy] moiety, and 

measurements reported here show that turnover with methyldiazene generates the same 

intermediate. In the present report we describe X/Q-band EPR and 14/15N, 1,2H ENDOR/-

                                                            
2 Reproduced with permission from [Dmitriy Lukoyanov, Sergei A. Dikanov, Zhi-Yong Yang, Brett M. 
Barney, Rimma I. Samoilova, Kuppala V. Narasimhulu, Dennis R. Dean, Lance C. Seefeldt, and Brian M. 
Hoffman (2011) Journal of The American Chemical Society 133(30), 11655-11664]. Copyright [2011] 
American Chemical Society.   
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HYSCORE/ESEEM measurements that characterize the N-atom(s) and proton(s) 

associated with this moiety. The experiments establish that turnover with N2H2, CH3N2H, 

and N2H4 in fact generates a common intermediate, I, and show that the N-N bond of 

substrate has been cleaved in I. Analysis of this finding leads us to conclude that 

nitrogenase reduces N2H2, CH3N2H, and N2H4 via a common A reaction pathway, and 

that the same is true for N2 itself, with Fe ion(s) providing the site of reaction. 

INTRODUCTION 

 Nitrogen fixation — the reduction of N2 to two NH3 molecules — is essential for 

all life, with the lives of over one-half of today’s human population depending on 

biologically fixed nitrogen.1 Biological nitrogen fixation, which requires energy in the 

form of MgATP, is catalyzed by the enzyme nitrogenase according to the limiting 

stoichiometry:2,3 

N2 + 8e- + 8H+ + 16MgATP → 2NH3 +H2 + 16MgADP + 16 Pi        (2-1) 

There are three types of nitrogenases,4 with the best-characterized and most 

prevalent being the Mo-dependent enzyme studied here.3,5,6 It consists of two components, 

denoted the Fe protein and the MoFe protein. The former delivers electrons to the 

catalytic MoFe protein, which contains two remarkable metal clusters, the N2 

binding/reduction active site, the iron-molybdenum cofactor ([7Fe-9S-Mo-X-

homocitrate]; FeMo-co, Figure 2-1), and the [8Fe-7S] P cluster, which is involved in 

electron transfer to FeMo-co.3,5  
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Figure 2-1. Structure of FeMo-co showing Fe green, Mo purple, S yellow, X grey. 

N2 reduction by nitrogenase proceeds along a reaction pathway comprised of the 

sequence of intermediate states generated as a dinitrogen bound to FeMo-co undergoes 

six steps of hydrogenation (e-/H+ delivery),2,3,5-8 as schematized in the Lowe-Thorneley  

kinetic model for nitrogenase function.3,9,10 We note that one can further consider 

whether electron/proton delivery at each stage is coupled or sequential, thereby possibly 

introducing additional intervening intermediates,11 but such issues are beyond the scope 

of this report. 

Two competing proposals for the reaction pathway have long been 

considered.3,6,12 They invoke distinctly different intermediates, Scheme 2-1, and 

computations suggest they likely involve different metal-ion sites on FeMo-co.12  In the 

‘Distal’ (D) pathway, followed by N2-fixing inorganic Mo complexes11 and suggested to 

apply in reaction at Mo of FeMo-co,13 a single N of N2 is hydrogenated in three steps  
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Scheme 2-1. 

 

until the first NH3 is liberated, then the remaining nitrido-N is hydrogenated three more 

times to yield the second NH3. In the ‘Alternating’ (A) pathway that has been suggested  

to apply to reaction at Fe of FeMo-co,14 the two N’s instead are hydrogenated alternately, 

with a hydrazine-bound state generated upon four steps of hydrogenation and the first 

NH3 only liberated during the fifth step. Simple arguments can be made for both 

pathways. For example, the A route is suggested by the fact that hydrazine is both a 

substrate of WT nitrogenase and is released upon acid or base hydrolysis of the enzyme 

under turnover,3,8,15 and is favored in computations with reaction at Fe,12,14 while the D 
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route is suggested by the fact that the only inorganic complexes that catalytically fix N2 

employ Mo and function via the D route,11 which is computationally favored for reaction 

at Mo.12 As shown by Scheme 2-1, characterization of catalytic intermediates can 

distinguish between the two competing pathways.  

Nitrogenase reduction intermediates had long eluded capture until we5,16,17 

described the freeze-trapping and ENDOR spectroscopic studies of a number of them, 

each of which shows an EPR signal arising from an S = ½ state of the FeMo-co, rather 

than the S = 3/2 state of resting-state FeMo-co.5 These include intermediates formed 

during the reduction of alkyne substrates,18 the reduction of H+ under Ar,19 and finally, 

four associated with N2 fixation itself.17,20-24 These four include a proposed early (e) stage 

of the reduction of N2, e(N2), obtained from wild-type (WT) MoFe protein with N2 as 

substrate,16 and three putative ‘mid-stage’ or late-stage intermediates that are the subject 

of this study: m(NH=N-CH3), obtained from α-195Gln MoFe protein with CH3-N=NH as 

substrate;23 m(NH=NH), obtained from the doubly substituted, α-70Ala/α-195Gln MoFe 

protein during turnover with in situ-generated NH=NH,17 and a ‘late’ stage, l(N2H4), from 

the α-70Ala/α-195Gln MoFe protein during turnover with H2N-NH2
21 as substrate.  

Both hydrazine and diazene are substrates of wild-type nitrogenase that, like N2, 

are reduced to ammonia.3,17,21 Substitution of the α-70Val residue by α-70Ala opens up the 

active site in the vicinity of an Fe ion at the waist of FeMo-co, Fe6, to accommodate 

larger substrates, increasing the rate of ammonia formation when either hydrazine or 

diazene is the substrate,5 and, implicating Fe as the site of substrate binding. Substitution 

of the α-195His residue by α-195Gln, alone or in combination with the α-70Ala substitution, 

is thought to disrupt the delivery of protons for reduction of nitrogenous substrates,25 and 
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facilitate the accumulation of intermediates.5 Recently, a combination of X/Q-band EPR 

and 15N, 1,2H ENDOR measurements suggested that m(NH=NH) and l(N2H4) formed 

during turnover of the α-70Ala/α-195Gln MoFe protein with diazene or hydrazine as 

substrate correspond to a common intermediate (here denoted I) in which FeMo-co binds 

a substrate-derived [NxHy] moiety.17  However, whether or not the N-N bond in I had 

been broken (x = 1 or 2) was not established. The capture of a common intermediate 

would indicate that diazene and hydrazine both enter and ‘flow through’ the normal N2-

reduction pathway (Scheme 2-1), and that the diazene-derived intermediate is not ‘mid-

stage’, but rather that diazene must have ‘caught up’ with the ‘later’ hydrazine reaction 

via additional steps of enzymatic hydrogenation.  

 In the present report we describe X/Q-band EPR and 14/15N, 1,2H 

ENDOR/HYSCORE/ESEEM26-28 measurements that characterize the N-atom(s) and 

proton(s) associated with the substrate-derived moiety of the intermediates formed during 

turnover with N2H2 and N2H4, and further report measurements showing that turnover 

with NH=N-CH3, which can be selectively 15N labeled in either nitrogen. These 

measurements establish that all three substrates generate a common intermediate, I, in 

which the N-N bond of substrate has been cleaved. Consideration of this finding allows 

us to evaluate whether the D or A reduction pathways (Scheme 2-1) describes N2 fixation 

by nitrogenase, and which type of metal ion, Fe or Mo, forms the reactive site. 

MATERIALS AND METHODS 

Samples. The preparation of the MoFe α-70Ala/α-195Gln protein and the freeze-

trapping of intermediates for paramagnetic resonance measurements have been 

described.17,21,23 
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Q-Band CW and Pulsed ENDOR Experiments. CW and pulsed 35 GHz 

ENDOR spectra were recorded at 2 K as described previously.17,21,23 The ENDOR 

spectrum for a single orientation of an  I = ½ nucleus (1H, 15N) is a  doublet centered at 

the nuclear Larmor frequency and split by the hyperfine coupling, A; hyperfine tensors 

are obtained through analysis of 2D field-frequency plots comprised of spectra collected 

at multiple fields across the EPR envelope.27,29 Pulsed ENDOR spectra were detected 

with Mims and ReMims sequences.30 Intensity of ENDOR response for Mims sequence, 

[π/2-τ-π/2-T(rf)-π/2-τ-detect], follows the relationship, I(A) ~ 1 - cos(2πAτ), and as a 

result the signals at Aτ = n, n = 0, 1, … are suppressed (‘blind spots’). ReMims sequence, 

[π/2-τ1-π/2-T(rf)-π/2-τ2-π-(τ1+τ2)-detect], allows using short preparation interval τ1 and 

study of wider range of hyperfine values without ‘blind spots’ distortions.  

X-Band Pulsed EPR and ESEEM Experiments. CW EPR measurements were 

performed on an ESP 300 Bruker spectrometer equipped with Oxford CF 935 cryostat.  

Pulsed X-band EPR measurements were carried out using a Bruker ELEXSYS E580 

spectrometer with an Oxford CF 935 cryostat at 8 K. Several types of ESEEM 

experiments with different pulse sequences were employed, with appropriate phase-

cycling schemes to eliminate unwanted features from experimental echo envelopes. 

Among them are two-pulse, and one-(1D) and two-dimensional (2D) four-pulse 

sequences. In the two-pulse experiment (/2-τ---echo), the intensity of the echo signal 

is measured as a function of the time interval τ between two microwave pulses with 

turning angles /2 and  to generate an echo envelope that maps the time course of 

relaxation of the spin system (in ESEEM) or as a function of magnetic field at fixed  (in 

field-sweep ESE).  In the 2D four-pulse HYSCORE experiment (/2--/2-t1--t2-/2--
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echo),31 the intensity of the echo after the fourth pulse was measured with t2 and t1 varied 

and  constant. The length of a /2 pulse was nominally 16 ns and a  pulse 32 ns. The 

repetition rate of pulse sequences was 1000 Hz.  HYSCORE data were collected in the 

form of 2D time-domain patterns containing 256256 points with steps of 20 or 32 ns. 

Spectral processing of ESEEM patterns, including subtraction of the relaxation decay 

(fitting by polynomials of 3-6 degree), apodization (Hamming window), zero filling, and 

fast Fourier transformation (FT), was performed using Bruker WIN-EPR software. 

RESULTS  

 In describing results we will employ the original notation, m(NH=NH), 

m(NH=N-CH3), and l(N2H4), when it is helpful in specifying the origin of a sample 

and/or its isotopic composition for ENDOR/HYSCORE measurements. As these in fact 

represent a common intermediate, when discussing properties we will commonly refer to 

it as I. 

X- and Q-Band EPR. EPR spectra of α-70Ala/α-195Gln trapped during turnover in 

the presence of N2H4 and N2H2 reveal a complete disappearance of the resting state 

spectrum and the presence of the low spin signal with almost axial g-tensor characteristic 

of the I intermediate. For completeness, we note that the high field part of the I spectrum 

is overlapped with the rhombic signal of the reduced 4Fe4S cluster of the Fe protein, g = 

[2.05, 1.94, 1.86]. As shown earlier, the spectrum of I is the sum of contributions from 

two conformers.17 X-band and Q-band spectra of the m(NH=N-CH3) intermediate formed 

by turnover of CH3N2H with α-70Ala/α-195Gln  MoFe protein likewise show the presence 

of two major conformers and their g-values are indistinguishable from those of the 
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Figure 2-2. EPR spectra of intermediate I (l(N2H4)) detected by various techniques. 

Conditions for CW X-band: microwave frequency, 9.38 GHz; microwave power, 10 mW; 

modulation amplitude, 7 G; time constant, 160 ms; field sweep speed, 20 G/s. Conditions 

for CW Q-band: microwave frequency, 35.08 GHz; microwave power, 32 µW; 

modulation amplitude 4 G; time constant, 128 ms; field sweep speed, 17 G/s. Conditions 

for pulsed Q-band: microwave frequency, 34.79 GHz; Mims sequence, π/2 = 50 ns, τ = 

600 ns; repetition time 10 ms, 50 shots/point; field sweep speed, 8 G/s. 
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l(N2H4), suggesting that enzymatic turnover with methyldiazene likewise generates 

intermediate I. 

  We have also extended the characterization of the spin properties of I. The 

temperature and microwave power dependences of the l(N2H4) signal show that the two 

major conformers of the EPR-active FeMo-co in I have significantly different relaxation 

properties, Figure 2-2. At temperatures below 8 K the X-band signal is dominated by a 

conformer with g = [2.09, 2.01, 1.98] (g1 = 2.09 signal), Figure 2-2. As the temperature is 

increased to T ~ 15 K, the EPR signal from a second conformer with g1 = 2.11 becomes 

dominant. The signal intensity decreases at still higher temperatures, disappearing above 

T ~ 30 K.  

Q-band CW spectra collected at T = 2 K show signals from both major 

conformers at high microwave power. As the power is lowered, the g1=2.11 signal 

progressively becomes more prominent. At the microwave power settings used for 2 K 

Q-band CW 1H ENDOR measurements, the conformers contribute roughly equally to the 

EPR spectrum, Figure 2-2. In contrast, the 2 K Q-band echo-detected EPR spectrum 

collected with the short repetition times (~ 10 ms) used for 15N Mims pulsed ENDOR 

experiments is dominated by the g1 = 2.09 conformer, which thus governs these ENDOR 

measurements. The contribution of the g1 = 2.11 conformer becomes more noticeable 

with longer repetition times (~ 50 ms) but remains substantially lower in intensity.  
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Figure 2-3: 35 GHz CW 1H ENDOR spectra of I (l(N2H4)) obtained at g = 2.02 for 

samples prepared in H2O (black) and D2O (red) buffers. The lower spectrum shows 

pulsed 2H ENDOR detected for D2O sample. Conditions for CW ENDOR: microwave 

frequency, 35.002 GHz (H2O), 35.096 GHz (D2O); modulation amplitude, 2.5 G; time 

constant, 64 ms; bandwidth of RF broadened to 100 kHz; RF sweep speed, 1 MHz/s, 80 

scans; temperature, 2 K. Conditions for pulsed ENDOR: microwave frequency, 34.886 

GHz; Mims sequence, π/2 = 52 ns, τ = 452 ns; RF 73 µs; repetition time 12 ms, 16 

shots/point, 32 scans; temperature, 2 K. 

Based on the temperature dependence of the CW X-band EPR spectra, Figure 2-

2, it is likely that the two conformers contribute roughly equally at the temperatures used 

to collect X-band HYSCORE spectra, T ≈ 8 K. For completeness, Figure B-S1 
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(APPENDIX B) shows the X-band field-sweep two-pulse ESE spectrum. It is a broad 

line between 322.0 mT and 382.0 mT with two maxima around 345.0 mT and 360.0 mT 

corresponding to g = 2.01 and 1.926, respectively. The relative intensities of two maxima 

varied slightly in different samples used in this work, presumably because of slight 

variations in the ratio of Fe to MoFe proteins. 

 35 GHz 1H CW and 2H Pulsed ENDOR. The 35 GHz CW 1H ENDOR spectra 

at g = 2.02 for l(N2H4) in H2O buffer show a peak corresponding to the higher-frequency, 

+, branch of the doublet for a proton(s) with A(1) ~ 8 MHz, a shoulder from a proton(s) 

with A(2) ~ 6 MHz, and a central, poorly resolved signal with breadth of ~ 4 MHz. The - 

branch of the H1 and H(2) spectra are respectively distorted and absent, common 

observations in such low-temperature spectra. When l(N2H4) is prepared in D2O buffer, 

the H1 signal is lost, and instead is visible in the 2H Mims pulsed ENDOR spectrum, 

Figure 2-3. Although the 2H spectrum has a hint of a +(2) feature, suggesting H(2) 

likewise is exchangeable, the H(2) shoulder is not lost from the sample prepared in D2O 

buffer, so we conclude that H(2) is not exchangeable. In addition, although the majority 

of the central peak is not lost with D2O buffer, and hence not exchangeable, the 2H 

spectrum shows that a fraction of it does exchange. The coupling, A(1) decreases as the 

field is increased/decreased towards g3/g1. At these single-crystal orientations the signals 

are strongly overlapped with broad peak of weakly coupled protons, and minimum 

hyperfine coupling can only be roughly estimated as A(1)min  6 MHz.  The poor 

resolution of the H1 ENDOR signals likely arises from the presence of multiple slightly 

inequivalent H1 protons plus the presence of two distinct conformers. The maximum 

component of the hyperfine tensor, A(1)max ~ 9 MHz, occurs at g ~ 2.05 (Figure B-S2, 
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APPENDIX B). If the field dependence of the poorly resolved H1 ENDOR pattern is 

considered to be associated with an anisotropic interaction of the dipolar form the polar 

angle between dipolar direction and g1 is estimated to be θ ~ 45o.  

 9 GHz 1,2H ESEEM/HYSCORE. Weak hyperfine couplings of the protons 

around FeMo-co and 4Fe4S centers were studied using orientation-selective two-

dimensional ESEEM, called HYSCORE. The HYSCORE experiment creates off-

diagonal cross-peaks (να, νβ) and (νβ, να) from each I = 1/2 nucleus in 2D spectrum.  

Powder and orientation-selected HYSCORE spectra of I = ½ nuclei reveal, in the form of 

cross-ridges, the interdependence between  and , in the same orientations. Analysis 

of the ridges in (να)
2 vs. (νβ)

2  coordinates allows separate estimate of the isotropic (a) and 

anisotropic (T) components of the hyperfine tensors.32 

Figure 2-4 shows 1H HYSCORE spectra of the l(N2H4) intermediate obtained at 

the magnetic field 332.0 mT (g = 2.087) (Figure 2-4A) and 334.5 mT (g = 2.008) 

(Figure 2-4B). Spectra resolve two pairs of cross-peaks 1 and 2. Cross-peaks 2 possess 

larger splitting ~ 6-8 MHz and visible deviation from antidiagonal indicating a significant 

anisotropic hyperfine component. The intensities of the cross-peaks 2 decrease relative to 

those of 1 as the magnetic field is increased and cross-peaks 2 are not observed above ~ 

349.0 mT (g = 1.985). Cross-peaks 2 were also not observed in the spectra of the sample 

prepared in D2O showing that they are produced by exchangeable proton(s).  As 

discussed in detail in APPENDIX B, quantitative analysis of the cross-ridges 2 contours 

from the spectra recorded at different field in the coordinates (ν1)
2 vs. (ν2)

2 using 

methodology previously described33 and assuming an axial anisotropic component gives 

two possible solutions: T = 4.6 MHz, a = -0.2 MHz and T = 4.6 MHz, a = -4.3 MHz 
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(signs are relative). These values for a and T correspond to A = |a - T| ~ 4.8 MHz and A|| 

= |a + 2T| ~ 9 MHz for the first solution, and A ~ 9 MHz and A|| ~ 4.8 MHz for the 

second. The second solution is consistent with the observation in Q-band ENDOR of an 

exchangeable proton(s) with maximum coupling, A(1)max ~ 9 MHz and minimum 

coupling, A(1)min  6 MHz. Cross-peaks 1 correspond to the non-exchangeable proton 

shoulder seen in Q-band ENDOR and associated with the protein. 

Additional information about the exchangeable proton(s) was sought from 1D 

four-pulse 1H ESEEM spectra. Such spectra contain lines in the region of the double 

proton Larmor frequency (2H ~ 28-29 MHz) that are sum-combination harmonics ( + 

) of two basic frequencies  and . As presented in APPENDIX B, analysis of these 

harmonics shows the existence of protons with the same anisotropic coupling as found 

for the exchangeable protons by HYSCORE.   

35 GHz 15N ReMims ENDOR. Figure 2-5A presents pulsed 15N ENDOR 

spectra collected at the three canonical g-values for the intermediates trapped during 

turnover with the three isotopically labeled substrates, N2H2, CH3N2H, and N2H4, and 

Figure 2-5B presents a 2D field-frequency plot of pulsed 15N ENDOR spectra collected 

across the EPR envelope of l(15N2H4) prepared from the α-70Ala/α-195Gln MoFe protein 

by freeze-quench during turnover in the presence of 15N2H4. Spectra were collected with 

the ReMims30 pulse sequence. This permitted measurements with τ1 = 200 ns, which 

eliminates Mims ENDOR ‘blind spots’ from the frequency range of the scan. Wider 

ENDOR scans collected for l(15N2H4) showed no 15N signal with a hyperfine coupling 

greater than  the maximum for N1, A3 = 2.7 MHz.  
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Figure 2-4.  Contour presentations of the 1H HYSCORE spectra of the l(N2H4) 

intermediate (magnetic field 332.0 mT (A) and 345.0 mT (B), time between first and 

second pulses  = 136 ns, microwave frequency 9.6982 GHz). 
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Figure 2-5. (A) Comparaion of 35 GHz ReMims pulsed 15N ENDOR spectra of 

intermediates trapped during turnover of the α-70Ala/α-195Gln MoFe protein with 15N2H4, 

15N2H4, and 15NH=N-CH3 (denoted 15MD). (B) 2D Field-Frequency plot of 35 GHz 

pulsed 15N ENDOR spectra of l(15N2H4) intermediate. Conditions: microwave frequency, 

34.82 GHz; ReMims sequence, π/2  = 30 ns, τ1 = 200 ns; RF 40 µs; repetition time, 10 ms; 

500-950 scans; temperature, 2 K. Spectral baselines were corrected by simple subtraction 

if needed. Simulation (red) parameters: g = [2.09, 2.015, 1.98], hyperfine tensor A = [1.0, 

2.8, 1.5] MHz, Euler angles φ = 50, θ = 60, ψ = 55 with respect to g-frame. 
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 The spectra for the three intermediates are essentially identical, Figure 2-5A. The 

observed 2D 15N ENDOR patterns, as shown for l(15N2H4), Figure 2-5B, is consistent 

with the presence of a single type of 15N.  As shown in the figure, the 2D pattern can be 

described moderately well by simulations that assume a single 15N with hyperfine tensor, 

A(15N1) = [1, 1.5, 2.8] MHz, |aiso(
15N1)| = 1.8 MHz, corresponding to A(14N1) = [0.7, 

1.1, 2] MHz, |aiso(
14N1)| = 1.3 MHz. The observation of an isotropically coupled, 

substrate-derived 15N signal, in conjunction with the observation of the exchangeable H1 

ENDOR signal, establishes the presence of a substrate-derived [NxHy] moiety bound to 

metal ion(s) of the cofactor of I. These pulsed-ENDOR measurements were performed at 

T = 2 K with a 10 ms repetition time. As shown in Figure 2-2, the EPR spectrum 

collected under these conditions is dominated by the g1 = 2.09 conformer. Thus, the 15N1 

hyperfine tensor derived from the ReMims pulsed ENDOR measurements are assigned to 

this conformer, whose g tensor was used in the simulation.  

 The imperfections to the simulations in Figure 2-5B in terms of a single 15N1 

associated with each FeMo-co can be attributed to a combination of two factors: a 

distribution in the N1 tensor values for the g1 = 2.09 dominant conformer; a contribution 

from the 15N1 associated with the g1 = 2.11 conformer, whose contribution to the EPR 

spectrum can be discerned in Figure 2-2. The 15N ENDOR spectra of m(15NH=N-CH3), 

Figure 2-5A, confirm that the spectra do not instead arise from an overlap of signals 

from two nearly equivalent 15N associated with each FeMo-co. The original study of this 

intermediate,23 which employed the α-195Gln-substituted MoFe protein not the double 

mutant employed in this study, showed that when m(15NH=N-CH3) is formed from 

15NH=N-CH3 it exhibits a 15N signal comparable to those of N2H4 and N2H2, but with a 
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slightly smaller coupling, |aiso(
15N1)| ≈ 1.5 MHz. To assure proper comparisons, we here 

examine m(15NH=N-CH3) generated with the α-70Ala/α-195Gln MoFe protein, as with the 

other two substrates.  

 The EPR signal of m(15NH=N-CH3) prepared with the α-70Ala/α-195Gln MoFe 

protein is reported above to be the same as that of I, and Figure 2-5A likewise 

demonstrates that the ReMims ENDOR spectra of m(15NH=N-CH3) are the same as those 

of I formed with 15N2H4 and 15N2H2. The EPR and ENDOR results together therefore 

establish that turnover with methyldiazene also generates the common intermediate, I. As 

there is only one 15N in this substrate, the 15N signal for I cannot come from two nearly 

equivalent 15N associated with each FeMo-co, and must come from contributions from 

two conformers, each with a single 15N bound to FeMo-co.  

 We may further conclude that the slight differences in hyperfine parameters for 

m(15NH=N-CH3) prepared with the  α-195Gln and the α-70Ala/α-195Gln MoFe proteins 

result from secondary influences, that turnover of NH=N-CH3 indeed forms the common 

intermediate, I. With this identification, the previous study of I then further confirms that 

the signals of Figure 2-5A arise from a single 15N bound to FeMo-co in each of two 

conformers: when I is formed from NH=15N-CH3 there is no such 15N signal. The use of 

NH=N-CH3 isotopomers thus proves that either the N-N bond has been cleaved in I, or 

an N2Hx moiety from substrate binds end-on.  

15N Mims ENDOR. To test for end-on binding of N2Hx, we examined the 

intermediates l(15N2H4) and , m(15N2H2) for the presence of a second 15N derived from 

substrate, but with a smaller coupling than for N1, by collecting Mims ENDOR scans 

with a large pulse interval, τ. Although the signal from the latter sample is weaker, it is 
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indistinguishable from that of the former, in keeping with the assignment of both to I. 

The intensity of the Mims ENDOR response for a signal with hyperfine coupling, A 

(MHz), depends on τ(μs) through the function, I(τ) ~ 1-cos(2Aτ). When Aτ = n, the 

intensity is null and 'blind spots' appear in the ENDOR spectrum, as seen in the Mims 

spectrum taken for 15N1 with τ = 700 ns, Figure 2-6. However, in parallel, I(τ) shows 

sensitivity maxima at Aτ = n+1/2 and overall gives the best sensitivity at Aτ ≈ 1/2. Thus, 

as τ is progressively increased, the measurements become progressively more sensitive to 

smaller values of A. As this is a relative sensitivity, measurements were performed at the 

maximum of EPR signal intensity (g2). 

Setting τ = 700 ns in the Mims sequence, Figure 2-6, not only introduces the 

holes in the 15N1 spectra of l(15N2H4) and m(15N2H2), but also causes what appears to be 

a 15N doublet from a second, weakly-coupled 15N from substrate, centered at N, with 

A(15N2) ~ 0.1 MHz. However, this signal remains unchanged when a corresponding 

spectrum is collected for l(14N2H4) (and m(15N2H2), not shown) prepared from 14N2H4 

substrate. Thus, this ENDOR response is not associated with a second, weakly coupled 

15N2 of substrate, and instead can be assigned as a double-quantum transition from 14N 

associated with the MoFe protein. The narrow τ = 700 ns scan, collected with extremely 

high signal/noise, shows no trace of any 15N ENDOR response from a weakly coupled 

15N. Considering the example of nitrile hydratase (NHY)34 where a weakly coupled 15N 

(A < 0.05 MHz) is reliably detectable, one can conclude that hyperfine couplings ratio for 

metal-bound 15N1 and a possible second 15N2 of substrate must be A(N1)/A(N2) > 40. As 

with the direct inferences drawn from the different isotopologs of methyldiazene, the 

absence of any trace of a weakly coupled 15N2 indicates that the N-N bond of substrate 
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N2H4 has been cleaved, and the 15N1 and 1H1 ENDOR signals are associated with an 

[N1Hy] species. 

 

Figure 2-6. 35 GHz Mims 15N ENDOR spectra detected at the maximum of EPR signal 

intensity (g2 = 2.018) for l(15N2H4) (black) and m(15N2H2) (red) intermediates. Expanded 

spectra, below, compare region around 15N Larmor frequency for l(15N2H4) (black) and 

l(14N2H4) (purple).  Spectra are shown after simple  baseline correction; triangles 

represent distortions induced by ‘blind spots’ of Mims ENDOR. Conditions: microwave 

frequency, ~ 34.82 GHz; Mims sequence, /2 = 50 ns,= 700 ns; RF 40 �s; repetition 

time, 10 ms; 800-3800 scans; temperature, 2 K. 
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14,15N HYSCORE. HYSCORE experiments were performed with two samples of 

intermediate prepared from the α-70Ala/α-195Gln substituted MoFe protein by use of 

14N2H4 or 15N2H4 as substrate. Figure 2-7 shows representative HYSCORE spectra of 

two samples in the low frequency part appropriate for the weakly coupled nitrogens. 

These spectra are recorded at the magnetic field corresponding to the low-field maximum 

g = 2.01 in the EPR spectrum (Figure B-S1, APPENDIX B). Spectrum of the sample 

with 14N2H4 (Figure 2-7A) shows two pairs of cross-features symmetrical relative to the 

diagonal. Those are extended cross-features 2 of complex shape with several maxima and 

cross-peaks 1 possessing symmetrical line shape with elliptic contour.  

The spectrum of  l(15N2H4 ) (Figure 2-7B) shows that 15N labeling does not 

influence the cross-peaks 1 indicating that they are produced by protein 14N nitrogen. The 

labeling also leaves a pair of cross-peaks 2’’ located in the area where extended cross-

features 2 were observed in the spectrum of the sample with 14N2H4. This indicates that 

the cross-features 2 in Figure 2-7A result from the contribution of two different types of 

nitrogens. One contribution, denoted 2’, is lost in the 15N sample and is from 14N of 

14N2H4; the second (2”) is from 14N associated with the MoFe protein. In keeping with 

this assignment, 15N nitrogens of 15N2H4 produce new cross-peaks 3 in Figure 2-7A, 

located symmetrically around the diagonal point with 15N Larmor frequency (15N, 15N), 

that correspond to the lost signal 2’.  

The most important aspect of the HYSCORE spectrum Figure 2-7B is that there 

is no signal around the diagonal point from a very weakly coupled 15N, and the same is 

true for spectra recorded at other fields. The limit of detectability for a small coupling in 

HYSCORE is at least as low as that for Mims ENDOR. The absence of any trace of a 
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weakly-coupled 15N2 in either experiments indicate that the N-N bond of substrate N2H4 

has been cleaved, and the 15N1 and 1H1 ENDOR signals are associated with an [N1Hy] 

species. As discussed below, this conclusion is supported by earlier studies of I formed 

with isotopically labeled NH=N-CH3.
23 

 

Figure 2-7. Contour presentations of the 14,15N HYSCORE spectra of the l(N2H4) 

intermediate with 14N2H4 (A) and 15N2H4 (B) (magnetic field 345.9 mT (14N2H4) and 

346.0 mT (15N2H4), time between first and second pulses  = 136 ns, microwave 

frequency 9.702 GHz (14N2H4) and 9.707 GHz (15N2H4). 
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  HYSCORE spectra measured for l(15N2H4) at different magnetic fields show that 

the cross-peaks 1 are present in spectra measured in the field interval from 332.0 mT (g = 

2.087) up to 364.0 mT (g = 1.90), but decay quickly at magnetic fields below g = 2.01. 

This suggestion that the cross-peaks 1 come from nitrogen(s) associated with the 4Fe4S 

center of the Fe protein was confirmed by HYSCORE examination of the isolated Fe 

protein. In contrast, the cross-peaks 2” are observed from the low-field edge of the EPR 

spectrum (g = g1) up to 352.0 mT (g = 1.97) and the cross-peaks 3 from 15N likewise are 

seen in this field interval, which indicates that the 2’’ and 3 (and 2’) cross-peaks are from 

nitrogen(s) interacting with FeMo-co of the MoFe intermediate. The width and intensity 

of these cross-peaks 1 and 2” are consistent with the cross-correlation of 14N double-

quantum transitions from mS = ±1/2 manifolds. 

 Analysis of 14N HYSCORE peaks (1, and 2”). The frequency of double-

quantum transition in powder spectra is well described by the following equation:35  

dq = 2[2
ef 

 +  ]1/2                              (2-2) 

where  = K2(3+2),  ef = |N  ± A/2|. We suggest that dq taken from the spectra 

obtained in the region of the intermediate g2-values, where a broad set of orientations 

contribute to the spectra, would allow accurate estimate of hyperfine coupling and 

quadrupole coupling constant K = e2Qq/4h for nitrogens producing cross-peaks 1 and 2’’. 

The corresponding frequencies are of (4.0, 3.1) MHz for cross-peaks 1 and (3.81, 2.14) 

MHz for cross-peaks 2’’. Rearrangement of eq 2-2 yields the formula: 

A = ((dq+)2 – (dq-)
2)/8N                                        (2-3) 

This equation, together with the corresponding 14N Zeeman frequency, gives couplings 

A(14N) = 0.7 MHz (1) and A(14N) = 1.15 MHz (2’’). Using the derived values of the 
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hyperfine coupling one can calculate the quadrupole parameter from eq 2-2:  = K2(3+2) 

= 1.84 MHz2 (1) and 0.9 MHz2 (2’’). Those correspond to quadrupole coupling constant 

(qcc) K = 0.73±0.05 MHz (1) and K = 0.5±0.04 MHz (2’’), but do not permit assignment 

of the asymmetry parameter, 0    1. The qcc (1) is consistent with peptide nitrogens 

H-bonded to the 4Fe4S cluster, which exhibit quadrupole coupling constants, K ~ 0.7-0.8 

MHz.36 On the other hand, the lower value of the qcc (2’’) suggests that FeMo-co centre 

forms a hydrogen bond with another type of nitrogen.   

 The cross-features 2’ and 2’’ significantly overlap in forming feature 2 of the 

HYSCORE spectra of the l(14N2H4) intermediate, but comparison of Figure 2-7A and 2-

7B shows that cross-features 2’ possess more a complex extended shape. However, the 

overlap of the 2’ and 2” cross-peaks suggests that the values of hyperfine and quadrupole 

couplings for these two nitrogens are essentially the same, thereby giving for 2’, A(14N) ≈ 

1.15 MHz, K ≈ 0.5±0.04 MHz for the cofactor-bound –NHy fragment. This hyperfine 

coupling corresponds to A(15N) ≈ 1.6 MHz, in agreement with  |aiso(
15N1)| = 1.8 MHz 

derived above from 35 GHz ENDOR spectra. The extended shape of the 2’ cross-peaks 

correlates with the features in the EPR and 15N ENDOR and 15N HYSCORE (see below) 

spectra that suggest the presence of several similar conformations of the paramagnetic 

center.  

The estimate of K with an accuracy of ~15% allows its assignment to the 

particular type of nitrogens of the protein environment. Nevertheless, for a complete 

description of the nuclear-quadrupole interaction tensor, and its unambiguous assignment, 

direct determination of both quadrupole parameters, K and , would be desirable. These 

values could be determined directly from ESEEM experiments satisfying the cancellation 
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condition ef ~ 0 at one of the manifolds. For hyperfine coupling A ~ 0.67-1.0 MHz, the 

cancellation condition is reached at 14N Zeeman frequency I ~ 0.35-0.5 MHz, that 

corresponds to the S-band experiment with microwave frequency ~ 3-4 GHz.  

15N HYSCORE. X-band HYSCORE spectra measured at different magnetic 

fields across the EPR spectrum of l(15N2H4 ) all show15N cross-features (3) centered 

symmetrically around the diagonal point with the 15N Zeeman frequency.  Their location 

corresponds to the 15N hyperfine coupling ~1.5-2.0 MHz (Figure 2-8), in agreement with 

the 14N HYSCORE (2’) and 15N ENDOR results for the substrate-derived [-NHy]. The 

shape of the cross-peaks for 3 significantly varies with magnetic field. For instance, the 

cross-peak 3 in the “single-crystal-like” spectrum recorded near g1 is a peak with a single 

maximum and resolved additional shoulders (Figure 2-8A and 2-8B). In contrast, two 

closely located but resolved ridges are seen in the spectra recorded at the fields between 

g1 (low field) and g2, (maximum intensity) (Figure 2-8C and 2-8D). The complicated 

shape of these 15N HYSCORE ridges, 3, corresponds to the extended shape of the 14N 

features 2’.  

 The regression lines of such ridges when plotted as (να)
2 vs. (νβ)

2  must form a 

triangle with the apexes on the |να + νβ|=2νN curve for signals from a single 15N. However, 

the analysis presented in detail in APPENDIX B shows that regression lines for the ridges 

from Figure 2-8C and 2-8D (and others) do not form such a shape, indicating that the 

15N spectra are not consistent with a single nucleus. This is expected, as the ENDOR 

measurements described above show that metal ion(s) of FeMo-co in the intermediate 

bind a single nitrogen from substrate, but the intermediate exists in two conformations. 

The (να)
2 vs. (νβ)

2 analysis for the ridges located closer to and farther from to the 
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antidiagonal in Figure 2-8C and 2-8D gives the following estimate for anisotropic 

components for 15N1 of the two conformers, T ~ 0.3-0.4 and 0.6-0.7 MHz, respectively. 

The isotropic couplings would be practically the same for both ridges with the value 

about 1.9-2.1 MHz or  – (1.5-1.6) MHz, in satisfactory agreement with |aiso(
15N1)| 

determined by ENDOR.  The quantity, 2T, can be considered as a rough estimate of the 

maximum component of the anisotropic tensor for these two conformations, giving Tmax ~ 

0.6-0.8 MHz and 1.2-1.4 MHz, similar to Tmax(N1) = 1.0 MHz seen in ENDOR. 

DISCUSSION 

 This report describes EPR/ENDOR/HYSCORE measurements of the common 

intermediate, I, formed during freeze-quench of the α-70Ala/α-195Gln substituted MoFe 

protein under turnover conditions using N2H4, CH3N2H, or N2H2 as substrate. We first 

discuss the properties of this intermediate, then incorporate the conclusions we reach into 

an analysis that leads us to propose that nitrogenase functions by the A reaction pathway 

of Scheme 1. 

Nature of Intermediate I. Earlier X/Q-band EPR and 35 GHz ENDOR 

measurements showed that freeze-quench of the α-70Ala/α-195Gln substituted MoFe 

protein during turnover with N2H4 or N2H2 causes loss of the EPR signal from resting-

state (S = 3/2) FeMo-co and the appearance of the signals from low-spin (S = 1/2) 

intermediates with almost axial g-tensors, originally denoted m(N2H2),
17 l(N2H4),

21 

respectively. The properties of these intermediates, as measured in the previous work and 

extended in the present study, establish that they correspond to a common state: 

[m(N2H2), l(N2H4)] = I. The temperature and microwave power dependences of the I 
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EPR signal indicate that the FeMo-co of this state has two major conformers with 

different g tensors (g1 = 2.09, 2.11) and significantly different relaxation properties.  

 

Figure 2-8. Contour (A,C) and stacked (B,D) presentations of the cross-features 3 from 

the HYSCORE spectra of the l(15N2H4) intermediate (magnetic field 329.5 mT (A,B) and 

332.3 mT (C,D), time between first and second pulses  = 136 ns, microwave frequency 

9.7034 GHz (A,B) and 9.7057 GHz (C,D)). 
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 1,2H and 15N 35 GHz CW and pulsed ENDOR measurements showed that I has an 

[NxHy] fragment bound to FeMo-co.17 The proton(s) associated this fragment have here 

been investigated by 35 GHz 2 K CW 1,2H ENDOR and X-band 8 K HYSCORE/ESEEM 

measurements with samples prepared in H2O/D2O buffers. At the microwave power 

settings used for 2 K Q-band CW 1H ENDOR measurements and at the temperature used 

for the HYSCORE measurements, each measurement interrogates both conformers of I 

with approximately equal sensitivity. The two techniques confirm that I exhibits a signal 

from exchangeable H1 proton(s) with a maximum hyperfine coupling, A ~ 9 MHz, and 

that the H1 signals can be interpreted in terms of an axial hyperfine tensor with A= |a - 

T| ~ 9 MHz and A|| = |a + 2T| ~ 4.8 MHz, corresponding to T = 4.6 MHz, a = -4.3 MHz 

(signs are relative). 

 The 2 K Q-band pulsed 15N ENDOR spectra are collected with short repetition 

times (~ 10 ms), and are dominated by the g1 = 2.09 conformer of I. A 2D field-

frequency pattern of the 15N ENDOR spectra of this I conformer can be analyzed in terms 

of a single bound 15N, with hyperfine tensor, A(15N1) = [1, 1.5, 2.8] MHz, although the 

spectra appear to be distorted by contributions from the single 15N1 of the second 

conformer. The 8 K X-band 15N HYSCORE measurements are consistent with this 

tensor, but the shape of the HYSCORE signal appears to represent comparable 

contribution from two nitrogens with very similar couplings. As the 8 K HYSCORE 

measurement is equally sensitive to signals from the two conformers, these experiments 

are consistent with the view that the 15N ENDOR and HYSCORE responses do not arise 

from a [15N2Hy] species with roughly equivalent 15N bound to FeMo-co, and instead each 

of the two slightly different 15N is associated with one of the conformers of the FeMo-co 
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center. This interpretation is in confirmed by experiments with I formed from specifically 

labeled CH3-N=15N-H and CH3-
15N=N-H as substrates. The 15N ENDOR signals from 

the single 15N of CH3-N=15N-H are identical to those of I formed from the other two 

substrates, Figure 2-5A, and no such signal is seen when CH3-
15N=N-H is employed.23 

These results prove that the two contributing 15N represent a single nitrogen from 

substrate bound to FeMo-co metal ion(s), but with properties that differ slightly in the 

two conformers. The 14N HYSCORE patterns for I further give the quadrupole coupling 

parameter for N1, K ≈ 0.5±0.04 MHz. 

  The conclusion that the 15N1 signals originate from a single nitrogen atom bound 

to a metal ion(s) of FeMo-co leads to the question of whether or not the substrate-derived 

species retains the N-N bond of the N2H4/N2H2 substrates. If the second N is present but 

not bound to a metal ion, it would have a weaker hyperfine coupling. High-resolution 35 

GHz pulsed ENDOR spectra (Figure 2-6) show no evidence of a weakly coupled 15N2. 

We estimate that a second 15N2 could be present only if it had a hyperfine coupling at 

least forty-fold smaller than that of the observed 15N1 signal; as a comparison, 

preliminary results indicate that the coupling constant of the remote 15N2 of 15N2H4 

bound to the ferriheme of heme oxygenase37 is roughly twenty-fold less than that of the 

15N1 bound to Fe. The HYSCORE experiment likely has an even lower threshold than 

ENDOR for the detection of a weakly bound 15N, and it also shows no response from a 

second nitrogen atom. Finally, when I is trapped during turnover with the selectively 

labeled CH3-
15N=NH, 13CH3-N=NH, or C2H3-N=NH no signal is seen from the isotopic 

labels.23  From these results we conclude that the N=N bonds of N2H2 and CH3N2H, and 

the N-N bond of N2H4 have been broken in forming the common EPR-active 
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intermediate I during enzymatic turnover. This intermediate thus contains an [NHy] 

moiety bound to FeMo-co, and when useful can be denoted as I[NHy]. 

 The Nitrogenase Reaction Pathway. Based on the alternative reaction pathways 

pictured in Scheme 2-1¸ the  [NHy] moiety bound to FeMo-co of I could be [=NH],        

[-NH2], or even the product [NH3] (not shown). Given that two of the states that bind 

these fragments are reached by both pathways, the nature of this moiety does not in itself 

distinguish between A and D pathways. However, the present findings in conjunction 

with other considerations lead to us to propose that nitrogenase functions via the A 

reaction pathway of Scheme 2-1 for reduction of N2. 

 Both N2H2 and N2H4 are substrates that are reduced to two NH3 by the wild-type 

nitrogenase. By opening the reactive site, the α-70Ala substitution merely enhances the 

reduction of these substrates, while the α-195Gln substitution further favors the trapping of 

I[NHy]. The reduction of N2H4 must begin by its binding to FeMo-co, and this 

necessarily generates a state associated only with the A pathway, as there is no N2H4-

bound intermediate along D. Instead, according to the D pathway, Scheme 2-1, the N-N 

bond is cleaved two stages of hydrogenation prior to the appearance of an intermediate at 

the formal reduction stage of N2H4. In contrast, diazenido intermediates exist on both 

routes. To explain how nitrogenase could reduce each of the substrates, N2, N2H2 and 

N2H4, to two NH3 molecules via a common A reaction pathway, one need only postulate 

that each substrate ‘joins’ the pathway at the appropriate stage of reduction, binding to 

FeMo-co that has been ‘activated’ by accumulation of a sufficient number of electrons 

(possibly with FeMo-co reorganization) and then proceeds along that pathway. For N2H2 

to instead join the D pathway would imply that it is converted to the [NH2=N] tautomeric 
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form upon binding to FeMo-co, a seemingly implausible process. Moreover, the strong 

influence of α-70Val substitutions of MoFe protein without modification of FeMo-co 

reactivity strongly implicate Fe, rather than Mo, as the site of binding and reactivity,19 

and energetic considerations then implicate the A pathway.12 Overall, the combination of 

these considerations with the finding of the formation of the common intermediate I thus 

lead us to conclude that N2H2, CH3N2H, N2H4, all are reduced by the common A 

pathway.  

 Does that require N2 reduction to follow the same pathway? Rejection of the D 

pathway contradicts the suggestions of an early study8 which showed that hydrazine is 

released upon acid or base quenching of nitrogenase actively reducing dinitrogen.9 This 

finding was interpreted as indicating that the diazenido intermediate in the D pathway 

(Scheme 2-1) can be viewed as accepting two electrons from FeMo-co, making it a 

hydrazido dianion (N-NH2
2-), and that this dianionic species is protonated and released as 

N2H4 upon hydrolysis by either acid or base. However, it is clearly more economical38 to 

propose that the hydrazine observed during acid/base quenching of nitrogenase is merely 

released from the hydazine-bound intermediate that occurs naturally as a stage along the 

A pathway, Scheme 2-1, and that all nitrogenous substrates, N2 included, undergo 

reduction to two NH3 molecules by the common pathway, A. Likewise, it is most 

economical to suggest that both the Mo-dependent nitrogenase studied here and the V-

dependent nitrogenase4 reduce N2 by the same pathway. As it has been shown that V-

nitrogenase produces N2H4 while reducing N2,
39 then according to Scheme 2-1 this 

enzyme clearly functions via the A pathway, implying the same is true for Mo-

nitrogenase. 
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 No nitrogenous substrate binds to resting-state (S = 3/2) FeMo-co of 

nitrogenase,40 so the activation of FeMo-co for each substrate requires the accumulation 

of some number of electrons. The most refractory substrate is N2 itself, and the Lowe-

Thorneley scheme states that the accumulation of three, and most effectively four, 

electrons is required to bind N2 and initiate its reduction.3,9,10  Indeed, our previous work 

characterized the intermediate that has accumulated four electrons.19,41 Presumably, lower 

numbers of accumulated electrons are required to initiate reduction of N2H2 and N2H4, as 

is true for reduction of C2H2.
3,9 

CONCLUSIONS 

(i) EPR/ENDOR/HYSCORE measurements establish that a common 

intermediate, I, is trapped during turnover of N2H2, CH3N2H, or N2H4 as substrate for the 

α-70Ala/α-195Gln substituted MoFe protein. These measurements reveal that I represents a 

stage of N2 fixation in which the N-N bond has been cleaved, and in which [=NH], [-

NH2], or even the product [NH3] are bound to FeMo-co. (ii) Considerations of these 

findings lead us to conclude that nitrogenase reduces N2H2, CH3N2H, N2H4 via the A 

reaction pathway presented in Scheme 2-1, and that the same is true for N2 itself. 

Energetic considerations,12 in combination with the strong influence of α-70Val 

substitutions of MoFe protein without modification of FeMo-co reactivity then implicate 

Fe, rather than Mo, as the site of binding and reactivity.19 
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CHAPTER 3 

UNIFICATION OF REACTION PATHWAY AND KINETIC SCHEME FOR N2 

REDUCTION CATALYZED BY NITROGENASE3 

Abstract 

Nitrogenase catalyzes the reduction of N2 and protons to yield two NH3 and one 

H2.  Substrate binding occurs at a complex organo-metallocluster called FeMo-cofactor 

(FeMo-co). Each catalytic cycle involves the sequential delivery of eight 

electrons/protons to this cluster, and this process has been framed within a kinetic scheme 

developed by Lowe and Thorneley.  Rapid freezing of a modified nitrogenase under 

turnover conditions using diazene, methyldiazene (HN=N-CH3), or hydrazine as substrate 

recently was shown to trap a common S = 1/2 intermediate, designated I. It was further 

concluded that the two N-atoms of N2 are hydrogenated alternately (‘Alternating’ (A) 

pathway). In the present work, Q-band CW EPR and 95Mo ESEEM spectroscopy reveal 

such samples also contain a common intermediate with FeMo-co in an integer-spin state 

having a ground-state ‘non-Kramers’ doublet. This species, designated H, has been 

characterized by ESEEM spectroscopy using a combination of 14,15N isotopologs plus 

1,2H isotopologs of methyldiazene. It is concluded that: H has NH2 bound to FeMo-co 

and corresponds to the penultimate intermediate of N2 hydrogenation, the state formed 

after the accumulation of seven electrons/protons and the release of the first NH3; I 

corresponds to the final intermediate in N2 reduction, the state formed after accumulation 

of eight electrons/protons, with NH3 still bound to FeMo-co prior to release and 

                                                            
3 Coauthored by Dmitriy Lukoyanov, Zhi-Yong Yang, Brett M. Barney, Dennis R. Dean, Lance C. Seefeldt, 
and Brian M. Hoffman (2012) Proceedings of the National Academy of Sciences of the United States of 
America 109(15), 5583-5587. 
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regeneration of resting-state FeMo-co. A proposed unification of the Lowe-Thorneley 

kinetic model with the ‘prompt’ alternating reaction pathway represents a draft 

mechanism for N2 reduction by nitrogenase. 

Introduction 

Nitrogen fixation — the reduction of N2 to two NH3 molecules — is catalyzed by 

the enzyme nitrogenase according to the limiting stoichiometry (1, 2): 

N2 + 8e- + 8H+ + 16MgATP → 2NH3 +H2 + 16MgADP + 16Pi         [3-1] 

The Mo-dependent enzyme studied here (2-4) consists of two component proteins, 

denoted the Fe protein and the MoFe protein. The former delivers electrons one-at-a-time 

to the MoFe protein, where they are utilized at the active site iron-molybdenum cofactor 

([7Fe-9S-Mo-C-R-homocitrate]; FeMo-co) to reduce substrate (2, 3). In the Lowe-

Thorneley (LT) kinetic scheme for N2 reduction by nitrogenase (2, 5, 6), the eight steps 

of electron/proton delivery implied by Eq. 3-1 are denoted En, where n = 0 to 8, with E0 

representing the resting-state enzyme. It is known that N2 binds only after the MoFe 

protein accumulates three or four electrons (E3 or E4 states), with N2 reduction then 

proceeding along a reaction pathway that comprises the sequence of intermediate states 

generated as N2 bound to FeMo-co undergoes six steps of hydrogenation (e-/H+ delivery 

to substrate) (1-4, 7). Recently, we concluded that nitrogenase follows an ‘alternating’ (A) 

reaction pathway, in which the two N’s are hydrogenated alternately, with a hydrazine-

bound intermediate formed after four steps of hydrogenation, and with cleavage of the 

hydrazine N-N bond and liberation of the first NH3 only at the fifth hydrogenation step 

(8). However, this conclusion left many questions unresolved, in particular the 
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correspondence between intermediates formed along the reaction pathway and the LT 

kinetic scheme for the accumulation of eight reducing equivalents during catalysis. 

Intermediates formed during turnover have been trapped by freeze-quench 

methods and studied by paramagnetic resonance techniques. The resting-state FeMo-co 

of E0 exhibits an EPR-active, S = 3/2 spin state. When nitrogenase is freeze-quenched 

during turnover, the resting-state EPR spectrum partially or fully disappears as FeMo-

cofactor accumulates electrons. Accumulation of an even number of electrons generates 

En, n = even, intermediates with EPR-active, odd-electron (half-integer spin; Kramers) 

FeMo-co states (S = 1/2, 3/2) (3, 4). Such states have been observed upon freeze-quench 

of wild-type and amino-acid substituted MoFe proteins during turnover with a variety of 

different substrates (3, 4). However, the signals from Kramers forms of FeMo-co in the 

quenched samples never quantitate to the total FeMo-co present, indicating that 

apparently EPR-silent states of FeMo-co must also exist. These silent MoFe protein states 

contain FeMo-co with an even number of electrons, and correspond to En, n = odd (n = 

2m +1, m = 0-3) intermediates in the LT scheme. These quenched samples may include 

states with diamagnetic FeMo-co, but Mössbauer studies indicated the presence of 

reduced FeMo-co in integer-spin (S = 1, 2, …), ‘non-Kramers (NK)’ states (9). Although 

NK-EPR signals at conventional microwave frequencies are well known for other 

enzymes (10, 11), until now, no EPR signal from an integer-spin form of FeMo-co has 

been detected.  

Recently, rapid freezing during turnover of a doubly-substituted nitrogenase 

MoFe protein (α-70ValAla, α-195HisGln), which favors reduction of large nitrogenous 

substrates (3, 4), with diazene, methyldiazene (HN=N-CH3), or hydrazine as substrate 
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was shown to trap a common S = ½ intermediate (denoted I) (8). Here, Q-band CW EPR 

and 95Mo ESEEM (electron spin-echo envelope modulation) spectroscopy reveal that 

these samples also contain a second common intermediate, denoted H, the first to be 

observed in which FeMo-co is in an EPR-active integer-spin state with a ground-state NK 

doublet. The NK-EPR signal in samples prepared with 95Mo-enriched FeMo-co and with 

14,15N-enriched substrates has been studied by pulsed-EPR measurements of the nuclear 

modulation of the electron spin-echo (ESE) amplitude, denoted NK-ESEEM (12). These 

measurements allow us to infer the state of the N-N bond in H and the relationship of H 

to intermediate, I. Most importantly, the analysis allows us to assign the correspondence 

of both intermediates with specific En states, and to infer how the hydrogenated reaction 

intermediates, diazene and hydrazine, join the N2 reduction pathway. These conclusions 

integrate the sequence of N2 reduction intermediates (the reaction ‘pathway’) with the LT 

kinetic scheme for the accumulation of the eight reducing equivalents (and protons), 

thereby generating a draft mechanism for nitrogen fixation by nitrogenase. 

Results 

The EPR spectra of the doubly substituted α-70ValAla, α-195HisGln MoFe protein 

trapped during turnover in the presence of hydrazine, diazene, and methyldiazene show a 

significant loss of the S=3/2 resting state of FeMo-co and the appearance of a S = ½ 

signal from intermediate I in the vicinity of g = 2, along with the spectrum from the 

[4Fe4S]1+ cluster of the Fe protein (Figure 3-1). Recent 1H, 14,15N ENDOR and 

HYSCORE spectroscopic experiments demonstrated that I represents a late stage of 

nitrogen fixation, when the first ammonia molecule already has been released (8), and 

only a [NHx] (x = 2 or 3) fragment of substrate is bound to FeMo-co (8). 
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We here note that samples freeze-trapped during turnover with all three substrates 

also show an additional broad EPR signal at low field in Q-band spectra collected at a 

temperature of 2 K (Figure 3-1). This signal begins near zero-field and extends beyond 

5000 G, where the signals from S = 3/2 FeMo-co in both resting state and trapped high-

spin intermediates (13) appear. The low-field signal arises from an integer-spin system (S 

 2) (10) that exhibits a ground-state non-Kramers doublet that is split in zero applied 

field by an energy, h (h, Planck’s constant) (14), in the range of the microwave quantum, 

e = 35 GHz; the breadth of the signal indicates that  exhibits a considerable distribution 

in values. 

 

Figure 3-1. Q-band CW EPR spectrum of α-70ValAla, α-195HisGln MoFe protein in 

resting state (S =3/2) and trapped during turnover with 14N2H4. Conditions: microwave 

frequency, 35.015 GHz (resting), 35.022 GHz (turnover); modulation amplitude, 2 G; 

time constant, 128 ms; field sweep, 67 G/s; T = 2 K. 
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ESEEM can be used to characterize a non-Kramers doublet (NK-ESEEM) (15); 

we begin by discussing the ESEEM time-waves. Figure 3-2A presents representative 35 

GHz (2 K) three-pulse NK-ESEEM time-waves collected at several relatively low fields 

from the nitrogenase NK intermediates generated with isotopologs of the three substrates. 

The electron spin-echo (ESE) amplitude from the NK intermediates is maximum at zero 

applied magnetic field (B) and decreases very slowly with increasing field, being 

observable at all fields up to ~ 5000 G, where signals from S = 3/2 FeMo-co begin. This 

slow decrease of echo intensity with field contrasts sharply with the rapid decrease for 

carboxylate-bridged di-ferrous centers (S = 4), where the echo (at X band) vanished by ~ 

100 G (16). As illustrated in Figure 3-2A, left (upper), at the lowest applied magnetic 

field (B = 18 G) none of the nitrogenase intermediates show nuclear modulation of the 

ESE envelope. As the field is increased, nuclear modulation from protons first appears (B 

= 296 G), then modulation associated with hyperfine-coupled 14N (B = 362 G). The 

appearance of modulation with increasing field reflects the fact that at zero applied field 

the electron and nuclear spins are uncoupled and so there can be no ESE modulation. 

Application of a field establishes the coupling and introduces modulation, with a depth 

that increases quadratically with B (15).  

As illustrated in Figure 3-2A, the NK-ESEEM time-waves for the NK 

intermediates trapped during turnover with the corresponding 14N and 15N isotopologs of 

N2H2, N2H4, and HN2CH3 substrates are identical at all fields, indicating that a common 

intermediate, denoted H, is trapped during turnover with all three substrates. Figure 3-2A, 

left and Figure 3-2C, left further show that 95Mo enrichment of α-70ValAla, α-195HisGln 

MoFe protein produces significant change of the NK-ESEEM time-wave. This 
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establishes that the NK-EPR signal of H arises from the Mo-containing FeMo-co in an 

integer-spin state, and not the all-iron electron-transfer-active P cluster also present in the 

MoFe protein, or even the [4Fe-4S] cluster of the Fe protein. The absence of any signal in 

Figure 3-1 from the P cluster further indicates that all electrons delivered to MoFe 

protein of H during turnover reside on FeMo-co. 

The ‘turn-on’ of nuclear modulation for H with applied field is quite gradual in 

comparison with that observed for the carboxylate-bridged diiron centers (16). In addition 

to A|| and g||, there are three factors that influence the field dependence of the modulation 

depth (15). First, the earlier diiron centers measurements were performed at X band (ve ~ 

9 GHz), whereas the present ones employ a four-fold higher frequency (ve ~ 35 GHz). 

According to our analysis (15), this causes a four-fold decrease in the rate at which the 

effective hyperfine coupling ( effA ) increases with field. Second, the earlier measurements 

were performed with the microwave field parallel to the external field, whereas the 

current ones are performed in perpendicular mode, which requires a roughly three-fold 

higher field to achieve the same effA  (17). Finally, the diiron centers exhibit a total spin 

state S = 4 (16); assigning intermediate H a total spin of S = 2 would further lower the 

rate at which effA increases with field by an additional factor of four (15). This value of S 

for H is supported by the finding from Q-band EPR spectroscopy (Figure 3-1) that  ~ 

35 GHz for H, not ~ 9 GHz for the diiron centers, for it is generally expected that  

increases as S decreases (11). 

  

  



 98 

Figure 3-2. (A): Three-pulse ESEEM traces for NK intermediate H of α-70ValAla, α-

195HisGln MoFe protein under turnover. (A, left) Time domain for 14N2H2 (black), 

14N2H4 (red) substrates, and for 95Mo-enriched MoFe with 14N2H4 (blue). Most spectra 

taken with τ selected to suppress the 1H response; nonetheless, residual 1H signals 

typically are observed. Conditions: microwave frequency, 34.756 GHz (14N2H2), 34.767 

GHz (14N2H4), 34.756 GHz (95Mo-FeMo-co, 14N2H4); π/2 = 50 ns, 30 ns time steps; 

repetition time 2 ms, 50 shots/point (10 ms, 10 shots/point for 14N2H2), 50-150 scans; T = 

2 K. (A, right) Time-waves for H trapped with: 14NH=14NH (black), 14NH=14NCD3 

(green), 14NH2-
14NH2 (red), 15NH=15NH (blue), 15NH=14NCH3 (magenta). Conditions: as 

for (A, left), except for microwave frequency, 34.772 GHz (14NH=14NCD3), 34.764 GHz 

(15NH=15NH), 34.725 GHz (15NH=14NCH3); 140-500 scans. Time-waves are shown after 

decay baseline subtraction. (B): Field dependence of three-pulse ESEEM (B, left) time 

and (B, right) frequency traces of H prepared with 14N2H2 (black) and 15N2H2 (red). 

Conditions: as for (A). Triangles represent suppressed frequencies n/τ, n = 1, 2, ... (C):  

Time and frequency domain traces for H formed with 14N2H4 substrate: natural 

abundance (black) and 95Mo-enriched (red) α-70ValAla, α-195HisGln MoFe protein. 

Conditions: as for (A). 
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Figure 3-2A, right and 3-2B, left show that intermediate prepared with 14N and 

15N substrates yield quite different NK-ESEEM time-waves, demonstrating that the 

modulation arises from a substrate fragment bound to FeMo-co. The state of the N-N 

bond in H was revealed by the behavior of the common intermediate H upon isotopic 

substitution of the three nitrogenous substrates, in particular selective labeling of 

methyldiazene. The time-waves of Figures 3-2A, right  show that the 14N modulation is 

abolished and replaced with 15N modulation not only when both nitrogens of 14N2H2 and 

14N2H4 are substituted with 15N, but also when H-15N=14N-CH3 is used as substrate; 

furthermore, there is no added 2H modulation from H-14N=14N-CD3. The absence of 

modulation from the second 14N of H-14N=14N-CH3 or from 2H of H-14N=14N-CD3 

indicates that the N-N bond has been cleaved prior to the formation of H, which thus 

contains an NHx fragment bound to FeMo-co. This conclusion parallels the conclusion 

that the common S = ½ intermediate, I, formed during turnover with the same substrates 

(see Figure 3-1) likewise is formed after the first ammonia is released.  

 To characterize the NHx substrate fragment of H, frequency-domain NK-ESEEM 

spectra were obtained by Fourier transform of the time-waves. At low applied fields the 

electron-nuclear coupling for 14N (I = 1) is effective in introducing ESEEM, but the 

effects of hyperfine couplings on the frequency-domain spectrum are small, and a 14N 

frequency spectrum exhibits transitions at the three pure nuclear–quadrupole frequencies, 

denoted ( 0     , 0     ), with relative intensities determined by the relative 

orientations of the quadrupole and zero-field splitting tensors (15). The frequencies yield 

the quadrupole coupling constant, e2qQ/h and asymmetry parameter,  (usual symbols). 
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In contrast, the low-field measurements of nuclei with I = ½ (1H, 15N) exhibit only a 

single line at the nuclear Larmor frequency.  

 Examination of spectra taken at multiple fields for H prepared by turnover with 

14N2H2 discloses two 14N peaks whose frequencies 0.71 and 1.92 MHz change little with 

field from  ~ 250 G up to at least 1200 G, and that can be assigned as part of 14N 

quadrupole triplet. As expected from the change in the time-waves upon generating H 

with 15N-labeled substrate (Figure 3-2A, right, 3-2B), the 14N quadrupole peaks are 

abolished in the NK-ESEEM spectra of H prepared with 15N2H2, and replaced by a single 

peak at the 15N Larmor frequency (Figure 3-2B). As the frequencies of the three peaks 

obey the relationship, 0     , there are two options for the frequency of the 

unobserved peak: 1.21 and 2.63 MHz. This peak could go unobserved either because it 

lies at 1.21 MHz, where features presumed to arise from the natural abundance 

molybdenum isotopes with non-zero nuclear spin could obscure the  14N signal, or 

because the relative orientation of quadrupole and zero-field splitting tensors causes it to 

have negligible intensity (15). Assignment of the quadrupole frequencies as 0  0.71 

MHz,   1.21 MHz, and   1.92 MHz gives the quadrupole coupling parameters: 

e2qQ/h = 2.08 MHz,  = 0.68; the alternative assignment of the missing peak as  

2.63 MHz gives: e2qQ/h = 3.04 MHz,  = 0.47. A cofactor-bound NH3 would have   ~ 0, 

so the NHx fragment of H cannot be NH3; as bound –NH does not appear on the A 

pathway, this fragment therefore must be NH2.  

The frequency-domain NK-ESEEM spectra obtained from H prepared with 95Mo-

enriched α-70ValAla, α-195HisGln MoFe protein give information about the environment 
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of the molybdenum of FeMo-co in that intermediate. Figure 3-2C shows that 95Mo 

enrichment introduces a doublet centered at ~ 0.3 MHz in the low-field spectrum, as well 

as an additional, unresolved broad signal between one and two MHz at higher fields. As 

the doublet is barely observable in the natural-abundance samples and the broad signal is 

not seen, the new signals arise from 95Mo of FeMo-co. Although the 14N signal is not 

detectable below 250 G, the 95Mo signal clearly is present in spectrum at 150 G, and 

likely could be detected even at lower fields but for overlap with the strong 1H signal. 

This difference can be explained by a larger hyperfine coupling to 95Mo in comparison 

with 14N (15), combined with differences in the dependence of the spectrum on magnetic 

field for nuclei with I = 5/2 (95Mo) and I = 1 (14N) that will be discussed elsewhere. 

 The low-frequency 95Mo doublet observed is provisionally assigned to two pure-

quadrupole transitions. The quadrupole interaction of a 95Mo (I = 5/2) in zero applied 

field splits the 2I + 1 = 6 mI sublevels into three doublets for each electron-spin manifold. 

As with 14N (I = 1), this yields three pure-nuclear quadrupole transitions, which we 

denote as 3 2 1    . Matrix diagonalization of the full electron-nuclear Hamiltonian 

and examination of the calculated modulation depth parameters (12) suggests that the 

highest frequency peak, 3 will generally be of low intensity, so we further assign the 

observed doublet as 1 ~ 0.2MHz , 2 ~ 0.35MHz . This assignment yields, e2qQ/h ~ 1.2 

MHz,  ~ 0.2, values comparable to those found for (M+)2(MoO4) salts (18). The higher-

frequency feature seen at higher field presumably arises through the influence of the 

larger 95Mo hyperfine interaction and nuclear spin. 
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Discussion 

The key experimental findings of this report can be summarized as follows.  

(i) CW EPR and 95Mo NK-ESEEM spectroscopy reveal that samples of the α-

70ValAla, α-195HisGln substituted nitrogenase MoFe protein trapped during turnover in 

the presence of hydrazine, diazene and methyldiazene each contain a common 

intermediate, H, with FeMo-co in an even-electron, integer-spin state (plausibly S = 2) 

characterized by a low-lying NK doublet. The NK-ESEEM measurements yield 

quadrupole coupling parameters for the 95Mo of FeMo-co in H.  

(ii) 14N/15N NK-ESEEM of H formed with substrate isotopologs indicates that a 

nitrogen of the substrate is directly bound to FeMo-co of α-70ValAla, α-195HisGln MoFe 

protein.  

(iii) The absence of modulation from either a second 14N of substrate, in particular 

from H-15N=14N-CH3, or from 2H of H-14N=14N-CD3 indicates that H is formed after 

cleavage of the N-N bond of N2H4 bound to FeMo-co and loss of NH3. Quadrupole 

coupling parameters for this cofactor-bound NHx fragment indicate it is not NH3, whose 

three-fold symmetry would yield  ~ 0, and thus must be NH2. 

With these findings, it is possible to propose a complete unification of reaction 

pathway and LT scheme. In the LT scheme the MoFe protein is optimally activated for 

N2 binding at the E4 stage, in which MoFe protein has accumulated four reducing 

equivalents and four protons. Our studies (19) further show that the four reducing 

equivalents of E4 exist in the form of two (Fe-bridging) hydrides, presumably with an 

additional two protons bound to sulfide (20). As illustrated, in Figure 3-3, N2 binding to 

FeMo-co of E4 is accompanied by the loss of two reducing equivalents and two protons 
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as H2 (Eq. 3-1), leaving FeMo-co activated by two reducing equivalents and two protons, 

presumably in the form of one hydride and one proton.  

Recently, we concluded that the subsequent catalytic stages follow an 

‘Alternating’ (A) pathway, in which the two N atoms of N2 are hydrogenated alternately 

and the first NH3 is released after N2 has been hydrogenated five times (Figure 3-3), 

rather than a ‘Distal’ pathway in which a specific nitrogen of N2 is hydrogenated three 

times, then released as NH3. We also noted (4) that the A pathway offers multiple ways to 

deal with the two reducing equivalents that remain on FeMo-co after N2 binding. In the 

‘Prompt’ (P) pathway, when N2 binds to FeMo-co it is ‘nailed down’ by prompt 

hydrogenation, Figure 3-3, with N2 binding, H2 loss, and reduction to diazene all 

occurring at the E4 kinetic stage of the LT scheme. In the ‘Late’ (L) model, the two 

reducing equivalents associated with FeMo-co after N2 binding are delivered to substrate 

after one or more steps of hydrogenation. In the limiting version of Figure 3-3, this 

comes after hydrazine is formed. This only occurs at the final, E8 kinetic stage of the LT 

scheme, and in this case N-N bond cleavage and release of the first NH3, followed by 

conversion of the remaining bound NH2 to NH3 and its release all occur at E8. Thus, as 

illustrated, a given state of N2 hydrogenation can correspond to a different En state along 

the two A pathway branches. 

The present results establish the identities of H and I, as well as their 

correspondence with En states along the P pathway of Figure 3-3, while unambiguously 

ruling out the limiting version of the L pathway. (i) As the same intermediate H is formed 

during turnover with the two diazenes and with hydrazine, the diazenes must have 

catalytically ‘caught up’ to hydrazine, and H must occur at or after the appearance of a 
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hydrazine-bound intermediate. (ii) As noted above, H contains FeMo-co in an integer- 

spin (NK) state, and thus corresponds to an En state with n = odd. As H is a common 

intermediate that contains a bound fragment of substrate, it must therefore correspond to 

E5 or E7. But H cannot be either E5 or E7 on the L path or E5 on the P pathway, for they 

all come before hydrazine appears (Figure 3-3). Indeed, in the L pathway of Figure 3-3, 

the MoFe protein is in the E8 state at the binding of hydrazine and after, and thus FeMo-

co is in a Kramers (half-integer-spin; odd-electron) spin state. As a result, no state on this 

pathway can correspond with the non-Kramers intermediate, H. (iii) We are left to 

conclude that H corresponds to the [NH2]
--bound intermediate formed by N-N bond 

cleavage at the E7 stage on the P pathway. By parallel arguments, the only possible 

assignment for the S = ½ state I, which we showed earlier to occur after N-N bond 

cleavage (8), is as E8: I must correspond to the final state in the catalytic process (Figure 

3-3), in which the NH3 product is bound to FeMo-co at its resting oxidation state, prior to 

release and regeneration of the resting-state form of the cofactor. 

Although the above discussion focuses on the limiting version of the L pathway, 

the stabilization of bound substrate by prompt hydrogenation along the P pathway for N2 

reduction and the respective correspondences of H and I with E7 and E8 of this pathway 

greatly favor it over a version of the L pathway in which the reducing equivalents from 

E4 are transferred to substrate at an intermediate stage of substrate reduction, E5-7 (Figure 

3-3). The trapping of a product-bound intermediate I is analogous to the trapping of a 

bio-organometallic intermediate during turnover of the α-70ValAla MoFe protein with the 

alkyne, propargyl alcohol; this intermediate was shown to bind the allyl alcohol alkene 

product of reduction (21).  
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Figure 3-3. Integration of LT kinetic scheme with Alternating (A) pathways for N2 

reduction. Note: M denotes FeMo-co in its entirety and substrate-derived species are 

drawn to indicate stoichiometry only; nothing is implied as to mode of substrate binding. 

Bold arrows indicate transfer to substrate of hydride remaining after N2 binding in E4; P 

represents ‘Prompt’ and L ‘Late’ transfer; as this pathway is ruled out by experiment, it is 

in gray. En states, n = even, are Kramers states; n = odd are non-Kramers. MN denotes 

resting-state FeMo-co. Individual charges are not assigned to M and any substrate 

fragment, but they sum to the charge on resting FeMo-co.  
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A final mechanistic question to be addressed is: how do the hydrogenated reaction 

intermediates, diazene and hydrazine, join the N2 reduction pathway? Key to this issue is 

the finding that H2 inhibits the reduction of diazene (22), but not hydrazine (23). We take 

that to mean that H2 and diazene bind competitively, as do H2 and N2 (2, 5, 6), but that 

this is not the case for hydrazine. Provisionally, we further take the simplest view, that 

under turnover, diazene and hydrazine each join the N2 reduction pathway at a their own 

characteristic entry point, and then proceeds to generate both H and I. These two 

assumptions alone lead to the scheme of Figure 3-4. In this scheme, diazene binds to E2 

with the release of H2, and enters the N2 pathway as the final form of the E4 state. In 

contrast, N2H4 instead binds to E1, as is proposed for another two-electron substrate, C2H2 

(2, 5, 6), and joins the N2 pathway at a stage corresponding to E7 in the N2 reduction 

scheme. 

The proposed identification of nitrogenous intermediate states H and I and their 

correlation with LT stages E7 and E8, plus their incorporation in the ‘Prompt-Alternating’ 

pathway of Figure 3-3, represent a unification of the nitrogenase reaction pathway and 

the LT kinetic scheme into a draft mechanism for N2 reduction by nitrogenase. We view 

this scheme as a ‘draft’ because of the numerous additional questions it poses. Among the 

key issues are the electron/proton ‘inventory’ that relates the redox levels of the substrate 

and metal-ion core, along with the site of protonation, in individual En states subsequent 

to N2 binding. For example, consider reduction of N2 to diazene at the E4 stage. This is 

shown as occurring by hydride transfer followed by protonation, but there are other 

alternatives. Likewise, it is postulated in Figure 3-3 that E5 contains a diazenido ligand, 

yet there are alternative ways to form this species, as well as other formulations of that 
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intermediate. Framed differently, the LT scheme focuses on stable intermediates, and a 

full mechanism would include any transient states formed on the way to such 

intermediates. 

 

Figure 3-4. Proposed pathways for reduction of N2H2 and N2H4.  
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Materials and Methods 

Sample preparation followed freeze-quench procedures previously described (22, 

24, 25); the 35 GHz CW (26) and pulsed (27) EPR spectrometers also have been 

described. Fourier transforms were performed with Bruker software, Win-EPR. 
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CHAPTER 4 

IS MO INVOLVED IN HYDRIDE BINDING BY THE FOUR-ELECTRON REDUCED 

(E4) INTERMEDIATE OF THE NITROGENASE MOFE PROTEIN?4 

The X-ray structure1 of the nitrogenase2 molydenum-iron (MoFe) protein reveals 

the active-site FeMo-cofactor (FeMo-co) to be an unprecedented [Fe7S9MoX; 

homocitrate] cluster, Figure 4-1, but does not define the location of substrate binding and 

reduction. Mo is an obvious candidate, as it is the catalytic metal in the only known 

inorganic metal complexes that catalytically reduce N2.
3 However, Fe is no less a 

candidate, given that it is the catalytic metal in the commercial Haber-Bosch process for 

NH3 formation and that there are V and Fe nitrogenases that reduce N2 but do not have 

Mo.4 

 

Figure 4-1. FeMo-co from PDB coordinate file 1M1N.pdb: Fe, rust;  Mo, magneta; S, 

yellow; C, dark gray; O, red; X, blue.  

                                                            
4 Reproduced with permission from [Dmitriy Lukoyanov, Zhi-Yong Yang, Dennis R. Dean, Lance C. 
Seefeldt, and Brian M. Hoffman (2010) Journal of The American Chemical Society 132(8), 2526-2527]. 
Copyright [2010] American Chemical Society. 
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Recent studies revealed the importance of substrate interactions at the 4Fe-4S face 

of FeMo-co defined by Fe atoms 2, 3, 6, and 7. Of particular importance, increasing the 

size of the sidechain of residue α-70Val, which lies over Fe6, by substitution with 

isoleucine leaves the reactivity of FeMo-co toward proton reduction unaltered, but 

severely restricts the reduction of nitrogenous and alkyne substrates.5,6 Although the 

changed substrate preferences of the -70Ile variant implicate Fe as the site of substrate 

binding, they do not preclude migration of substrate-derived moieties between metal 

atoms during reduction. As a result, we have initiated studies that directly probe the 

involvement of Mo during catalytic turnover. 

The resting state wild type (WT) MoFe protein (E0) shows a rhombic EPR 

spectrum from S = 3/2 FeMo-co that is conventionally treated in terms of a fictitious spin 

S’ = 1/2 with g-tensor, g’= [4.32, 3.64, 2.0]. When the -70Ile MoFe protein is freeze-

trapped during H+ reduction under Ar, the majority of its E0 EPR signal disappears and is 

replaced by the S = 1/2 signal (g|| = 2.15, g2,3 = 2.01, 1.97) of an intermediate that has 

been shown to be the pivotal E4 MoFe state that is activated for N2 binding and reduction 

through the accumulation of 4 electrons/protons by FeMo-co.7,8 ENDOR studies of E4 

showed that it contains two hydrides bound to FeMo-co.9 We here report a 95Mo ENDOR 

study that determines whether Mo is involved in hydride binding. 

The bound hydrides of E4 have a large isotropic hyperfine coupling, aiso ≈ 24 

MHz and an anisotropic contribution, T = [-13.3, 0.7, 12.7] MHz, that exhibits almost 

complete rhombicity, defined by the form, Trh ≈ [t, 0, -t]. This form rules out terminal 

hydrides, which would have a roughly axial T,10 and suggests that the bound hydrides  
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Chart 4-1. Representative hydride bridging modes. 

bridge two metal ions,11  as Fe-H-Fe and/or Mo-H-Fe fragments (Chart 4-1), with Mo-

H-Fe6 suggested by the indications that Fe6 participates in binding alkyne substrates.5,6 

Equations presented earlier for the anisotropic hyperfine interaction matrix, T, of 

a nucleus that undergoes through-space dipolar interactions to the two metal ions of a 

spin-coupled dinuclear center12 are straightforwardly generalized to describe an M1-H-M2 

fragment in which M1, M2 are part of the multi-metallic spin-coupled FeMo-co center. 

For a given M1-H-M2 geometry, the components of T become a function of the 

coefficients [K1, K2] that describe the projection of the total cluster spin on the local 

metal-ion spins. These equations are now applied to E4. 

Consider a hydride bound as a Mo-H-Fe fragment with the 2.7 Å Mo-Fe 

separation characteristic of FeMo-co and Fe-H and Mo-H bond-lengths of ~ 1.66 Å and ~ 

1.78 Å respectively, the most probable values for all Fe-H-M and Mo-H-M fragments in 

the Cambridge Structural Database. The observed T of E4 can be matched only for [KFe, 

KMo] ~ [0.4-0.5, 0.4-0.3] and ~ [~0.3, -0.2], values that do not vary substantially with 

bond lengths. In short, Mo involvement in the hydride binding would require |KMo| ≥ 0.2. 

The K for an ion can be experimentally measured as the ratio of the isotropic hyperfine 

coupling, aiso, for the spin-coupled metal ion to aiso
0, that for the ion in the absence of 

spin coupling: K = aiso/aiso
0. We here determine KMo for the E4 intermediate state through 
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ENDOR measurements of 95Mo enriched MoFe protein, further comparing the results 

with those for the E0 resting state.  

The EPR spectrum of -70Ile MoFe in its E0 state shows two S = 3/2 E0 signals: 

one with g1(a)’ = 4.36 (S’ = 1/2) corresponds to the signal for WT enzyme; the other has 

a slightly higher value, g1(b)’ = 4.53. These signals have been assigned to alternate 

conformations of amino acids near FeMo-co.5,6  

Early 95Mo CW X-band ENDOR measurements indicated that resting-state WT 

MoFe protein contains a diamagnetic Mo(IV), an assignment based on its small hyperfine 

coupling, aiso ≈ 6 MHz (expressed in terms of the true, S = 3/2) and its quadrupolar 

interaction.13 Figure 4-2, left, shows 35 GHz Davies pulsed ENDOR14 signals collected15 

at g1’ from the resting-state -70Ile MoFe protein with 95Mo in natural-abundance (15.8%) 

and isotopically enriched (~ 95% 95Mo).16 As the signals are ~6 times stronger for the 

enriched sample they can be assigned, as before, to the mI =  1/2 transitions of 95Mo (I = 

5/2). 

The 95Mo spectrum from -70Ile MoFe protein collected at g1(b)’ = 4.53 shows a 

ν+/ν- doublet (ν = |A’/2 + νMo|) associated with the perturbed (b) conformation; it is 

centered at an effective hyperfine coupling,  A’(b)/2 = 7.01 MHz, and split by 2νMo, 

which is larger than the intrinsic value for the 95Mo Larmor frequency, 2νMo
0. The 

difference, (νMo
0 - νMo), is caused by the pseudo-nuclear Zeeman effect and can be used to 

calculate the zero-field splitting (Δ) between the ground mS =  ½ and excited mS =  3/2 

doublets of the S = 3/2 state:17 Δ(b) = 9.6 cm-1, notably less than Δ = 12.5 cm-1 previously 

reported for WT enzyme.17 
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Figure 4-2. (Left) Davies 95Mo-ENDOR spectra of 95Mo-enriched (black) and natural-

abundance (red) -70Ile MoFe protein in the resting state. (Right) CW 95Mo -ENDOR 

spectra of 95Mo-enriched (black) and natural-abundance (red) -70Ile MoFe protein in E4 

intermediate state. Brackets in left and right patterns indicate frequencies for  doublets, 

as described in text. Conditions. T = 2 K. Pulsed:  microwave frequency, ~34.78 GHz, 

Davies sequence, /2 = 40 ns, = 600 ns, RF 40 s, random hop acquisition, 2 K, 350-

1500 scans. CW: microwave frequency, ~35.1GHz; modulation amplitude, 4 G; time 

constant, 64 ms; RF sweep speed, 1 MHz/sec; RF bandwidth -broadened to 100 kHz. 
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When the field is increased to g1(a)’ = 4.36, the (b) doublet persists with little 

change in coupling while a doublet from the (a) conformer appears (Figure 4-2). Its 

hyperfine coupling, A’(a)/2 = 4.98 MHz, and the zero-field splitting Δ(a) = 11.8 cm-1 are 

essentially the same as for WT enzyme. Correction of the 95Mo hyperfine couplings (A’; 

S’ = ½) at g1’ to those for the true S = 3/2 spin (A = (ge/g1’)A’) yields, A(a) = 4.57 MHz, 

A(b) = 6.19 MHz. Spectra collected across the EPR spectrum of WT MoFe protein show 

the hyperfine coupling to be roughly isotropic, with aiso ≈ 6 MHz (S = 3/2);13 a similar set 

of spectra for the (a) conformation of the -70Ile variant yields an equivalent value, while 

that for the (b) conformation is larger, ~ 7 MHz.  Surprisingly, this increase is larger than 

that for the ΔNifV mutant,13 which contains a FeMo-co with homocitrate replaced by 

citrate.1 These measurements thus reveal that structural perturbations in the vicinity of 

Fe6 caused by the -70ValIle modification are sensed at Mo. 

Figure 4-2, right, shows 35 GHz CW ENDOR spectra18 of 95Mo-enriched 

intermediate E4 obtained at several g-values. The signals seen with the enriched sample 

again can be assigned to 95Mo from their absence in natural-abundance spectra. The 95Mo 

spectrum obtained at g2 = 2.012 shows a sharp ν+ feature associated with an mI = 1/2, 

doublet centered A/2 = 3 MHz (true S = 1/2) and split by 2νMo
0; the ν- feature falls at ~ 0 

MHz and is not detected. As the g-value of observation is increased, the ν+ feature moves 

to lower frequency; it first splits, then broadens, with the coupling decreasing to A/2 ~ 1.5 

MHz by g ~ g||; in addition, satellite transitions associated with mI =  3/2, 5/2 transitions 

appear and increase in frequency. Regardless of whether the observed splitting arises 

from hyperfine anisotropy or from the presence of two conformers, simulations show that 

the isotropic 95Mo coupling is aiso ≈ 4 MHz, less than that for the resting state. 
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The decrease in aiso for 95Mo of E4 from the already small value in resting state 

MoFe protein strongly suggests that the resting Mo(IV) is not one-electron reduced 

during the accumulation of the four electrons of E4. In any case, the effective K for Mo is 

very small; a value, aiso
0 ≥ 100 MHz is indicated by studies of mononuclear Mo 

complexes19,20 and yields for E4 an effective spin-coupling coefficient no greater than, 

|KMo| = |aiso/aiso
0|  0.04, at least 5-fold less than the lower bound, |KMo|  ≥  0.2 required 

for Mo to be involved in forming a Mo-H-Fe, hydride. As the hydride couplings also are 

both far too large, given the value of |KMo|,  and of the wrong symmetry to be associated 

with a terminal hydride on Mo,10 we may thus conclude that Mo does not participate in 

binding a hydride of the catalytically central E4 intermediate, and that only Fe ions are 

involved. Nonetheless, the response of the Mo coupling to subtle conformational changes 

in E0 and to the formation of E4 suggest that Mo is intimately involved in tuning the 

geometric and electronic properties of FeMo-co in these states. Similar investigations of 

Mo involvement in other intermediates are planned. 
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CHAPTER 5 

ACETYLENE INTERCEPTION OF INTERMEDIATES REVEALS IMPORTANT 

ROLES OF METAL HYDRIDES IN NITROGENASE CATALYSIS5 

Abstract 

Nitrogenase accumulates four electrons/protons on its active site FeMo-cofactor 

(designated E4) before N2 binds, with subsequent addition of four more electrons/protons 

to yield two NH3 and one H2.  It has recently been demonstrated that the E4 state of 

FeMo-cofactor contains two iron bridged hydrides (Fe-H--Fe), offering an explanation for 

how electrons and protons are accumulated on FeMo-cofactor and suggesting a key role 

for metal hydrides in the substrate reduction mechanism. Here, it is demonstrated that 

FeMo-cofactor can be loaded with deuterides (Fe-D--Fe) from D2 by turning over 

nitrogenase under N2 and D2 and that this state can be intercepted by the substrate 

acetylene, yielding mono- and di-deuterated ethylene (C2H3D and C2H2D2) as products.  

Observation of these products provides direct experimental confirmation for a proposed 

reductive elimination mechanism of N2 reduction catalyzed by nitrogenase that involves 

metal hydrides. Moreover, these results reveal the direct involvement of metal hydride in 

hydrogenation of substrates. 

  

                                                            
5 Coauthored by Zhi-Yong Yang, Nimesh Khadka, Dmitriy Lukoyanov, Brian M. Hoffman, Dennis R. 
Dean, and Lance C. Seefeldt, manuscript in preparation. 
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Introduction 

Biological nitrogen fixation — the reduction of dinitrogen (N2) to two ammonia 

(NH3) molecules — is primarily catalyzed by the Mo-dependent nitrogenases (1–6). 

These enzymes comprise an electron-delivery Fe protein and MoFe protein, carrier of the 

catalytic FeMo-cofactor. The nitrogenase catalyzed reaction has a limiting stoichiometry 

as shown in equation 5-1 (1, 7).  

N2 + 8e- +16ATP + 8H+ → 2NH3 + H2 + 16ADP + 16Pi  (eqn 5-1) 

This equation conveys one of the most puzzling aspects of nitrogenase function, 

the obligatory formation of one H2 per mole of N2 reduced, resulting in the apparent 

‘waste’ of two reducing equivalents and four ATP (1, 7–9). A kinetic framework for 

nitrogenase function that incorporates the stoichiometry of eqn. 5-1 is provided by the 

Lowe-Thorneley (LT) model (1, 8, 10), which describes transformations among catalytic 

intermediates (denoted En) where n is the number of electrons and protons (n = 0-8) 

delivered to MoFe protein. N2 binding is coupled to H2 production and requires activation 

of the MoFe protein to the key E4 state, in which FeMo-cofactor has accumulated four 

electrons and four protons, which are stored as two hydrides that bridge Fe atoms (Fe-H--

Fe) and two protons putatively bound to sulfide (Figure 5-1) (11–14).  

We recently presented a draft mechanism for nitrogen fixation whose keystone is 

a proposed reason for obligatory H2 production (5). H2 is produced by reductive 

elimination (15–18) of the two bridging hydrides of E4 during N2 binding (Figure 5-1) 

(5). This yields N2 bound to doubly reduced FeMo-cofactor with two protons, and 

thereby is activated to promptly deliver two e-/H+ to N2, generating diazene (HN=NH) 

bound to FeMo-cofactor (5). The reductive activation of FeMo-cofactor for N2 binding 
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and reduction that thus underlies obligatory H2 formation (i) provides a compelling 

rationale for the apparently wasteful stoichiometry of eqn. 5-1 and (ii) uniquely satisfies 

key constraints imposed by turnover under N2 plus D2 or T2 (1, 19–26). In particular, 

although D2 or T2 do not by themselves react with nitrogenase during turnover, as 

schematized in Figure 5-1, they can be incorporated into FeMo-cofactor during reduction 

of N2 by reversing the N2 binding equilibrium (27), reacting with FeMo-cofactor to 

release N2 and generate the (Fe-(D-/T-)-Fe)2 E4 intermediate, which can relax in two steps 

to form two HD or HT without D+/T+ exchange with solvent (5, 19).     

This reductive elimination (re) mechanism for H2 release upon N2 binding 

(Figure 5-1B) makes testable predictions. As indicated in Figure 5-1C, this mechanism 

predicts that during turnover under D2/N2, reaction of the E4[N2/N2H2] intermediate with 

D2 would generate dideutero-E4 (E4(2D)), which can relax to monodeutero-E2 (E2(D)) 

with loss of HD (5, 28). Neither of these two deuterated enzymatic intermediates could 

otherwise form in H2O buffer, as D2 does not react with nitrogenase during reduction of 

any other substrate than N2 (19, 26, 29). As indicated in Figure 5-1C, the formation of 

E2(D) and E4(2D) might be revealed by intercepting them with the non-physiological 

substrate acetylene (C2H2) (30, 31) to generate deuterated ethylenes (C2H3D and C2H2D2, 

respectively). There is no report on the production of deuterated ethylenes from reduction 

of acetylene in the presence of D2 (1), thus the formation of these deuterated ethylenes 

during turnover under C2H2/D2/N2 would thus provide definitive support for the reductive 

elimination mechanism.  
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Figure 5-1. FeMo-cofactor and key mechanistic steps.  (A) FeMo-cofactor inorganic core 

with Mo in magenta, Fe in rust, S in yellow, and C in gray. The structure and numbering 

of Fe atoms are based on the protein database file PDB:1M1N.  The face composed of Fe 

atoms 2, 3, 6, and 7 is noted with a red circle. (B) Proposed reductive elimination (re) 

mechanism for N2 binding at E4 with reductive elimination of H2 and hydrogenation of 

N2 to generate a metal bound diazene intermediate. Colors are N in blue and H in green. 

Fe6 in red indicates the Fe0 valence state. (C) Predicted steps for the N2-dependent 

formation of 2HD (right to left) during relaxation of E4(2D) formed by D2 displacement 

of N2.  The possible interception of the key E4(2D) and E2(D) intermediates by acetylene 

to produce C2H3D and C2H2D2 is shown.  
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Results 

The earlier finding that HD is formed during turnover of nitrogenase under a 

mixture of D2/N2, but not under D2 alone (20–23, 25), can be explained by the re 

mechanism in which N2 is displaced from the E4[N2/N2H2] intermediate by D2 (Figure 1) 

(5, 23), which undergoes oxidative addition to form the E4(2D) state containing two Fe-

bridging deuterides (Fe-D--Fe) that are not exchangeable with solvent (11). In the 

absence of reactions with other substrates, this intermediate could then relax to the resting 

E0 level in a two-step process: (i) release of HD to form E2(D); (ii) release of a second 

HD to form E0. The E4(2D) and E2(D) deuterated intermediates of Figure 5-1 are unique 

to the re  mechanism (5), and in an attempt to intercept them, and thereby reveal their 

presence, turnover conditions were created that favor HD formation (0.25 atm N2 and 0.7 

atm D2) (20), but included a small amount of 13C-acetylene (typically 0.02 atm). As 

illustrated in Figure 5-1 and discussed below in detail, reduction of C2H2 by E4(2D) and 

E2(D) are predicted to yield C2H2D2 and C2H3D, respectively. These studies employed 

13C2H2 as the starting material to avoid confusion from the small but significant natural 

abundance of 13C (1.07%) (32) in acetylene.   

Most of the ethylene formed in both the presence and absence of N2 or D2 is 

13C2H4, which is detected by mass spectrometry (MS) as a peak with mass/charge (m/z) 

of 30, following separation from other gases by gas chromatography (GC).  The ethylene 

clearly forms by the normal acetylene reduction process, with the two solvent protons 

added to C2H2 coming from solvent without intervention of D2 or N2. However, 

deuterated ethylenes were also formed with the full 13C2H2/D2/N2 reaction mixture. As 

expected from prior work, they were not formed when N2 was not included (Figure 5-2). 
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A substantial amount of mono-deuterated ethylene (13C2H3D; m/z = 31) was detected, a 

species that can only have been produced by 13C2H2 intercepting E2(D) or E4(2D) (Figure 

5-1). The rate of 13C2H3D formation was found to be ~27 nmol C2H3D/nmol MoFe 

protein over 20 min, about 2% of the amount of 13C2H4 generated. Also detected was a 

product with m/z of 32, corresponding to 13C2H2D2 (Figure 5-2), with a lower, though 

still significant production rate of ~1.9 nmol 13C2H2D2/nmol MoFe protein over 20 min.  

This species can only have been produced by 13C2H2 intercepting E4(2D) (Figure 5-1), 

the intermediate formed through N2 replacement by D2, which oxidatively adds to FeMo-

cofactor (5). 

Reduction of acetylene and N2 are mutually exclusive, with complicated 

inhibition kinetics between these two substrates (33).  Therefore, it was of interest to 

determine the effect of varying the C2H2 partial pressure on the formation of C2H3D and 

C2H2D2 at a fixed N2 and D2 concentration. As the partial pressure of C2H2 is increased, 

the amounts of C2H3D and C2H2D2 both decrease as a fraction of the total acetylene 

reduction, with a stronger decrease in the production of C2H3D (Figure 5-3). The overall 

suppression of deuterated ethylene products can be understood as the result of increased 

capture by C2H2 of less reduced states than E4[N2/N2H2], thereby preventing the 

formation of this state and its reaction with D2, which leads to the creation of deuterated 

ethylenes. However, with increasing C2H2 concentration, the E4(2D) that nonetheless 

does form will react with increasing C2H2, somewhat ameliorating the suppression of 

C2H2D2. This process would further suppress C2H3D production, as it competes with HD 

release by E4(2D) to form the E2(D) state whose reaction with C2H2 generates C2H3D.  
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Figure 5-2.  Time-dependent formation of mono- and di-deutero 13C-ethylene catalyzed 

by nitrogenase. Shown is the formation of monodeutero-13C-ethylene (13C2H3D) as a 

function of time determined by GC/MS monitoring of m/z = 31 starting with 13C2H2 and 

including D2 and N2 (), just D2 (), or H2 and N2 ().  The inset shows the formation 

of dideutero-13C-ethylene (13C2H2D2, m/z = 32) monitored at m/z = 32 starting with 

13C2H2 and including D2 and N2 (), just D2 (), or H2 and N2 (). The assays were 

conducted with partial pressures of 0.02 atm 13C2H2, 0.25 atm N2, and 0.7 atm H2/D2, 

where present.  The molar ratio between Fe protein and MoFe protein was 2:1. All assays 

were incubated at 30oC. 
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Figure 5-3. Deuterated ethylene formation as a function of acetylene partial pressure. 

The log of the percentage of maximum formation of monodeuterated (C2H3D) or 

dideuterated (C2H2D2) ethylene is plotted as a function of the partial pressure of acetylene.  

The partial pressure of D2 was 0.7 atm and the partial pressure of N2 was 0.2 atm. The 

molar ratio of Fe protein and MoFe protein was 4:1. Assay conditions as in Figure 2, 

except all assays were incubated at 30oC for 60 min. 

Davis et al. showed  that increasing the partial pressure of H2 increasingly diverts 

nitrogenase from reduction of N2 to reduction of C2H2 (34), an observation interpreted as 

resulting from increased reaction of H2 with E4[N2/N2H2], displacing N2 and suppressing 

the formation of NH3. The re mechanism further predicts that in the presence of D2, the 

displacement of N2 generates E4(2D), which can release HD to form E2(D) (Figure 5-1); 

reaction of C2H2 with those deuterated E-states would yield C2H2D2 and C2H3D,  
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Figure 5-4. Deuterated ethylene formation as a function of D2 partial pressure. The 

amounts of C2H3D and C2H2D2 formed versus the partial pressure of D2 are shown.  The 

partial pressure of C2H2 and N2 were 0.02 and 0.2 atm, respectively. The molar ratio of Fe 

protein to MoFe protein was 4:1. Assay conditions as in Figure 5-3.   

respectively, as described in the previous paragraph. Correspondingly, as shown in 

Figure 5-4, the formation of both C2H3D and C2H2D2 increase in parallel with increasing 

D2 partial pressure, as expected from this analysis. 

The yield of C2H3D and C2H2D2 similarly increase in parallel with increasing 

partial pressure of N2 (Figure 5-5). This can be explained by enhanced formation of 

E4[N2/N2H2] by reaction of N2 with E4. Increased formation of E4[N2/N2H2] in turn would 

enhance reaction with D2 to form E4(2D), which can be intercepted by acetylene to form 

deuterated ethylenes (Figure 5-1). These observations from N2 and D2 partial pressure  



 129 

 

Figure 5-5. Deuterated ethylene formation as a function of N2 partial pressure. The 

amounts of C2H3D and C2H2D2 formed  as a function of the partial pressure of N2 is 

shown.  The partial pressure of C2H2 was 0.02 atm and D2 was 0.6 atm.  The molar ratio 

of Fe protein to MoFe protein was 4:1. All assays were incubated at 30oC for 60 min. 

studies is consistent the previous observation of the effects of N2 and D2 partial pressure 

on HD formation reaction (20–22). 

 The rate of electron flow through nitrogenase (called electron flux) is known to 

affect product distribution for other substrates (1). The electron flux is easily controlled 

by altering the molar ratio of Fe protein to MoFe protein ([Fe protein]:[MoFe protein]), 

the electron flux increasing with this ratio. In earlier studies, it was observed that varying 

the electron flux affects the HD formation rate (20). The current experiments show that as 

the flux is increased from 2:1 to 32:1 in the presence of C2H2/D2/N2 (0.02 atm C2H2, 0.68 
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atm D2, and 0.3 atm N2), the amounts of the two deuterated ethylene products decrease 

with a stronger effect on the C2H2D2 than that on the C2H3D in the lower electron flux 

range (Figure 5-6). This observation is consistent with the higher flux enhancing electron 

delivery to the E4[N2/N2H2] intermediate, sending it along the catalytic pathway to NH3 

production and thus shortening the window-time for the formation of E4(2D) intermediate 

and competitively decreasing the formation of the deuterated ethylenes (20).  

 

Figure 5-6. Deuterated ethylene formation as a function of electron flux. The amounts of 

C2H3D and C2H2D2 formed as a function of the electron flux, as characterized by the ratio 

of Fe protein to MoFe protein, is shown.  The partial pressure of C2H2 was 0.02 atm, D2 

was 0.68 atm, and N2 was 0.3 atm.  The molar ratio of Fe protein to MoFe protein was 

4:1. The molar ratio of Fe protein to MoFe protein varied from 2:1 to 32:1. All assays 

were incubated at 30 oC for 60 min. 
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Discussion 

Upon formulating the re mechanism for the activation of FeMo-cofactor to reduce 

N2 (Figure 5-1) (5), we noted that addition of C2H2 to an N2/D2 reaction mixture offers a 

rigorous test of the mechanism.  The test is founded on a defining characteristic of 

nitrogenase catalysis, an exact distinction between hydrons (L; L = H/D/T) associated 

with the gaseous diatomics, L2, and those derived from solvent water. Thus, (i) when 

nitrogenase in protic buffer is turned over under N2/D2, gaseous D2 can displace N2 from 

the E4(N2/N2H2) state (Figure 5-1), stoichiometrically yielding two HD; (ii) however, 

there is essentially no loss of T+ to solvent (ca. 2%) during the corresponding turnover 

under N2/T2 (19). This and other observations clearly show that diatomic L2 is not used to 

reduce N2 during turnover under N2/L2 (in particular, T incorporated into the ammonia 

product of N2 fixation would exchange with solvent (5). (iii) Likewise, when any other 

substrate is being reduced by nitrogenase, if diatomic L2 is added to the reaction mixture 

it is not used to reduce the substrate (1, 35). In particular, there is no report on the 

production of deuterated ethylenes from reduction of acetylene in the presence of D2 (1). 

  With this foundation, we recognized that the re mechanism predicts that turnover 

under C2H2/D2/N2 should not only incorporate H from solvent to generate C2H4 by the 

normal reduction process, but through the agency of the added N2 also should for the first 

time breach the separation of gaseous D2 from solvent protons by generating both C2H3D 

or C2H2D2, as follows. According to the re mechanism, Figure 5-1, when turnover is 

carried out under N2/D2, D2 can intercept E4(N2/N2H2), replacing the N2 and undergoing 

oxidative addition to generate E4(2D) (5). We recognized that this state in fact can be 

expected to react with C2H2 to form C2H2D2, with a plausible mechanism (Figure 5-7A)  
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Figure 5-7. Proposed acetylene interception mechanisms. (A) C2H2D2 formation from 

E4(2D) through acetylene insertion into metal-deuteride bond followed by reductive 

elimination from Fe-bound vinyl and hydride ligands. (B) C2H3D formation from E2(D) 

through acetylene insertion and protonation of the vinyl ligand. Deuteride is highlighted 

in green.  
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involving terminalization of an Fe-D--Fe bridge of E4, migratory insertion of bound C2H2 

into the Fe-D- bond to form an Fe-vinyl intermediate (36), followed by reductive 

elimination (15) of C2H2D2.  

The E4(2D) state would also relax through the loss of HD to form E2(D), an E2 

state whose unique isotopic composition can be generated in no other way under applied 

assay conditions (5). Interception of the E2(D) thus produced by C2H2 would then 

generate C2H3D, with Figure 5-7B  presenting a plausible mechanism: hydride 

terminalization and insertion, followed by vinyl protonation (15). The E2(D) can be 

reduced by two more electrons to form a E4 state with one bridging hydride and one 

bridging deuteride (E4(HD)), from which acetylene can also be reduced to form C2H3D 

through a reductive elimination mechanism (Figure 5-7A). A full reaction pathway for 

acetylene interception of deuteride intermediates is illustrated in Figure 5-8. 

 To test these predictions of an unprecedented involvement of gaseous D2 in 

substrate reduction we have carried out C2H2 reduction under N2/D2/C2H2 gas mixtures 

and under varying electron flux, with turnover under N2/H2/C2H2 as control. As expected, 

the control reactions of turnover under N2/H2/
13C2H2 and D2/

13C2H2 generates only 13C2H4, 

with a trace amount of 13C2H3D from the natural abundance of deuterium or 

contaminating level of N2 in reaction system and without any detectable 13C2H2D2 

(Figure 5-2). In contrast, 13C2H2 reduction by nitrogenase under a N2/D2/
13C2H2 gas 

mixture in fact produces substantial yields of, 13C2H3D and lesser, though still significant, 

yields of 13C2H2D2 (Figure 5-2). The measured yield of C2H3D indicates that under the 

conditions of electron flux and D2/N2 partial pressures employed, formation of C2H3D 

occurs up to about 7% as often as accumulation of an additional electron by E4(N2/N2H2) 
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directs this state down the N2 reduction pathway to NH3 production. The even lower yield 

of C2H2D2 likely indicates that the probability for binding and reduction of C2H2 by 

E4(2D) is substantially lower than that for the relaxation to E2(D) through loss of HD 

(Figure 5-1). These observations are enriched by the dependence of the yields of C2H3D 

and C2H2D2 on the partial pressures of C2H2, D2, N2, and electron flux, Figures 5-3 to 5-

6, all of which are shown in Results section, above, to be understandable in terms of the 

re mechanism for FeMo-cofactor activation for N2 binding and reduction, Figure 5-1. 

 It is of keen interest to note that the reduction of C2H2 to C2H3D by reaction with 

E2(D) formally corresponds to the reduction of C2H2 by the HD that otherwise would 

form during relaxation of E2(D) to E0 (Figure 5-1C), a perspective that highlights the 

contrast between this result, achieved in the presence of N2. Elaborating on this 

perspective, the formation of HD during turnover under N2/D2, with stoichiometry (1), D2 

+ 2H+(aq) + 2e-  2HD, can be seen to corresponds to the catalytic reduction of D2 by 

nitrogenase with N2 as cocatalyst, a reaction that does not proceed without N2. Likewise, 

although C2H2D2 of course is well known to form during nitrogenase reduction of C2D2 

in H2O buffer (or C2H2 in D2O buffer) (6, 36), observation of this species during turnover 

under N2/D2/C2H2 is remarkable because the stoichiometry of the reaction corresponds to 

the unprecedented reduction of C2H2 by gaseous D2, C2H2 + D2  C2H2D2, as catalyzed 

by nitrogenase with N2 as cocatalyst.  

 Other than supporting the re mechanism (5) we proposed for N2 binding, 

obligatory H2 evolution, and HD formation, the generation of C2H3D and C2H2D2 

observed in this study can also help us understand some other important mechanistic 
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aspects in nitrogenase catalysis, including the hydrogenation mechanism of substrates (6) 

and complicated enzyme kinetics reported before (1, 33). 

Since the incorporation of D into C2H3D and C2H2D2 is exclusively from D2-

derived deuteride intermediates, this observation is the first piece of experimental 

evidence for the direct involvement of metal-hydride intermediates in hydrogenation of 

substrate other than proton reduction (1, 6, 8, 11, 37). The mechanism for hydrogenation 

of acetylene could be different at different steps (Figure 5-7) (6), including migratory 

acetylene insertion into a metal-hydride bond as the first step, and reductive elimination 

of the vinyl intermediate and a second metal-hydride bond or solvent protonation of the 

vinyl ligand to produce the product ethylene (6, 15).  

Acetylene interception of metal-hydride intermediates found here might explain 

several important observations related to acetylene serving as an inhibitor and substrate 

of nitrogenase: (a) acetylene at saturating concentrations can completely inhibit proton 

reduction catalyzed by wild-type nitrogenae (38), due to the acetylene interception of 

metal hydrides that is destined to make H2 (6); (b) acetylene is a noncompetitive inhibitor 

of N2 reduction, and N2 is a competitive inhibitor of acetylene reduction for wild-type 

nitrogenase (39). The nonreciprocal inhibition pattern can be explained by acetylene 

interception of the metal-hydride intermediates (e.g. E2(H) and E4(2H)) preceding N2 

binding and reduction by wild-type nitrogenase (33). 

The results from this study also explained the observations by Davis et al. that the 

presence of hydrogen diverted nitrogenase from production of NH3 to increased 

production of C2H4 (34). 
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Our results also strongly suggest a direct involvement of metal-hydride as part of 

the hydrogenation reactions of other substrate reduction, which could be a common 

feature of nitrogenase catalysis. However, we still could not exclude other hydrogenation 

mechanisms such as sequential protonation of substrate-derived anionic ligands bound to 

FeMo-cofactor. It’s clear that more work need to be done to understand the 

hydrogenation mechanism of substrate reduction catalyzed by nitrogenase. 

In LT model for acetylene reduction, acetylene was suggested to bind to E1 and E2 

state and ethylene is released when the third electron is accumulated in MoFe protein (8, 

10). Our data clearly indicates that acetylene can be reduced at the E4 level (Figure 5-7A). 

The reason that this reaction had never been considered before perhaps because the 

reaction at the E4 state could not be distinguished from reaction at the E2 state when C2H2 

is reduced in the absence of N2, which is required to enable gaseous D2 to enter the 

catalytic process (5). 

In summary, there are many conclusions can be made from this study. (i) The 

unprecedented incorporation of D from D2 into the nitrogenase reduction products 

C2H2D2 and C2H3D during turnover under C2H2/D2/N2 by nitrogenase in H2O provides 

clear evidence that the re mechanism is responsible for the activation of FeMo-cofactor 

for reduction of N2 during nitrogen fixation, Figure 5-1. (ii) Under these turnover 

conditions nitrogenase catalytically (a) reduces D2 to 2HD by electrons and solvent 

protons, with N2 as cocatalyst, and (b) reduces C2H2 to C2H2D2 by D2, both with N2 as 

cocatalyst. (iii) Metal hydride intermediates at E2 and E4 states are directly involved in 

hydrogenation of acetylene through different mechanisms at different steps. The same 

hydrogenation mechanism could be true for the reduction of other substrates catalyzed by 
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nitrogenase. (iv) Acetylene interception of hydride intermediates explains why proton 

reduction can be completely inhibited and N2 is non-competitively inhibited by acetylene 

for wild-type nitrogenase. 

 

Figure 5-8. A full reaction pattern for acetylene interception of deuteride containing 

nitrogenase intermediates. The proposed diazene intermediate is shown in a magenta 

circle. The question mark indicates the uncertainty of the binding mode of the diazene 

ligand, which could be either terminal or bridging. Colors: N in blue and D in green. 
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Materials and Methods 

Chemical reagents and protein purification. Gases were purchased from Air 

Liquide (Plumsteadville, PA and Houston, TX). Ultrapure helium was purchased from 

Airgas (Denver, CO). Ethylene (99.9%) was obtained from Praxair Inc. (Danbury, CT). 

13C-acetylene (99 atom % 13C) and D2 (99.8 atom % D) were purchased from Sigma-

Aldrich (St. Louis, MO) and Isotec (Miamisburg, OH), respectively. All other reagents 

were obtained from Sigma-Aldrich (St. Louis, MO) or Fisher Scientific (Fair Lawn, NJ), 

and were used without further purification, unless specified otherwise. Azotobacter 

vinelandii strains DJ1260 (hydrogenase gene cluster removed, ΔHup) and DJ884 (R187I 

in nifD, ΔHup) were grown as previously described (40). The wild-type nitrogenase 

MoFe protein (DJ1260) and Fe protein (DJ884) were expressed and purified as 

previously reported (40, 41). The wild-type MoFe protein in this study contains a seven-

His tag addition near the carboxy-terminal end of the α-subunit. Protein concentrations 

were determined by the Biuret assay using bovine serum albumin as standard. The 

purities of these proteins were estimated to 95% based on denaturing polyacrylamide 

gel separation with Coomassie blue staining. Manipulation of proteins, solutions, and 

buffers was done in septum-sealed serum vials under an argon atmosphere on a Schlenk 

vacuum line. All gases and liquid transfers used gas-tight syringes. 

Assay methods. All assays were conducted in 9.4-mL serum vials with gases 

added before addition of 1.1 mL of an anaerobic “assay buffer” consisting of 90 mM 

sodium dithionite, a MgATP regenerating system (13.4 mM MgCl2, 10 mM ATP, 60 mM 

phosphocreatine, 1.2 mg/mL bovine serum albumin, and 0.4 mg/mL creatine 

phosphokinase) in a 100 mM MOPS buffer, pH 7.0.  Prior to all assays, the MoFe protein 



 139 

was added and the vials were equilibrated for about 20 min. The gas overpressure was 

released before initiating the assays.  Reactions were initiated by the addition of Fe 

protein and the reaction was allowed to proceed at 30C for 60 min, unless noted 

otherwise. Reactions were quenched by the addition of 300 µL of 400 mM EDTA, pH = 

8.0, solution. For the acetylene partial pressure dependence study, 3.3 mL of the assay 

buffer was used with acetylene partial pressures from 0.002-0.008 atm with the same 

protein concentrations as described below. For analysis of the partial pressure 

dependence of acetylene, N2, and D2, all samples contained 1.0 mg of wild-type MoFe 

protein and 1.0 mg of Fe protein in 1.1 mL of “assay buffer”. For the electron flux 

dependence study, 1.0 mg of MoFe protein was used and the Fe protein varied from 0.5 

mg to 8.0 mg in 1.1 mL of assay buffer. In the time course study using 13C2H2, 1.0 mg of 

wild-type MoFe protein and 0.5 mg of Fe protein in 1.1 mL of assay buffer. The 

acetylene partial pressure dependence study was done in triplicate.  

GC-MS measurement of products. Ethylene was quantated by analysis of the 

headspace gas with a Shimadzu GC-2010 gas chromatograph (GC) equipped with a 

programmed temperature vaporization (PTV) injector and a Shimadzu GCMS-QP2010S 

mass spectrometer (MS) in selected ion monitoring (SIM) mode using electron ionization 

(EI) as the ion source. Separation of ethylene from other gases was achieved with a Rt-

Alumina BOND/KCl column (30 m, 0.32 mm ID, and 5.0 µm film thickness) (Restek, 

Belafonte, PA). The injector and column temperatures were set to 35C. Ultra-pure 

helium was used as the carrier gas set at a linear velocity of 60 cm/s. For each injection, 

100 or 150 µL of headspace gas was directly injected into the PTV injector. When 12C-

acetylene (C2H2) was the substrate, ethylene (C2H4, mass 28) was monitored at m/z = 28 
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(m), with minor species being 29 (m+1) and 30 (m+2) resulting from natural abundance 

2H (D) and 13C (32) in the acetylene.  For samples using 13C2H2, ethylene (13C2H4, mass 

30) was monitored as m/z = 30 (m) with minor products detected at 31 (m+1) and 32 

(m+2) from natural abundance 2H. When the reaction was run with D2 in place of H2, the 

ethylene products C2DH3 (mass 29) and C2D2H2 (mass 30) or 13C2DH3 (mass 31) and 

13C2D2H2 (mass 32) were detected.  Ethylene was quantified from the peak area using a 

standard curve generated with known amounts of ethylene in argon. 

It was taken that all isotopmers of ethylene had the same retention time and that 

the ionization and fragmentation efficiency of all isotopomers was the same. Intensities 

for all ethylene peaks were established by subtraction of the signal background at that 

retention time. Error propagation was calculated using the online calculator (42). 
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CHAPTER 6 

STERIC CONTROL OF THE HI-CO MOFE NITROGENASE COMPLEX REVEALED 

BY STOPPED-FLOW INFRARED SPECTROSCOPY6 

Here, we present the impact of substitution for the α-70Val residue of Azotobacter 

vinelandii nitrogenase MoFe protein on the hi-CO complex as monitored by stopped-flow 

infrared (SF-IR) spectroscopy. Nitrogenase is a bacterial metalloenzyme system whose 

physiological function is to catalyze the reduction of dinitrogen to ammonia [1,2] with a 

concomitant reduction of 2H+ to H2 and hydrolysis of MgATP.  X-ray crystallography on 

MoFe nitrogenase reveals the active-site FeMo-cofactor to be an unprecedented 

[Fe7S9MoX:homocitrate] cluster, (Figure 6-1).[3,4]  However, simple inspection of this 

structure does not provide an obvious location for substrate binding or any indication of 

the subsequent mechanism for substrate reduction.  Mechanisms focused on substrate 

binding to either Mo and Fe sites have been proposed as have combination approaches 

that involve migration of substrate-derived moieties between metal atoms during 

reduction.[5-8] 

A series of recent studies have revealed the importance of substrate interactions at 

the 4Fe-4S face of FeMo-co defined by Fe atoms 2, 3, 6, and 7.  These have analyzed the 

impact of modulating the steric influence of the uncharged α-70Val residue, which lies 

over Fe6 (Figure 6-1).[6] Reducing the size of the sidechain by substitution with alanine 

or glycine allows the reduction of significantly larger alkyne substrates such as propargyl 

alcohol,[9-11] while increasing its size by substitution with isoleucine severely restricts the 

                                                            
6 Coauthored by Zhi-Yong Yang, Lance C. Seefeldt, Dennis R. Dean, Stephen P. Cramer, and Simon J. 
George (2011) Angewandte Chemie International Edition 50(1), 272-275. Copyright © [2011] WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim. Reprinted with permission. 
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reduction of nitrogenous and alkyne substrates while leaving the reactivity towards 

proton reduction unaltered.[12,13] The clear implication of these results, and especially 

those from α-70Ile, is to implicate the Fe 2-3-6-7 face as the region for initial substrate 

binding. 

 

Figure 6-1. FeMo-co showing the position and potential steric influence of the α-70 

residue over the Fe 6 atom on the Fe 2, 3, 6, 7 face.  a) Side view of α-70Val.  b) Side view 

of α-70Ile.  c) End view of (left to right) α-70Val, α-70Ile, α-70Ala, α-70Gly.  The wireframe 

indicates the van der Waals radii of the sidechains.  A CO molecule is included for size 

comparison.  Fe, rust; Mo, magneta; S, yellow; C, dark gray; O, red; X, blue.  Structures 

built from PDB files: 1M1N.pdb[3] and 3K1A.pdb.[13] 
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CO is a valuable probe of the ligand binding properties of the FeMo-co active site. 

The molecule is a potent non-competitive inhibitor of the enzyme’s ability to reduce 

dinitrogen and other multiply bonded molecules,[14,15] although recent work has shown 

that for the vanadium enzyme it can be a slow substrate.[16]  It does not, however, inhibit 

enzyme turnover and MgATP hydrolysis, and the electron flux through the enzyme is 

redirected to increasing the rate of reduction of 2H+ to H2. 

The binding chemistry of CO to MoFe nitrogenase is known to be complex and 

dependent on the partial pressure or concentration of CO present.[17,18]  Electron 

paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies 

have identified three bound states: under limiting [CO] conditions (< 0.08 atm in the gas 

phase or < 1:1 [CO]:[FeMo-co] in solution) the “lo-CO” state forms, which is proposed 

to comprise a single CO bound to the FeMo-cofactor, while under excess [CO] or under a 

high partial pressure of the gas, two EPR signals are observed, termed “hi-CO” and 

“hi(5)-CO”.  Each signal is proposed to comprise at least two CO molecules bound to 

separate sites on the cofactor.[17,18] 

Significant insight into CO binding to nitrogenase is possible by SF-IR 

spectroscopy, which has the enormous advantage of being a real-time room temperature 

technique.[19-21] Under lo-CO conditions, SF-IR measurements on both Klebsiella 

pneumoniae and A. vinelandii MoFe enzymes show a transient ν(CO) band at 1904 cm-1 

which corresponds to a single CO terminally bound to a metal site, which converts on the 

minute timescale to an infrared (IR) band at 1715 cm-1 which presumably arises from a 

bridged or protonated bound CO species.[20,21]  By contrast, under hi-CO conditions 

complex spectra are seen with ν(CO) bands at 1960, 1936, 1906 and 1880 cm-1, all of 
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which most likely arise from terminally bound CO species at more than one metal 

site.[19,20]  Further insight has been gained from spectroelectrochemical IR studies of the 

isolated FeMo-cofactor in N-methyl formamide (NMF:FeMo-co), which also reveals lo-

CO and hi-CO behavior.  The lo-CO state has redox dependent ν(CO) bands at 1835 and 

1808 cm-1 that are assigned to bridged CO groups, while hi-CO has bands at 1885 and 

1920 cm-1, assigned to terminally bound CO on Fe and Mo, respectively.[22] 

Here we use SF-IR to examine the sensitivity of the hi-CO complex to steric 

changes in the uncharged α-70 sidechain.  The results for A. vinelandii wild-type MoFe 

protein (α-70Val) together with those from the α-70Gly, α-70Ala and α-70Ile variants are 

summarized in Figure 6-2 and Table 6-1. These data were all generated by reacting a 1:4 

molar ratio of MoFe:Fe proteins with a buffered solution of MgATP saturated with CO, 

giving 50 µM FeMo-cofactor centers and 0.5 mM CO after mixing. 

The spectrum of the wild-type (α-70Val) complex (Figure 6-2a, top) is consistent 

with those previously reported.[19,20]  The time courses, Figure 6-2b, allow us to assign 

the spectrum to a mixture of two distinct hi-CO forms and the lo-CO complex. The first 

hi-CO form comprises the intense band at 1936 cm-1 and the weaker band at 1880 cm-1.  

These bands share the same time course and so it is reasonable to assign them to the same 

species.  This species forms slowly, reaching a maximum intensity at ~150 s before 

slowly decaying (not shown) so we term it “slow hi-CO.”  The second hi-CO form is 

characterized in this region by a single observed band at 1960 cm-1.  We term this “fast 

hi-CO” as it initially appears quickly, within 10 s, and decays more slowly than the 1936 

cm-1 band.  The band at 1906 cm-1 mostly likely corresponds to the lo-CO complex and 

reaches maximum intensity within 8 seconds before decaying slowly to about 50%  
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Figure 6-2. Transient IR spectra of the A. vinelandii MoFe nitrogenase hi-CO complex 

showing the effect of varying the size of the α-70 sidechain.  a) Spectra averaged 25–35 s 

(solid line) and 6–14 s (broken line) after mixing.  b) Time courses for wild-type (α-70Val) 

measured at 1880, 1904, 1936 and 1960 cm-1.   c) Comparison of time courses at 1936 

cm-1 (α-70Val, α-70Ile, α-70Ala) and 1945 cm-1 (α-70Gly). Intensities in (b) and (c) are 

normalized at 150 s. 
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Table 6-1. Assignment of observed IR bands 

α-70 variant Lo-CO 
(cm-1) 

Slow Hi-CO  
(cm-1) 

Fast Hi-CO 
(cm-1) 

Val[a] 1906 1936 1880 1960 

Ile 1895 1936 1880 1957 

Ala 1904 1936 1870 1955 

Gly 1911 1946 1870 n/o[b] 

[a] Wild-type. [b] not observed or not resolved. 

maximum size. Interestingly, the time course of the lo-CO decay is similar to the time 

course of formation of the slow hi-CO species suggesting that the slow hi-CO species 

may in part result from further CO binding to the 1906 cm-1 lo-CO species. 

Changing the size of the uncharged α-70Val isopropyl sidechain modifies the 

energies and intensities of the IR bands, Figure 6-2, however, there is consistently a 

visual correspondence with the wild-type spectrum, suggesting that both the two hi-CO 

species and the lo-CO band are still present.  Band energies and assignments are 

presented in Table 6-1.  Substitution with a methyl group in α-70Ala reduces all the band 

intensities and shifts their energies.  Interestingly, the intense band at 1936 cm-1 is 

substantially attenuated so that it now has similar intensity to the other bands. Similarly, 

increasing sidechain size to isobutyl in α-70Ile also weakens the spectrum and again shifts 

the bands.  Of particular interest is the α-70Gly variant where the sidechain is replaced by 

a hydrogen atom thereby eliminating any steric effect.  In this case, not only are all the 

slow hi-CO and lo-CO bands shifted in energy, but unlike the other variants, they are also 

broadened; for example, the bandwidth of the large slow hi-CO band increases from 10.5 

to 15.5 cm-1 (FWHM).  The fast hi-CO band is not observed although it is possible that it 

is obscured by the intense 1946 cm-1 band. 
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The apparent correlation of the hi-CO bands in the variant spectra with those in 

the wild-type spectrum is confirmed through the similarity in their time-dependence. 

When observed, the fast hi-CO band close to 1960 cm-1 is essentially formed within 10 s 

in each case.  Similarly, in each variant, the 2 slow hi-CO bands have the same time 

dependence, Figure 6-2a. The kinetics of formation of the slow hi-CO species are of 

particular interest.  As shown in Figure 6-2c, the formation time-course for the wild-type, 

the α-70Gly and the α-70Ala variants are virtually identical, but for α-70Ile it is significantly 

slower.  This can be rationalized in terms of the larger sidechain impeding access to the 

CO binding site. 

The principal conclusion that can be drawn from these data is that the Fe 2-3-6-7 

face of the FeMo-cofactor is likely responsible for binding most if not all the CO ligands 

giving rise to the observed IR bands.  This arises from observation that the α-70 sidechain 

exerts steric control on the energies, conformation freedom and/or the formation kinetics 

on each of the four observed bands in at least one variant.  The potential steric influence 

of this residue on the Fe 2-3-6-7 face is clear from Figure 6-1.  However, the data do not 

indicate a change in overall pattern of CO binding; it is clear that the slow hi-CO and the 

lo-CO species are present in all the spectra in Figure 6-2, while the fast hi-CO is 

observed in three of them and could well be present in them all.  This is consistent with a 

model where CO molecules are bound to the same metal sites in each variant protein, but 

that the CO ligands are clustered about, and sterically influenced by, the α-70 aliphatic 

sidechain. Changing the sidechain size changes the angles and freedom of movement of 

the metal-CO bonds, which in turn impacts the energies and intensities of the υ(CO) 

stretching vibrations.  Increasing the sidechain size in α-70Ile impedes binding at one site 
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at least. The α-70Gly spectrum is particularly interesting, as the observed broadening of 

the IR bands is consistent with the bound CO groups being conformationally less 

constrained by the protein environment when the α-70 sidechain is reduced to a hydrogen 

atom.  

An alternative hypothesis is that modifying the α-70 sidechain causes the FeMo-

cofactor to move within the protein pocket with a concomitant impact on CO binding 

elsewhere on the cofactor.  This is largely excluded by the recent crystal structure of 

α-70Ile, which shows close overall structural agreement with that of wild-type α-70Val with 

near identity in the positions of most of the amino acids in the FeMo-cofactor binding 

pocket.[13] 

There are a number of secondary conclusions. First, as noted previously [19, 20], the 

energies of all the bands observed in Figure 6-2 indicate that they most likely comprise 

ν(CO) stretches from terminally bound metal-CO species.  It is possible that the 1880 

cm-1 band arises from a CO bridging two metal sites through the C atom as ν(C=O) 

stretches from such complexes have been observed to occur up to 1898 cm-1.[23]  We 

consider this unlikely, however, as bridging CO species in other iron-sulfur systems 

exhibit ν(C=O) at significantly lower energies; FeFe hydrogenase, for example, has 

bridging ν(C=O) bands between 1850 – 1800 cm-1.[24]  However, we cannot exclude the 

possibility of additional bridging CO or even protonated formyl groups as these could 

produce bands below the 1800 cm-1 limit of our measurements. 

Second, the sensitivity of all the observed ν(CO) bands to α-70 substitution 

confirms that they all arise from CO bound to the active site FeMo-co.  Finally, it is 

implicit from the principal conclusion that it is unlikely that the observed CO is bound to 
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Fe atoms 4 or 5. The possibility that a CO may be bound to the Mo is also unlikely, 

however this is more difficult to rigorously exclude, as the Mo is adjacent to the Fe 2-3-

6-7 face and its associated α-70 residue, and it has been proposed that CO can bind to the 

Mo in NMF:FeMo-co with ν(CO) energies similar to those in Table 6-1.[22] 

These data comprise the first spectroscopic observations of the impact of varying 

the α-70 residue on the physical properties of ligands bound to FeMo-cofactor.  This turn 

localizes the likely binding sites of the CO ligands to the Fe 2-3-6-7 face of the FeMo-

cofactor, confirming the importance of both this region of the cofactor and the α-70 

sidechain.  This work also shows the value of CO as a probe of nitrogenase mechanism as 

CO inhibition clearly involves a dynamic and complex chemistry at the FeMo-co active 

site.  The hi-CO state is of particular use as it comprises multiple CO molecules bound to 

more than one metal site and this means it can explore the array of available high and low 

affinity binding sites on FeMo-co.  A complete understanding of nitrogenase-CO 

chemistry will undoubtedly give substantial insight into the mechanism of this intriguing 

enzyme system. 

Experimental Section 

Spectroscopic quantities of wild-type and variant MoFe nitrogenase were 

prepared as previously described.[11]  FTIR spectra were measured using a modified 

Bruker IFS/66s FTIR spectrometer interfaced to a home-built stopped-flow drive system 

with the sample cuvette and drive system maintained inside an anaerobic chamber (O2 < 

1.1 ppm) as described elsewhere.[20]  The IR cuvette was thermostated at 25C. For these 

measurements, one side of the drive system was loaded with the protein mixture with the 
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other containing a buffered solution of MgATP saturated with CO.  IR spectra were 

collected between 2200-1800 cm-1 only because a narrow band optical filter was used to 

enhance sensitivity.  Spectra were measured at 4 cm-1 resolution.  The IR cuvette path 

length was calibrated at 47.6 µm.  Appropriate corrections were made for water vapor 

contamination.  The α-70Ala and α-70Ile spectra in Figure 6-2a required arbitrary 

background corrections to make them flat. 
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CHAPTER 7 

MOLYBDENUM NITROGENASE CATALYZES THE REDUCTION AND 

COUPLING OF CO TO FORM HYDROCARBONS7 

The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of 

protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-

physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon 

monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase, but instead 

inhibits the reduction of all substrates catalyzed by nitrogenase except protons.  Here, we 

report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or 

glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to 

form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane 

(C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by 

changing the flux of electrons through nitrogenase, by substitution of other amino acids 

located near FeMo-cofactor, or by changing the partial pressure of CO. Increasing the 

partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and 

alkenes. The implications of these findings in understanding the nitrogenase mechanism 

and the relationship to Fischer-Tropsch production of hydrocarbons from CO are 

discussed. 

   

                                                            
7 This research was originally published in The Journal of Biological Chemistry. Zhi-Yong Yang, Dennis R. 
Dean, and Lance C. Seefeldt. Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form 
hydrocarbons. The Journal of Biological Chemistry. 2011; 286:19417-19421. © the American Society for 
Biochemistry and Molecular Biology. 
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 Nitrogenase is the bacterial enzyme responsible for the biological reduction of N2 

to ammonia, accounting for more than half of the input of fixed nitrogen into the 

biogeochemical nitrogen cycle (1). Three different nitrogenases have been identified, 

with each being coded for by unique sets of genes (2, 3). The three nitrogenase systems 

are composed of a smaller protein called the Fe protein and a larger protein called the 

MoFe protein, VFe protein, or FeFe protein, depending on the metal composition of the 

corresponding cofactors. The Fe protein serves as a reductant of the larger protein, with 

electron transfer from the Fe protein being coupled to the hydrolysis of 2 MgATP 

molecules for each electron transferred (4). The nitrogenase system containing Mo is the 

most widely occurring and is preferentially expressed if sufficient Mo is present in the 

cell growth medium, with the other nitrogenases being expressed secondarily if Mo is 

deficient (3, 5).    

All three nitrogenase systems catalyze the reduction of N2 to ammonia and the 

reduction of protons to H2. In addition, all three systems catalyze the reduction of a range 

of other small molecules that contain double and triple bonds, such as acetylene (C2H2) to 

ethylene (C2H4), with different rates and ratios of products being observed for the three 

systems (2). Carbon monoxide (CO) is a well established inhibitor of all three nitrogenase 

systems, where it inhibits the reduction of all known substrates except protons (2, 6, 7).  

Recently, Lee et al. (8) discovered that the vanadium nitrogenase system can reduce and 

couple CO at low rates to form the hydrocarbons ethane, ethylene, and propane. The 

molybdenum nitrogenase was not observed to catalyze any detectable reduction of CO to 

hydrocarbons.   
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We have recently shown that the substrate range for the molybdenum nitrogenase 

can be expanded to larger substrates by substitution of an amino acid residue located near 

the active site FeMo-cofactor (α-Val70) (9, 10). In light of our ability to change the 

substrate range of nitrogenase, and the observation of CO reduction and coupling by the 

vanadium nitrogenase, it was of interest to determine if CO might be reduced and 

coupled to form hydrocarbons in the molybdenum nitrogenase having amino acid 

substitutions at the α-Val70 residue. 

Experimental procedures 

Reagents and protein purification−All reagents were obtained from Sigma-

Aldrich (St. Louis, MO) or Fisher Scientific (Fair Lawn, NJ), and were used without 

further purification, unless specified otherwise. CO was purchased from Matheson Tri-

Gas (Basking Ridge, NJ) with a purity of ≥99.9%. Ethylene (99.9%) was obtained from 

Praxair Inc. (Danbury, CT). Methane gas was obtained from household natural gas line 

containing about 3% ethane as an impurity. Propane gas was obtained from a propane 

fuel tank with an estimated purity of 86%. All other gases were from Air Liquide 

(Plumsteadville, PA). Azotobacter vinelandii strains DJ1260 (wild-type, WT, or α-Val70), 

DJ997 (α-Gln195), DJ1310 (α-Ala70), DJ1316 (α-Ala70/α-Gln195), DJ1313 (α-Gly70), 

DJ1391 (α-Ala70/α-His96), and DJ1495 (α-Ala70/α-Ala191) were grown and the 

corresponding nitrogenase MoFe proteins were expressed and purified as previously 

described (11). All MoFe proteins in this study contain a seven-His tag addition near the 

carboxy-terminal end of the α-subunit. The purification of these proteins was 

accomplished by following the previously developed zinc affinity purification protocol 

(11). Protein concentrations were determined by the Biuret assay using bovine serum 
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albumin as standard. The purities of these proteins were 95% based on SDS-PAGE 

analysis with Coomassie Blue staining. Manipulation of proteins and buffers was done in 

septum-sealed serum vials under an argon atmosphere or on a Schlenk vacuum line. All 

gases and liquid transfers used gas-tight syringes. 

Carbon monoxide reduction assays−Unless stated otherwise, CO reduction assays 

were conducted in serum vials having a 9.4-mL total volume and containing 1 mL of an 

assay buffer consisting of 200 mM MOPS, pH 7.0, with MgATP and a MgATP 

regenerating system (13.4 mM MgCl2, 10 mM ATP, 60 mM phosphocreatine, 1.3 mg/mL 

bovine serum albumin, and 0.4 mg/mL creatine phosphokinase). After the solution was 

made anaerobic, 150 µL of 1 M dithionite solution and the MoFe protein were added.  

Reactions were initiated by the addition of Fe protein and incubated at 30C.  Reactions 

were quenched by the addition of 300 µL of 400 mM EDTA, pH = 8.0, solution. All 

assays were done under 1 atm of CO pressure except for wild-type and α-Gln195 MoFe 

proteins (0.106 atm of CO for these two cases). Methane (CH4), ethylene (C2H4), and 

ethane (C2H6) were quantified by gas chromatography by injection of 200 µL of the gas 

phase of the reaction vial (400 µL for wild-type and α-Ala70/α-Gln195 MoFe samples) into 

a Shimadzu GC-8A equipped with a flame ionization detector fitted with a 30 cm  0.3 

cm Porapak N column with nitrogen as the carrier gas. The injection/detection 

temperature was set to 180C, and the column temperature was set to 110C. The 

standard curves with high linearity were created using methane, ethylene, and ethane 

gases diluted with argon in 9.4-mL serum vials. Propane (C3H8) and propene (C3H6) were 

quantified by gas chromatography by injection of 100 µL of the gas phase of the reaction 

vial  into a Shimadzu GC-2010 gas chromatograph equipped with a flame ionization 
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detector fitted with a Rt-Alumina BOND/KCl column (30 m, 0.32 mm inner diameter, 

and 5 µm film thickness) (Restek, Belafonte, PA). Helium was used as the carrier gas set 

at a linear velocity of 45 cm/s. The injection/detection temperature was set to 200C, and 

the column temperature was set to 60C. Identification of three- and four-carbon 

hydrocarbons were confirmed by mass spectroscopy (GCMS-QP2010S, Shimadzu 

Scientific). After addition of 300 µL of EDTA solution, the total liquid volumes in the 

standard vials were the same as those in CO reduction assay vials. 

For the electron flux dependence study, 1 mg of MoFe protein was used for each 

assay vial. Molar ratios of Fe protein to MoFe protein from 4:1 to 20:1 were tested. All 

these assays were incubated for 2 hours before quenching with EDTA. For time 

dependence measurements and CO pressure dependence studies, the amount of MoFe 

protein and the electron flux for different mutants was varied. 

Results 

Reduction of CO by α-Ala70 substituted MoFe proteins−Consistent with the earlier 

report (8), we find that the wild-type MoFe protein shows no catalytic production of 

hydrocarbons by reduction and coupling of CO when analyzed over 90 min under 

turnover conditions. In contrast, when the MoFe protein residue α-Ala70 was substituted 

by alanine (α-Ala70) or glycine (α-Gly70), the variant MoFe proteins were found to reduce 

and couple CO to hydrocarbons in a reaction dependent on the presence of Fe protein, 

MgATP, and reductant (Figure 7-1). Four hydrocarbon products were quantified for both  
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Figure 7-1. Time course of hydrocarbon production by the α-Ala70 and α-Gly70 

substituted MoFe proteins. The quantity of () ethylene (C2H4), () ethane (C2H6), (▼) 

propene (C3H6), and () propane (C3H8) produced per MoFe protein (nmol product per 

nmol MoFe protein) as a function of time is shown for the α-Ala70 (A), and α-Gly70 (B) 

MoFe nitrogenases. Assay conditions are described under “Experimental Procedures.” 

 

 

the α-Ala70 and α-Gly70 MoFe proteins: the alkanes ethane (C2H6) and propane (C3H8) 

and the alkenes ethylene (C2H4) and propene (C3H6). For both proteins, the highest 

yielding product was ethylene, followed by propene, ethane, and propane. The amounts 

of hydrocarbons produced were approximately 7 nmol ethylene (C2H4)/nmol MoFe 

protein, 4 nmol propene (C3H6)/nmol MoFe protein, 2 nmol ethane (C2H6)/nmol MoFe 

protein, and 1 nmol propane (C3H6)/nmol MoFe protein  over 60 min. Three of these 

products (ethylene, ethane, and propane) were reported for CO reduction by the 

vanadium nitrogenase system (8), although the relative ratio of products and rates of 
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production were different between the two nitrogenase systems.  For the vanadium 

nitrogenase, product production rates were 140 nmols ethylene/nmol VFe protein, 1.5 

nmol propane/nmol VFe protein, and 5 nmols ethane/nmol VFe protein over 60 min. No 

propene product was reported for the vanadium nitrogenase, whereas this was the second 

most abundant product in the molybdenum nitrogenase. 

Effects of additional amino acid substitutions−In addition to the pivotal role of α-

Val70 in defining substrate binding to FeMo-cofactor, we have earlier shown that two 

additional amino acids located near FeMo-cofactor, α-Arg96 and α-Gln191, can affect 

substrate binding (12, 13). Substituting these amino acids by histidine or alanine, 

respectively, has been shown to further expand the substrate range of nitrogenase to 

include even longer chain alkynes. We therefore examined the doubly substituted α-

Ala70/α-His96 and α-Ala70/α-Ala191 MoFe proteins to test if they might reduce and couple 

CO. Both of the doubly substituted MoFe proteins showed an altered product profile for 

hydrocarbon production, with the yield of the longer chain products propane and propene 

rising significantly (Figure 7-2). For the α-Ala70/α-Ala191 MoFe protein, 8 nmol of 

propene were accumulated per nmol of MoFe protein over 60 min. A trace of methane 

(CH4) was also detected as a product of CO reduction for both doubly substituted MoFe 

proteins, whereas methane was not detected for any of the singly substituted MoFe 

protein variants. The doubly substituted MoFe proteins demonstrated a non-linear 

production of products, suggesting possible inactivation of these enzymes during the 

course of the assay.  

The amino acid α-His195 is located near FeMo-cofactor and has been implicated in 

the delivery of protons for the reduction of nitrogenous substrates (14, 15).  We find that 
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when α-His195 is substituted by glutamine in combination with the α-Ala70 substitution, 

the rates of product formation for CO reduction and coupling are greatly decreased 

(Figure 7-3), consistent with the possibility that α-His195 functions to deliver protons for 

the reduction of CO. 

 

Figure 7-2. Time course of hydrocarbon production by the α-Ala70/α-His96 and α-

Ala70/α-Ala191 substituted MoFe proteins. The quantity of () methane (CH4), () 

ethylene (C2H4), () ethane (C2H6), (▼) propene (C3H6), and () propane (C3H8) 

produced per MoFe protein (nmol product per nmol MoFe protein) as a function of time 

is shown for the α-Ala70/α-His96 (A) and α-Ala70/α-Ala191 (B) MoFe nitrogenases. 



 163 

 

Figure 7-3. Time course of hydrocarbon production by the α-Ala70 and α-Ala70/α-

Gln195 substituted MoFe proteins. The quantity of (circles) ethylene (C2H4), (squares) 

ethane (C2H6), (inverted triangles) propene (C3H6), and (triangles) propane (C3H8) 

produced per MoFe protein (nmol product per nmol MoFe protein) as a function of time 

is shown for the α-Ala70 (open symbols) and α-Ala70/α-Gln195 MoFe proteins (closed 

symbols). 

Influence of electron flux on product ratio−Electron flux in nitrogenase is defined 

as the rate of total electrons flowing through the enzyme going to substrates.  The flux 

can be controlled by varying the ratio of Fe protein to MoFe protein, with a low ratio 

corresponding to low flux and a higher ratio corresponding to higher flux (2). Increasing 

electron flux affected the product profile for the α-Ala70, α-Gly70, and α-Ala70/α-His96 

MoFe proteins (Figure 7-4). In each case, however, ethylene remained the most abundant 

product over the range tested. 
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Figure 7-4. Electron flux dependence on CO reduction product profile. The quantity 

of () methane (CH4), () ethylene (C2H4), () ethane (C2H6), (▼) propene (C3H6), and 

() propane (C3H8) produced per MoFe protein (nmol product per nmol MoFe protein) is 

shown as a function of the molar ratio of Fe protein to MoFe protein for the α-Ala70 (A), 

α-Gly70 (B), and α-Ala70/α-His96 (C) MoFe proteins. The time of the assay was 120 min. 

Influence of CO partial pressure on product profile−Varying the partial pressure 

of CO has been shown to result in different numbers of CO bound to FeMo-cofactor (6, 

16). Under low concentrations of CO (~0.08 atm partial pressure), a single CO species 

binds to FeMo-cofactor, referred to as the low CO state. At partial pressures of CO above 

0.4 atm, two CO molecules bind to FeMo-cofactor, referred to the high CO state (17). It 

was therefore of interest to determine if varying the partial pressure of CO might also 

alter the product profile for CO reduction and coupling. As can be seen in Figure 7-5, the 

partial pressure of CO significantly changes the product profile for the four MoFe protein 

variants examined (α-Ala70, α-Gly70, α-Ala70/α-His96, α-Ala70/α-Ala191 MoFe proteins). 

At lower CO partial pressure (0.08 atm), the shorter chain C2 products are favored.  At  
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Figure 7-5. CO pressure dependence on CO reduction product profile. Shown are the 

methane (CH4), ethylene (C2H4), ethane (C2H6), propene (C3H6), and propane (C3H8) 

production per MoFe protein (nmol product per nmol of MoFe protein) under either low 

CO (0.08 atm) or high CO (1.0 atm) for the α-Ala70 (A), α-Gly70 (B), α-Ala70/α-His96 (C), 

and α-Ala70/α-Ala191 (D) MoFe proteins. Assay time is 60 min. PCO, Partial pressure of 

CO. 



 166 

this low CO concentration, the α-Ala70/α-His96 MoFe protein also showed a significant 

methane production rate. At high CO partial pressure (1.0 atm), the product profile 

shifted in favor of the longer chain C3 hydrocarbons. 

Discussion 

Earlier spectroscopic studies of CO bound to nitrogenase indicate that there are 

two CO binding sites on FeMo-cofactor (6). At low CO concentrations, only one CO is 

bound, whereas at higher CO concentrations two CO molecules are bound (17-19). The 

observation that CO can be reduced to 2 and 3 carbon containing hydrocarbons demands 

that the two CO binding sites on FeMo-cofactor are close enough to allow a coupling 

reaction that would result in the formation of C2 and C3 hydrocarbon products. This fact, 

coupled with the parallels between this reaction and the Fischer-Tropsch reaction (20-23), 

suggest a possible mechanism for CO reduction and coupling by nitrogenase (Figure 7-6).  

Initially, two CO molecules would chemisorb to two adjacent metal (Figure 7-6, black 

circles) atoms of FeMo-cofactor.  Available spectroscopic studies on CO bound to FeMo-

cofactor indicate that the CO molecules are bound to iron atoms located in the waist 

region of FeMo-cofactor (19, 24, 25).  Reduction of the two metal bound CO molecules 

by protons and electrons (hydrogen) with loss of water would results in the formation of 

metal bound -CHx and -CHy groups. Analogous intermediate have been proposed in a 

mechanism for the Fischer-Tropsch reaction (22). The two metal bound -CHx groups 

could either be further reduced/protonated, resulting in release of methane, or a coupling 

reaction could result in the formation of a CHx-CHy species bound to one metal.  This 

species could yield ethylene or ethane or a third CO could bind to and be reduced at the    
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Figure 7-6.  Schematic representation of a possible CO-derived hydrocarbon 

formation at the nitrogenase active site. Black circles represent CO binding sites, 

presumably Fe atoms, upon which two CO can bind. Following reduction to semi-

reduced states (–CHx and –CHy), coupling can occur, resulting in formation of a CHx-

CHy species. The binding of additional CO molecules can lead to further chain elongation. 

open metal site, leading to the formation of C3 or longer hydrocarbons. Traces of longer 

chain (C4) hydrocarbon products were detected from molybdenum nitrogenase reduction 

and coupling of CO molecules that were tentatively assigned by mass spectroscopy as 

isobutene and n-butane (data not shown). 

In this mechanism, it is expected that higher CO concentrations would favor two 

bound CO molecules, which in turn would favor formation of longer chain hydrocarbons 

(e.g., propene and propane) consistent with the observations here. Nevertheless, even 

under low CO concentrations that have been assigned to a single CO bound to FeMo-

cofactor, we still observe C2 and C3 products, consistent with CO binding at both sites 

even at the lower CO concentrations.    

Essential for the CO reduction reactions is the delivery of protons. For the 

Fischer-Tropsch reduction of CO, hydrogen atoms come from H2. For nitrogenase 

catalyzed reduction, protons appear to come from multiple sites, although α-His195 

residue located near FeMo-cofactor has been shown to play a critical role in proton 
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delivery for reduction of nitrogenous substrates (14, 15). Substitution of this residue with 

the amino acid glutamine effectively eliminates N2 reduction, even though N2 still binds 

to FeMo-cofactor in the substituted MoFe protein (14, 15). Such an inability to reduce N2 

is likely due to a disruption in the proton delivery needed for substrate reduction. To test 

if α-His195 might also be responsible for delivery of protons for CO reduction, the α-

Gln195 substitution was introduced into the α-Ala70 MoFe protein. The resulting doubly 

substituted MoFe protein showed significantly lowered CO reduction rates for all 

products, consistent with the α-His195 being responsible for much, but not all, of the 

proton delivery for CO reduction in the MoFe protein. 

One of the goals for Fischer-Tropsch chemistry is finding catalysts and conditions 

that favor the formation of the higher value, longer chain hydrocarbons like propene and 

propane (23).  Here we report that introduction of additional amino acid substitutions 

near FeMo-cofactor and increasing the CO concentration can significantly shift the 

product profile of nitrogenase CO reduction and coupling in favor of production of these 

longer chain hydrocarbons. Thus, the molybdenum nitrogenase offers an experimentally 

tractable system for examining mechanistic features that favor the production of longer 

chain hydrocarbons from CO that might be translated to the development of small 

molecule metal complexes that catalyze such reactions.   

In summary, we report that when the active site of the molybdenum nitrogenase is 

exposed by substitution of α-Val70, CO can be reduced and coupled to yield the 

hydrocarbons methane, ethylene, ethane, propene, and propane.  Further, it is found that 

the relative ratio of products can be manipulated by altering other amino acids, electron 

flux or the CO concentration. 
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CHAPTER 8 

CARBON DIOXIDE REDUCTION TO METHANE AND COUPLING WITH 

ACETYLENE TO FORM PROPYLENE CATALYZED BY REMODELED 

NITROGENASE8 

A doubly substituted form of the nitrogenase MoFe protein (α-70Val →Ala, α-

195His→Gln) has the capacity to catalyze the reduction of carbon dioxide (CO2) to yield 

methane (CH4). Under optimized conditions, one nmole of the substituted MoFe protein 

catalyzes the formation of 21 nmole of CH4 within 20 minutes.  The catalytic rate is 

dependent on the partial pressure of CO2 (or concentration of HCO3
-) and on the electron 

flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to 

catalyze the unprecedented formation of propylene (H2C=CH-CH3) through the reductive 

coupling of CO2 and acetylene (HC≡CH). In light of these observations, we suggest that 

an emerging understanding of the mechanistic features of nitrogenase could be relevant to 

the design of synthetic catalysts for CO2 sequestration and formation of olefins.  

  

                                                            
8 Coauthored by Zhi-Yong Yang, Vivian R. Moure, Dennis R. Dean, and Lance C. Seefeldt (2012) 
Proceedings of the National Academy of Sciences of the United States of America 109(48), 19644-19648. 
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Carbon dioxide (CO2) is an abundant and stable form of carbon that is the product 

of respiration and burning of fossil fuels.  As a result of these activities, the atmospheric 

concentration of CO2, a greenhouse gas, has been rising over the last century contributing 

to global warming (1).  There is strong interest in developing methods for sequestering 

CO2 either by capturing it or by chemically converting it to valuable chemicals (2–5).  Of 

particular interest are possible routes to reduction of CO2 by multiple electrons to yield 

methanol (CH3OH) and methane (CH4), which are renewable fuels (2).  The reduction of 

CO2 is difficult, with a limited number of reports of metal-based compounds able to 

catalyze these reactions (6–13).  In biology, only a few enzymes are known to reduce 

CO2 (14–18), and none of these can catalyze the eight electron reduction to CH4.   

The bacterial Mo-dependent nitrogenase enzyme catalyzes the multi-

electron/proton reduction of dinitrogen (N2) to two ammonia (NH3) at a metal cluster 

designated FeMo-cofactor [7Fe-9S-1Mo-1C-R-homocitrate] (Figure 8-1) in a reaction 

that requires ATP hydrolysis and evolution of H2, with a minimal reaction stoichiometry 

shown in equation 8-1 (19–22).  

N2 + 8H+ + 16ATP + 8e- → 2NH3 + H2 + 16ADP + 16Pi  [8-1] 

Given that nitrogenase is effective at catalyzing the difficult multi-electron reduction of 

N2, it was of interest to determine if this enzyme might also catalyze the reduction of CO2 

to the level of CH4.  Nitrogenase is known to have the capacity to reduce a variety of 

other small, relatively inert, doubly or triply bonded compounds, such as acetylene 

(HC≡CH) (19, 23).  It has recently been shown that an alternative form of nitrogenase, 

which contains V in place of Mo in the active site cofactor, has the remarkable capacity 

to reduce CO and couple multiple CO molecules, yielding short chain alkenes and 
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alkanes such as ethylene (C2H4), ethane (C2H6), propylene (C3H6) and propane (C3H8) 

(24, 25).  In contrast, the Mo-nitrogenase is only able to reduce CO at exceedingly low 

rates (24).  However, we have found that the MoFe protein can be remodeled by 

substitution of amino acid residues that provide the first shell of non-covalent interactions 

with the active site FeMo-cofactor such that CO becomes a much more robust substrate 

with catalytic formation of methane and short chain alkenes and alkanes (26).  Related to 

these observations, we have also previously reported that the native nitrogenase has the 

capacity to reduce CO2 at relatively low rates to yield CO (27).  Here, we report that a 

remodeled nitrogenase MoFe protein can achieve the eight-electron reduction of CO2 to 

CH4. Further, it is shown that CO2 reduction can be coupled to the reduction of other 

substrates (e.g., acetylene, C2H2) to form longer chain, high value hydrocarbons (e.g., 

propylene). 

 

Figure 8-1. The FeMo-cofactor with some key amino acid residues. Colors are Mo in 

magenta, Fe in rust, S in yellow, C in gray, O in red, and N in blue. The central atom is C 

(gray) and the structure and numbering of Fe atoms are based on the protein database file 

PDB: ID code 1M1N. 
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Results 

CO2 reduction to CH4 by remodeled nitrogenase. When the wild-type nitrogenase 

was tested for reduction of CO2 to yield CH4, no CH4 above background could be 

detected over the course of 20 min (Figure 8-2).  Earlier work has demonstrated that 

several amino acids having side chains that approach FeMo-cofactor play an important 

role in controlling substrate binding and reduction (20, 28).  Among these residues are 

included α-70Val, α-195His, and α-191Gln (Figure 8-1). Variant forms of the MoFe protein 

having α-70 substituted by Ala, α-195 substituted by Gln, or α-70 and α-191 both 

substituted by Ala showed no appreciable capacity for reduction of CO2 to yield CH4.  In 

contrast, a doubly substituted MoFe protein, α-70Ala/α-195Gln, was found to catalyze the 

formation of CH4 from CO2, forming up to 16 nmol of CH4/nmol of MoFe protein over 

20 min (Figure 8-2).  The formation of CH4 was absolutely dependent on the presence of 

CO2, Fe protein, MoFe protein, and MgATP . The rate of CH4 production was found to 

increase with increasing partial pressure of CO2 up to 0.45 atm (Figure D-S1, 

APPENDIX D).  A fit of these data to the Michaelis-Menten equation gave a Km for CO2 

of 0.23 atm and a Vmax of 21 nmol CH4/nmol MoFe protein over 20 min.  In a Bis-Tris 

buffer at pH 6.7, sodium bicarbonate (NaHCO3) could also serve as a substrate for CH4 

formation, with a determined Km of 16 mM for NaHCO3 and Vmax of 14 nmol CH4/nmol 

MoFe protein over 20 min (Figure D-S2, APPENDIX D).   

The rate of electron flow through nitrogenase (called electron flux) can be 

regulated by altering the ratio of Fe protein to MoFe protein (Fe protein:MoFe protein), 

with a low ratio corresponding to low electron flux and a high ratio corresponding to high 

electron flux.  Under all conditions, the majority of electrons passing through nitrogenase  
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Figure 8-2. CH4 formation as a function of time for different MoFe proteins.  CO2 

reduction to CH4 is shown as a function of time for the wild-type (), α-70Ala (), α-

195Gln (), α-70Ala/α-191Ala () and α-70Ala/α-195Gln () MoFe proteins.  The partial 

pressure of CO2 was 0.45 atm, the concentration of MoFe protein was 0.5 mg/mL, and Fe 

protein was 3 mg/mL. The reaction temperature was 30ºC. The complete assay for α-

70Ala/α-195Gln MoFe protein was done in triplicate, with SE bars shown. 

in the presence of saturating CO2 were found to reduce protons to make H2 with 

relatively low rates of associated CH4 formation (Figure 8-3).  However, as the electron 

flux increased, the proportion of electrons passing to CO2 reduction increased, reaching a 

maximum at a molar ratio of about 50 Fe protein per MoFe protein.  At this highest flux, 

the molar ratio of H2 formed per CH4 formed was approximately 250:1. Given that proton 

reduction is a two-electron reduction and CO2 reduction to CH4 is an eight electron 
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reduction, up to 2% of the total electron flux passing through nitrogenase goes to CO2 

reduction to methane under these conditions.   

The use of 12C- or 13C-enriched bicarbonate (HCO3
-) as substrate and product 

analysis by gas chromatography-mass spectrometry (GC-MS) confirmed that CH4 

formation was derived from added CO2. When H12CO3
- was the added substrate, a peak 

having the same retention time as methane showed a mass over charge (m/z) peak of 16, 

whereas no peak with m/z of 17 was observed (Figure D-S3, APPENDIX D).  When 

H13CO3
- was the substrate, a peak having the same retention time was found to have a m/z 

of 17, which can be ascribed to the molecular mass of 13CH4. This result demonstrates 

that HCO3
- or CO2 is the substrate for CH4 formation rather than some other component 

in the reaction mixture.   

When the CO2 reduction reaction catalyzed by the remodeled nitrogenase was 

performed in the presence of 0.30 mg/mL of deoxyhemoglobin, the amount of CH4 

formed was lowered by ~25% (Figure D-S4, APPENDIX D).  Deoxyhemoglobin binds 

CO very rapidly (rate constant k ≈ 2 x 105 M-1 s-1) and with a high affinity (dissociation 

constant Kd ≈ 50 nM) and would, therefore, bind any CO released into solution during 

CO2 reduction by nitrogenase (27).  While CO is expected to be an intermediate along the 

reaction pathway from CO2 to CH4, a relatively small lowering of the rate of formation of 

CH4 from CO2 when deoxyhemoglobin is included in reaction cocktail indicates that CO2 

reduction follows primarily a non-dissociative mechanism. 

 

 



 177 

 

Figure 8-3. Electron flux dependence for CO2 reduction to CH4. The ratio CH4 formed to 

H2 formed is shown as a function of the electron flux through the α-70Ala/α-195Gln MoFe 

protein for assays quenched after 20 min at 30ºC.  The partial pressure of CO2 was 0.45 

atm, the concentration of MoFe protein was 0.5 mg/mL, and Fe protein was varied from 

0.5 to 6 mg/mL. 

Several earlier studies revealed multiple inhibitor and substrate binding sites on 

FeMo-cofactor, including at least two binding sites for CO (29–33) and acetylene (31, 34, 

35).  Two adjacent binding sites can explain the earlier reports that two or three CO 

molecules can be reduced and coupled to form C2 and C3 hydrocarbon products (24, 26).  

It was therefore of interest to test if the doubly substituted MoFe protein could couple 

two or more CO2 molecules to yield short chain hydrocarbons.  Under the assay 

conditions examined, no C2 or C3 hydrocarbon products were detected above the 
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background when CO2 was the sole C substrate.  However, when a small amount of 

acetylene was added when CO2 was used as substrate, the C3 hydrocarbon propylene 

(H2C=CH-CH3) was detected as the major product and propane (H3C-CH2-CH3) as a 

minor product. Propylene formation only occurred in a reaction with all components for a 

complete nitrogenase assay, revealing that propylene is formed by nitrogenase turnover.  

Interestingly, it was found that propylene formation was favored under relatively low 

electron flux conditions (4 Fe protein: 1 MoFe protein), with higher electron flux 

favoring CH4 formation at the expense of propylene formation under 0.45 atm of CO2 

and 0.014 atm of acetylene (Figure 8-4). Under the optimal electron flux condition, the 

amount of propylene formed increased with increasing acetylene partial pressure up to 

0.027 atm and then decreased rapidly at higher acetylene concentrations (Figure 8-5) 

likely due to inhibition of CO2 reduction by acetylene. The results indicate there is an 

optimal concentration ratio between CO2 and acetylene to achieve reductive coupling of 

the two molecules at a given electron flux.  All possible combinations of electron flux 

and acetylene and CO2 concentration have not been examined.   

Formation of propylene from the reductive coupling of one CO2 and one C2H2 

was confirmed by GC-MS analysis. When H12CO3
- and 12C2H2 were used as substrates, 

the propylene elution peak displayed a molecular ion peak with m/z of 42, which is 

ascribed to 12C3H6. Trace amounts of a fragment with a m/z of 43 was observed due to 

natural abundance of 13C and 2H.  When H13CO3
- was used together with 12C2H2, a 

molecular ion peak with m/z of 43 was detected at the same retention time as propylene, 

consistent with the coupling of one 13CO2 with one 12C2H2 to form 13CH3-
12CH=12CH2 

(Figure D-S5, APPENDIX D). 
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Figure 8-4.  Propylene formation from CO2 and acetylene as a function of electron flux.  

The amount of propylene formed as a function of electron flux is shown for the α-70Ala/α-

195Gln MoFe protein.  The partial pressure of CO2 was 0.45 atm and C2H2 was 0.014 atm.  

The concentration of MoFe protein was 0.5 mg/mL, and Fe protein was varied from 0.25 

to 3 mg/mL. The reactions were incubated at 30ºC for 60 min. The inset shows the CH4 

production as a function of electron flux. 

 

Discussion 

The discovery reported here that remodeled nitrogenase is able to reduce CO2 by 

eight electrons to CH4 (eqn 8-2) makes it unique among known enzyme catalyzed 

reactions.  Further, the ability to reduce CO2 and couple it to acetylene to form propylene 

(eqn 8-3) makes nitrogenase unique among all reported catalysts (5).   

CO2 + 8H+ + 8e- → CH4 + 2H2O     [8-2] 

CO2 + HC≡CH + 8e- + 8H+ → H2C=CH-CH3 + 2H2O   [8-3] 
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Figure 8-5.  Propylene formation from CO2 and acetylene.  The dependence of propylene 

formation on the partial pressure of acetylene at a partial pressure of CO2 of 0.40-0.45 

atm is shown for the α-70Ala/α-195Gln MoFe protein. The concentration of MoFe protein 

was 0.5 mg/mL, and Fe protein was 0.5 mg/mL. The reactions were incubated at 30ºC for 

60 min. 

Propylene is an especially important hydrocarbon, being the starting point for the 

synthesis of a variety of polymers (36).  A limited number of metal-based catalysts have 

been shown to reduce CO2 to yield different reduction products including formate 

(HCOO-), carbon monoxide (CO), formaldehyde (CH2O), methanol (CH3OH) and 

methane (CH4) (2, 6–13).   Common features of homogeneous catalysts for CO2 

reduction to CH4 are low reaction rates (e.g., turnover frequencies) and limited number of 

turnovers (e.g., turnover number) before inactivation of the catalyst (37, 38).  Further, for 
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electrochemical reductions, a high overpotential is required, with production of H2 as a 

waste of electron flux (39, 40).   The nitrogenase catalyzed reduction of CO2 to CH4 

reported here is comparable in turnover frequency (about 1 min-1) and turnover number, 

with notable slowing of the reaction beyond 20 min.  Nitrogenase also diverts most of its 

electron flux to H2 formation, with only a small percentage going to CO2 reduction.  In 

contrast to the electrochemical catalysts, nitrogenase catalyzes these reactions at modest 

electrochemical potentials (dithionite is the reductant used in these experiments), 

however, it does require considerable energy input from the obligate hydrolysis of ATP.  

No other known single enzyme can catalyze CO2 reduction to CH4. Methanogenic 

bacteria convert CO2 to CH4, but this is accomplished by the action of a consortium of 

enzymes functioning as part of a metabolic pathway (16).  In acetogenic bacteria, CO2 is 

converted to acetate by the action of several enzymes including CO dehydrogenase, 

which catalyzes the reversible interconversion of CO2 and CO (41).  Like nitrogenase, 

CO dehydrogenase also utilizes a complex metal cluster to achieve this reaction.  Other 

enzymes have been shown to reduce CO2 to formate or methanol (17, 18), but none to 

CH4 as reported here for nitrogenase.   

The reduction of CO2 catalyzed by nitrogenase can be considered in the context of 

our current understanding of the mechanism for the reduction of the physiological 

substrate N2 by 6 electrons to two ammonia molecules with two additional electrons 

being utilized to evolve H2 (20, 28, 42).  Several recent studies have added to earlier 

work in building a probable mechanism for how N2 might be reduced at the active site 

FeMo-cofactor.  One important insight relevant to the current discussion is the 

observation of metal-bound hydrides (determined as two hydrides bridging between Fe 
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atoms) as an integral part of the FeMo-cofactor reactivity toward N2 (43–45).  These 

metal bound hydrides (M-H-) have been proposed to participate in the initial reduction of 

N2 to the proposed intermediate diazene (HN=NH).  Further reduction of the metal bound 

diazene to two ammonia molecules is proposed to involve successive addition of 

electrons and protons.  An important observation regarding this mechanistic feature is 

that during N2 reduction, the proposed reaction intermediates (diazene HN=NH or 

hydrazine H2N-NH2) are not detected in appreciable quantities, indicating that 

intermediates remain bound to the active site until the final products are released. This 

phenomenon is likely explained by stabilization of key intermediates along the reaction 

pathway through appropriate functional groups, thereby minimizing kinetic barriers in 

going from N2 to two ammonias.  The observation reported here that nitrogenase can 

achieve the multi-electron reduction of CO2 to CH4 suggests that nitrogenase can also 

stabilize key intermediates along this reaction pathway through appropriate functional 

groups.  Metal hydrides have been suggested to be involved in the initial steps of CO2 

reduction catalyzed by metal complexes (39), suggesting that nitrogenase might also 

achieve the two electron reduction of CO2 by hydride insertion, in a process parallel to 

the one proposed for the initial steps in N2 reduction.  Whether or not partial reduction 

intermediates (e.g., formate or formaldehyde) are leaked from nitrogenase during CO2 

reduction is technically challenging to determine because accurate measurement of 

formate or formaldehyde in solutions containing dithionite is complicated by interference 

from dithionite.  

Another key finding reported here is the need to remodel the protein environment 

around FeMo-cofactor to activate the reduction of CO2 to CH4.  Earlier studies have 
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illustrated that the protein environment immediately surrounding FeMo-cofactor control 

both the size of compounds that can be substrates and the reactivity of FeMo-cofactor 

toward those compounds (46). We earlier found that CO2 could be reduced to CO by the 

wild-type MoFe protein (27), but very little further reduction products are detected 

suggesting that CO2 had limited access to the active part of FeMo-cofactor in the wild-

type enzyme and that the reaction cannot go forward beyond CO. The inability to go 

beyond CO could be due to steric constraints imposed by the active site on subsequent 

intermediates in the reaction pathway or the lack of functional groups to stabilize reaction 

intermediates.  Such possibilities are supported by the requirement for amino acid 

substitutions to achieve CO2 beyond CO all the way to CH4 and the fact that the 

unsubstituted MoFe protein has an exceedingly poor capacity to reduce CO (24, 26).   

A final notable observation from the current work is the capacity for reductive 

coupling of CO2 with acetylene, to yield the 3C olefin propylene by the remodeled MoFe 

protein.  Several earlier studies have suggested two binding sites on FeMo-cofactor.  For 

example, it has been proposed that two CO molecules bind to FeMo-cofactor in the high 

CO concentration inhibited state (29–33).  Likewise, two acetylene binding sites have 

been implicated from studies combining kinetics and amino acid substitutions (31, 34, 

35).  Finally, the finding that CO can be reduced and coupled to make C2 and C3 

hydrocarbons is consistent with two adjacent binding sites (24, 26).  Here, we report that 

CO2 can be reduced to the level of CH4 and coupled to acetylene, yielding predominately 

propylene.  Up to 8% of the C3 product during CO2 and acetylene reduction catalyzed by 

nitrogenase is the C3 product propane.  Addition of ethylene to a reaction with CO2 did 

not yield propane.  This observation clearly suggests that both CO2 and acetylene are 
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binding to the active site and both are being activated within the active site during the 

coupling reaction.  This observation is best explained by two adjacent substrate activation 

sites, which can be populated to varying extents by changing the electron flux through 

nitrogenase and the partial pressures of CO2 and acetylene.  Reductive coupling of CO2 to 

alkynes yielding oxygenated hydrocarbons (e.g., carboxylic acids) has been reported for 

metal catalysts (10, 47), but to our knowledge the production of olefins is unique to the 

reactions reported here.   

In summary, the findings presented here initiate the understanding of how 

nitrogenase can reduce and couple CO2 by multiple electrons to the industrially 

interesting CH4 and propylene.  The findings presented here begin to shed light on these 

reactions and provide insights into the broader context of how N2 is reduced to ammonia.  

Future studies will be aimed at understanding how reaction barriers are lowered through 

stabilization of key reaction intermediates, which should provide guiding insights that can 

be utilized in the design of more robust catalysts for the reduction of CO2 to various 

hydrocarbons. 

Materials and Methods 

Reagents and protein purification. All reagents were obtained from Sigma-

Aldrich or Fisher Scientific and were used without further purification, unless specified 

otherwise. Sodium bicarbonate (NaHCO3) was from Avantor Performance Materials. 

Sodium dithionite was purified to about 99% purity according to a published procedure 

(48). Gases were purchased from Air Liquide: CO2, and acetylene. Methane gas was 

obtained from household natural gas line with an estimated purity of 97%. Propane gas 

was obtained from a propane fuel tank with an estimated purity of 86%. All other gases 
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were purchased from Air Liquide. Azotobacter vinelandii strains DJ1260 (wild-type, WT, 

or α-70Val), DJ997 (α-195Gln), DJ1310 (α-70Ala), DJ1316 (α-70Ala/α-195Gln), and DJ1495 

(α-70Ala/α-191Ala) were grown and the corresponding nitrogenase MoFe proteins were 

expressed and purified as previously described (49). All MoFe proteins in this study 

contain a seven-His tag addition near the carboxy-terminal end of the α-subunit. The 

purification of these proteins was accomplished according to a published purification 

protocol (50). Protein concentrations were determined by the Biuret assay using bovine 

serum albumin as standard. The purities of these proteins were 95% based on 

SDS/PAGE analysis with Coomassie staining. Manipulation of proteins and buffers was 

done in septum-sealed serum vials under an argon atmosphere or on a Schlenk vacuum 

line. All gases and liquid transfers used gas-tight syringes. 

Carbon dioxide reduction assays. Using CO2 as substrate, assays were conducted 

in 9.4-mL serum vials containing 2 mL of an assay buffer consisting of about 100 mM 

sodium dithionite, a MgATP regenerating system (13.4 mM MgCl2, 10 mM ATP, 60 mM 

phosphocreatine, 0.6 mg/mL bovine serum albumin, and 0.4 mg/mL creatine 

phosphokinase) in a combination buffer of 33.3 mM MOPS, 33.3 mM MES, and 33.3 

mM TAPS at pH 8.0 except for the CO2 partial pressure dependence study, which was 

done in 100 mM Bis-Tris buffer, pH 6.7. After making the solution anaerobic, addition of 

CO2 and equilibration between the gas phase and liquid phase for about 20 min, the 

MoFe protein were added. Then the assay vials were ventilated to atmospheric pressure. 

Reactions were initiated by the addition of Fe protein and incubated at 30C.  Reactions 

were quenched by the addition of 400 µL of 400 mM EDTA at pH = 8.0 solution. When 

using NaHCO3 as the substrate for reduction or coupling assays, the reaction mixture was 
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made by mixing a 100 mM Bis-Tris buffer (pH 6.7) containing all components as 

described above and a stock solution of NaHCO3 dissolved in 100 mM Bis-Tris buffer 

(pH 6.7). For coupling reactions between CO2 and C2H2, the three component buffer 

system (33.3 mM MOPS, 33.3 mM MES, and 33.3 mM TAPS, pH 8.0) was used. All pH 

values in this work were nominal values before mixing and/or equilibration with CO2 gas 

or NaHCO3 solution. Methane (CH4), and propylene (C3H6) were quantified by gas 

chromatography by injection of 500 µL of the gas phase of the reaction vial into a 

Shimadzu GC-8A equipped with a flame ionization detector fitted with a 30 cm  0.3 cm 

Porapak N column with nitrogen as the carrier gas. The injection/detection temperature 

was set to 180C, and the column temperature was set to 110C. The standard curves 

with high linearity were created using methane, and propane gases diluted with argon in 

9.4-mL serum vials.  

GC-MS analysis. The production of CH4 from CO2 reduction and C3H6 from the 

reductive coupling between CO2 and C2H2 was confirmed on a Shimadzu GC-2010 gas 

chromatograph equipped with a programmed temperature vaporization (PTV) injector 

and a Shimadzu GCMS-QP2010S mass spectrometer by using 12/13C-enriched NaHCO3 

as CO2 source. Separation of methane was achieved with a GC-CARBONPLOT column 

[30 m, 0.32 mm inner diameter (ID), and 3.0 µm film thickness] (Agilent Technologies), 

and separation of propylene and propane was achieved with a Rt-Alumina BOND/KCl 

column (30 m, 0.32 mm ID, and 5.0 µm film thickness) (Restek). The injector and 

column temperatures were set to 35C. Ultrapure helium was used as the carrier gas set at 

a linear velocity of 50 cm/s for methane separation and 60 cm/s for propylene separation. 

For separation of methane and propylene, 25 µL and 500 µL of headspace gases were 
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directly injected into the PTV injector, respectively. The mass spectrometer was operated 

in electron ionization and selected ion monitoring mode. 
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CHAPTER 9 

SUMMARY AND FUTURE DIRECTIONS 

 In Chapter 1, many outstanding mechanistic questions concerning different 

aspects of substrate binding and reduction mechanism of nitrogenase have been outlined. 

The results presented in this dissertation addressed some of these key questions and 

advanced the understanding of the mechanism of Mo-dependent nitrogenase from several 

perspectives. The detailed achievements from this dissertation are summarized as the 

followings. 

1.  Molybdenum nitrogenase catalyzed biological nitrogen fixation requires 

delivery of multiple electrons and protons through the interaction of the two component 

proteins (Fe protein and MoFe protein) and accumulating the reducing equivalents on the 

FeMo-cofactor to activate and break the NN triple bond (BDE = 944 KJ/mol, Figure 9-

1) to form two NH3 (1–4). During N2 reduction catalyzed by Mo-dependent nitrogenase, 

one of the most important observations is that, once bound, N2 is quantitatively converted 

to 2 NH3, without any semi-reduced intermediate species being “leaked” (5). Thus, 

nitrogenase is designed to efficiently bind N2 and conduct multiple rounds of reduction 

and protonation without the release of any semi-reduced states. This feature, the ability to 

capture a substrate for multiple rounds of reduction, is important towards understanding 

how nitrogenase can achieve the multiple electron reduction of N2 and other substrates 

(6). As I described in Chapter 1, this feature also makes it very hard to study the 

mechanism of N2 reduction catalyzed by Mo-nitrogenase.    
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Figure 9-1. Standard Gibbs free energy change diagrams for N2 reduction. Shown is the 

standard Gibb’s free energy change (ΔG°) between intermediates for the N2 reduction 

pathways. Also shown are possible energy states for metal bound intermediates (lower 

dashed traces in both panels).  All reaction standard Gibb’s free energy changes were 

calculated from known thermodynamic parameters for the reactants and products 

involved in the corresponding reaction (7–9). 

N2 reduction by molybdenum nitrogenase has been suggested to proceed by an 

alternating reduction mechanism. This is strongly supported by the characterization of an 

EPR-active common intermediate I (S = 1/2) and the newly discovered non-Kramers EPR 

active intermediate H (S = 2) characterized by ENDOR/ESEEM/HYSCORE with 

different isotopomers of methyl diazene, diazene, and hydrazine (Chapter 2 and 3). The 

molecular structures of substrates-derived ligands in H and I were assigned to an amide 

group (-NH2) and ammonia (NH3) ligand, respectively, after the cleavage of the N-N 

bonds of these substrates. The spin-states of intermediates H and I also suggested that the 
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redox states of the FeMo-cofactor in the two intermediates should be M1+ and MN, 

respectively. Considering that these common intermediates are usually trapped in the 

samples containing a variety of different intermediates, the information of H and I could 

not be easily obtained from any other techniques. This shed light on the future direction 

for characterization of other intermediates during N2 reduction. Application of these 

pulsed EPR techniques for characterization of freeze-trapped intermediates from other 

substrates might result in fruitful information for nitrogenase mechanism. After unifying 

the LT kinetic model with the “prompt” alternating pathway, the proposed draft 

mechanism of N2 reduction has the suggested “electron inventory” for each intermediate 

from FeMo-cofactor bound N2 to NH3.  

2.  The role of Mo atom during nitrogenase catalysis was directly studied for the 

first time. The results from 95Mo-ENDOR study of the E4 intermediate trapped by -70Ile 

MoFe protein under Ar clearly revealed that the Mo does not interact with the two 

bridging hydride ligands and is not reduced in this intermediate (Chapter 4), further 

supporting the assignment of the two bridging hydrides to Fe-bridged hydrides [Fe-H-Fe]. 

3.  In LT model, the role of the E4 state is pivotal for N2 binding and activation 

(10, 11) and N2-dependent HD formation catalyzed by molybdenum nitrogenase (12). 

Based on our progress in understanding the N2 reduction mechanism (Chapter 2 and 3) 

and the characterization of the two-hydride E4 intermediate (Chapter 4), a reductive 

elimination mechanism was proposed. In this mechanism, N2 reversibly binds to the 

activated FeMo-cofactor formed by reductively elimination of one H2 from two bridging 

hydrides at E4 state. This reductive elimination mechanism explained key observations in 
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nitrogenase catalysis: (i) the obligatory evolution of one H2 per N2 reduced; (ii) all the 

constraints for N2-dependent HD formation reactions (12).  

One feature of this reductive elimination mechanism is that N2 and H2 can 

reversibly replace each other. In Chapter 5 of this dissertation, I described the formation 

of two iron-bridging deuteride intermediates, the dideutero-E4 and the monodeutero-E2, 

generated during turnover of wild-type molybdenum nitrogenase under D2 and N2. 

Intercepting these two intermediates with acetylene resulted in the formation of mono- 

and di-deuterated ethylene detected by GC-MS. The deuterium in the deuterated 

ethylenes is exclusively derived from the deuteride intermediates from D2 binding and 

activation, not from the solvent. These results strongly support the proposed reductive 

elimination mechanism for N2 binding and activation at the E4 state.  

Moreover, these results are the first experimental evidence that hydride 

intermediates could be directly involved in hydrogenation of acetylene. Many previous 

enzymology observations related to acetylene have been explained by acetylene 

interception of hydride intermediates at different En level (see Chapter 5). Considering 

the hydrogenation mechanism of substrate reduction is one important perspective (the last 

section in Chapter 1) (3), it should be one of the top priorities in nitrogenase research in 

the future. The strategy I developed in Chapter 5 might help to understand the 

hydrogenation mechanism of other substrates. 

4.  The steric effects of amino acid residue at -70 position of MoFe protein on 

access of CO to the binding sites on FeMo-cofactor was studied by monitoring the 

kinetics of the formation and decay of nitrogenase-CO complexes using SF-FTIR as a 

real time technique (Chapter 6). The results revealed the formation of three nitrogenase-
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CO complexes during turnover with different formation and decay kinetics. The 

formation of these species is slowed down when the larger isoleucine is at the -70 

position. These observations further support the previous conclusion that one or more Fe 

atoms on the 4Fe4S face “gated” by -70-residue might be the substrate binding sites. 

Different from EPR and ENDOR techniques, SF-FTIR can monitor the formation 

and decay of different intermediates at both EPR active and silent states in a real-time 

mode. Comparison of kinetics of formation and decay of different intermediates can help 

us to understand the mechanism of the conversion between different intermediates during 

substrate reduction. But there is one weakness of this technique. That is, the intermediate 

must be able to have distinguishable absorption bands in the IR energy region.   

5.  Prior to work in this dissertation, carbon monoxide was reported as an inhibitor 

of molybdenum nitrogenase, but not as a substrate. Recently, V-nitrogenase was found to 

catalyze the reduction and coupling of carbon monoxide to form C2 and C3 hydrocarbons 

at very low rate. In this dissertation, I expanded the nitrogenase reactivity toward CO 

using MoFe proteins having amino acid substitutions at -70-position (Chapter 7). It was 

found that CO can be catalytically reduced and coupled to form C1-C3 hydrocarbons by 

these remodeled nitrogenases. This is the first observation that CO can serve as a 

substrate of molybdenum nitrogenase. The reductive coupling of multiple CO may be due 

to two adjacent binding sites on the 4Fe4S face “gated” by -70-residue in MoFe protein. 

In Chapter 8 of this dissertation, carbon dioxide (CO2) was found to be 

catalytically reduced to form methane for the first time by a remodeled molybdenum 

nitrogenase (-70Ala/-195Gln MoFe protein). Carbon dioxide reduction in the presence of 

acetylene resulted in the production of both propane and propylene, with propylene as the 
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major C3 product from the reductive coupling reaction of CO2 and acetylene. The ability 

of remodeled nitrogenase to catalyze these two types of reactions makes it unique among 

known enzymes and all other reported catalysts. 

All hydrocarbon products from nitrogenase-catalyzed CO and CO2 reduction have 

important applications as fuels or important petrochemical starting materials. Considering 

that we are facing an energy-intense time and highly polluted environment, these 

nitrogenase-catalyzed reduction and coupling reactions of CO and CO2 provide potential 

application of nitrogenase in developing a sustainable pathway for conversion of CO and 

CO2 to fuels and other value-added chemicals. Our findings may also inspire other 

scientists to design and synthesize novel metallic catalysts for conversion and utilization 

of CO and CO2. 

In summary, several important advancements have been achieved concerning on 

substrate binding and reduction of molybdenum nitrogenase. However, there are still 

many questions left that need to be explored in the future. In the following sections of 

this chapter, I will discuss possible directions for understanding nitrogenase mechanism 

and expanding nitrogenase catalysis. 

N2 Reduction Mechanism 

 In the proposed draft reduction mechanism of N2 reduction, one important 

question is what is the reaction for the formation of H and I. If I (E8) is formed from 

produced NH3 and resting state FeMo-cofactor, we should be able to see the same EPR 

signal by addition of ammonia to the sample in the resting state or under turnover 

conditions. Our recent data from these experiments did not show any formation of 

intermediate I. This result supports the assignment that I is generated after one more 
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electron reduction of H (E1 or E7). To further understand the relationship between H and 

I, rapid freeze quench technique can be used to study the formation kinetics of the two 

intermediates in future studies. The sequence of the appearance of the two intermediates 

and other possible intermediates might be able to help us understand how middle stage 

substrates diazene and methyldiazene catch up hydrazine to form the same intermediate 

species. Whereas, diazenes need to be reduced by three electrons to form H, and 

hydrazine needs to be reduced by one electron to cleave the N-N single bond to form H. 

 A relaxation protocol applying an EPR-monitored temperature step annealing 

experiment has been developed by Dr. Brian M. Hoffman’s group and applied to study 

the kinetics of the two-bridging hydrides bound E4 state (13), from which study a new-

EPR active E2 intermediate was observed during relaxation of the E4 state back to the 

resting E0 state. This two-step relaxation provided definitive evidence for the assignment 

of the two-hydride E4 state. Application of this annealing method to nitrogenous 

intermediates H and I might be able to give us insightful information about the N2 

reduction cycle (Figure 1-6). Actually, our preliminary data from the annealing 

experiment of the intermediate I revealed a coincident relationship between the decay of 

the EPR signal (S = 1/2) and appearance of the resting state signal (S = 3/2). This is 

consistant with the assignment of I as E8. 

 Both intermediate H and I are late stage intermediates during N2 reduction. 

Gaining insightful information of early stage intermediate is challenging. The observed 

trapped intermediate in N2 reduction by wild-type molybdenum nitrogenase resulted in 

low yields (14),  making it difficult to conduct thorough pulsed ENDOR studies, such as 

ESEEM and HYSCORE to fully characterize the intermediate. Recently, we found that 
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the relaxation rate of this intermediate is dependent on N2 partial pressure. This might be 

caused by the inhibition effect of formed H2 during turnover. Detailed study is in 

progress. How to enhance the yield of this intermediate is another direction for 

mechanistic study. 

Hydrogenation Mechanism for Substrate Reduction 

 One important strategy to study the hydrogenation mechanism of substrate 

reduction could be the isotope effects for different substrates. An inverse isotope effect 

has been observed before when acrylonitrile was reduced in H2O and D2O reaction 

mixture (15). But the interpretation of the data is not convincing. Recently, this inverse 

isotope effect has also been observed in CO reduction to hydrocarbons (16). We also 

observed this inverse isotope effect for reduction of CO2 to methane, N2 to ammonia, and 

acetylene to ethylene. These isotope effects can be altered by changing the electron flux 

condition. The observation of these isotope effects might help us to study the 

hydrogenation mechanism of N2 and other substrates. At the same time, if the reduction 

rate of the substrate is too fast, we observed a normal isotope effect, which suggests a 

shift change in rate limiting steps. To study the isotope effect, C-containing substrates 

might be a good choice because of the non-exchangeable property of the H/D atom in C-

H/D bonds. 

Substrate/Inhibitor Binding Sites and the Role of Mo 

 As reviewed in Chapter 1, more and more evidence has suggested that the 4Fe4S 

face gated by α-70 amino acid residue as the site of substrate binding. In Chapter 6, the 

SF-FTIR study of the hi-CO complexes also support this 4Fe4S site as the 
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substrate/inhibitor binding sites. In Chapter 4, 95Mo-ENDOR study and analysis of 

hyperfine tensors in ENDOR spectra clearly resulted in a conclusion that Mo does not 

interact with the two hydrides and is not reduced in that intermediate. Considering these 

results are all observing either one specific state in a complex catalytic reaction involving 

many other states and intermediates, the possible role of Mo for binding and interacting 

with substrate/inhibitor or corresponding intermediates still could not be totally excluded. 

Recent observations from different studies involving the production or addition of 

ammonia gave us some hints that NH3 or NH4
+ might interact with the Mo site either 

through a hydrogen bonding or by replacing one of the ligand of Mo. For example, Mo-

EXAFS study of the trapped intermediate I clearly displayed a disturbed Mo-EXAFS 

spectrum pattern compared to the resting state control and turnover control under Ar 

(Figure 9-2).  

CO and CO2 Reduction and Coupling Reactions 

 One common feature of  those MoFe protein variants catalyzing reduction and 

coupling of CO and CO2 is substitution of the valine at α-70 position in wild type MoFe 

protein by a smaller alanine or glycine (Chapter 7 and 8). Why can this substitution 

change the reactivity of nitrogenase towards CO? In Chapter 1, it was reported that CO 

does not inhibit the proton reduction by wild-type nitrogenase. Recently, our study of the 

CO inhibition of proton reduction catalyzed by different MoFe protein variants used in 

the reduction and coupling of CO and CO2 (Chapter 7 and 8) revealed an intriguing and 

exciting observation (Figure 9-3). It is very clear that CO does not inhibit proton 

reduction catalyzed by wild-type MoFe and α-195Gln, which cannot reduce CO. However, 

when the valine at α-70 position of MoFe protein was substituted by alanine or glycine, 
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Figure 9-2. Mo-EXAFS spectra for α-70Ala/α-195Gln MoFe protein at different states. 

the resulted MoFe protein variants displayed CO inhibition of proton reduction by about 

50%. This observation could lead to two conclusions: (i) opening up the cavity around 

4Fe4S face next to α-70 position can allow CO to compete with one hydride binding site, 

which could not be used to produce H2 anymore. Given that there are only two hydrides 

formed at E4H4 state, it is reasonable to conclude that at least one of the hydride ligand 

bind to the 4Fe4S face dominated by α-70 residue. (ii) the more freedom CO obtained in 

the larger cavity created by these CO-reducing variants allows CO to bind to a Fe atom 

which is next to the other hydride, which can participate in the activation and 

hydrogenation of the bound CO. This is consistent with the hydrogenation of acetylene 

described in Chapter 5. 
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Figure 9-3. CO inhibition of proton reduction catalyzed by different MoFe proteins. 

 In the future, it is worth expanding the nitrogenase catalysis toward CO and CO2 

reduction and coupling reactions. The following directions might be valuable: (i) 

searching for other potential value-added products from reduction of CO/CO2, such as 

formic acid and methanol; (ii) understanding the hydrogenation mechanism of CO and 

CO2 reduction; (iii) improving the catalytic efficiency and selectivity of nitrogenase 

catalyzed reduction and coupling of CO and CO2; (iv) studying the coupling reactions 

between CO/CO2 with other small molecules for production of other value-added 

chemicals; (v) characterizing key intermediates along the reduction pathway of CO and 

CO2, especially hydrogenated intermediates, and defining a mechanism for reduction and 

coupling reactions catalyzed by molybdenum nitrogenase. 
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Figure B-S1. Two-pulse field-sweep ESE spectra of intermediate I (l(N2H4)) recorded 

with τ = 200 ns. Microwave frequency is 9.702 GHz. 
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Figure B-S2. Field dependence of 35 GHz CW 1H ENDOR spectra of I (l(N2H4)) 

obtained for samples prepared in H2O (black) and D2O (red) buffers. Conditions: 

microwave frequency, 35.002 GHz (H2O), 35.096 GHz (D2O); modulation amplitude, 2.5 

G; time constant, 64 ms; bandwidth of RF broadened to 100 kHz; RF sweep speed, 1 

MHz/s, 50-100 scans; temperature, 2 K. 
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1D Four-Pulse ESEEM 

 Additional information about the exchangeable proton(s) was obtained from 1D 

four-pulse ESEEM spectra (Figure B-S3). These spectra contain lines in the region of the 

double proton Larmor frequency (2H ~ 28-29 MHz) that are sum-combination 

harmonics ( + ) of two basic frequencies  and . These harmonics are not created 

in HYSCORE experiments, and the approach is particularly useful for the resolution of 

protons with different anisotropic couplings.35  

 The four-pulse ESEEM spectrum of the I intermediate recorded at the low-field 

edge of the spectrum (329 mT, g = 2.106) contains two well-resolved lines in the region 

of the proton 2H, as shown in Figure B-S3A. The most intense line represents the 

contribution of weakly coupled protons from the protein environment with ( + )  

2H. The spectrum also reveals a peak of lower intensity shifted from 2H to higher 

frequencies by ~ 0.9 MHz.  This feature is greatly diminished in the spectrum of the 

sample prepared in D2O, indicating that it contains a major contribution from the 

exchangeable proton(s) seen in ENDOR and as cross-peaks 2 (with larger deviation from 

antidiagonal) in the HYSCORE spectra. The resolved shifted peak was observed in the 

narrow interval up to field 332 mT (g = 2.0876). In orientation-selected spectra the shift 

depends on the part of the spectra excited by microwave pulses. The resolved shifted line 

was observed at the low-field edge of the EPR spectrum when the magnetic field is 

directed along g1 axis, i.e. the single-crystal like conditions. In this case the shift of the 

sum combination line is described by the relation,35, 36  

                                       = 9/4(T2/νH) sin2 cos2   (S1) 
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in which  is the angle between the unique axes of g-tensor and hyperfine tensors in axial 

approximation. For  = 0.9 MHz and T = 4.6 MHz obtained from HYSCORE spectra 

analysis, eq S1 gives an estimate that sin2 ~ cos2 ~ 1/2. This result indicates that either 

the orientation-selection at X band is not effective enough even near the edge of the 

spectrum or that  is about 45o; the latter agrees with the ENDOR measurements. 

At the higher fields, Figure B-S3B, the sum combination peak at 2H is 

accompanied by unresolved shoulder that extends up to 0.8-0.9 MHz. This behavior is 

consistent with increase of intensity and width of the cross-peaks 1 (along the diagonal) 

in HYSCORE spectra.  

 

 Analysis of 1H and 15N HYSCORE spectra.   

              The contour lineshape in the powder 2D spectrum from I = 1/2 nuclei such as 1H 

and 15N Zeeman frequency, I) for axial hyperfine interactions is described (Dikanov, 

S.A. and Bowman, M.K. (1995) J. Magn. Reson. A 116, 125-128) by equation:       

                                   1
2
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2
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For each cross-peak contour, the frequency values along the ridge can be plotted as 1
2 

versus 2
2, transforming the contour lineshape into a straight line segment whose slope 

and intercept are proportional to Q and G, respectively.  These values can then be used to 

obtain two possible solutions of isotropic (a) and anisotropic (T) couplings with the same 

value of |2a + T| and interchanged A =|a - T| and A = |a + 2T|. 
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Figure B-S3.  Stacked presentations of sets of four-pulse ESEEM spectra of l(N2H4) 

intermediate. The spectra show the modulus of the Fourier transform along the time (T) 

axis for different times between first and second pulses, . The initial time  is 100 ns in 

the farthest trace, and was increased by 12 ns in successive traces. Microwave frequency 

and magnetic field were 9.6995 GHz and 329.0 mT (g = 2.106) (A), 9.7004 GHz and 

338.0 mT (g = 2.05) (B). 
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Figure B-S4. 1H HYSCORE. The example of the cross-peaks 2 from the spectrum in 

Figure B-S3A. The coordinates 1 and 2 of arbitrary points along the ridge of cross-

peaks 2 were plotted as sets of values for 1
2 versus 2

2.  The points have been fitted by 

linear regression (red line) to give the slope Q = -1.20 (0.03) and intercept G = 462.8 (3.8) 

MHz2. Eq S1 with these coefficients define two solutions:  T = 4.6 MHz and a = -4.9 

MHz; T = 4.6 MHz and a = 0.3 MHz (signs are relative). In addition, the curve |1 + 2| = 

2I (using I =14.136 MHz corresponding to the proton Zeeman frequency in the field 

332 mT) is plotted in Figure B-S4 to explain the nature of the two solutions determined 

by Eq. (S1). The points at which the curve crosses each extrapolated straight line 

correspond to the nuclear frequencies  and  at canonical orientations. For an axial 

hyperfine tensor, there are two possible assignments of the parallel or perpendicular 

orientations and consequently, two sets of hyperfine tensors, one for each assignment.  

This approach gives hyperfine couplings a and T identical to those determined from the 

slope and intercept.  



 251 

(2)
2, MHz2

-0.5 0.0 0.5 1.0 1.5

( 
1)

2 , M
H

z2

2

4

6

8

10

 

Figure B-S5. 1H HYSCORE. The ((ν1)
2 vs. (ν2)

2) plot for two arcs forming the 15N 

cross-feature seen in Figure 2-8C. 

 

 

For the nonaxial hyperfine tensor, the cross-peak contour lineshape from single 

nitrogen in powder sample is a triangle with the corners located at the |ν1+ν2|=2νI line 

(blue line in the figure) (Dikanov, S. A.; Tyryshkin, A. M.; Bowman, M. K. J. Magn. 

Reson. 2000, 144, 228-242).  The coordinates of the corners determine the principal 

values of the hyperfine tensor Ai (i=1,2,3) via the relations [(νI +Ai/2)2, (νI -Ai/2)2], Ai = a 

+ Ti. However, the spectrum in Figure 9C is orientation-selected one where only limited 

part of orientations forms the lineshape.  It suggests that the observed arcs only part of 

the total lineshape, which would be observed in hypothetical case of complete excitation 

of all orientations. Theoretical prediction suggests that linear regressions of these arcs 

should give the estimate of two crossing points with the |ν1+ν2|=2νI line for each arc. If 
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two resolved arcs forming a cross-feature are resulted from non-axial tensor then two 

straight lines in coordinates ((ν1)
2 vs. (ν2)

2) corresponding to these arcs should cross on 

|ν1+ν2|=2νI   curve (or at least near this curve in the analysis of real spectrum). However, 

the regression lines of the points from two arcs are crossing somewhere far away from 

the |ν1+ν2|=2νI line indicating that this cross-feature is not produced by single nitrogen 

with nonaxial hyperfine tensor. If suggest that two arcs are produced by different 

nitrogens then their regression parameters Q = -4.859 (0.22), G = 7.991 (0.1) MHz2 and 

Q = -5.41 (0.387), G = 7.18 (0.1) MHz2 define two possibilities for each tensor in axial 

approximation, respectively: T = 0.6 MHz and a = -2.2 MHz , T = 0 .6 MHz and a = 1.6 

MHz; and T = 0.25 MHz and a = -2.1 MHz and T = 0.25 MHz and a = -1.85 MHz. 
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Figure C-S1. Time courses from transient IR spectra of the A. vinelandii MoFe 

nitrogenase hi-CO complex showing the effect of varying the size of the α-70 sidechain. 

Spectra are in Figure 6-2a. (a) Wild-type (α-70Val) measured at 1880, 1904, 1936, 1960 

cm-1.  This is the same as Figure 6-2b.  (b) α-70Ala at 1870, 1904, 1936, 1957 cm-1.  (c) 

α-70Ile at 1880, 1895, 1936, 1956 cm-1. The band at 1956 cm-1 was obscured by the 1936 

cm-1 band at long times. (d) α-70Gly at 1870, 1911, 1946 cm-1. Intensities are normalized 

at (a-c) 150 s or (d) 120 s.   
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Figure D-S1. Dependence of CH4 formation on partial pressure of CO2.  Methane 

production is shown under different partial pressure of CO2 catalyzed by α-70Ala/α-195Gln 

MoFe protein. The concentration of MoFe protein was 0.5 mg/mL, and Fe protein was 3 

mg/mL. The reactions were incubated at 30ºC for 20 min. The data were fitt to the 

Michaelis-Menten equation, yielding Vmax of 21 nmol CH4/nmol MoFe protein and Km of 

0.23 atm of CO2.   
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Figure D-S2. Dependence of CH4 formation on concentration of HCO3
-.  The amount of 

CH4 formed as a function of the concentration of HCO3
- is shown for the α-70Ala/α-195Gln 

MoFe protein.  The assay contained 3 mg/mL of Fe protein and 0.5 mg/mL of MoFe 

protein. The assay was at 30ºC for 20 min. The data were fit to the Michaelis-Menten 

equation, yielding Vmax of 14 nmol CH4/nmol MoFe protein and Km of 16 mM of HCO3
-. 
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Figure D-S3. GC-MS analysis of methane.  A portion of the gas mixture of an assay with 

α-70Ala/α-195Gln MoFe protein and CO2 was separated by gas chromatography, with 

detection by mass spectrometry.  H12CO3
- (upper graph) or H13CO3

- (lower graph) were 

used as substrate.  The peak eluting at 1.55 min was analyzed for molecular ion peak of 

12CH4 or 13CH4 with a mass over charge ratio (m/z) of 16 or 17, as indicated.    
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Figure D-S4. Effect of hemoglobin on CH4 formation. The formation of CH4 for the α-

70Ala/α-195Gln MoFe protein is shown as a function of time either without () or with 0.3 

mg/mL hemoglobin ().  The partial pressure of CO2 was 0.45 atm, the concentration of 

MoFe protein was 0.5 mg/mL, and Fe protein was 3 mg/mL. The reactions were 

conducted at 30ºC for 20 min. 
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Figure D-S5. GC-MS analysis of propylene.  A portion of the gas mixture of an assay 

with α-70Ala/α-195Gln MoFe protein with CO2 and acetylene was separated by gas 

chromatography, with detection by mass spectrometry.  H12CO3
- (upper graph) or 

H13CO3
- (lower graph) and 12C2H2 were used as substrates.  The peak eluting around 9.4 

min was analyzed for molecular ion peak of 12C3H6 or 13CH3-
12CH=12CH2 with a mass 

over charge ratio (m/z) of 42 or 43, as indicated. 
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