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Abstract

Variational Asymptotic Method for Unit Cell Homogenization of Thermomechanical

Behavior of Composite Materials

by

Chong Teng, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Wenbin Yu
Department: Mechanical and Aerospace Engineering

The properties of materials have been investigated throughout the twentieth century.

However, with more and more knowledge in material science, it became extremely hard

for individual materials to meet every specific requirements of engineering design in this

modern world of high efficiency and performance. To fulfill the design needs of engineering

structures, composite materials were widely developed in various ways since early 1990s.

This leads to an enormous amount of research in the field of composites; moreover, re-

searchers focused more and more on engineering microstructures in order to improve the

performance of composite materials.

Problems of composite materials, which are often observed with complicated geome-

tries, are very difficult to achieve analytical solutions. Therefore, the use of numerical

methods such as finite element method (FEM) is required for solving such problems. With

the fast development of FEM, this numerical method is well established and recognized by

more and more analysts and scientists. This numerical analysis tool is very powerful to

obtain behaviors of engineering structures under different boundary conditions and loads.

However, for problems of composites featuring heterogeneity, the total degrees of freedom
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of the composite materials can be so large that even with the significant strides in com-

puter hardware, the direct finite element analyses of such composites sometimes could be

impossible. A microscopic building block (aka unit cell or representative volume element or

representative structural element in literature) which stores the necessary local information

of composites is used to carry out an analysis in microscopic level in order to obtain the

effective material properties, and after that to recover the corresponding local stress and

strain fields within the original heterogeneous material based on the global behavior of the

macroscopic structural analysis.

The thermomechanical behavior of materials is always concerned in engineering because

of the temperature dependent material performance in the nature. Almost all materials un-

der their working conditions cannot be kept at unchanged temperature fields which makes

the study of thermomechanical behavior of materials meaningful and important. In this

dissertation, micromechanics modeling of such problems are developed based on variation-

al asymptotic method which uses a variational statement to solve such problems. This

methodology is more efficient as it only deals with one functional while the traditional

asymptotic method deals with a group of differential equations. Variational Asymptotic

Method for Unit Cell Homogenization (VAMUCH) has been developed recently and will be

used to conduct the micromechanics modeling throughout this dissertation. The following

problems will be addressed in this dissertation: (1) micromechanics modeling of compos-

ites with temperature dependent constituent properties; (2) micromechanics modeling of

composites with finite temperature variations; (3) micromechanics modeling of compos-

ites under nonuniformly distributed temperature field; and (4) micromechanics modeling of

composites under internal and external loads.

(232 pages)
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Public Abstract

Variational Asymptotic Method for Unit Cell Homogenization of Thermomechanical

Behavior of Composite Materials

by

Chong Teng, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Wenbin Yu
Department: Mechanical and Aerospace Engineering

To seek better material behaviors, the research of material properties has been mas-

sively carried out in both industrial and academic fields throughout the twentieth century.

Composite materials are known for their abilities of combining constituent materials in or-

der to fulfill the desirable overall material performance. One of the advantages of composite

materials is the adjustment between stiffness and lightness of materials in order to meet

the needs of various engineering designs. Even though the finite element analysis is mature,

composites are heterogeneous in nature and can present difficulties at the structural level

with the acceptable computational time. A way of simplifying such problems is to find a way

to connect structural analysis with corresponding analysis of representative microstructure

of the material, which is normally called micromechanics modeling or homogenization.

Generally speaking, the goal of homogenization is to predict a precise material behavior

by taking into account the information stored in both microscopic and macroscopic levels

of the composites. Of special concern to researchers and engineers is the thermomechanical

behavior of composite materials since thermal effect is almost everywhere in real practical
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cases of engineering. In aerospace engineering, the thermomechanical behaviors of compos-

ites are even more important since flight under high speed usually produces a large amount

of heat which will cause very high thermal-related deformation and stress.

In this dissertation, the thermomechanical behavior of composites will be studied based

on the variational asymptotic method for unit cell homogenization (VAMUCH) which was

recently developed as an efficient and accurate micromechanics modeling tool. The theories

and equations within the code are based on the variational asymptotic method invented by

Prof. Berdichevsky. For problems involving small parameters, the traditional asymptotic

method is often applied by solving a system of differential equations while the variational

asymptotic method is using a variational statement that only solves one functional of such

problems where the traditional asymptotic method may apply.

First, we relax the assumption made by traditional linear thermoelasticity that not only

a small overall strain is assumed to be small but also the temperature variation. Of course,

in this case we need to add temperature dependent material properties to VAMUCH so

that the secant material properties can be calculated. Then, we consider the temperature

field to be point-wise different within the microstructure; a micromechanics model with

nonuniformly distributed temperature field will be addressed. Finally, the internal and

external loads induced energies are considered in order to handle real engineering structures

under their working conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

Conventional individual materials started to be used as ingredients of combination of

two and more materials in industry since early 1990s in order to fulfill the needs of good

overall material properties. This is caused by development of modern technology which

induces more and more complicated engineering structures and more and more high-level

requirement of material performance. For example, in aerospace engineering, high strength

and weight ratio, high abrasion resistance, low thermal expansion, and good thermal in-

sulation are always required and of course since the combination techniques of materials

have become available, studies and researches conducted in the field of composite materials

became necessary. However, the development of composite materials led to intricate engi-

neering structures such as woven, sandwich or corrugated shaped composites, nanotubes,

etc. Though the development in numerical methods, computer software, and hardware

benefits engineering analyses and designs, for such engineering structures mentioned above

with high heterogeneity and complexity, it is really needed to seek for a more simplified and

efficient way to analyze them.

Since continuum mechanics typically applies when the scale of a phenomenon is much

larger than the separation between the constituent atoms of the material under considera-

tion, the ingredient materials in composites can be considered using continuum mechanics.

By knowing this, we assume the materials are continuously distributed, fulfilled the entire

region of their occupied space, and ignores the discontinuities induced by the space between

molecules. Structural analysis is used to determine the effects of loads, geometries, and

corresponding boundaries related with structural deformation. Structural problems usually
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can be solved either by analytical methods or numerical methods. Typical analytical meth-

ods such as mechanics of material and elasticity theory are often used to deal with simple

cases which are solvable by hand. Finite element method is perhaps the most popular

method in structural analysis which is a numerical method to obtain approximate solutions

in such analyses. It divides the domain into a system of discrete subdomains (aka elements)

with connecting points (aka nodes) and solve the governing equations which are usually

partial differential equations (PDEs) by converting those PDEs into an algebraic system

using shape functions, and seeking an approximate solution numerically.

In engineering problems of composite materials, finite element analysis is commonly

used in industry for many years. However, for complex structures and heterogeneous mate-

rials, to carefully model them (minimize the error) using FEA, we need to have fine mesh

in every part of the structure and material which results a massive number of degrees of

freedom. It is very easy to make the whole problem very expensive or inefficient using

the existing computational resources. A natural way to overcome this kind of difficulties

is to replace the original composites with a large number of heterogeneity with an equiv-

alent homogeneous model of composites. This is a special case of micromechanics called

homogenization in the area of applied mechanics which is referred as a scientific discipline to

study the response of heterogeneous materials by treating them as formed by homogeneous

materials with effective material properties. The benefit of homogenization is to dramati-

cally reduce the global degrees of freedom of the structures as well as maintain reasonable

accuracy in order to approximate the original analyses using more efficient, economic, and

simpler ones.

Homogenization is usually considered to be accomplished by three steps as illustrate

in Fig. 1.1. This takes advantage of a microscopic building block (aka unit cell or represen-

tative volume element or representative structural element in literature). The first step of

homogenization is to embed the original problem into similar problems by introducing the

small parameter ”ε”, then the effective properties of the microscopic building block can be

obtained by a micromechanical analysis. The second step is to carry out the macroscopic
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analysis of the structure with the heterogeneous materials replaced with imaginary homo-

geneous materials with the effective properties we just obtained. The final step is to recover

the local fields within the orignal heterogeneous materials based on the global behavior of

the macroscopic structural analysis.

To carry out homogenization, identifying a microscopic building block is always im-

portant and inevitable. This kind of microscopic building block has many definitions in

literature. For example, unit cell is widely used in crystal structure of material which is

defined in terms of its lattice points and within each unit cell is the smallest unit of the

crystal that the material can be divided into. Representative volume element is also often

mentioned in micromechanics of composites which usually stands for the smallest material

volume element that sufficient material information is stored to represent the mean response

of the whole material.

The recent research of homogenization brought us another concept of this microscopic

building block which is called representative structural element (RSE). The major differ-

ence between RSE and RVE is that RSE uses the lowest dimension possible to describe the

heterogeneity while RVE’s dimensionality is defined by both analysis requirement and het-

erogeneity. In another word, for a fiber reinforced composites, if 3D properties are needed,

3D RVE will be chosen while only a 2D RSE will be needed in this case. The concept of

RSE fills the gap between structural mechanics and micromechanics by considering struc-

tural mechanics as a special case of micromechanics. Furthermore, using certain method

such as variational asymptotic method, for any structures with periodicity in one or more

dimensions such as fiber reinforced composites, a complete set of 3D effective material prop-

erties will be obtained even with a RSE of lower dimension. This will of course save a lot

of computational efforts and make the analyses more efficient.

In industry, one of the obstacles of using composite materials is the failure or damage

caused by local thermal stresses due to thermal loads or mismatching CTEs between con-

stituent materials. Especially in applications of aerospace engineering, almost all of them

need to undergo thermal loadings under their working conditions. As the heterogeneous
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and complicated structures started to be applied in this field, more and more concerns are

generated in the field of micromechanics modeling in order to carry out efficient yet ac-

curate analyses which make the study in this dissertation very important and interesting.

However, in many approaches in micromechanics, it barely appears to have any approaches

that taking account of temperature dependent material properties, mechanical and ther-

mal loads coupling effects and large temperature variations. Therefore, we investigated the

thermomechanical modeling of composite materials which takes care of mechanical loads,

thermal loads, corresponding coupling effects between these for both small and large tem-

perature variation cases and developed suitable micromechanics models for capturing these

effects.

1.2 A Review of Previous Work on Micromechanics

1.2.1 Bounding Principles

The bounding of the overall moduli of composites has drawn considerable attentions

before accurate solutions of effective moduli can be obtained in the field of micromechanics.

The early formulation of bounds known as Voigt [1] bound which assumed the strain is uni-

form throughout the composites and Reuss [2] bound which assumed the stress is uniform

throughout the composites. Later on, based on contribution of these two works, Hill [3]

summarized the elastic behavior of composites should be within the domain between Reuss

and Voigt values. Then by applying the variational principles in the linear theory of elas-

ticity, Hashin and Shtrikman [4, 5] derived upper and lower bounds of effective moduli of

multiphase materials of arbitrary phase geometry. Following that, Willis [6] further devel-

oped generalized Hashin-Shtrikman bounds and compared with self-consistent estimates for

anisotropic composites. After that, bounds with three and more correlation functions (aka

higher order bounds) are generated independently by applying different perturbation ex-

pressions of stress and strain field, such as Beran and Molyneux [7], McCoy [8], Silnutzer [9],

Milton [10–13], Berrymen [14–16], etc. The detailed explanation of these bounds will be

addressed in the following sections specifically.
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Fig. 1.1: A three step diagrammatic sketch of homogenization

Voigt and Reuss Bounds

The Voigt upper bound and Reuss lower bound are properly the earliest remarkable

bounds of overall moduli of composites which apply the assumption of uniform strain and

stress within unit cell. They are also known as the rules of mixture approaches to obtain

effective properties of composites. The overall moduli of composites are only considered

to have a one-point correlation functions which means only the volume fraction is taking

into account in this case. According to Voigt and Reuss’s assumptions respectively, it is

easy to obtain the expressions of effective moduli of composites by applying the generalized

Hookie’s law and its reverse form.

For isotropic composites, according to Voigt’s rule of mixture, the overall bulk moduli

(K̄V ) and shear moduli (ḠV ) can be written as mixtures of constituents bulk and shear

moduli in terms of corresponding volume fraction of the fiber (vf ) as:
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K̄V = vfKf + (1− vf )Km

ḠV = vfGf + (1− vf )Gm

(1.1)

While according to Reuss’s rule of mixture, it is easy to obtain the following relations

by applying the strain-stress relation:

1

K̄R
=

vf
Kf

+
1− vf
Km

(1.2)

1

ḠR
=

vf
Gf

+
1− vf
Gm

(1.3)

from Eqs. (1.2) and (1.3), the overall bulk moduli (K̄R) and shear moduli (ḠR) can be

obtained as:

K̄R =
KfKm

vfKm + (1− vf )Kf

ḠR =
GfGm

vfGm + (1− vf )Gf

(1.4)

Hill [3] proved that the Voigt moduli are greater than Reuss moduli and the true values

of effective properties of composites (K̄eff ) and (Ḡeff ) should lie between those two sets of

bounds.

Hashin-Shtrikman Variational Bounds

Taking advantage of the variational principles which involve the polarization field,

specifically, energy minimization principles, Hashin and Shtrikman derived bounds on effec-

tive material properties. These bounds are commonly considered to be the best bounds when

only volume fraction is provided as the geometric information. For a two-phase composites,

if we assume constituent material properties K2 > K1 and G2 > G1, the corresponding
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Hashin-Shtrikman lower bounds (K̄L, ḠL) and upper bounds (K̄U , ḠU ) can be given by:

K̄L = K1 +
v2

1
K2−K1

+ 3v1
3K1+4G1

ḠL = G1 +
v2

1
G2−G1

+ 6(K1+2G1)v1
5G1(3K1+4G1)

K̄U = K2 +
v1

1
K1−K2

+ 3v2
3K2+4G2

ḠU = G2 +
v1

1
G1−G2

+ 6(K2+2G2)v2
5G2(3K2+4G2)

(1.5)

where v1 and v2 are the volume fraction of the two phases.

Improved Bounds with Two and More-Points Correlation Functions

In order to seek more accurate solutions of effective properties of multi-phase media, an

improved set of bounds is required which means the gap between upper and lower bounds

needs to be reduced. Improved bounds are defined as bounds depending nontrivially upon

two points and higher order correlation functions by Torquato [17] which commonly include

those bounds more stringent than Hashin-Shtrikman variational bounds. As more and more

researchers enrolled in the field of studying improved bounds, many of them figured that

knowing more geometric information of heterogeneous medium beyond volume fraction will

narrow the bounds of the effective material properties as given by Hashin and Shtrikman.

Beran and Molyneux [7], and McCoy [8] used perturbation expansions that have been

modified by the inclusion of multiplicative constants as trial functions of stress and strain

fields and generated bounds with three-points correlation functions independently.

One disadvantage of these bounds with three-points correlation functions mentioned

above is that upper and lower bounds depend on different correlation functions. So Mil-

ton [13] further simplified these bounds according to the similar work done by Miller [18].
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The simplified bounds on the bulk modulous (K̄eff ) and shear modulous (Ḡeff ) of a two-

phase composites can be expressed as:

K̄L =

〈 1

K

〉
−

4v1v2( 1
K1
− 1

K2
)2

4
〈

1

K̃

〉
+ 3

〈
1
G

〉
ζ

−1

ḠL =

〈 1

G

〉
−
v1v2( 1

G1
− 1

G2
)2〈

1

G̃

〉
+ 6Ξ

−1

K̄U =

〈K〉 − 3v1v2(K1 −K2)2

3
〈
K̃
〉

+ 4 〈G〉ζ


ḠU =

〈G〉 − 6v1v2(G1 −G2)2

6
〈
G̃
〉

+ Θ



(1.6)

where v1 = 1− v2 is the volume fraction of constituent material 1, and we define:

Ξ =

[
10 〈K〉2

〈
1
K

〉
ζ

+ 5 〈G〉 〈3G+ 2K〉
〈

1
G

〉
ζ

+ 〈3K +G〉2
〈

1
G

〉
η

]
〈9K + 8G〉2

Θ =

[
10 〈G〉2 〈K〉ζ + 5 〈G〉 〈3G+ 2K〉 〈G〉ζ + 〈3K +G〉2 〈G〉η

]
〈K + 2G〉2

(1.7)

and the corresponding angle brackets are defined as:

〈A〉 =A1v1 +A2v2

〈A〉ζ =A1ζ1 +A2ζ2

〈A〉η =A1η1 +A2η2〈
Ã
〉

=A2v1 +A1v2

(1.8)

with ζ1 = 1− ζ2 and η1 = 1− η2

Later on, Milton and Phan-Thien [19] derived bounds with four-points correlation func-

tions which are based on the Fourier series in order to achieve a considerable mathematical
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simplification. The Milton and Phan-Thien bound (K̄mp) can be expressed as:

K̄mp =

〈K〉 − 3v1v2(K1 −K2)2

3
〈
K̃
〉

+ 4Φ

 (1.9)

where

Φ =
G2(〈G〉ζ + ζ2(G1 −G2)H2)

G2 + ζ2(G1 −G2)H2

H2 =B∗ − (3K2 +G2)C∗

3K2 + 4G2

B∗ =
3(B − A2

v1v2
)

ζ1ζ2v1v2

C∗ =
3(C − A2

v1v2
)

ζ1ζ2v1v2

(1.10)

with ζ1 = 1 − ζ2. The parameters (A, B, and C) are geometrical parameters defined by

Fourier series and they are listed and discussed in [19] which will not be repeated in this

dissertation. Eq. (1.9) represents a lower bound for bulk modulous (K̄eff ) if K1 > K2

and G1 > G2 while the upper bound is obtained by interchanging all subscripts 1 and 2 in

Eqs. (1.9) and (1.10).

Bounds on effective shear moduli are more complicated compared with effective bulk

moduli shown above. In a simplified form, the Milton and Phan-Thien bound (Ḡmp) can

be expressed as:

Ḡmp =

〈G〉 − 6v1v2(G1 −G2)2

3
〈
K̃
〉

+ Φ2

 (1.11)

where

Φ2 =
(9K2 + 8G2)(3K1 + 4G2) + 12G2(K1 −K2)ζ1

(K2 + 2G2)(3K1 + 4G2)− 2G2(K1 −K2)ζ1
(1.12)

where using the same method as mentioned for K̄eff , the upper and lower bounds of Ḡeff

can be obtained. Milton and Phan-Thien [19] showed that these fourth order bounds are

tighter than all of the second and third order bounds especially that the upper bound is dra-

matically lower than others. It is also worth to mention that Torquato [17,20–22] proposed

the concept of n-points correlation functions by utilizing a n-point probability functions of
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finding subset of n-points in the matrix phase and brought up the idea of obtaining bounds

with n-points correlation functions. However, after years of study, Torquato also pointed

out the corresponding difficulties of seeking these higher order bounds.

1.2.2 Homogenization of the Thermoelastic Problem

The relationships between the overall macroscopic material properties of composites

and properties of individual constituent materials had been studied not only for mechanical

problems but also for many thermal problems in the literature. The most classical and

mature theory in this field is the theory of thermoelasticity which is first attributed to the

work of Duhamel [23] in 1838 by introducing the temperature gradients in the strain ex-

pression of an elastic body. Traditional thermoelasticity theory is guided by the first and

second laws of thermodynamics which can be found in many continuum mechanics textbook

such as [24, 25]. Thomson [26] in 1857 used these two laws of thermodynamics to demon-

strate that thermal strain and stress will be generated if temperature of an elastic body is

changed. The first law of thermodynamics refers to a thermal energy balance statement

that the rate of work of the internal forces equals to the increasing internal energy minus

the external absorbed heat while the second law of thermodynamics concerned entropy that

can be expressed in many specific ways. The most famous two statements are the Kelvin-

Planck statement and the Clausius statement. In the Kelvin-Planck statement, a device

can not be constructed to operate in a cycle and produce no other effect besides mechanical

work through the exchange of heat [27]. Alternatively, in the Clausius statement, it is im-

possible to construct a device operating in a cycle and producing no effect other than the

heat transfer [24]. In reality, unless the systems are in isothermal or adiabatic condition,

real thermodynamic problems are usually linked to irreversible thermal conduction. The

thermodynamics of irreversible processes has been investigated by many researchers during

the past [28–32]. In the theory of irreversible thermodynamical process, the entropy flow is

used to form a dissipation function to represent the irreversible properties of the medium.

Also it shows that the thermoelastic potential energy can be expressed as a sum of the me-

chanical potential energy from classical elasticity theory and the thermal induced potential
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energy from thermal conduction theory.

The modern theory of thermoelasticity is derived based on the theory of irreversible

thermodynamical process which includes the effect of heat transfer in a body, and stress

and strain caused by temperature gradients. Moreover, the interaction between thermal

and mechanical effects in a body is taken into account. However, whether the coupled

heat equation can be linearized to obtain fully linear set of equations of motion was stil-

l concerned at that time. Speziale [33] showed that the energy equation in the form of

coupled heat equation can be linearized even if the temperature variation is large. This in-

vestigation not only solved proposed linearization problem but also relaxed the assumption

made in conventional thermoelasticity that the temperature variation needs to be small.

Kovalenko [34] also showed it is possible to derive theory of linear thermoelasticity by only

introducing a small overall strain field without assuming the smallness of the increase in

temperature respect to the starting temperature. The theoretical formulation of Kovan-

lenko’s small-strain thermoelasticity will be shown in details in Chapter 2. However, most

of these approaches are based on use of temperature independent constituents, and temper-

ature dependent cases are less investigated. It is shown by Nadeau [35] that the expression

of effective thermal expansions of composites with temperature-dependent constituents is

not the same as the temperature independent ones. In order to further investigate effective

thermal properties of composites, we are looking into the homogenization technique in the

field of thermoelasticity in literature.

Although some of the effective properties can be determined and tested directly by

experiments, there are cases especially for composites with large dimension size in one or

more directions that some of the effective properties are not easy to obtain using direct

testing or measurement. In this situation, the homogenization of thermoelastic problem

has also been studied for prediction of effective thermomechancial properties of various

composite structures since early 1960s. Different models are proposed during that period

and typical reviews can be found in literature [36–40]. In general, there are plenty of

different methods of homogenization available in literature but here we can classify them into
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seven categories in order to summarize them: (1) mechanics of materials method; (2) fiber

substructuring method; (3) self-consistent method; (4) Mori-Tanaka method; (5) method

of cells; (6) other methods and apporaches; and (7) variational asymptotic method which

will be used to guide all the work through this dissertation. In the following paragraphs,

each method is introduced where the basic assumptions and principles of the corresponding

method are reviewed and discussed respectively.

Mechanics of Materials Method

The micromechanics model presented using mechanics of material method had been

presented since middle of twentieth century. This method is based on equations derived

from mechanics of materials formulation by applying force equilibrium and displacement

compatibility. These derived sets of equations are also mentioned as the formal structure of

composite micromechanics theory in literature. This branch of work refers the properties

of constituent materials, geometric configuration of composites and fabrication process as

inputs, and effective mechanical and thermal properties of the composites as outputs. There

are three basic assumptions in this approach: (1) Both fiber and matrix are assumed to be

linear elastic and the stress-strain relation obeys Hooke’s law; (2) The composite material-

s are considered to be macroscopic homogeneous, transversely isotropic; (3) The bonding

between constituent materials is perfect and no debonding effect is considered. Numerous

approaches can be found in literature but we focus on work in the field of thermoelastic

problem. Greszczuk [41] derived equations for effective coefficients of thermal expansion of

both fiber and matrix (αf and αm) for a square array composite under plane stress condi-

tion but no experimental results are available to validate his effective thermal properties.

Abolin’sh [42] predicted effective thermal material properties by assuming composites to

be transversely isotropic in plane normal to fibers and the Poisson effects with longitudinal

load to be negligibly small. Chamis [43] derived a unified set of equations for mechanical,

thermal and hygral properties, and Caruso and Chamis [44] validated all the properties by

comparing with three-dimensional FEA results. Following the work of Chamis, Hopkins and

Chamis [45] further extended these formulations to deal with high temperature composites
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by considering large local stress excursions and temperature dependent material effects.

The corresponding thermal properties obtained can be expressed as:

ᾱ11 =
vfαf11Ef11 + vmαmEm

Ē11

ᾱ22 =ᾱ33 = αf22
√
vf + (1−√vf )(1 + vfνmEf11)αm

K̄11 =vfKf11 + vmKm

K̄22 =K̄33 = (1−√vf )Km +
Km
√
vf

1−√vf (1− Km
Kf22

)

C̄ =
1

ρ̄
(vfρfCf + vmρmCm)

(1.13)

where ᾱ are the effective coefficients of thermal expansion, K̄ are the effective heat conduc-

tivities, C̄ is the effective heat capacity, ρ̄ is the effective density, and ν are the poisson’s

ratios. Quantities with subscripts f11, f22, and f33 stand for the fiber properties in three

primary directions with f11 is along the fiber direction and m is the matrix. It is noticed

that if the composites are void free, the volume ratios obey vf + vm = 1.

Fiber Substructuring Method

The mechanics of materials method used to be considered as the standard in the field

of composite micromechanics. However, the unit cells modeled using this method contain

multiple fibers (usually the whole ply). To better capture the local details of the composites,

the unit cell is further subdivided and described into several slices. Each slice only contains

a single fiber with the matrix. The equations derived from mechanics of materials are

generated for each slice separately and then all these equations are integrated to obtain the

overall effective properties for the ply or the whole composites. This method is actually

an improved method using mechanics of materials by considering a much smaller slice of

unit cell as the smallest representative unit instead of the whole unit cell used in mechanics

of materials approach. The detailed principle and assumptions can be easily found in

textbook of composite materials [46, 47]. This method has several advantages compared

with conventional methods: (1) capture better local stress and strain fields; (2) account for
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fiber and matrix cracking. Since the fiber and matrix cracking are always considered to be

the critical issues in ceramic matrix composites so this method had been widely applied in

this field [48]. This approach can deal not only fiber and matrix but also the interphase

between those two constituents. Apply subscript i as the quantities of interphase and keep

the other symbols including the coordinate system same as those in mechanics of materials

method, the effective thermal properties of fiber substructuring method can be written as:

ᾱ11 =
vfαf11Ef11 + vmαm11Em11 + viαi11Ei11

Ē11

ᾱ22 =vfαf22 + vmαm22 + viαi22

ᾱ33 =vfαf33 + vmαm33 + viαi33

K̄11 =vfKf11 + vmKm11 + viKi11

K̄22 =
Kf22Km22Ki22

vfKm22Ki22 + vmKf22Ki22 + viKf22Km22

K̄33 =
Kf33Km33Ki33

vfKm33Ki33 + vmKf33Ki33 + viKf33Km33

C̄ =
1

ρ̄
(vfρfCf + vmρmCm + viρiCi)

(1.14)

where the effective density ρ̄ can be obtained by applying rule of mixtures:

ρ̄ = vfρf + vmρm + viρi (1.15)

Self-Consistent Method

The self-consistent method is developed on the benefit of Eshelby’s transformation to

an auxiliary problem where a single ellipsoidal inhomogeneous inclusion is embedded in an

infinite uniformly loaded medium [49]. This method is originally proposed by Hershey [50]

and Kröner [51] for aggregates of crystals. Hill [52, 53] and Budiansky [54] extended the

self-consistent method and derived effective material properties for multiphase composites

respectively. Applying the solution of an inclusion embedded in an infinite medium, they

treated the inclusion as the fiber and the medium as the matrix in order to generate the

solution for effective properties of composites. Still, the bonding between fibers and matrix
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is assumed to be perfect. Later on, Budiansky [55] further implemented this method to

obtain thermal constants of macroscopically isotropic composite materials.

It is shown by Gubernatis [55] that self-consistent method is an implicit method which

requires iteration process during calculation. The correction factor of effective properties

varies with the solution of effective properties while the total scattering among all the grains

caused by correction factor also determines the solution. Laws [56] derived the effective

thermal properties for n-phase composites of the thermostatic problem using self-consistent

method. Moreover, for viscoelastic particulate composites with extremely high volume

fractions of particles and large modulus contrast between particles and binder, Banerjee and

Adams [57] concluded that only the effective CTE is close to the experimental results while

the bulk modulus and shear modulus are way off the trend using self-consistent method.

Mori-Tanaka method

This method was proposed by Mori and Tanaka [58] in 1973 which is an explicit method

to calculate the average internal stress in the matrix of composites. Based on the idea of

Eshelby [49] on the equivalent inclusion, Benveniste [59] extended the Mori-Tanaka method

and derived equivalent inclusion-average stress method (EIAS) to calculate the effective

properties of composites. This approach simply follows Esheby’s assumption that the s-

train field is homogeneous within an ellipsoidal inclusion embedded in an infinite medium

subjected to homogeneous displacement or traction boundary conditions by assuming an

average strain field will be given if a single inclusion in a matrix is under homogeneous

displacement or traction boundary conditions. Weng [60] showed that results obtained by

Mori-Tanaka method lie within Hashin-Shtrikman bounds in order to validate this method.

Berryman and Berge [61] further compared this method with self-consistent method and

Kuster-Toksöz method [62] which is another explicit method used in the field of geophysics.

They concluded that the Mori and Tanaka method and Kuster-Toksöz method are capable

of getting the effective material properties of composites when the volume fraction of host

material is at least 70− 80% and both results agreed with each other pretty well.

As for effective thermal properties, Norris [63] gave the exact equation for effective
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thermal conductivity for multiphase isotropic composites and proved that effective thermal

conductivity results using Mori-Tanaka method always obey Hill-Hashin bounds for two

phase isotropic composites. The exact equation of effective conductivity can be written as:

K̄ = K0 +

n∑
j=1

(Kj −K0)vj
H̄j
H̄0

v0 +
n∑
i=1

vi
H̄i
H̄0

(1.16)

where subscripts 0, 1, 2, ..., n stand for n+ 1 phase composites and H̄ is the spatial average

of quantity H which is related with temperature field φ and can be expressed as:

H̄i = 〈Hi〉 = 〈−∇φi〉 (1.17)

However, Norris found that this approach for a multiphase media is outside the limits of the

Hashin-Shtrikman bounds and he concluded this disagreement is due to the possible wrong

approximation on the ratio
H̄j
H̄0

. Later on, Benveniste et al. [64] derived the expressions

for effective thermal conductivities of composites reinforced with coated carbon fiber but

no further comparison with Hashin-Shtrikman bounds is provided. Recently, Böhm [65]

used Mori-Tanaka method to generate effective thermal conductivity of composites rein-

forced by non-uniformly sized particles with interfacial resistances. He found that results

by Mori-Tanaka method underestimates the effective conductivities for large particles and

overestimates them for small ones, and with the particle diameter in the range from 10−7m to

10−4m, the effective conductivities by Mori-Tanaka method lie between three-point bounds

by Torquato and Rintoul [66].

Method of Cells

The method of cells (MOC) is developed by Aboudi [67] based on the assumption

that fibers in a unidirectional composite can be arranged regularly in the matrix to form

a doubly periodic array. With this periodic distribution in medium, the representative

cell is divided into four subcells. The fiber is stored in one subcell and the rest three are
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the matrix. The displacement and traction fields are continuous for all interfaces between

subcells. The variation of displacement field is linear in each subcell under the microscopic

coordinates located at the geometric center of each subcell [68]. The detailed formulations

and explanations of MOC method are later summarized and published in book [69].

The generalized method of cells (GMC) is developed later by discretizing the RVE

into a number of subcells instead of only using four in MOC [70]. With exactly the same

assumptions and boundary conditions, this method favors the shape of fibers and matrix

to increase the flexibility on the choice of RVE. This also enables GMC method to analyze

porous composites, composites with various shape of fiber and even damage inside the

RVE. One advantage of GMC is that instead of calculating effective properties of the whole

RVE step by step in each subcell, the full set of effective properties is obtained by using a

recursive process among all the subcells in one step. Because of this recursive process, GMC

method is more computational efficient than traditional FEM. The local fields predicted

by GMC is not accurate for the reason of ignorance of coupling between macroscopically

applied normal stresses (strains) and the resulting microscopic shear stresses. To overcome

this, an improved method called high-fidelity generalized method of cells (HFGMC) had

been developed [71, 72]. The shear coupling was accomplished by expanding displacement

vector into quadratic form in terms of its local coordinates in each subcells instead of

a linear displacement field which has been used in both MOC and GMC. However, the

computational efficiency for this method is sacrificed for the improved local field accuracy.

Moreover, since the subcells are only considered to be rectangular shape, it is sometimes

hard for MOC, GMC, and HFGMC to capture composites with complicated geometry in

microscopic level such as woven composites and foam composites.

Other Methods and Approaches

There are massive methods and approaches in the field of micromechanics invented

and investigated by individual researchers in literature. They are also worth to mention as

different aspects of contribution they made in the study of homogenization of composites.

The dilute method (aka dilute concentration method) [73] which considers a particle with
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small portion of volume fraction in an infinite medium and no interaction between adjacent

particles is considered. The differential method is a kind of an “infinitesimal” implemen-

tation of the self-consistent method. But unlike self-consistent method, in a two-phase

composite one phase is matrix and the other phase is added incrementally in such a way

that the newly added material is always in dilute concentration with respect to the current

configuration [74, 75]. Another approach is called elasticity-based cell model (ECM) which

is similar as HFGMC theory but the displacement field in each subcell is given as an infinite

series [76,77]. A detailed comparison among MOC, HFGMC, ECM, and VAMUCH will be

introduced in next section which can also be found in paper [78]. There are also researchers

apply finite element approaches using the conventional stress analysis of RVE to obtain

the effective mechanical and thermal properties of composites which we will not discuss in

details here [79].

Variational Asymptotic Method

Variational asymptotic method is a newly developed method of homogenization intro-

duced by Prof. Berdichevsky [80] in order to investigate functionals with small parameters

involved. Like the conventional asymptotic method, VAM writes out asymptotic expan-

sions of physical problems and discards all the small negligible terms. However, to be more

efficient than the conventional asymptotic method, VAM carries out asymptotic analysis of

the variational statement to find the stationary point of the corresponding functional. One

of the advantages of VAM is that it only deals with one functional instead of a group of

differential equations like conventional asymptotic method. Also the accuracy along with

the efficiency has been demonstrated repeatedly for this method.

VAM is applicable to micromechanics since (1) the size of RVE is always much small-

er than the macroscopic size of the composites. Along with another two hypotheses: (2)

the exact solutions of field variables have volume average over RVE; (3) effective materi-

al properties are independent of loads, boundaries, and geometries in macroscopic level, a

new micromechanics model called Variational Asymptotic Method for Unit Cell Homoge-

nization (VAMUCH) has been developed by Yu [81–83] for predicting effective properties
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of composites and recovering the local stress and strain fields within the RVE according-

ly. The dimensionality of unit cell (UC) used in VAMUCH is decided by the periodicity

of the microstructure. For example, a binary composite formed by orthotropic layers, the

materials are uniform within binary layers and only periodic along thickness direction, a

1D UC is sufficient for VAMUCH to obtain the completed set of 3D effective mechanical,

thermal, piezoelectric, electromagnetic properties, and corresponding local stress and strain

field within the UC. Moveover, since this model applies no limitation on the geometric for-

mulation of the microstructure, it is capable of dealing with composites with complicate

microstructures such as woven composites and sandwich structures [84].

1.2.3 Present Work and Outline of the Dissertation

In the previous sections, we have observed the motivation and necessarity of enabling

micromechanics modeling of thermomechanical problems with temperature dependent con-

stituents, both internal and external loads, large temperature variation, and even a nonuni-

formly distributed temperature field. In this dissertation, our efforts will be putting on

the improvement of VAMUCH related with these problems. We will relax the limitations

of current thermomechanical model in VAMUCH step by step. The dissertation will be

organized in the following way:

• Chapter 2 introduces the theoretical formulation of the present work.

• Chapter 3 describes the improved thermomechanical micromechanics model dealing

with temperature dependent constituent materials and finite temperature variations.

• Chapter 4 presents the improved thermomechanical micromechanics model dealing

with nonuniformly distributed loads and temperature fields.

• Chapter 5 summarizes the work done in the dissertation and gives suggestions for

related future research.
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Chapter 2

Theoretical Formulation

This chapter briefs all the formulations needed to guide the current study in this disser-

tation including the basics of thermoelasticity theory and micromechanics. The formulations

will be shown by following the order of fundamental to advanced in order to demonstrate

the theories in a clear way. The formulations are reviewed and summarized by author based

on understanding and further interpretations of such theories need to go to corresponding

reference as referred below.

2.1 Basics of Thermoelasticity Theory

The development of thermoelasticity theory is closely related with the thermodynamics

laws especially the first and second laws of thermodynamics. However, a problem of irre-

versible processes of thermal conduction has been set up since 1950s. It has been discussed

by Boley and Weiner [85] on the structure of the constitutive equations and they found

out that the equations of classical thermodynamics remain valid in the thermodynamics of

irreversible processes for a local thermodynamic equilibrium. A Fourier relation between

heat flux and temperature gradient can describe this irreversible thermal conduction which

enabled the derivation of theory of thermoelasticity. To help understanding this theory, we

introduce the laws of thermodynamics first in the following sections.

2.1.1 The First Law of Thermodynamics

The first law of thermodynamics is also commonly known as the law of conservation

of energy in a thermodynamic system. The idea of law of conservation of energy is that in

an isolated system, the total amount of energy can not be changed (increase or decrease),

however those energies can be changed into various forms (potential energy, kinetic energy
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and etc). This law is arrived by following the other general laws of physics such as the law

of conservation of mass, the law of conservation of linear momentum (Newton’s second law

of motion), and the law of conservation of angular momentum. The ideas of these similar

laws are simple and based on the sense of physics but we will only focus on the derivation

of the law of conservation of energy here.

In the study of mechanics of rigid bodies, we know the kinetic energy and potential

energy can be fully transformed from one to the other if energy is assumed to not dissipate.

When this applies to a thermodynamics system, it is the first law of thermodynamics, which

is usually stated as the time rate of change of the total energy of an isolated system is equal

to the sum of heat content per unit time supplied to the system and the rate of work done

by external forces acting on the system. In short words, the total energy (including kinetic

energy and internal energy) change is the sum of the external work and heat changes to the

system. Using the above definition, we can express the first law of thermodynamics as:

d

dt
(K + U) = W +H (2.1)

Now let’s look at the energy terms in Eq. (2.1) respectively. The kinetic energy (K) of the

system is given by:

K =
1

2

∫
Ω
ρv · vdΩ

=
1

2

∫
Ω
ρvividΩ

(2.2)

where ρ is the density per unit volume, Ω is the volume of the continuum, v is the velocity

field, and vi are the components of v. And if we set e as the energy per unit mass, the total

internal energy (U) of the continuum is given by:

U =

∫
Ω
ρedΩ (2.3)

It is noted that the elastic strain energy or other forms of energy should be claimed

as parts of internal energy (U). The rate of work done by external forces (W ) consists of

two parts: the rate of work done by surface traction (t) and the rate of work done by body
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force per unit mass (b). It can be expressed as:

W =

∫
Γ
t · vdΓ +

∫
Ω
ρb · vdΩ

=

∫
Γ
tividΓ +

∫
Ω
ρbividΩ

=

∫
Ω

[
(σjivi),j + ρbivi

]
dΩ

=

∫
Ω

(σji,jvi + σjivi,j + ρbivi)dΩ

(2.4)

where divergence theorem is applied to the first term which is related with surface traction

in Eq. (2.4) and Γ denotes the corresponding surface. Let q be the heat flux vector and r

be the internal heat generation per unit mass per unit time, then the heat content per unit

time (H) can be written as:

H =

∫
Ω
ρrdΩ−

∫
Γ
q · ndΓ

=

∫
Ω
ρrdΩ−

∫
Γ
qinidΓ

=

∫
Ω

(ρr − qi,i)dΩ

(2.5)

Substituting Eqs. (2.2), (2.3), (2.4), and (2.5) into Eq. (2.1), we have:

d

dt

∫
Ω

(
1

2
ρvivi + ρe)dΩ =

∫
Ω

(σji,jvi + σjivi,j + ρbivi + ρr − qi,i)dΩ∫
Ω

(ρ
dvi
dt
vi + ρ

de

dt
)dΩ =

∫
Ω

(σji,jvi + σjivi,j + ρbivi + ρr − qi,i)dΩ

(2.6)

From the law of conservation of linear momentum (Newton’s second law of motion),

we know the time rate of change of the total momentum of the body equals the vector sum

of all the external forces acting on the body, that is:

∫
Γ
tdΓ +

∫
Ω
ρbdΩ =

d

dt

∫
Ω
ρvdΩ∫

Γ
tidΓ +

∫
Ω
ρbidΩ =

∫
Ω
ρ

dvi
dt

dΩ∫
Γ
(σji,j + ρbi − ρ

dvi
dt

)dΩ = 0

(2.7)
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where the integrand must vanish for the integral to hold for arbitrary body Ω, so we have:

σji,j + ρbi = ρ
dvi
dt

(2.8)

Substituting Eq. (2.8) into Eq. (2.6), we have:

∫
Ω

(σji,jvi + ρbivi + ρ
de

dt
)dΩ =

∫
Ω

(σji,jvi + σjivi,j + ρbivi + ρr − qi,i)dΩ (2.9)

where cancel the same terms on both sides of Eq. (2.9) and rearrange it, we can easily get:

∫
Ω

(ρ
de

dt
− σjivi,j − ρr + qi,i)dΩ = 0 (2.10)

Again since the integration domain can be arbitrary, the integrand must satisfy the

following field equation:

ρ
de

dt
− σjivi,j − ρr + qi,i = 0 (2.11)

Exploiting the symmetry of the stress tensor σij , we can show:

σjivi,j =
1

2
(σjivi,j + σijvj,i) = σij [

1

2
(vi,j + vj,i)] = σijDij (2.12)

where D is the rate of deformation tensor, then Eq. (2.11) can be expressed as:

ρ
de

dt
− σijDij + qi,i − ρr = 0 or ρ

de

dt
− σ : D + ∇ · q− ρr = 0 (2.13)

This field equation is called the local form of the energy equation (aka thermodynamic form

of the energy equation), which is a direct consequence of the law of conservation of energy

applied to a continuum.

2.1.2 The Second Law of Thermodynamics

The first law of thermodynamics shows us that if heat exchange happens between two

bodies, the heat flow out of one body must be equal to the heat flow into the other body.



24

But the first law of thermodynamics does not specify the direction of the heat transfer

while in fact heat will always transfer from the body with higher temperature to the body

with lower temperature. And this process is irreversible without additional work. This

fact is guided by the second law of thermodynamics which is related with temperature

and entropy. Entropy is defined as a thermal property that measures the system’s thermal

energy per unit temperature and it is a function of strain and temperature such that an

entropy equation of state exists [86]:

dη =

[
ρr−∇ · q

ρT

]
dt (2.14)

where η is the entropy per unit mass and T is the temperature. The heat energy due to

entropy and temperature is normally expressed as −ηT . And we introduce the entropy

production (S):

S =

∫
Ω
ρηdΩ (2.15)

Then we can obtain the entropy input rate as:

∫
Ω

ρr

T
dΩ−

∫
Γ

qini
T

dΓ (2.16)

The second law of thermodynamics puts restriction that the rate of entropy increase must

be greater than the entropy input rate, which is:

d

dt

∫
Ω
ρηdΩ >

∫
Ω

ρr

T
dΩ−

∫
Γ

qini
T

dΓ (2.17)

Eq. (2.17) is the integral form of the Clausis-Duhem inequality in terms of the specific

entropy [87]. Again, with the application of divergence theorem, we obtain:

∫
Ω

[
ρ

dη

dt
− ρr

T
+

(
qi
T

)
,i

]
dΩ > 0 (2.18)
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Finally, the local form of the second law of thermodynamics (aka Clasius-Duhem in-

equality) is obtained as:

dη

dt
− r

T
+

1

ρ

(
qi
T

)
,i

> 0 or
dη

dt
− r

T
+

1

ρ
∇ ·

(
q

T

)
> 0 (2.19)

2.1.3 Thermodynamic Potentials

In thermodynamics, there are four so called thermodynamic potentials that are used

to describe the thermodynamic state of a system. They are internal energy, enthalpy,

Helmholtz free energy, and Gibbs free energy. Internal energy is the total energy needed to

create the system but excludes the energy to displace the system’s surroundings; Enthalpy

is a measure of the total energy including internal energy and the energy required to “make

room for it” (function of pressure and volume); Helmholtz free energy measures the total

energy including internal energy and the heat energy due to entropy at a constant temper-

ature and volume; Gibbs free energy is the maximum amount of total energy obtained from

a thermodynamic system at a constant temperature and pressure.

To find out the corresponding thermodynamics state functions for the system which

do not invoke the surroundings, certain specific conditions such as constant temperature

and volume or constant temperature and pressure are applied in the system. In the fol-

lowing, we will introduce the Helmholtz free energy and Gibbs Free energy which are two

most important potentials in thermodynamics and of course guide the study through this

dissertation.

Helmholtz Free Energy

Let us assume we have a process in a constant volume in which case the heat exchanged

with the surroundings is equal to internal energy change as:

dU = ∇ · q (2.20)
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and from the Clasius-Duhem inequality, we have:

dS >
∇ · q
T

(2.21)

Therefore, since the absolute temperature T always greater than 0, we can rearrange

this equation as:

∇ · q− TdS 6 0 or dU − TdS 6 0 (2.22)

If we further assume the temperature change dT = 0, then we can rewrite Eq. (2.22)

as:

d(U − TS) 6 0 (2.23)

Then we define a new function F called Helmholtz free energy, such that:

F = U − TS (2.24)

and dF 6 0. It is noted that a process at constant volume and temperature will reach

equilibrium if dF = 0

Gibbs Free Energy

Now let us assume we have a process happened at constant pressure. In this case, the

heat exchanged with the surroundings is equal to the enthalpy. So it is necessary for us to

bring up the definition of enthalpy first which is another thermodynamic potential. The

enthalpy of a homogeneous system is defined as [88]:

H = U + pΩ (2.25)

where H is the enthalpy and p is the pressure of the system. Then the heat exchanged with

the surroundings can be expressed as:

∇ · q = dH (2.26)
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Make use of Eq. (2.21) and knowing the absolute temperature T always greater than

0, then at a constant pressure we obtain:

dH − TdS 6 0 (2.27)

If we further assume the temperature change dT = 0, we can rewrite Eq. (2.27) as:

d(H − TS) 6 0 (2.28)

Then we define a new function G called Gibbs free energy, such that:

G = H − TS (2.29)

It is obvious to see that the Gibbs free energy are derived at a constant pressure and

temperature. Again, if dG = 0, a process at constant pressure and temperature will reach

its equilibrium.

2.1.4 Small-Strain Thermoelasticity

It is well known that the traditional theory of thermoelasticity has restrictions on both

strains and temperature variations, and considers the coupling effect between thermal and

mechanical effects of a continuous body. However, after the linearization of coupled heat

equation, the coupling effect becomes negligible and the relaxation time (the time needed

to reach the steady-state heat conduction) increases with the temperature variation being

small. This issue is of course not wanted which was discussed by Lord and Shulman [89]

by conducting a lot of experiments and trying to find a reasonable temperature range.

Later on, Speziale [33] found out even with a large temperature variation, the coupled heat

equation can still be linearized without violating the assumption of small strains. This is

because even with a large temperature variation in the system, the pure thermal strain

remains below the level assumed in the linear theory of elasticity.

Kovalenko first discussed the case that he abandoned the restriction on temperature
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variation and introduced a small-strain thermoelasticity theory with large temperature

change in his book [90]. After that, based on this theory, Lubarda [91] and Boussaa [92]

derived the expressions for thermodynamic potentials. In Kovalenko’s small-strain thermoe-

lasticity theory for isotropic solids, the Helmholtz free energy is expressed using a quadratic

representation, such that:

F (I1, I2, T ) = F (0, 0, T ) +
∂F (0, 0, T )

∂I1
I1 +

∂F (0, 0, T )

∂I2
I2 +

1

2

∂2F (0, 0, T )

∂I2
1

I2
1 (2.30)

where I1 and I2 are related with strain and defined as:

I1 =εkk

I2 =εijεij

(2.31)

And from Eq. (2.24) if we treat strain as constant, the entropy can be expressed as

S = −∂F
∂T , so we have:

S(I1, I2, T ) = −∂F (0, 0, T )

∂T
− ∂2F (0, 0, T )

∂I1∂T
I1 −

∂2F (0, 0, T )

∂I2∂T
I2 −

1

2

∂3F (0, 0, T )

∂I2
1∂T

I2
1 (2.32)

and use the definition of stress tensor σij = ∂F
∂εij

, which is:

σij =
∂F (0, 0, T )

∂I1
δij + 2

∂F (0, 0, T )

∂I2
εij +

∂2F (0, 0, T )

∂I2
1

εkkδij (2.33)

The strain free heat capacity per unit volume, Cε=0 is defined as:

Cε=0 = T

(
∂S

∂T

)
ε=0

= −T ∂
2F (0, 0, T )

∂T 2
, (2.34)

with

F (0, 0, T ) =

∫ T

T0

∫ ζ

T0

Cε=0

ϕ
dϕdζ (2.35)
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The first and second lame constants are defined as:

λ =
∂2F (0, 0, T )

∂I2
1

µ =
∂F (0, 0, T )

∂I2

(2.36)

Substituting equations in (2.36) into Eq. (2.33) and have i = j = k, then:

εkk =
1

3λ+ 2µ

[
σkk − 3

∂F (0, 0, T )

∂I1

]
(2.37)

If σkk = 0, the strain in Eq. (2.37) will purely due to thermal expansion, and from the

definition of coefficients of thermal expansion (αT ), we have:

3

∫ T

T0

αTdT = − 3

3λ+ 2µ

∂F (0, 0, T )

∂I1
(2.38)

where Eq. (2.38) can be rearranged and written as:

∂F (0, 0, T )

∂I1
= −(3λ+ 2µ)α̌T (T − T0), (2.39)

with

α̌T =
1

T − T0

∫ T

T0

αTdT (2.40)

where α̌T is also called the secant coefficient of thermal expansion.

Substituting Eqs. (2.35), (2.36), (2.37), and (2.40) into Eq. (2.30), we obtain the final

expression of Helmholtz free energy for Kovalenko’s small-strain thermoelasticity theory for

isotropic solids as:

F =
λ

2
ε2
kk + µεijεij − (3λ+ 2µ)α̌T (T − T0)εkk −

∫ T

T0

∫ ζ

T0

Cε=0

ϕ
dϕdζ (2.41)

As we mentioned, the derivation of Helmholtz free energy in Kovalenko’s small-strain

thermoelasticity theory has no restriction on the temperature change which enables this the-

ory to deal with system with large temperature variations and materials with temperature
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dependent material properties. And by further developing this theory, we derived a new

micromechanics model dealing with temperature dependent material properties and large

temperature variation, and the detailed derivations will be demonstrated in the Chapter 3.

2.2 Variational Asymptotic Method

We have introduced VAM in Chapter 1 in aspects of its based fundamental theories,

advantages, and efficiency. In this chapter, formulations of VAM and its basic theories such

as variational principles, asymptotic analysis will be reviewed.

2.2.1 Variational Principles

The variational principle is to find functions correlated with the stationary points

(maximum or minimum) of functionals. The early variational principle in mechanics such

as Mopertuis’ variational principle is aiming at explain general phenomena of nature so it

is sometimes claimed as the general law of nature. The modern variational principles where

variational statements are used to decide the stationary functions for the so called integral

functionals are based on the Euler’s calculus of variations. The idea came from Leibniz in

the eighteenth century and he found out that an action can reach not only a minimum but

also a maximum value in a real process. Since the actions are often described by integral

equations, the work to seek for the stationary values of this kind of functionals under integral

is named as principle of least action. Nowadays, the most popular variational principle used

in mechanics is the extended Hamilton’s variational principle which bases on minimization

of total potential energy in a dynamic system. This is called the principle of minimum

potential energy (MPE) that can be derived as a special condition of principle of virtual

work. This principle is introduced by Sokolnikoff [93] that the variation of potential energy

in an equilibrium configuration is zero. An important outcome of principle of least action

and MPE is that for a sufficiently small time increase ∆t, the energy reaches minimum

on the true trajectory with a finite number of degrees of freedom. A complete review of

variational principles can be found in book [94].

For a function F (y) in mathematics, by solving the equation of its first derivative
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F ′(y) = 0, we can either find a maximum, minimum, or saddle value of function F (y) which

is determined by the sign of its second derivative F ′′(y). However, for a continuous problem,

y(x) is usually also a function of x. Then the solution of F ′(y(x)) = 0 related with the

stationary function y(x) and the derivative of F (y(x)) is not that easy to find. To help

understanding calculus of variations, we consider the functional I(y) in the following form:

I(y) =

∫ x2

x1

F (x, y(x), y′(x))dx (2.42)

For a fixed value of x, if y(x) is changed by a infinitesimal variations δy (aka variation

of y), similarly the variation of y′(x) can be denoted as δy′, then the difference of functional

can be stated as:

δI = I(y + δy)− I(y) (2.43)

Using Maclaurin series, we can expand the right hand side of Eq. (2.43) as:

δI =

∫ x2

x1

{
F (x, y, y′) + (

∂F

∂y
δy +

∂F

∂y′
δy′)

+
1

2!

[
∂2F

∂y2
(δy)2 +

∂2F

∂y′2
(δy′)2 +

∂F

∂y

∂F

∂y′
δyδy′

]
+ ......− F (x, y, y′)

}
dx

(2.44)

where the terms after second order until nth order are omitted to save space. Thus the

variation of functional δI is obtained if one only keep terms of first order and drop all other

higher order terms in Eq. (2.44). The variation of this functional (δI) can be rewritten as:

δI =

∫ x2

x1

(
∂F

∂y
δy +

∂F

∂y′
δy′)dx (2.45)

As it is easy to notice from the assumption in the calculation of variation of functional,

the only variables that can be varied are y and δy while x is fixed. To find the stationary

point of the functional, we need to have δI = 0. In order to solve it, we integrate Eq. (2.45)

by parts:

δI =

∫ x2

x1

[
∂F

∂y
δy − d

dx
(
∂F

∂y′
)δy

]
dx+

∂F

∂y′
δy
∣∣x2
x1

(2.46)
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where the last term in Eq. (2.46) is related with the so called admissible constraints of the

function y(x) where the variations of y(x) could vanish at both limits of the functional if

they are prescribed at the ends:

δy(x1) = δy(x2) = 0 (2.47)

with Eq. (2.47), it is easy to see that the last term in Eq. (2.46) goes to zero. If the left

out terms of Eq. (2.46) also go to zero, we can have the desired equilibrium δI = 0 which

yields:

∂F

∂y
− d

dx
(
∂F

∂y′
) = 0 (2.48)

The condition expressed in Eq. (2.48) gives the stationary value of functional in E-

q. (2.42) which is also known as the Euler-Lagrange equation of this problem. Taking

another clear look at Eq. (2.48), if F does not depend on x explicitly, we can get:

d

dx
(F − y′∂F

∂y′
) =

∂F

∂y
y′ +

∂F

∂y′
y′′ − y′′∂F

∂y′
− y′ d

dx
(
∂F

∂y′
) (2.49)

after cancelling the middle two terms on the right hand side of Eq. (2.49) and taking

advantage of the Euler-Lagrange equation in Eq. (2.48), we obtain:

F − y′∂F
∂y′

= const. (2.50)

where Eq. (2.50) is called Hamiltonian. In reality, solving such Euler-Lagrange equations

is not that easy as many of them do not possess analytical solutions. In order to deal with

such cases, approximation methods have been developed based on variational form of the

problem and the most typical one is called Rayleigh-Ritz method. The idea is to use a set of

trial functions yi to express y(x) and make sure to meet the geometric boundary conditions

of the problem. The function y(x) can be expressed as:

y(x) = c1y1(x) + c2y2(x) + c3y3(x) + ... =

N∑
i=1

ciyi(x) (2.51)
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The procedure of this method is simple, first chose one set of trial functions, then

treat the combination of functions as shown on the right hand side of Eq. (2.51) as y(x)

and substitute it into the original functional. By solving δI = 0, the values of constants

c1, c2, ..., cn are obtained. The accuracy of solution can be improved by adding more trial

functions of y(x).

2.2.2 Principle of Virtual Work

Variational principles as introduced in the Section 2.2.1 are very powerful techniques for

obtaining the solutions of problems in solid mechanics. Although there are many variational

principles in mechanics, here we focus on introducing the Principle of Virtual Work (PVW)

which will be applied to guide the study in this dissertation.

The principle of virtual work (aka principle of virtual displacement) is defined as for a

system in equilibrium under the action of a number of forces (including the inertial forces),

the total work done for a virtual displacement is zero. If we consider a elastic body in

equilibrium under applied surface tractions and inertial body forces, imagine the elastic

body will move a displacement (δu). This displacement is possible but not necessarily

takes place, this kind of imaginary displacement is called virtual displacement and the work

done by all the forces during this virtual displacement is called virtual work. Following the

definition of principle of virtual work, we can construct the following statement as:

−
∫

Ω
(σji,j + ρbi)δuidΩ +

∫
Γ
(niσji − ti)δuidΓ = 0 (2.52)

This statement is constructed by using the admissible stress field that both stress

conditions inside parentheses are zero and considering the change of same arbitrary virtual

displacement in both Γ and Ω domains. Then we use integration by parts on the first term

of Eq. (2.52) as:

−
∫

Ω
σji,jδuidΩ =

∫
Ω
σjiδui,jdΩ−

∫
Γ
njσjiδuidΓ (2.53)
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Substituting Eq. (2.53) into Eq. (2.52) and make use of the symmetry of stress, we

have: ∫
Ω
σjiδui,jdΩ =

∫
Ω
ρbiδuidΩ +

∫
Γ
tiδuidΓ (2.54)

where we can also define a virtual strain as:

δεij =
1

2
(δui,j + δuj,i) (2.55)

Then Eq. (2.54) can be rewritten as:

∫
Ω
σijδεijdΩ =

∫
Ω
ρbiδuidΩ +

∫
Γ
tiδuidΓ (2.56)

where the left-hand side of Eq. (2.56) is often called internal virtual work (IVW) which

stands for the work done by internal stresses while the right-hand side is called external

virtual work (EVW) which stands for the work done by external applied loads.

2.2.3 Asymptotic Analysis

Instead of using Rayleigh-Ritz method to deal with the variational statement, VAM is

carrying out analysis by dropping the small terms in energy expression which follows the

rules of asymptotic analysis. To help identify the small terms, order symbols (aka order

notations) need to be introduced. There are normally three kinds of special symbols of

order: O (Big-Oh), o (little-oh), and ∼ (equivalent). Let f(x) and g(x) be real functions

defined in domain x ∈ [0,+∞].

• We say f(x) is in the order of g(x) (f = O(g)) as x→ 0 if there exists certain constants

C such that |f(x)| 6 C|g(x)|. In other words, function f(x) is comparable in order

with g(x) in the neighborhood of zero point.

• We say f(x) is in the small order of g(x) (f = o(g)) as x→ 0 if for any small constants

ε such that |f(x)| 6 ε|g(x)|. In other words, function f(x) is much smaller in order

compared with g(x) in the neighborhood of zero point.
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• We say f(x) is equivalent to g(x) (f ∼ o(g)) as x→ 0 if f(x)− g(x) = o [g(x)]. This

is sometimes also noted as f(x) is asymptotically equal to g(x).

To carry out an asymptotic analysis, the corresponding function or functional f is

usually expressed as any infinite series that can decease the little-oh order of this function

or functional. This kind of series are called asymptotic expansions (aka asymptotic series)

of f . In order to process asymptotic analyses, these series are designated to possess only

terms as good as its Big-Oh order. To identify the small little-oh terms in a functional, the

asymptotic order of both the functional and its derivatives are concerned. We consider a

function f(x) defined as x ∈ [a, b] and sufficiently smooth in this domain. We also denote the

amplitude of change of f(x) in domain as the maximum difference of the function evaluated

at any two points, i.e.

f̄ = max
x1,x2∈[a,b]

|f(x1)− f(x2)| (2.57)

Then for a sufficiently small number l, the following inequality holds:

∣∣∣∣dfdx

∣∣∣∣6 f̄

l
(2.58)

The largest constant l satisfying the above inequality is called the characteristic length of

function f(x) in its domain. If higher derivatives need to be evaluated, a set of equations

of inequalities similar as Eq. (2.58) hold:

∣∣∣∣dfdx

∣∣∣∣6 f̄

l
,

∣∣∣∣d2f

dx2

∣∣∣∣6 f̄

l2
, · · · ,

∣∣∣∣dkf

dxk

∣∣∣∣6 f̄

lk
(2.59)

where k is the highest derivative of interest of the problem. And the corresponding char-

acteristic length is the largest constant satisfying the whole set of equations of inequalities

as shown in Eq. (2.59). There is also another iterative method of identifying the small

parameters in an asymptotic analysis which is called the method of dominant balance. This

method is simple but highly depends on the analyzers’ personal experience. Instead of us-

ing the method of finding the characteristic length mentioned above, the analyzer takes a

clever guess of which terms in ordinary differential equation (ODE) may be negligible and
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by dropping those terms, a new function or functional is formed so as to solve the targeted

ODE. After that, a consistency check needs to be performed with the guess made afore-

hand. If without any problems, iterative process is started by using the promising results

of last iterative step as the first term of solution until the asymptotic behavior of solution

is obtained.

The initial guess of the small parameters is very important as if one chooses wrong

parameters, the iterative process will be unnecessarily long and complicated by doing this

back and forth. But sometimes it obeys the common sense of structural mechanics. For

example, in beam shaped structures, the cross section radius (r) comparing with beam

length (l); in plate shaped structures, the plate thickness (t) comparing with the other two

dimensions (a and b) of plate surface; in micromechanics, the microscopic dimensions of

UC (yi) comparing with the macroscopic dimensions (xi) of the overall composites. In such

cases, dropping the terms related with the small parameters will save the efforts of this

initial guess.

2.2.4 Variational Asymptotic Method

For problems of physics and mechanics with small and large parameters involved, var-

ious asymptotic approaches were developed. It is clear that by using a special variational

structure, there exists a direct variational approach based on asymptotic analysis of cor-

responding functionals which is called the variational asymptotic method. It allows us to

consider minimization problems of differential equations possessing variational structure

with a finite number of variables. The advantage of this method is greatly cutting down the

number of equations to solve in the system to just one with a variational structure while

the conventional asymptotic method deals with a complicated set of differential equations

without such structure.

The basic idea of VAM is to drop the small terms in the energy expression and use

variational statement to solve the stationary point of such energy functional. A systematic

introduction of how to neglect small terms, how to deal with the loss of uniqueness, how

those dropped small terms affect the results, and how the iteration procedure could be used
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is given by Berdichevsky in his book [94]. To help understanding the basic procedure of

VAM, an example as shown in book [94] is used here for explanation. Let a function f(u, ε)

depending on a small parameter ε be given at some set C of element u. Assuming that this

function f(u, ε) possess a stationary point denoted by ǔ and in the form of:

f(u, ε) = u2 + u3 + 2εu+ εu2 + ε2u (2.60)

The stationary point (ǔ) can be analytically solved as:

ǔ =
1

3
(−1− ε±

√
1− 4ε− 2ε2) (2.61)

where the exact solution can be expanded asymptotically in terms of ε as:

ǔ =

 −
2
3 + ε

3 + ε2 + o(ε2)

0− ε− ε2 + o(ε2)
(2.62)

Next, we use VAM to estimate the results and compare with the solution in Eq. (2.62).

The zeroth order approximation using VAM is straight forward: for ε → 0, the function

f(u, 0) = u2 + u3 has two stationary points, u0 = −2
3 and u0 = 0.

Now we need to find the first order approximation in the neighborhood of two zeroth

order solutions. The procedure is set current u = u0 + u′ and u′ → 0 for ε → 0. First, we

set u = −2
3 + u′, the function becomes:

f(−2

3
+ u′, ε) = −u′2 +

2u′ε

3
+ u′3 + u′2ε+ u′ε2 +

4

27
− 8ε

9
(2.63)

where the last two terms are constants which are not functions of u. They will not affect

the stationary points and can be simply dropped. The underlined terms are much smaller

than the other two terms in view of both u and ε are tiny, and to be specific:

∣∣u′3∣∣� ∣∣u′2∣∣ ∣∣u′2ε∣∣� ∣∣u′2∣∣ ∣∣u′ε2
∣∣� ∣∣∣∣2u′ε3

∣∣∣∣ (2.64)
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So we drop the underlined terms and only keep two leading terms of Eq. (2.63), the

function becomes:

f1(u′, ε) = −u′2 +
2u′ε

3
(2.65)

where the corresponding first order stationary point is u′ = 1
3ε. Note that the asymptotic

order of u′ is not assumed a priori, but is determined as the stationary point of the function

f1(u′, ε). Hence, we have obtained up to the first order approximation of the stationary

point in the neighborhood of −2
3 as:

ǔ = u0 + u1 = −2

3
+

1

3
ε+ o(ε) (2.66)

Then we set u = 0 + u′ = u′ for seeking the first order approximation in the neighbor-

hood of 0, we obtain the following function:

f(u′, ε) = u′2 + 2u′ε+ u′3 + u′2ε+ u′ε2 (2.67)

Again, the underlined terms are much smaller than those two leading terms, which is

base on: ∣∣u′3∣∣� ∣∣u′2∣∣ ∣∣u′2ε∣∣� ∣∣u′2∣∣ ∣∣u′ε2
∣∣� ∣∣2u′ε∣∣ (2.68)

in view of the fact that both u′ and ε are small. Keep these two leading terms and drop

others, we obtain the following function:

f1(u′, ε) = u′2 + 2u′ε (2.69)

where Eq. (2.69) is reaching its stationary point when u′ = −ε. Then the solution up to the

first order approximation of the stationary point in the neighborhood of 0 can be expressed

as:

ǔ = u0 + u1 = 0− ε+ o(ε) (2.70)

Till now, we have exactly reproduced the first two terms of asymptotic expansions of
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the exact solution. We can continue this same procedure in order to find the higher order

approximation. For example, to seek for the second order approximation, we similarly let

u = u0 + u′ + u′′ and u′′ → 0 for ε→ 0. First we set u = −2
3 + ε

3 + u′′, and similarly drop

the small terms as in Eqs. (2.63) and (2.67), the following leading terms are left out in view

of the fact that both u′′ and ε are small:

f2(u′′, ε) = −u′′2 + 2u′′ε2 (2.71)

which is reaching stationary point when u′′ = ε2. Then the solution up to the second order

approximation of the stationary point in the neighborhood of −2
3 can be expressed as:

ǔ = u0 + u1 + u2 = −2

3
+

1

3
ε+ ε2 + o(ε2) (2.72)

Then we set u = 0 − ε + u′′ = −ε + u′′ for seeking the second order approximation in

the neighborhood of 0, we obtain the following function by only keep the leading terms:

f2(u′′, ε) = u′′2 + 2u′′ε2 (2.73)

which is reaching stationary point when u′′ = −ε2. Then the solution up to the second

order approximation of the stationary point in the neighborhood of 0 can be expressed as:

ǔ = u0 + u1 + u2 = 0− ε− ε2 + o(ε2) (2.74)

As we can see, up to the second order approximation of solution, they match the

asymptotic expansions of exact solution as shown in Eq. (2.62), so an exact asymptotic

expansion has been formed in this case.

Obviously, the main difficulty in VAM is to recognize the leading terms and the neg-

ligible terms same as the conventional asymptotic analysis. It is relatively easy to identify

such terms in this example but in realty, to determine these relations, we need to consider

the following two conditions:
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• For two terms A(u, ε) and B(u, ε) in the functional I(u, ε), if

lim
ε→0

max
u∈M

∣∣∣∣B(u, ε)

A(u, ε)

∣∣∣∣= 0 (2.75)

then B(u, ε) is negligible in comparison to A(u, ε) for all stationary points. Such terms

are called globally secondary.

• Let ǔ→ 0 for ε→ 0, and for any sequence {un} converging to u = 0, if

lim
n→∞
ε→0

∣∣∣∣B(u, η)

A(u, η)

∣∣∣∣= 0 (2.76)

then B(u, ε) is negligible in comparison to A(u, ε) for all stationary points ǔ. Likely,

such terms are called locally secondary.

To be more specific, in the example discussed above, the term u2ε is globally secondary

with respect to u2, the term uε2 is globally secondary with respect to 2uε while u3 is locally

secondary with respect to u2 in the neighborhood of the point u = 0.
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Chapter 3

Homogenization for Composites with Finite Temperature

Change

In this chapter, we will construct a new thermomechanical model for homogenizing

heterogeneous materials made of temperature dependent constituents subject to finite tem-

perature changes with the consideration that the total strain is still small based on the

small-strain thermoelasticity theory developed by Kovalenko as introduced in Section 2.1.4.

First we present the derivation of a Helmholtz free energy suitable for finite temperature

changes, then we use the energy expression to construct a new thermomechanical microme-

chanics model, extending the previous work which was restricted to only small temperature

change and temperature independent material properties. The new model is implemented

using VAMUCH applying finite element method for the purpose of handling real heteroge-

neous materials with arbitrary microstructures.

Because of the restrictions of conventional linear thermoelasticity theory, this theory is

barely applicable in the real cases of engineering studies. For instance, if a system starts at

room temperature T0, the current temperature is T after it reaches steady state, the ratio

of temperature change T−T0
T0

must be below the level of elastic strain which is usually in the

order of 1% or smaller to strictly satisfy the assumption of small strain changes adopted in

conventional linear thermoelasticity. It is a very limiting assumption as many engineering

systems are commonly designed to experience significant temperature changes of hundreds

of degrees or even thousands of degrees such as space shuttle thermal protection panels, gas

turbine blades, and car or airplane heat exchangers. Although the temperature change is

large, the strains required to generate from these systems are still small in order to maintain

the functionalities of systems. Hence, it has a practical significance for us to abandon the

assumption of small temperature changes without violating the assumption of small strains
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since the coefficients of thermal expansion (CTEs) for most materials are in the order of

10−6K. What worthy to mention is that we only need to slightly modify the well established

linear thermoelasticity theory to enable such a generalization.

Also in linear thermoelasticity, it is also implicitly assumed that the material properties

are temperature independent and the properties at the starting temperature T0 are used

directly in the calculation, while we also relax this assumption so that the material properties

of the current temperature will be used in the calculation instead. We follow the small-

strain thermoelasticity theory derived by Kovalenko and construct a Helmholtz free energy

functional similar to that presented in Boussa [92].

3.1 Helmholtz Free Energy for Finite Temperature Change with Temperature

Dependent Properties

The Helmholtz free energy functional is expanded into a quadratic form of strain field

due to the assumption that the strain can be considered small and some remaining terms

which are determined through the basic concepts of thermodynamics. To construct the

formulation, we first define the material properties of interest as temperature dependent,

such as the coefficients of thermal expansion αij(σkl, T ), the heat capacity per unit volume

Cε(εij , T ), the elastic constants Cijkl(T ), the thermal strain tensors mij(T ), and the thermal

stress tensors lij(T ). The symbol outside the parenthesis denotes the physical quantity while

the symbols inside parenthesis are regarded as the independent variables used to describe

the state of function. Note that for a defined function F (σij , T ) or F (εij , T ), the quantity

F (0, T ) means F (σij = 0, T )(stress free state) or F (εij = 0, T )(strain free state) depending

on how the function is defined.

The Helmholtz free energy density f(εij , T ) is a function of the strain field εij and

the absolute temperature T . To relax the assumption of small temperature changes, we do

not put any restriction on T but assuming εij to be small, then we can carry out a Taylor
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expansion of f(εij , T ) in terms of the small strain field, εij , as:

f(εij , T ) = f(0, T ) + εij
∂f(εij , T )

∂εij
|εij=0 +

1

2
εijεkl

∂2f(εij , T )

∂εij∂εkl
|εij=0 (3.1)

Here only up to the quadratic terms of the strain field are kept due to the assumption

of small strains. The terms of strain with order higher than quadratic will be extremely

small so we neglect those terms. We know σij = ∂f
∂εij

, that is:

σij = Cijkl(T )εkl + lij(T ) (3.2)

with Cijkl(T ) =
∂2f(εij ,T )
∂εij∂εkl

|εij=0 as the fourth-order elasticity tensors and lij(T ) =
∂f(εij ,T )
∂εij

|εij=0

as the second-order thermal stress tensors. We can also rewrite the stress-strain relations

as:

εij = Sijkl(T )σkl +mij(T ) (3.3)

with Sijkl as the fourth-order compliance tensors and mij as the second-order thermal

strain tensors which are obtained according to mij = −Sijkllkl. The coefficients of thermal

expansion, αij , as functions of stress field and temperature, are defined as:

αij =
∂εij
∂T
|σij=constant (3.4)

Then from Eq. (3.3) and (3.4), we have:

αij = S′ijklσkl +m′ij (3.5)

where prime is used to denote derivative with respect to T , the absolute temperature which

is currently experienced by the solid, i.e., m′ij =
dmij
dT . From Eq. (3.5), we have:

αij(0, T ) = m′ij (3.6)
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where we can obtain:

mij =

∫ T

T0

αij(0, ζ)dζ +mij(T0) (3.7)

Note here αij(0, T ) are the stress-free coefficients of thermal expansion which can

be measured at a specific temperature T . The thermal strains at reference temperature,

mij(T0), can be determined according to Eq. (3.3) if we know the initial stress and strain

at the reference temperature. For example, if we choose our reference state to be stress

and strain free at T = T0, which is normally done, we will have mij(T0) = 0. Then we can

express our thermal strain tensor in a form similar as that we used in linear thermoelasticity

which is restricted to only small temperature changes:

mij = α̌ij(T )θ with α̌ij(T ) =
1

θ

∫ T0+θ

T0

αij(0, ζ)dζ (3.8)

where θ = T − T0 denotes the temperature change from the reference temperature T0. It

is emphatically pointed out that θ is not necessarily small comparing to T0, as assumed in

linear thermoelasticity. The thermal strain mij are not linear with respect to θ as α̌ij(T )

are also functions of θ (note T = θ+T0). We can observe from Eq. (3.8) that if the material

properties are not functions of T , then the constitutive relation in Eq. (3.2) remains the

same as that obtained in linear thermoelasticity. In other words, linear thermoelasticity

is applicable to large temperature changes if the material properties are temperature in-

dependent. Normally, α̌ij(T ) are termed as the secant stress-free coefficients of thermal

expansion. We can also express the thermal stress tensor as:

lij(T ) = −Cijkl(T )mkl(T ) = −Cijkl(T )α̌ij(T )θ ≡ β̌ij(T )θ (3.9)

where β̌ij(T ) can be similarly called the secant strain-free thermal stress coefficients.

Next we need to find the expression for f(0, T ). The entropy is commonly defined as

η = − ∂f
∂T |εij=constant in continuum mechanics textbooks. From Eq. (3.1), we have:

η = −1

2
C ′ijklεijεkl − l′ijεij − f ′(0, T ) (3.10)
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The heat capacity per unit volume at constant strain, Cε, is defined as:

Cε = T
∂η

∂T
|εij=constant (3.11)

Based on this definition we have:

Cε = −T
[
f ′′(0, T ) + l′′ijεij +

1

2
C ′′ijklεijεkl

]
(3.12)

Clearly Cε is a function of both εij and T , and the strain-free heat capacity per unit

volume, Cε(0, T ), will be a function of T only as follows:

Cε(0, T ) = −Tf ′′(0, T ) (3.13)

Dividing both sides of the above equation by T and integrating the result between T0

and T twice yields:

f(0, T ) = f0 − η0(T − T0)−
∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ (3.14)

Substituting Eq. (3.9) and Eq. (3.14) into Eq. (3.1), we have:

f(εij , T ) =
1

2
Cijkl(T )εijεkl + β̌ij(T )εijθ − η0T −

∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ (3.15)

where the constant f0 + η0T0 is dropped as one can easily show this to be the internal

energy of the reference state which is commonly assumed to be zero [91]. Although the

free energy is linear with respect to η0, entropy at reference temperature, it only provides

an additive constant to the entropy at the current temperature and it has no effect on the

thermoelastic behavior we want to model. Thus the term η0T will be dropped in further

derivations. The free energy form in Eq. (3.15) can be reduced to that used in [82] for

micromechanics modeling based on linear thermoelasticity if we assume small temperature

changes and the temperature independent material properties. This systematic derivation
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using basic thermodynamics concepts above actually helped us identify an error in [82] that

the sign of the quadratic terms related with temperature changes should be minus.

3.2 Micromechanics Model for Finite Temperature Change with Temperature

Dependent Properties

Starting from the Helmholtz free energy expression we have just derived for finite

temperature change small strain thermoelasticity in Eq. (3.15), we can follow an identical

derivation procedure as given in [82] to obtain a variational statement which will govern

the micromechanics model. To avoid repetition, this procedure is not reproduced here but

suffice to say that the variational statement can be expressed as minimizing the following

functional:

f(ε̄ij , χi, T ) =
1

2Ω

∫
Ω

{
Cijkl(T )

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]
+ 2β̌ij(T )

[
ε̄ij + χ(i|j)

]
θ

}
dΩ−

∫ T

T0

∫ ζ

T0

〈Cε(0, ρ)〉
ρ

dρdζ

(3.16)

subject to periodic constraints. Here, χi are the commonly called fluctuating functions, ε̄ij

are the global strain tensors, and angle brackets indicate average over the unit cell.

Introduce the following matrix notations:

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33cT (3.17)



∂χ1

∂y1

∂χ1

∂y2
+ ∂χ2

∂y1

∂χ2

∂y2

∂χ1

∂y3
+ ∂χ3

∂y1

∂χ2

∂y3
+ ∂χ3

∂y2

∂χ3

∂y3



=



∂
∂y1

0 0

∂
∂y2

∂
∂y1

0

0 ∂
∂y2

0

∂
∂y3

0 ∂
∂y1

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3




χ1

χ2

χ3

 ≡ Γhχ (3.18)
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where Γh is an operator matrix and χ is a column matrix containing the three components

of the fluctuating functions. If we discretize χ using the finite elements as:

χ(xi; yi) = S(yi)X (xi) (3.19)

where S represents the shape functions and X is a column matrix of the nodal values of

the fluctuation functions. Substituting Eqs. (3.17), (3.18), and (3.19) into Eq. (3.16), we

obtain a discretized version of the functional as:

f(ε̄,X , T ) =
1

2Ω
(X TEX + 2X TDhεε̄+ ε̄TDεεε̄

+ 2X TDhθθ + 2ε̄TDεθθ)−
∫ T

T0

∫ ζ

T0

〈Cε(0, ρ)〉
ρ

dρdζ

(3.20)

where

E =

∫
Ω

(ΓhS)TD(ΓhS)dΩ Dhε =

∫
Ω

(ΓhS)TDdΩ

Dεε =

∫
Ω
DdΩ Dhθ =

∫
Ω

(ΓhS)T β̌dΩ

Dεθ =

∫
Ω
β̌dΩ

with D as the 6× 6 material matrix condensed from the fourth order elasticity tensor Cijkl,

and β̌ as the 6 × 1 column condensed from β̌ij . Minimizing f(ε̄,X , T ) in Eq. (3.20) with

respect to X , we obtain the following linear system:

EX = −Dhεε̄−Dhθθ (3.21)

The solution can be written symbolically as:

X = X0ε̄+ Xθθ (3.22)
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Substituting Eq. (3.22) into Eq. (3.20), we can calculate the effective Helmholtz free

energy density of the UC as:

f̄(ε̄, T ) =
1

2
ε̄T D̄(T )ε̄+ ε̄Tβ∗(T )θ + f̄(0, T ) (3.23)

with

D̄(T ) =
1

Ω
(X T0 Dhε +Dεε)

β∗(T ) =
1

Ω

[
1

2
(DT

hεXθ + X T0 Dhθ) +Dεθ

]
f̄(0, T ) =

θ2

2Ω
X Tθ Dhθ −

∫ T

T0

∫ ζ

T0

〈Cε(0, ρ)〉
ρ

dρdζ

Here, we can observe that D̄ is the effective stiffness matrix and f̄(0, T ) is the effective

heat capacity per unit volume when the temperature of the unit cell is increased from T0

to T . However, β∗ cannot be simply interpreted as the effective thermal stress coefficient

matrix and its real meaning will be disclosed later. Comparing to the micromechanics

model based on linear thermoelasticity, we will find out that the calculation and results of

D̄ remain the same as long as we use temperature dependent material properties for the

computation and the calculation of β∗ will remain the same if we replace the temperature

independent CTE used for linear thermoelasticity with secant CTE, but the results will be

obviously different.

The effective stress-strain relationship for the homogenized material can be written as:

σ̄ = D̄ε̄+ β∗θ (3.24)

The effective thermal stress coefficient can be defined as follows:

β̄ =
∂σ̄

∂T
|σ̄=constant = D̄′ε̄+ β∗

′
θ + β∗ (3.25)

The effective thermal stress coefficient is a function of the global strain ε̄ and absolute
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temperature T . Note β̄ is not the same as β∗. The corresponding effective strain-free

thermal stress coefficient is:

β̄(0, T ) = β∗
′
(T − T0) + β∗ (3.26)

The effective strain-stress relationship for the homogenized material can be obtained

from Eq. (3.24) as:

ε̄ = D̄−1σ̄ − D̄−1β∗θ (3.27)

which implies the effective thermal strain, m̄, can be obtained using the following expression:

m̄ = −D̄−1β∗θ = α∗θ (3.28)

If one would like to obtain the effective CTEs, we can obtain through its definition in

Eq. (3.4) as:

ᾱ(σ, T ) =
(
D̄−1

)′
σ̄ + m̄′ (3.29)

where m̄′ can be considered as the effective stress-free CTE at T , ᾱ(0, T ). Particularly,

using Eq. (3.28), we have:

ᾱ(0, T ) = −D̄−1
(
β∗ + β∗

′
θ − D̄′D̄−1β∗θ

)
= α∗ + α∗

′
θ (3.30)

where the identity
(
D̄−1

)′
= −D̄−1D̄′D̄−1 is used.

The effective specific heat per unit volume can also be obtained through its definition

as:

C̄ε(ε̄, T ) = −T ∂
2f̄

∂T 2
|ε̄=constant = C̄ε(0, T )− T

(
1

2
ε̄T D̄′′ε̄+ ε̄T (β∗θ)′′

)
(3.31)

with

C̄ε(0, T ) = 〈Cε(0, T )〉 − T
(
θ2

2Ω
X Tθ Dhθ

)′′
(3.32)
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as the strain-free, effective specific heat per unit volume. Let F (T ) =
XTθ Dhθ

Ω , C̄ε(0, T ) can

be evaluated as:

C̄ε(0, T ) = 〈Cε(0, T )〉 − TF − 2TθF ′ − Tθ2

2
F ′′ (3.33)

Usually, we desire to use D̄, ᾱ(0, T ), and C̄ε(0, T ) to characterize the macroscopic

thermoelastic behavior of the heterogeneous materials. The computation of ᾱ(0, T ) and

C̄ε(0, T ) requires the derivatives of D̄, β∗, and F with respect to temperature, which implies

we need to differentiate Eq. (3.21) with respect to temperature such as:

E′X + EX ′ = −D′hεε̄−D′hθ (3.34)

This equation can be used to solve for X ′ = X ′0ε̄+X ′θ once X has been solved from the

original equation in Eq. (3.21). The second derivatives can be evaluated similarly. Although

feasible, this approach introduces unwarranted complexity and longer computing time in

real applications. A much more practical and simpler approach is to fit the values of α∗, F

with respect to T as a simple function such as a polynomial, then evaluate the needed first

derivative of α∗ to obtain ᾱ(0, T ) and evaluate the needed first and second derivatives of

F to obtain C̄ε(0, T ). This approach also allows us to reuse the VAMUCH code developed

in [82] to implement the present theory with minor changes.

It is worthy to point out that if one assumes that the constituent material properties

are temperature independent, that is:

C ′ijkl = 0 α̌′ij = 0 (3.35)

then we have:

β̄(ε̄, T ) = β̄(0, T ) = β∗ (3.36)

ᾱ(ε̄, T ) = ᾱ(0, T ) = −D̄−1β∗ (3.37)

C̄ε(ε̄, T ) = C̄ε(0, T ) = 〈Cε(0, T )〉 − TF (3.38)
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These formulas are exactly the same as those in [82] if we realize that work further

restricts small temperature variations, which implies that T can be replaced by T0. Note

the sign difference before TF because the sign in front of the energy term related with

specific heat should be minus in Eq. (2) of [82].

After having obtained the effective material properties, we can use them to carry out

various macroscopic thermoelastic analyses of the homogenized effective medium under dif-

ferent loading and temperature conditions, output of which should be global displacements

and strains.

If the local fields within the UC are of interest, we can recover those fields after we

have obtained the macroscopic behavior which can be described by global displacements vi

and global strains ε̄ [82].

u = v +


∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3



y1

y2

y3

+


χ1

χ2

χ3

 (3.39)

with u as the column matrix of ui and v as the column matrix of vi. The local strain field

can be recovered using:

ε = ε̄+ Γhχ (3.40)

Finally, the local stress field can be recovered straightforwardly using the 3D constitu-

tive relations for the constituent material as:

σ = Dε+ β̌θ (3.41)

3.3 Validation using an Analytical Solution for Binary Composites

To demonstrate and validate the predictability and capability of VAMUCH, we consider

a periodic binary composite formed by orthotropic layers and the material axes are the same

as the global coordinates xi so that the material is uniform in the x1 - x2 plane and periodic

along x3 direction. A typical unit cell can be identified as shown in Fig. 3.1, the dimension
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x3,y3 

x2,y2 

x1,y1 

Fig. 3.1: Sketch of a binary composite

along y3 is h and dimensions along y1 and y2 can be arbitrary. Let φ1 and φ2 denote the

volume fractions of the first layer and the second layer, respectively, and we have φ1+φ2 = 1.

Because the material is uniform in the x1 - x2 plane, the fluctuating function χi will

be a function of only y3. By using the technique of Lagrange multipliers, the variational

statement of micromechanical analysis of UC can be posed as:

J =
1

2h

[∫ (φ1− 1
2

)h

−h
2

(
ε(1)TD(1)ε(1) + 2ε(1)T β̌(1)θ

)
dy3

+

∫ h
2

( 1
2
−φ2)h

(
ε(2)TD(2)ε(2) + 2ε(2)T β̌(2)θ

)
dy3

]
+ λi 〈χi〉

+ βi3

[
χ

(2)
i (y3,

h

2
)− χ(1)

i (y3,−
h

2
)

]
−
∫ T

T0

∫ ζ

T0

〈Cε(0, ρ)〉
ρ

dρdζ

(3.42)

with

ε(α) = bε̄11 2ε̄12 ε̄22 2ε̄13 +
∂χ

(α)
1

∂y3
2ε̄23 +

∂χ
(α)
2

∂y3
ε̄33 +

∂χ
(α)
3

∂y3
cT

β̌(α) = bβ̌(α)
11 β̌

(α)
12 β̌

(α)
22 β̌

(α)
13 β̌

(α)
23 β̌

(α)
33 c

T

where α = 1, 2 denote two layers and χ(α) are the fluctuating functions for two layers. The

material matrices D(α) are characterized by the nine constants for the orthotropic elastic
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materials and arranged as:

D(α) =



c
(α)
11 0 c

(α)
12 0 0 c

(α)
13

0 c
(α)
66 0 0 0 0

c
(α)
12 0 c

(α)
22 0 0 c

(α)
23

0 0 0 c
(α)
55 0 0

0 0 0 0 c
(α)
44 0

c
(α)
13 0 c

(α)
23 0 0 c

(α)
33


(3.43)

Following the normal procedure of calculus of variations, we can solve for the fluctuation

functions which can be used to obtain the following effective Helmholtz free energy as:

ΠΩ =
1

2



ε̄11

2ε̄12

ε̄22

2ε̄13

2ε̄23

ε̄33



T 

c∗11 0 c∗12 0 0 c∗13

0 c∗66 0 0 0 0

c∗12 0 c∗22 0 0 c∗23

0 0 0 c∗55 0 0

0 0 0 0 c∗44 0

c∗13 0 c∗23 0 0 c∗33





ε̄11

2ε̄12

ε̄22

2ε̄13

2ε̄23

ε̄33



+



ε̄11

2ε̄12

ε̄22

2ε̄13

2ε̄23

ε̄33



T 

β∗11

β∗12

β∗22

β∗13

β∗23

β∗33



θ + f∗

(3.44)

It can be observed that the homogenized material properties still possess the same

orthotropic symmetry for this binary composite case, although in general the homogenized

material could be general anisotropic, which means a fully populated 6× 6 stiffness matrix.
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The expressions of effective elastic properties c∗ij are listed below:

c∗11 = 〈c11〉 −
φ1φ2(c

(2)
13 − c

(1)
13 )2

φ1c
(2)
33 + φ2c

(1)
33

c∗12 = 〈c12〉 −
φ1φ2(c

(2)
13 − c

(1)
13 )(c

(2)
23 − c

(1)
23 )

φ1c
(2)
33 + φ2c

(1)
33

c∗13 =
φ1c

(1)
13 c

(2)
33 + φ2c

(2)
13 c

(1)
33

φ1c
(2)
33 + φ2c

(1)
33

c∗22 = 〈c22〉 −
φ1φ2(c

(2)
23 − c

(1)
23 )2

φ1c
(2)
33 + φ2c

(1)
33

c∗23 =
φ1c

(1)
23 c

(2)
33 + φ2c

(2)
23 c

(1)
33

φ1c
(2)
33 + φ2c

(1)
33

c∗33 = 1/

〈
1

c33

〉
c∗44 = 1/

〈
1

c44

〉
c∗55 = 1/

〈
1

c55

〉
c∗66 = 〈c66〉 (3.45)

The thermal stress coefficients β∗ij can be expressed as:

β∗11 =
〈
β̌11

〉
− φ1φ2(c

(1)
13 − c

(2)
13 )(β̌

(1)
33 − β̌

(2)
33 )

φ1c
(2)
33 + φ2c

(1)
33

β∗12 =
〈
β̌12

〉
β∗22 =

〈
β̌22

〉
− φ1φ2(c

(1)
23 − c

(2)
23 )(β̌

(1)
33 − β̌

(2)
33 )

φ1c
(2)
33 + φ2c

(1)
33

β∗13 =
(c

(2)
55 β̌

(1)
13 φ1 + c

(1)
55 β̌

(2)
13 φ2)

φ1c
(2)
55 + φ2c

(1)
55

β∗23 =
(c

(2)
44 β̌

(1)
23 φ1 + c

(1)
44 β̌

(2)
23 φ2)

φ1c
(2)
44 + φ2c

(1)
44

β∗33 =
(c

(2)
33 β̌

(1)
33 φ1 + c

(1)
33 β̌

(2)
33 φ2)

φ1c
(2)
33 + φ2c

(1)
33

(3.46)
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The effective heat f̄(0, T ) of the binary composite can be calculated as:

f̄(0, T ) =−
∫ T

T0

∫ ζ

T0

〈Cε(0, ρ)〉
ρ

dρdζ

− φ1φ2θ
2

[
(β̌

(1)
33 − β̌

(2)
33 )2

φ1c
(2)
33 + φ2c

(1)
33

+
(β̌

(1)
23 − β̌

(2)
23 )2

φ1c
(2)
44 + φ2c

(1)
44

+
(β̌

(1)
13 − β̌

(2)
13 )2

φ1c
(2)
55 + φ2c

(1)
55

]
(3.47)

These analytical expressions of the binary composite example can be used to validate

the general-purpose micromechanics code VAMUCH for its capability in modeling het-

erogeneous materials made of temperature dependent constituents and subjected to finite

temperature changes.

3.4 Numerical Examples

Several numerical examples including binary composites, fiber reinforced composites,

and particle reinforced composites are used to validate and demonstrate the new capability

based on the present model implemented in VAMUCH. The differences between VAMUCH

based on linear thermoelasticity and VAMUCH based on finite temperature change small

strain thermoelasticity for predicting effective properties including effective CTEs and spe-

cific heats, and local fields will be carefully quantified. Without loss of generality, we assume

that the two constituents in composites are isotropic with temperature dependent material

properties including Young’s modulus E(T ), Poisson’s ratio ν(T ), stress-free CTEs α(0, T ),

and strain-free specific heat Cε(0, T ) given in Table 3.1 and Table 3.2. Here we obtain

the effective stress-free CTEs and effective strain-free specific heat by fitting the values of

α∗, F with respect to T and evaluating the needed first derivatives and second derivatives

according to Eq. (3.30) and Eq. (3.33).

3.4.1 Binary Composites

Let us first consider a binary composite with the bottom layer made of constituent 1

and the top layer made of constituent 2. The volume fraction of bottom layer is 0.3. Duocel

silicon carbide form (8% norminal density) is used as our constituent 1 with stress-free CTEs
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Table 3.1: Material property of constituent 1

T (◦C) E (GPa) ν α (µ/◦C) Cε (KJ/m
3−◦C)

23 2.76 0.22 1.22 249.4

50 2.76 0.22 1.37 250.9

75 2.76 0.22 1.51 251.9

100 2.76 0.22 1.65 253.2

125 2.76 0.22 1.78 254.2

150 2.76 0.22 1.90 255.3

175 2.76 0.22 1.98 255.8

200 2.76 0.22 2.06 256.3

225 2.76 0.22 2.13 256.8

250 2.76 0.22 2.18 257.3

275 2.76 0.22 2.23 257.6

300 2.76 0.22 2.28 257.8

Table 3.2: Material property of constituent 2

T (◦C) E (GPa) ν α (µ/◦C) Cε (KJ/m
3−◦C)

23 4.10 0.3 7.46 2280

50 3.57 0.3 8.13 2280

75 3.38 0.3 8.42 2280

100 3.25 0.3 8.45 2280

125 3.14 0.3 8.38 2280

150 3.05 0.3 8.28 2280

175 2.98 0.3 8.09 2280

200 2.92 0.3 7.89 2280

225 2.87 0.3 7.64 2280

250 2.81 0.3 7.38 2280

275 2.77 0.3 7.05 2280

300 2.72 0.3 6.70 2280
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and strain-free specific heat obtained by curve fitting and Young’s modulus directly taken

based on existing available data from online resource [95]. Data of constituent 2 (thermoset

phenolic resin matrix composite with glass-cloth-fabric reinforcements) are based on Table 7

and curve fitting of Fig. 47 and 50 of ASM handbook [96]. Using VAMUCH, this composite

can be modeled using either a 1D UC, or 2D UC, or 3D UC. The reason is that the

dimensionality of the problem necessary for VAMUCH analysis is completely determined

by its periodicity. Binary composite has a 1D periodicity. Hence 1D UC is sufficient and

although using higher dimensional models (2D UC or 3D UC) can also reproduce the same

results, it is a unnecessary waste of computing time. Nevertheless, it serves as a good

validation test of the VAMUCH to demonstrate it will compute according to its underlining

theory. We verified that indeed 1D UC, 2D UC, and 3D UC predict exactly the same

results, which is also exactly the same as the exact solution derived in the previous section.

In Fig. 3.2, we plot the Young’s modulus variation with respect to temperature includ-

ing in-plane modulus, transverse modulus, and the constituent moduli. We can observe as

a composite, its Young’s modulus having a temperature dependent behavior different from

that of the constituents. Note the temperature dependent elastic constants will remain the

same no matter whether the theory assumes small temperature changes or not. However,

it is not true for CTEs. The temperature dependent CTEs of the binary composite are

shown in Fig. 3.3 and Fig. 3.4, where small temperature change denotes the results based

on linear thermoelasticity assuming small temperature changes while finite temperature

change is based on the finite temperature change small strain thermoelasticity theory pre-

sented in this paper. As one can observe from both figures, the effective CTEs based on

small temperature change assumptions vary more significantly with the temperature. One

might argue that in the thermoelastic analysis, one should not directly use the effective

CTEs calculated based on small temperature change assumptions, but use the secant CTEs

defined from these temperature dependent effective CTEs. In other words, we use linear

thermoelasticity for micromechanics modeling but finite temperature change small strain

thermoelasticity for macroscopic stress analysis. For this reason, we also plot the effective
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Fig. 3.2: Young’s modulus variation with respect to temperature

secant CTEs based on assuming small temperature changes only for the micromechanics

modeling. We observe that results predicted from finite temperature change small strain

thermoelasticity theory are noticeably different (more than 10%) from the effective CTEs

predicted with assuming small temperature changes and even more significantly differen-

t with results based on assuming small temperature changes only for the micromechanics

modeling, which implies that the micromechanics model based on finite temperature change

thermoelasticity theory is necessary to avoid loss of accuracy for large temperature changes.

As far as the specific heat C̄ε concerned, as shown in Fig. 3.5, there are not much differences

(less than 0.5%) between assuming small temperature changes or not. The main reason is

that the major contribution comes from the specific heat of the constituents 〈Cε(0, T )〉

which is not affected by the limiting assumptions of linear thermoelasticity. Hypothetically

speaking, according to Eq. (3.33), if F and its derivatives F ′ and F ′′ are not that small (F

is in the order of 0.1 J/m3−◦C2 for this case), then the contribution from the last three

terms can easily overpower the first term when T and thus θ is large.
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Fig. 3.3: In-plance CTE (ᾱ11, ᾱ22) change with respect to temperature

5.35E-06

5.60E-06

5.85E-06

6.10E-06

6.35E-06

6.60E-06

6.85E-06

23 50 75 100 125 150 175 200 225 250 275 300

Temperature (ºC)

Tr
an

sv
er

se
 C

TE
 (/

ºC
)

Finite Temperature Change

Small Temperature Change

Small Temperature Change (Secant)

Fig. 3.4: Transverse CTE (ᾱ33) change with respect to temperature
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3.4.2 Fiber Reinforced Composites

Now, let us consider a fiber reinforced composite with the constituent 1 as the fiber

and constituent 2 as the matrix. The fiber volume fraction is kept 0.3 in order to compare

with the other cases without the unnecessary involvement of the volume fraction factor.

The microstructure is periodic in two dimensions and thus can be modeled using either 2D

UC or 3D UC. 2D UC is the obvious choice as it will predict the same results as 3D UC

with much less computation. For this fiber reinforced composite, we compare the effective

coefficients of thermal expansion in longitudinal and transverse directions. From the results

plotted in Fig. 3.6 and Fig. 3.7, we again verified that there are significant differences

between the predictions based on finite temperature changes and those based on assuming

small temperature changes. However, for this fiber reinforced composites, we notice that

the CTEs computed from the effective CTEs obtained assuming small temperature changes

are closer to those predicted using finite temperature changes small strain thermoelasticity.

Particularly, they are very close to each other in the transverse direction. The specific heat
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results still remain close to each other as what we have observed for the binary composite.

3.4.3 Particle Reinforced Composites

To validate and demonstrate the capability of the present theory as implemented in

VAMUCH in modeling 3D microstructures, we choose a particle reinforced composite which

should be modeled using a 3D unit cell. The particle is made of constituent 1 and has a

volume fraction of 0.3. As expected, VAMUCH predicts the particle reinforced composite

to be macroscopically isotropic, which is a commonly accepted fact. We plot the effective

coefficient of thermal expansion ᾱ predicted by VAMUCH in Fig. 3.8. Again, the results

predicted using finite temperature changes are quite different from secant CTE comput-

ed from effective CTE predicted based on the assumption of small temperature changes.

However, effective CTE obtained by assuming small temperature change is close to the

effective CTE predicted using the finite temperature change small strain thermoelasticity

theory, which was also observed for the transverse CTE for the fiber reinforced composites

in Fig. 3.7.

3.4.4 Predict Local Stresses

The ultimate purpose of micromechanics is to reduce the original prohibitive com-

putation of directly carrying out the macroscopic analysis of the structure with all the

microstructural details without significant loss of accuracy. To achieve this, we first need to

replace the original heterogeneous material with an imaginary homogeneous material with

the effective properties predicted using a micromechanics model. Then we can carry out a

much simpler structural analysis with homogenized material properties to obtain the global

behavior. Most of micromechanics modeling efforts stop here. In fact, we also need to

accurately compute the local fields within the microstructure based on the global behavior,

particularly, if we want to study the failure of heterogeneous materials. To complete the

modeling process, micromechanics models should also be able to predict the local fields

based on a certain macroscopic field, which is called micromechanical recovery procedure

in VAMUCH. To demonstrate the capability of our model in predicting local fields, we use
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Fig. 3.6: Longitudinal CTE (ᾱ11) change with respect to temperature
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Fig. 3.8: Variation of effective CTE with respect to temperature

VAMUCH to recover the local fields of the fiber reinforced composite with a 0.2 fiber volume

fraction. Suppose the material is stress and strain free at room temperature T0 = 23◦C.

The material is constrained so that there are no displacements and strains. By knowing the

fact that constituent 1 has a melting temperature approximately 2700◦C and constituent

2 has a melting temperature of 538◦C, we slowly increase the temperature of the material

from the room temperature all the way to 300◦C. Stresses will be generated within the

material because of thermal expansion which is constrained by zero deformation. We plot

σ22 distributions predicted by VAMUCH using both the finite temperature change small s-

train thermoelasticity and the linear thermoelasticity assuming small temperature changes.

The stress field distribution along the lines y2 = 0 and y3 = 0 are plotted in Fig. 3.9 and

Fig. 3.10, respectively. We can clearly observe that there are significant differences between

the thermal stresses predicted by different theories as the temperature change cannot be

considered as small because (T −T0)/T0 = 12.04. Indeed, we have verified that as we reduce

(T − T0)/T0, the differences between these two predictions decrease.
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Fig. 3.9: Comparison of transverse stress σ22 distribution along y2 = 0

So far, differences between the recovered local stresses predicted by micromechanics

models based on traditional linear thermoelasticity and finite temperature change small

strain thermoelasticity have been demonstrated in Fig. 3.9 and Fig. 3.10. These differences

make the micromechanics model of finite temperature change small strain thermoelasticity

becoming important and essential for studying the behaviors of composites under finite

temperature change, however, to further verify our new micromechanics model handling

finite temperature change, we still need to compare the stress distributions with the finite

element results obtained from the structural analysis. To do that, we consider a 3D fiber

reinforced composite model with a 0.2 fiber volume fraction. We still propose the assumption

that the materials are stress and strain free at room temperature T0 = 23◦C. We slowly

increase the temperature of this composite from room temperature to 100◦C. Instead of

fully constraining the materials, we use the exact macroscopic strain field and displacement

field as inputs for VAMUCH and the stress distributions are compared with finite element
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Fig. 3.10: Comparison of transverse stress σ22 distribution along y3 = 0

results from ANSYS in order to complete the verification process. We plot σ11 distributions

along y1 = 0 and y2 = 0 in Figs. 3.11 and 3.12. It can be observed that σ11 distributions

predicted from VAMUCH and ANSYS are matching each other very well which also proves

the newly developed micromechanics model in Chapter 3.
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Fig. 3.11: Comparison of σ11 distribution along y1 = 0

Fig. 3.12: Comparison of σ11 distribution along y2 = 0
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Chapter 4

Homogenization for Composites with Nonuniformly

Distributed Temperature and Loads

In Chapter 3, a thermomechanical micromechanics model is developed using variational

asymptotic method in order to deal with temperature dependent constituents and finite

temperature change which is capable of dealing with engineering problems with uniform

temperature field and no external loads. In this chapter, we are going to extend the work of

Chapter 3 and develop another thermomechanical micromechanics model by incorporating

the work done by distributed loads into Helmholtz free energy considering nonuniform

temperature distribution. Again, the variational asymptotic method is used to formulate

the cell problem. Then we implement the cell problem using finite element technique into

VAMUCH.

In the previous study, we assume uniform temperature distribution within UC which is

normally done in micromechanics modeling of thermomechanical behavior of heterogeneous

materials in literature. However, with the current micromechanics model, it is still limited

to be used in real engineering systems such as space shuttle thermal protection panels, gas

turbine blades, and aerospace heat exchanger fins. Not only finite temperature changes but

also nonuniformly distributed temperature fields are experienced in the working conditions

of such systems. Also for these systems, they are often experiencing external loads such

as pressure in their working conditions. All of these facts reveal us the needs to explicitly

incorporate the nonuniformity of temperature field and load effects into the micromechanics

model for more accurate predictions.

In this chapter, VAMUCH’s capabilities of handling thermomechanical behavior of

composites will be enhanced by applying the new developed micromechanics model dealing

with nonuniformly distributed temperature and loads. Both the mathematical formulation
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and micromechanics model will be demonstrated in the following sections.

4.1 Mathematical Formulation of the Problem

According to Chapter 3, we use the Helmholtz free energy as the functional to govern

the thermoelastic behavior of heterogeneous materials, which implies that the nonuniformly

distributed temperature field is already known by either designated or thermal conduction

or convection analysis. We will not consider the large deformation or finite strain in this

case which means even under a large, nonuniform temperature variation, the total strain

will still be considered to be small (no creeping, hardening, phase change, or plasticity are

considered). This way, we can formulate a simple enough problem to illustrate the effects of

nonuniform temperature field and distributed loads to the macroscopic effective properties

and local fields. Following derivations in Chapter 3, we can express the Helmholtz free

energy f as:

f(εij , T ) =
1

2
Cijkl(T )εijεkl + lij(T )εij −

∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ (4.1)

where Cijkl(T ) are the temperature dependent fourth-order elasticity tensors, lij(T ) are the

temperature dependent second-order thermal stress tensors, Cε(0, T ) is the strain-free heat

capacity per unit volume, T0 is the reference temperature, and T is the current temperature.

εij are the second-order infinitesimal strain tensors defined as:

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (4.2)

where ui are the displacements, xi are the Cartesian coordinates describing the hetero-

geneous material. Usually, the thermal stress tensors lij(T ) are not directly provided as

material properties, but rather instantaneous, stress-free coefficients of thermal expansion

(CTEs), αij(0, T ) are supplied as material properties. We can compute the secant stress-free

CTEs as:

α̌ij(T ) =
1

T − T0

∫ T

T0

αij(0, ζ)dζ (4.3)
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If small temperature variation is assumed or instantaneous CTEs are constant, secant stress-

free CTEs are the same as the instantaneous CTEs. Knowing α̌ij , we can compute lij as:

lij(T ) = −Cijkl(T )α̌ij(T )(T − T0) = β̌ij(T )θ (4.4)

Here, for the convenience of programming and to be consistent with the notation used

in Chapter 3, we introduced θ as an arbitrary nonzero constant. In other words, we set

β̌ij(T ) =
−Cijkl(T )α̌ij(T )(T−T0)

θ . Also adding the work done due to applied loads, the ther-

momechanical behavior of heterogeneous material is obtained by minimizing the following

functional:

I(ui) =

∫
Ω

(f − biui)dΩ−
∫

Γ
tiuidΓ (4.5)

where bi denote the body forces, ti denote traction forces applied on the boundary surfaces

Γ, and Ω is the domain occupied by the heterogeneous material.

4.2 Micromechanics Model of the Problem

We introduce two cartesian coordinate systems, xi as the global coordinates to describe

the macroscopic behavior of materials and yi as the local coordinates to describe the mi-

croscopic behavior of materials. The relation yi = xi
e is used and e is the ratio between two

scales that controls size of the unit cell. The displacement fields ui can be expressed as:

ui(x1, x2, x3, y1, y2, y3) = vi(x1, x2, x3) + eψi(x1, x2, x3, y1, y2, y3) (4.6)

where vi are components of the global displacement field and eψi are components denoting

the differences between ui and vi, the so-called fluctuation functions in the literature. Note

eψ enters the formulation together. Although e can be chosen as an arbitrary number of

the order of the unit cell size, choosing a different e, the solution will give a different ψ.

The value of eψ remains the same. For this reason, we treat e as a book keeping parameter

in derivation and in actual calculations, we set e to be 1 instead.
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From Eq. (4.6), it is very easy to understand that the displacement field is changing

not only globally but also locally such that the displacement gradient can be evaluated as:

∂ui
∂xj

=
1

e

∂ui
∂yj

+ ∂jui (4.7)

where ∂jui are the partial derivatives of ui when yi are kept constant. The fluctuation

functions in Eq. (4.6) can be obtained by minimizing the following functional:

IΩ(ψi) =

〈
1

2
Cijkl(T )

[
ε̄ij + ψi|j

] [
ε̄kl + ψk|l

]
+ β̌ij(T )

[
ε̄ij + ψi|j

]
θ − bivi

〉
−
〈∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ

〉
− 1

Ω

∫
Γ
ti(vi + eψi)dΓ

(4.8)

subject to constraints that ψi must be periodic with respect to yi. Here Ω denotes the cell

volume,

ψi|j =
1

2

(
∂ψi
∂yj

+
∂ψj
∂yi

)
ε̄ij denote the global strain tensors such that:

ε̄ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

and the angle bracket denotes the average over the unit cell, that is:

〈·〉 =
1

Ω

∫
Ω

(·)dΩ

Even though this functional in Eq. (4.8) can be solved analytically by applying on

a simple case for example a periodically layered composite, we use finite element method

to to deal with arbitrary microstructure. We introduce the following matrix notations in

VAMUCH:

ε̄ = bε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33cT (4.9)
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∂ψ1

∂y1

∂ψ1

∂y2
+ ∂ψ2

∂y1

∂ψ2

∂y2

∂ψ1

∂y3
+ ∂ψ3

∂y1

∂ψ2

∂y3
+ ∂ψ3

∂y2

∂ψ3

∂y3



=



∂
∂y1

0 0

∂
∂y2

∂
∂y1

0

0 ∂
∂y2

0

∂
∂y3

0 ∂
∂y1

0 ∂
∂y3

∂
∂y2

0 0 ∂
∂y3




ψ1

ψ2

ψ3

 ≡ Γhψ (4.10)

where Γh is an operator matrix and ψ is a column matrix containing the three components

of the fluctuation functions. If we discretize ψ using the finite element method as:

ψ(xi, yi) = S(yi)X (xi) (4.11)

where S represents the shape function and X is a column matrix of the nodal values of the

fluctuation functions for all active nodes. Substituting Eqs. (4.9), (4.10), and (4.11) into

Eq. (4.8), we obtain a discretized version of the functional as:

IΩ =
1

2Ω

(
X TEX + 2X TDhεε̄+ ε̄TDεεε̄+ 2X TDhθθ + 2X TDhl + 2ε̄TDεθθ − 2vTDb

)
−
〈∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ

〉
(4.12)

where

E =

∫
Ω

(ΓhS)TD(ΓhS)dΩ Dhε =

∫
Ω

(ΓhS)TDdΩ Dεε =

∫
Ω
D dΩ

Dhθ =

∫
Ω

(ΓhS)T β̌ dΩ Dεθ =

∫
Ω
β̌ dΩ Db =

∫
Ω
b dΩ +

∫
Γ
t dΓ

Dhl = −e
∫

Γ
ST t dΓ (4.13)

with D as the 6 × 6 material matrix condensed from the fourth-order elasticity tensor

Cijkl, and β̌ as the 6× 1 column condensed from β̌ij . v is a column matrix containing the

three components of macroscopic displacement vector, b is a column matrix containing the
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three components of the body force vector, and t is a column matrix containing the three

components of the traction force vector.

Minimizing IΩ in Eq. (4.12) with respect to X , we obtain the following linear system:

EX = −Dhεε̄−Dhθθ −Dhl (4.14)

The solution can be written symbolically as:

X = X0ε̄+ Xθθ + Xl (4.15)

Substituting Eq. (4.15) into Eq. (4.12), we can calculate the effective total energy

density of the UC as:

ĪΩ =
1

2
ε̄T D̄ε̄+ ε̄T β̄θ + ε̄T l̄ − vT k̄ + f̄0 (4.16)

with

D̄ =
1

Ω
(X T0 Dhε +Dεε)

β̄ =
1

Ω

(
1

2

(
DT
hεXθ + X T0 Dhθ

)
+Dεθ

)
l̄ =

1

2Ω

(
DT
hεXl + X T0 Dhl

)
k̄ =

1

Ω
Db

f̄0 =
1

2Ω

[
X Tl Dhl +

(
X Tθ Dhl + X Tl Dhθ

)
θ + X Tθ Dhθθ

2
]
−
〈∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ

〉

where D̄ is the effective stiffness matrix, β̄θ is the effective stress tensor induced by temper-

ature change, l̄ is the effective stress tensor induced by applied loads, and k̄ is the effective

body force vector. f̄0 is the effective energy not related with macroscopic strain ε̄ and macro-

scopic displacement v, caused by temperature change and applied loads, where
XTl Dhl

2Ω is

purely due to applied loads,
(XTθ Dhl+X

T
l Dhθ)θ

2Ω is due to the coupling effects of applied loads

and temperature,
XTθ Dhθθ

2

2Ω and
〈∫ T

T0

∫ ζ
T0

Cε(0,ρ)
ρ dρdζ

〉
are due to temperature change. f̄0 can

be used to compute the effective specific heat of the homogenized material.
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The effective stress-strain relationship for the homogenized material can be written as:

σ̄ = D̄ε̄+ l∗ (4.17)

with l∗ = β̄θ+ l̄. Such a stress-strain relationship cannot be directly used in common finite

element analysis codes as the effective strain-free stress tensor l∗ cannot be used as an input

of the material properties. Rather, we can rewrite Eq. (4.17) as:

σ̄ = D̄(ε̄− α∗θ) (4.18)

with α∗ = −D̄−1l∗

θ . This constitutive relation along with the effective body force k̄ can

be used to carry out the macroscopic structural analysis using any standard finite element

codes which have the one-way coupled thermoelastic analysis capability. One just needs to

let α∗ to be the corresponding CTE and θ to be the corresponding temperature change.

If the local fields within the UC are of interest, we can recover those fields after we

have obtained the macroscopic behavior which can be described by global displacements vi

and global strains ε̄ [82]:

u = v +


∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3



y1

y2

y3

+ S̄X (4.19)

with u as the column matrix of ui . Here S̄ is different from S due to the recovery of slave

nodes and the constrained node. The local strain field can be recovered using:

ε = ε̄+ ΓhS̄X (4.20)

Finally, the local stress field can be recovered straightforwardly using the 3D constitu-

tive relations for the constituent material as:

σ = Dε+ β̌θ = Dε+ l (4.21)
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4.3 Validation of the Nonuniformly Distributed Temperature and Loads

We consider a periodic binary layered composite with two layers formed with two

orthotropic materials and the volume fraction of each layer is taken to be the same. Let φ1

and φ2 denote the volume fractions of first layer and second layer, we have φ1 +φ2 = 1 since

we only have two layers for binary composites. It is noticed that we consider the material

axes to be the same as the global coordinates yi so that the material is uniform in y1 − y2

plane and the periodicity is along y3 direction. From this point, we can pose the following

variational statement of the unit cell:

J =
1

2h

[∫ (φ1− 1
2

)h

−h
2

(
ε(1)TD(1)ε(1) + 2ε(1)T l(1) − 2u(1)T b(1)

)
dy3

+

∫ h
2

( 1
2
−φ2)h

(
ε(2)TD(2)ε(2) + 2ε(2)T l(2) − 2u(2)T b(2)

)
dy3

]
+ λi 〈χi〉

+ βi3

[
χ

(2)
i (y3,

h

2
)− χ(1)

i (y3,−
h

2
)

]
− u(1)T t(1) − u(2)T t(2) −

〈∫ T

T0

∫ ζ

T0

Cε(0, ρ)

ρ
dρdζ

〉
(4.22)

with

ε(γ) = bε̄11 2ε̄12 ε̄22 2ε̄13 +
∂χ

(γ)
1

∂y3
2ε̄23 +

∂χ
(γ)
2

∂y3
ε̄33 +

∂χ
(γ)
3

∂y3
cT

l(γ) = bl(γ)
11 l

(γ)
12 l

(γ)
22 l

(γ)
13 l

(γ)
23 l

(γ)
33 c

T

u(γ) = bv1 + eχ
(γ)
1 v2 + eχ

(γ)
2 v3 + eχ

(γ)
3 c

T

where γ denotes the number of layers and χ(γ) are the fluctuating functions of layers. The

material matrices D(γ) are characterized by the nine constants for the orthotropic elastic
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materials and arranged as:

D(γ) =



c
(γ)
11 0 c

(γ)
12 0 0 c

(γ)
13

0 c
(γ)
66 0 0 0 0

c
(γ)
12 0 c

(γ)
22 0 0 c

(γ)
23

0 0 0 c
(γ)
55 0 0

0 0 0 0 c
(γ)
44 0

c
(γ)
13 0 c

(γ)
23 0 0 c

(γ)
33


(4.23)

In this section, first we verify the new developed model under a nonuniformly distribut-

ed temperature field. In order to do so, temperature is predefined as a function of location

along y3 in order to demonstrate the temperature nonuniform distribution. Also we consider

the elastic constants of material 1 and 2 as linear functions with respect to location in order

to simplify lengthy differential equations inside Mathematica. In this case, we consider the

initial temperature T0 to be 15◦C and T (y3) = 20 + 10y3 as the temperature distribution

varies with location and treat e as 1. The material elastic constants are assumed to be

D(γ)(y3) = D
(γ)
0 (1 + 1

20y3) and the coefficients of thermal expansion α(γ) = α
(γ)
0 are kept

the same with different temperatures, but even with this, the thermal stress coefficients

are still functions of temperature or location since temperature is a function of location

from Eq. (4.4), so we have β(γ)(y3) = −D(γ)
0 (1 + 1

20y3)α
(γ)
0 . The needed material property

parameters are listed in Table 4.1:

We set up 1D, 2D, and 3D micromechanics models in VAMUCH and compare results

with 1D analytical solution carried out by the powerful mathematical software - Mathe-

matica respectively. Due to the fact that we only have limited number of nodes along y3

Table 4.1: Table of material parameters

γ D
(γ)
0 (GPa) α

(γ)
0 (µ/◦C) ν(γ) ρ(γ) (kg/m3)

1 2.76 1.37 0.22 0.001

2 4.0 8.13 0.3 0.001
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direction while in Mathematica, a function is applied directly to conduct the final result, we

carry out a convergence study in 1D VAMUCH solution by increase the number of nodes

along y3 direction. The corresponding results are listed in Table 4.2:

It is easy to observe that for effective Young’s modulus Ē and effective poisson’s ratio

ν̄ the results from VAMUCH are the same with the analytical solutions provided by Math-

ematica, and starting from 21 nodes along y3 direction in VAMUCH, the effective thermal

strains m̄11, m̄22, and m̄33 match the analytical solution. For 2D and 3D micromechanic-

s analyses conducted in VAMUCH, we only use a model with two elements, of course, we

know if we could have more elements along y3 direction, the results will be better. However,

the convergence study is not duplicated here. Same material properties and temperature

distribution are used with 1D VAMUCH solution. The corresponding 2D and 3D results

comparing with analytical solution are shown below in Table 4.3 and Table 4.4.

To verify our new micromechanics model proposed in VAMUCH handling external loads

and microstructures with voids, we consider a three dimensional finite element solution of

a composite with voids formed with 6 elements using Mathematica as shown in Fig. 4.1.

The reason that we choose to use FEA results instead of using one dimensional analytical

solution to verify our model is that for 1D analytical solution our loads will always be added

on the periodic nodes which may bring unnecessary error estimations for calculation. Also

in realty, since the microstructures are assumed to repeat many times, loads applied at

the edge of unit cell on periodic nodes may not be true. The dimensions of this unit cell

Table 4.2: 1D VAMUCH results compare with Mathematica

Ē1 (Ē2) (GPa) Ē3 (GPa) ν̄13 (ν̄23) ν̄12 m̄11 (m̄22) (10−5) m̄33 (10−5)

Mathematica 3.3933 3.2592 0.2598 0.2687 3.9363 3.1326

VAMUCH (3 pts) 3.3933 3.2593 0.2598 0.2687 3.9305 3.1367

VAMUCH (5 pts) 3.3933 3.2592 0.2598 0.2687 3.9349 3.1336

VAMUCH (11 pts) 3.3933 3.2592 0.2598 0.2687 3.9305 3.1367

VAMUCH (21 pts) 3.3933 3.2592 0.2598 0.2687 3.9362 3.1326

VAMUCH (41 pts) 3.3933 3.2592 0.2598 0.2687 3.9363 3.1326

VAMUCH (101 pts) 3.3933 3.2592 0.2598 0.2687 3.9363 3.1326
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Table 4.3: 2D VAMUCH results compare with Mathematica

Ē1 (Ē2) (GPa) Ē3 (GPa) ν̄13 (ν̄23) ν̄12 m̄11 (m̄22) (10−5) m̄33 (10−5)

Mathematica 3.3933 3.2592 0.2598 0.2687 3.9363 3.1326

2D VAMUCH (2 elems) 3.3933 3.2593 0.2598 0.2687 3.9363 3.1415

Table 4.4: 3D VAMUCH results compare with Mathematica

Ē1 (Ē2) (GPa) Ē3 (GPa) ν̄13 (ν̄23) ν̄12 m̄11 (m̄22) (10−5) m̄33 (10−5)

Mathematica 3.3933 3.2592 0.2598 0.2687 3.9363 3.1326

3D VAMUCH (2 elems) 3.3933 3.2593 0.2598 0.2687 3.9363 3.1415

Fig. 4.1: The diagrammatic sketch of a six element composite with voids
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are y1 ∈ {−0.5, 0.5}, y2 ∈ {−0.5, 0.5}, and y3 ∈ {−0.5, 0.5}. The material properties of

constituent 1 (formed by top and bottom two elements) and constituent 2 (formed by left

and right four middle elements) are directly taken from Table 4.1. The periodic pressure

loads of 6MPa applied on all six inner surfaces. The resulting effective properties of this

microstructure as we predicted are exactly the same with VAMUCH results, so only one

set of results will be provided in the following. The results of effective elastic constant D̄,

effective stress due to applied loads l̄, effective strain due to applied loads m̄ = −D̄−1 l̄, and

effective body force k̄ are listed below in matrices (4.24), (4.24), (4.24), and (4.24).

The effective stiffness matrix D̄ (GPa):

D̄ =



2.47847 0 0.474283 0 0 0.71275

0 0.581918 0 0 0 0

0.474283 0 1.52521 0 0 0.394552

0 0 0 0.769221 0 0

0 0 0 0 0.596054 0

0.71275 0 0.394552 0 0 2.19693


The effective stress l̄ (MPa) due to applied loads:

l̄ =



−0.710935

0

−1.44656

0

0

−1.24835
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The effective strain m̄ due to applied loads:

m̄ =



6.87917× 10−6

0

8.38847× 10−4

0

0

4.15341× 10−4


The effective body force k̄ (MPa):

k̄ =


0

0

0


Second, the stress and strain field are recovered and compared with FEA results from

Mathematica by assuming the unit cell has a macroscopic strain field ε̄33 = 0.0001 after

structural analysis. The recovered nodal displacements ui, strains εij , and stresses σij within

each elements are provided below and as we predicted two set of results are matching each

other. Again, we only provide one set of solutions for space saving.

Here only u2 and u3 are listed in Table 4.5 because for this particular macroscopic

strain field, the displacement field u1 for all nodes is zero.

4.4 Numerical Examples

Several numerical examples are used to validate and demonstrate the new capability of

handling nonuniformly distributed temperature fields and loads implemented in VAMUCH.

As we know, micromechanics models should be able to predict the local fields accurately

which is also the ultimate goal of micromechanics modeling. So in this section, we focus on

comparing the local stress fields of these examples after micromechanical recovery analyses

in VAMUCH with the finite element results provided by ANSYS. The validation process is
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Table 4.5: The local displacement fields for each node

Node Number u2 u3

1 0 0.00005

2 0 0.00005

3 0 0.00005

4 0 0.00005

5 -0.000152974 0.000264354

6 0.000152974 0.000264354

7 0.000152974 0.000264354

8 -0.000152974 0.000264354

9 -0.000152974 -0.000264354

10 -0.000152974 -0.000264354

11 0.000152974 -0.000264354

12 0.000152974 -0.000264354

13 0 -0.00005

14 0 -0.00005

15 0 -0.00005

16 0 -0.00005

17 0 0

18 0 0

19 -0.000235723 0

20 -0.000235723 0

21 0.000235723 0

22 0.000235723 0

23 0 0

24 0 0

Table 4.6: The local strain fields for element 1

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

8 0 0 0.000455666 0 0.00122053 -0.00107177

5 0 0 0.000455666 0 0.00122053 -0.00107177

6 0 0 0.000455666 0 -0.00122053 -0.00107177

7 0 0 0.000455666 0 -0.00122053 -0.00107177

1 0 0 -0.0000325476 0 0.00073232 -0.00107177

2 0 0 -0.0000325476 0 0.00073232 -0.00107177

3 0 0 -0.0000325476 0 -0.00073232 -0.00107177

4 0 0 -0.0000325476 0 -0.00073232 -0.00107177
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Table 4.7: The local stress fields for element 1

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

8 -0.547568 0 0.483283 0 1.3806 -2.97223

5 -0.547568 0 0.483283 0 1.3806 -2.97223

6 -0.547568 0 0.483283 0 -1.3806 -2.97223

7 -0.547568 0 0.483283 0 -1.3806 -2.97223

1 -0.981472 0 -1.0551 0 0.828362 -3.40613

2 -0.981472 0 -1.0551 0 0.828362 -3.40613

3 -0.981472 0 -1.0551 0 -0.828362 -3.40613

4 -0.981472 0 -1.0551 0 -0.828362 -3.40613

Table 4.8: The local strain fields for element 2

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

17 0 0 -0.00117861 0 -0.0000176062 0.0000501375

18 0 0 -0.00117861 0 -0.0000176062 0.0000501375

19 0 0 -0.00117861 0 0.000246487 0.000798076

20 0 0 -0.00117861 0 0.000246487 0.000798076

1 0 0 -0.000782474 0 0.0011043 0.0000501375

2 0 0 -0.000782474 0 0.0011043 0.0000501375

5 0 0 -0.00051838 0 0.00211633 0.000798076

8 0 0 -0.00051838 0 0.00211633 0.000798076

Table 4.9: The local stress fields for element 2

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

17 -2.60418 0 -6.23068 0 -0.0270865 -2.44991

18 -2.60418 0 -6.23068 0 -0.0270865 -2.44991

19 -0.878166 0 -4.50467 0 0.379211 1.57745

20 -0.878166 0 -4.50467 0 0.379211 1.57745

1 -1.69001 0 -4.09762 0 1.69892 -1.53574

2 -1.69001 0 -4.09762 0 1.69892 -1.53574

5 0.64545 0 -0.949566 0 3.2559 3.10107

8 0.64545 0 -0.949566 0 3.2559 3.10107
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Table 4.10: The local strain fields for element 3

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

21 0 0 -0.00117861 0 -0.000246487 0.000798076

22 0 0 -0.00117861 0 -0.000246487 0.000798076

23 0 0 -0.00117861 0 0.0000176062 0.0000501375

24 0 0 -0.00117861 0 0.0000176062 0.0000501375

7 0 0 -0.00051838 0 -0.00211633 0.000798076

6 0 0 -0.00051838 0 -0.00211633 0.000798076

3 0 0 -0.000782474 0 -0.0011043 0.0000501375

4 0 0 -0.000782474 0 -0.0011043 0.0000501375

Table 4.11: The local stress fields for element 3

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

21 -0.878166 0 -4.50467 0 -0.379211 1.57745

22 -0.878166 0 -4.50467 0 -0.379211 1.57745

23 -2.60418 0 -6.23068 0 0.0270865 -2.44991

24 -2.60418 0 -6.23068 0 0.0270865 -2.44991

7 0.64545 0 -0.949566 0 -3.2559 3.10107

6 0.64545 0 -0.949566 0 -3.2559 3.10107

3 -1.69001 0 -4.09762 0 -1.69892 -1.53574

4 -1.69001 0 -4.09762 0 -1.69892 -1.53574

Table 4.12: The local strain fields for element 4

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

13 0 0 -0.0000325476 0 -0.00073232 -0.00107177

14 0 0 -0.0000325476 0 -0.00073232 -0.00107177

15 0 0 -0.0000325476 0 0.00073232 -0.00107177

16 0 0 -0.0000325476 0 0.00073232 -0.00107177

9 0 0 0.000455666 0 -0.00122053 -0.00107177

10 0 0 0.000455666 0 -0.00122053 -0.00107177

11 0 0 0.000455666 0 0.00122053 -0.00107177

12 0 0 0.000455666 0 0.00122053 -0.00107177
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Table 4.13: The local stress fields for element 4

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

13 -0.981472 0 -1.0551 0 -0.828362 -3.40613

14 -0.981472 0 -1.0551 0 -0.828362 -3.40613

15 -0.981472 0 -1.0551 0 0.828362 -3.40613

16 -0.981472 0 -1.0551 0 0.828362 -3.40613

9 -0.547568 0 0.483283 0 -1.3806 -2.97223

10 -0.547568 0 0.483283 0 -1.3806 -2.97223

11 -0.547568 0 0.483283 0 1.3806 -2.97223

12 -0.547568 0 0.483283 0 1.3806 -2.97223

Table 4.14: The local strain fields for element 5

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

13 0 0 -0.000782474 0 -0.0011043 0.0000501375

14 0 0 -0.000782474 0 -0.0011043 0.0000501375

10 0 0 -0.00051838 0 -0.00211633 0.000798076

9 0 0 -0.00051838 0 -0.00211633 0.000798076

17 0 0 -0.00117861 0 0.0000176062 0.0000501375

18 0 0 -0.00117861 0 0.0000176062 0.0000501375

19 0 0 -0.00117861 0 -0.000246487 0.000798076

20 0 0 -0.00117861 0 -0.000246487 0.000798076

Table 4.15: The local stress fields for element 5

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

13 -1.69001 0 -4.09762 0 -1.69892 -1.53574

14 -1.69001 0 -4.09762 0 -1.69892 -1.53574

10 0.64545 0 -0.949566 0 -3.2559 3.10107

9 0.64545 0 -0.949566 0 -3.2559 3.10107

17 -2.60418 0 -6.23068 0 0.0270865 -2.44991

18 -2.60418 0 -6.23068 0 0.0270865 -2.44991

19 -0.878166 0 -4.50467 0 -0.379211 1.57745

20 -0.878166 0 -4.50467 0 -0.379211 1.57745
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Table 4.16: The local strain fields for element 6

Node Number ε11 2ε12 ε22 2ε13 2ε23 ε33

12 0 0 -0.00051838 0 0.00211633 0.000798076

11 0 0 -0.00051838 0 0.00211633 0.000798076

15 0 0 -0.000782474 0 0.0011043 0.0000501375

16 0 0 -0.000782474 0 0.0011043 0.0000501375

21 0 0 -0.00117861 0 0.000246487 0.000798076

22 0 0 -0.00117861 0 0.000246487 0.000798076

23 0 0 -0.00117861 0 -0.0000176062 0.0000501375

24 0 0 -0.00117861 0 -0.0000176062 0.0000501375

Table 4.17: The local stress fields for element 6

Node Number σ11 (MPa) σ12 (MPa) σ22 (MPa) σ13 (MPa) σ23 (MPa) σ33 (MPa)

12 0.64545 0 -0.949566 0 3.2559 3.10107

11 0.64545 0 -0.949566 0 3.2559 3.10107

15 -1.69001 0 -4.09762 0 1.69892 -1.53574

16 -1.69001 0 -4.09762 0 1.69892 -1.53574

21 -0.878166 0 -4.50467 0 0.379211 1.57745

22 -0.878166 0 -4.50467 0 0.379211 1.57745

23 -2.60418 0 -6.23068 0 -0.0270865 -2.44991

24 -2.60418 0 -6.23068 0 -0.0270865 -2.44991
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based on a step by step procedure, in other words, we first validate the new capability of

handling nonuniformly distributed temperature field, then we validate the new capability of

handling load effects, finally we validate the new capability of handling both nonuniformly

temperature field and loads.

4.4.1 Two-phase Composites under Nonuniform Temperature Field

We consider a fulfilled two-phase composite with the microstructure as shown in Fig. 4.2.

The dimensionality of this unit cell is 1m×1m×1m. Inconel 625 is used as the constituent

material 1 as shown in lighter color and Acier inox Z10 is used as the constituent material

2 as shown in darker color in Fig. 4.2. The constituent materials are considered as isotropic

with temperature dependent material properties including Young’s modulus E(T ), Poisson’s

ratio ν(T ), coefficient of thermal expansion α(T ), density ρ(T ), and thermal conductivity

K(T ), given in Table 4.18 and Table 4.19. Moveover, both materials are assumed stress

and strain free at 20◦C.

In order to mimic the nonuniformly distributed temperature within the microstructure

in real practical problems, we set up heat conduction analysis first. We assume that this

unit cell has a higher temperature field of 400◦C on top and bottom surfaces, and a lower

temperature field of 20◦C on left and right surfaces. After a heat conduction analysis, the

resulting nonuniformly distributed temperature field is obtained as shown in Fig. 4.3. A

one-way thermomechanical coupling is used to study the behavior of this microstructure un-

der this known nonuniformly distributed temperature field in both VAMUCH and ANSYS.

To conduct the recovery analysis in VAMUCH, we use the exact macroscopic displacements

and displacement gradients from the structural analysis as our inputs. The macroscopic

displacement fields and their gradients can be obtained by plugging the homogenized unit

cell with effective material properties back into the original model to form a homogenized

material and run the structural analysis with it. The stress will be generated within the unit

cell because of the thermal expansion under this given nonuniformly distributed tempera-

ture field. We plot σ11, σ22, and σ33 along y1 direction at the location where y2 = 0.125m

and y3 = 0.5m. The stress distributions from both VAMUCH and ANSYS are plotted in
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Figs. 4.4, 4.5, and 4.6. Excellent matches between these two approaches can be clearly

observed from the plots which demonstrates the capability and accuracy of VAMUCH for

predicting the local fields of heterogeneous materials with nonuniformly distributed tem-

perature fields.

4.4.2 Two-phase Composites with Voids under Nonuniform Temperature Field

In the last numerical example, the capability of VAMUCH handling fulfilled two-phase

composites has been investigated and proved. However, in real practical applications, such

fulfilled composites sometimes are not as often used for porous composites for which the

thermomechanical behavior is important. For this reason, a further investigation and vali-

dation of the new developed theory handling microstructure with voids under nonuniformly

distributed temperature field is needed.

We consider a two-phase composite with voids as shown in Fig. 4.7. We still use

Inconel 625 as constituent material 1 and Acier inox Z10 as constituent material 2, and

assume these two materials are stress and strain free at 20◦C. Suppose we have a heat

supply which gives a temperature field of 100◦C on the inner surfaces of the frame and

the temperature of upper and bottom surfaces of the UC is kept at 20◦C. In this case,

the heat conduction analysis can be carried out and the resulting temperature field of the

microstructure is shown in Fig. 4.8. Using this nonuniformly distributed temperature field

and the real macroscopic fields obtained from structural analysis, we can recover the local

stress fields of this microstructure. We plot σ11, σ22, and σ33 along y2 direction at the

location where y1 = 0.275m and y3 = 0.5m. This specific location basically starts from top

surface going through one of the frame of the structure and reaches the bottom surface.

Again, perfect matches between VAMUCH and ANSYS results are observed as plotted in

Figs. 4.9, 4.10, and 4.11.

4.4.3 Aerospace Heat exchanger Fins under Nonuniform Temperature Field

The above examples have demonstrated the capability of VAMUCH handling both ful-

filled and voided microstructures under nonuniformly distributed temperature fields. How-
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Fig. 4.2: Microstructure of a fulfilled two-phase composite

Table 4.18: Temperature dependent material properties for Inconel 625

T (◦C) E1 (GPa) ν1 α1 (µ/◦C) ρ1 (kg/m3) K1 (W/m-◦C)

20 205.441 0.278 12.78 8440 9.8

100 190.342 0.280 12.79 8440 9.8

150 184.835 0.282 12.87 8440 9.8

200 181.137 0.284 12.95 8440 9.8

250 178.281 0.286 13.11 8440 9.8

300 175.507 0.288 13.27 8440 9.8

350 173.689 0.291 13.43 8440 9.8

400 172.302 0.294 13.59 8440 9.8

450 171.131 0.298 13.76 8440 9.8

500 170.206 0.302 13.92 8440 9.8



88

Table 4.19: Temperature dependent material properties for Acier inox Z10

T (◦C) E2 (GPa) ν2 α2 (µ/◦C) ρ2 (kg/m3) K2 (W/m-◦C)

20 199.948 0.290 15.47 7900 15

100 195.469 0.290 16.26 7900 15

150 191.870 0.290 16.70 7900 15

200 188.271 0.290 17.15 7900 15

250 184.672 0.290 17.37 7900 15

300 181.073 0.290 17.58 7900 15

350 177.474 0.290 17.84 7900 15

400 173.875 0.290 18.12 7900 15

450 170.276 0.290 18.36 7900 15

500 166.677 0.290 18.57 7900 15

Fig. 4.3: Temperature distribution of UC after a heat conduction analysis
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Fig. 4.4: Comparison of thermal stress σ11 along y1 at y2 = 0.125m and y3 = 0.5m

Fig. 4.5: Comparison of thermal stress σ22 along y1 at y2 = 0.125m and y3 = 0.5m
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Fig. 4.6: Comparison of thermal stress σ33 along y1 at y2 = 0.125m and y3 = 0.5m
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Fig. 4.7: Microstructure of a two-phase composite with voids
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Fig. 4.8: Temperature distribution of UC after a heat conduction analysis

Fig. 4.9: Comparison of thermal stress σ11 along y2 at y1 = 0.275m and y3 = 0.5m
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Fig. 4.10: Comparison of thermal stress σ22 along y2 at y1 = 0.275m and y3 = 0.5m

Fig. 4.11: Comparison of thermal stress σ33 along y2 at y1 = 0.275m and y3 = 0.5m
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ever, it is more challenging to validate the results with realistic engineering microstructures

as these problems have not been studied using micromechanics in the literature. But the

above examples are needed as it is a rigorous validation procedure carried in our study. In

this example, we conduct a micromechanical analysis of a unit cell of aerospace heat ex-

changer fins which possesses very thin frame structures (aka highly porous materials) and

experiences large temperature changes with nonuniformly distributed temperature fields

induced by hot and cold airflows under their working conditions. The unit cell is shown

in Fig. 4.12 with a dimensionality of 3.62mm×7.7272mm×2.58mm. The upper part of this

unit cell is taken from the layer that hot airflow going through (aka hot cell) while the lower

part is taken from the layer that cold airflow going through (aka cold cell). As we can see,

these two layers are usually stacked with a 90◦ lay up angle in order to achieve a better

temperature exchange. The double cell is formed with three different materials: the parting

sheets are made by Inconel 625 as in Table 4.18, the hot fins are made by Acier inox Z10 as

in Table 4.19, and the cold fins are made by Nickel 201 as in Table 4.20. Under the nonuni-

formly distributed temperature field as shown in Fig. 4.12 and the real macroscopic fields

obtained from structural analysis, we can recover the local stress fields of this microstruc-

ture and compare with ANSYS results. We plot σ11, σ22, and σ33 along y2 direction at the

location where y1 = 0.905mm and y3 = 0.645mm as indicated in Fig. 4.13. The stress re-

sults are plotted in Figs. 4.14, 4.15, and 4.16. The stress results are matched each other for

σ11 and σ33 while for σ22 they are not matched very well at the parting sheet regions. After

several testings, we figured out that the difference is caused by the fairly small thickness

of parting sheets with which even if we apply a uniform temperature field on this unit cell,

difference will still be there at those regions. Of course, if we increase the element numbers

at those regions will improve the results but so far with the limited computational ability,

these results presented in Figs. 4.14, 4.15, and 4.16 are the best ones that we can get. In

other words, if we increase the thickness of those regions, the unit cell will be similar like

stacking two of the two-phase composites models with voids in the second example together

with a 90◦ lay up angle, we have validated that VAMUCH σ22 results agree with ANSYS



94

very well for that case. It is also worth to notice that ANSYS result of σ22 for this heat

exchanger fin unit cell case, at the regions close to top and bottom parting sheets, does

not perform a very smooth transition of stress as shown in Fig 4.15 while VAMUCH result

still perform a smooth transition. For the sense of this microstructure and corresponding

temperature fields, we believe VAMUCH result of σ22 is more trustful in this situation.

4.4.4 Two-phase Composites with Voids under Pressure Loads

Next, we are interested to see the comparison of recovered stress fields between VA-

MUCH and ANSYS with external loads applied on the microstructure. So we consider the

unit cell experiences a consecutive flow of hot air from one end of the middle frame to the

other end in y3 direction. This heat source keeps the unit cell at a temperature of 400◦C

and gives pressure loads of 0.6MPa on all inner surfaces as shown in Fig. 4.17. We still

assume the materials are stress and strain free at 20◦C. Constituent material 1 is Inconel

625 and material 2 is Acier inox Z10. Use the macroscopic displacement fields and strain

fields obtained from structural analysis, we can recover the local stresses and compare with

ANSYS results. The stress results are plotted along y2 direction at the location where

y1 = 0.225m and y3 = 0.25m in Figs. 4.18, 4.19, and 4.20. We found very good matches

between VAMUCH results and ANSYS results, which validates our new micromechanics

model handling external loads.

4.4.5 A Hot Cell under Pressure Loads

We consider a hot cell (3.62mm×3.1416mm×2.58mm) with uniform pressure loads of

0.6MPa as shown in Fig. 4.22 applied on the inner frame surfaces. This pressure load

is based on the real working condition of hot cell. Since the elements are too dense in

Fig. 4.22, we provide another geometric picture of hot cell as shown in Fig. 4.21 in order

to have a better view. The temperature field of hot cell is kept at 450◦C and we assume

the materials are stress and strain free at 20◦C. The parting sheets are made by Inconel

625 as in Table 4.18 and the hot fins are made by Acier inox Z10 as in Table 4.19. Use the

macroscopic displacement fields and strain fields obtained from structural analysis, we can



95

 

y1 

y3 

 

y2 

 

Fig. 4.12: Microstructure of heat exchanger fins under nonuniform temperature field

Fig. 4.13: Illustration of the location where results data obtained
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Table 4.20: Temperature dependent material properties for Nickel 201

T(◦C) E3(GPa) ν3 α3(µ/◦C) ρ3(kg/m
3) K3(W/m-

◦C)

20 204.994 0.290 12.50 8890 79.3

100 200.000 0.280 13.30 8890 79.3

150 197.500 0.285 13.60 8890 79.3

200 195.000 0.290 13.90 8890 79.3

250 192.500 0.290 14.05 8890 79.3

300 190.000 0.290 14.20 8890 79.3

350 186.500 0.285 14.50 8890 79.3

400 183.000 0.280 14.80 8890 79.3

450 180.030 0.280 15.05 8890 79.3

500 177.059 0.280 15.30 8890 79.3

Fig. 4.14: Comparison of thermal stress σ11 along y2 at y1 = 0.905mm and y3 = 0.645mm
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Fig. 4.15: Comparison of thermal stress σ22 along y2 at y1 = 0.905mm and y3 = 0.645mm

Fig. 4.16: Comparison of thermal stress σ33 along y2 at y1 = 0.905mm and y3 = 0.645mm
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Fig. 4.17: Microstructure of a two-phase composite with pressure loads

Fig. 4.18: Comparison of local stress σ11 along y2 at y1 = 0.225m and y3 = 0.25m
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Fig. 4.19: Comparison of local stress σ22 along y2 at y1 = 0.225m and y3 = 0.25m

Fig. 4.20: Comparison of local stress σ33 along y2 at y1 = 0.225m and y3 = 0.25m
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recover the local stresses of this hot cell. Again, in order to obtain better results, we make

mesh of the hot cell model as dense as that our current computational power can handle.

The stress results are plotted along y2 direction at the location where y1 = 13.575mm and

y3 = 1.935mm in Figs. 4.23, 4.24, and 4.25. It is easy to notice that comparing with stress

distribution in 22 direction for double cell because of the denser mesh applied here, the

σ22 result is closer to each other between ANSYS and VAMUCH, in the mean time, good

matches are observed for σ11 and σ33 results.

4.4.6 Aerospace Heat exchanger Fins under Working Conditions

Last, we conduct a micromechanical analysis of a unit cell of aerospace heat exchang-

er fins under its working condition which experiences consecutive hot air of 450◦C going

through top layer and consecutive cold air of 20◦C blowing in from bottom layer. The heat

exchanger fins are formed by repeating this unit cell structure many times in all three direc-

tions. The temperature field is similar like we showed in Fig. 4.12 except this unit cell has

doubled the thickness of middle frames in order to reduce the unnecessary error induced by

mesh. The resulting pressure loads caused by those two consecutive flows of air are showed

in Fig. 4.26. The hot cell layer on top experiences a pressure load of 0.6MPa on all inner

surfaces and the cold cell layer on bottom experiences a pressure load of 0.2MPa on all

inner surfaces. Again, we assume the materials are stress and strain free at 20◦C. Use the

macroscopic displacement fields and strain fields obtained from structural analysis, we can

recover the local stresses of this hot cell. The stress results are plotted along y2 direction

at the location where y1 = −0.88mm and y3 = 0.6196mm in Figs. 4.27, 4.28, and 4.29.

Moreover, this position is same as the position we used for only nonuniformly distributed

temperature applied case in Fig. 4.13 though the numbers of y1 and y3 are changed. We

observed perfect matches for σ11 and σ33 results while for σ22 we obtained similar results as

shown in the case only with nonuniformly distributed temperature fields. Again, the AN-

SYS result of σ22 at the regions close to top and bottom parting sheets does not perform a

very smooth transition of stress as shown in Fig 4.28 while VAMUCH result still perform

a smooth transition. For the sense of this microstructure and corresponding temperature
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Fig. 4.21: Sketch of a hot cell

Fig. 4.22: A hot cell with pressure loads
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Fig. 4.23: Comparison of local stress σ11 along y2 at y1 = 13.575mm and y3 = 1.935mm

Fig. 4.24: Comparison of local stress σ22 along y2 at y1 = 13.575mm and y3 = 1.935mm
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Fig. 4.25: Comparison of local stress σ33 along y2 at y1 = 13.575mm and y3 = 1.935mm

fields, we believe VAMUCH result is more trustful in this situation.
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Fig. 4.26: Microstructure of heat exchanger fins under pressure loads

Fig. 4.27: Comparison of local stress σ11 along y2 at y1 = −0.88mm and y3 = 0.6196mm
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Fig. 4.28: Comparison of local stress σ22 along y2 at y1 = −0.88mm and y3 = 0.6196mm

Fig. 4.29: Comparison of local stress σ33 along y2 at y1 = −0.88mm and y3 = 0.6196mm
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Chapter 5

Conclusions and Future Works

The current research focuses on developing new thermomechanical micromechanics

models handling temperature dependent material properties, large temperature variation,

nonuniformly distributed temperature field, and both internal and external loads may ex-

ist in the microstructure. Most of the limitations of current linear thermoelastic theory

have been overcome by applying the newly developed thermomechanical micromechanics

models. They are extended based on previous linear thermoelastic micromechanics model

implemented inside VAMUCH. In this chapter, we will give a review of the accomplishments

of this dissertation and make suggestions to the related future research.

5.1 Conclusions

The VAMUCH based thermomechanical micromechanics analysis has been extend-

ed in the current study by abandoning the traditional linear theory of thermoelasticity.

Kavalenko’s theory of small-strain thermoelasticity has been adopted and developed in or-

der to remove the restrictions of small temperature variation within the microstructure.

This requires VAMUCH to eliminate current restriction on temperature change and also

be able to handle temperature dependent material properties as most of the materials in

nature will perform differently with temperatures that are greatly changed.

For this problem, in the upgraded version of VAMUCH, like most of the commercial

FEA software such as ANSYS, users are able to choose applying either secant coefficients

of thermal expansions or instantaneous coefficients of thermal expansions as their material

property inputs to adopt the thermomechanical micromechanics analysis with large or small

temperature variations. Also this new thermomechanical micromechanics model enables

VAMUCH to give effective material property results at each temperature by running the
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micromechanical analysis only once.

VAMUCH provides a one way thermomechanical coupling for thermomechanical mi-

cromechanics analysis. This requires the temperature field to be known before every analysis

and only uniform temperature field is taken in the previous model. In reality, most of the

engineering structures will not experience uniform temperature fields during their work-

ing conditions. To this end, we removed this limitation by enabling VAMUCH to handle

nonuniformly distributed temperature field. This ability greatly enhances the capability of

VAMUCH dealing with realistic thermomechanical problems and dramatically save effort-

s of users to run this kind of analysis. To be more specific, if one is interested in using

VAMUCH to calculate effective material properties or recover local stress and strain fields,

he/she only needs to apply corresponding thermal loads and boundaries into commercial

FEA software to carry on a heat conduction or convection analysis. After that, VAMUCH

will read into the resulting temperature field no matter it is uniform or nonuniform and

give the corresponding results for such problem. However, before this new approach, it is

almost impossible to connect VAMUCH with heat conduction or convection analysis unless

the temperature field is simply uniform.

Also the traditional micromechanics analysis has an assumption of load-free within the

microstructure which may not always be true for real practical engineering problems. For

examples, gas turbine blades and heat exchanger fins are usually experiencing air pressures

during their operating conditions. By applying the principle of virtual work, we developed

a new micromechanics model which takes into account of both internal and external loads.

This newly developed micromechanics model enables VAMUCH to handle microstructures

with loads which makes VAMUCH’s capability of handling realistic engineering problems

much more stronger than before.

At last, a HyperWorks-SwiftComp Micromechanics (aka VAMUCH) use interface is

developed to connect HyperWorks preprocessor and postprocessor with SwiftComp Mi-

cromechanics. The user interface is capable of creating the standard composite models,

applying the periodic boundary conditions, adding or editing constituents material proper-
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ties, generating SwiftComp Micromechanics inputs, and running micromechanics analysis

and providing results. The detailed introduction and demonstration of this interface are

listed in Appendix A.

5.2 Recommendations for Future Work

As we mentioned above, the one-way thermomechanical coupling is used in VAMUCH

for thermomechanical micromechanics analysis which requires users to run a heat conduction

or convection analysis before using VAMUCH. This may not be very convenient and it is

easy to induce mistakes when transferring resulting temperature fields into VAMUCH for

micromechanics analysis. In the future study, fully coupled thermomechanical problem are

recommended in order to avoid these extra efforts of obtaining temperature fields. Moreover,

for studying large temperature variation, even though the coefficients of thermal expansions

are usually small comparing with elastic constants, there is still possibility of the total strain

induced by both mechanical and thermal loads exceed the limit of small strain. In this case,

we can not analyze this kind of problems by applying small strain theory. I recommend

future researchers working on large deformation problem, plasticity problem, and damage

problem step by step.

Moreover, as aforementioned examples in Chapter 4, mesh effect is very critical for

stress results of thin-walled structures such as the parting sheet of heat exchanger fins

and gas turbine blades. VAMUCH has the capability of applying shell elements after 3.0

version, so I recommend developing a new thermomechanical micromechanics model using

shell elements under nonuniformly distributed temperature fields for cases like the unit cell

of heat exchanger fins to see if the results will be better than the current ones. Also if we

can achieve that, large amount of computational efforts can be saved. For the cases with

internal and external loads, we only tested periodic loads without applying on the periodic

edges. We are not sure if the non-periodic loads or loads applying on the periodic edges

will induce any problems. But it is definitely worth of investigation and we recommend

researchers pay attention to these issues.
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At last, the HyperWorks-SwiftComp Micromechanics User Interface is freshly devel-

oped and in version 1.0 now. If needed, more functionalities can be added such as create

random unit cell by volume fractions, read and modify existing mesh of unit cell, add dum-

my boundary for unit cells with irregular shapes, and so on. Developers can refer to the

source code and introduction listed in Appendix A.
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Appendix A

A User Interface of HyperWorks-SwiftComp Micromechanics

(aka VAMUCH)

A.1 Introduction of HyperWorks-SwiftComp Micromechanics User Interface

HyperWorks-SwiftComp Micromechanics User Interface is created by the author dur-

ing his Ph.D. study for facilitating HyperWorks users to convert HyperMesh geometrical

model information and material properties into SwiftComp Micromechanics inputs as a pre-

processor and to view results using HyperView as a postprocessor. It is acting as a bridge

between HyperWorks and SwiftComp Micromechanics by sending the information back and

forth. Users can click the corresponding buttons under the interface to perform SwiftCom-

p Micromechanics micromechanical analysis and local stress and strain recovery analysis.

Also classical 2D fiber reinforced composite model and 3D particle reinforced composite

model are provided to reduce standard micromechanics analysis time.

HyperWorks-SwiftComp Micromechanics User Interface is programmed using TCL/TK

script language and template commands under HyperWorks standards.

A.2 Functionalities of the Interface

After successfully installed the interface, starting the HyperWorks, you should be able

to see a MicroModel button under Utility tab as shown in Fig. A.1. There are two major

sections in this interface: Model Tools and Micro Analysis Tools. Model Tools provide tool-

s to create and edit geometry and material properties of composites while Micro Analysis

Tools provide tools to generate SwiftComp Micromechanics inputs for either micromechan-

ical analysis or recovery analysis and to execute corresponding micromechanics analysis in

order to generate results.
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The Common Unit Cell button is used as one click to create standard 2D and 3D UCs

with user favored size and material properties as shown in Fig. A.2. A sample 2D fiber

reinforced standard unit cell with 0.5 fiber volume fraction can be created using this button

as shown in Fig. A.3. The Custom Unit Cell button is used to apply the periodic boundary

conditions onto the geometry as SwiftComp Micromechanics requires users to provide pe-

riodic boundary information when the model center is not at origin of the coordinate. Two

ways of applying periodic boundary condition are provided. Automatic is used to add pe-

riodic boundary by dimensions which is basically for models with regular geometry shapes

as shown in Fig. A.4 while Manual is used to manually add periodic boundary which is

basically for models with complicated shapes or irregular shapes as shown in Fig. A.5. Ma-

terial Properties button is used for users to view and edit material properties which is more

straight forward and easier to operate than the material cards provided by HyperWorks as

shown in Figs. A.6 and A.7. This button is directly borrowed from ANSYS-HyperWorks

interface developed by other code developers. Analysis Type is used to choose the micro

analysis type and generate the corresponding input files as shown in Figs. A.8 and A.9

while Solve button calls SwiftComp Micromechanics to solve the problems and shows the

outputs for micromechanical analyses directly as shown in Fig. A.10. The recovered local

displacement fields, strain fields, and stress fields can be viewed by importing the result

files to HyperView as shown in Fig. A.11.

A.3 The Coding Structure of the Interface

The coding structure of HyperWorks-SwiftComp Micromechanics User Interface start-

s from a new hm micro.mac created within HyperWorks which users need to apply this

macro file under Preference menu following installation guide. The original functionalities

of hm.mac (default) are also included in this macro file so users do not need to worry about

losing the existing functionalities. A new globalpage.mac file is created for adding the

micro analysis button into Utility tab. The main command file of the interface is includ-

ed in micro.mac where commonUC.tcl, customUC.tcl, material.tcl, microtype.tcl, and

microsolve.tcl are functioned there to connect with each button of the interface respec-
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Fig. A.1: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 1

Fig. A.2: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 2
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Fig. A.3: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 3

Fig. A.4: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 4
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Fig. A.5: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 5

Fig. A.6: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 6
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Fig. A.7: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 7

Fig. A.8: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 8
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Fig. A.9: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 9

Fig. A.10: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 10
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Fig. A.11: Sketch of HyperWorks-SwiftComp Micromechanics User Interface 11

tively. Under microtype.tcl file, the const analy.tpl is included for generating the input

files and attrib.lst gives definition of each parameter which is also borrowed from ANSYS-

HyperWorks interface. The coding structure can be expressed into flow chart as shown in

Fig. A.12.

A.4 The Source Code of hm micro Macro File

*includemacrofile (" globalpage.mac")

// Page Definitions

*includemacrofile (" disppage.mac")

*includemacrofile (" geommeshpage.mac")

*includemacrofile (" qamodelpage.mac")

*includemacrofile (" userpage.mac")

*includemacrofile (" micro.mac")

A.5 The Source Code of globalpage Macro File
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hm_micro.mac 

micro.mac globalpage.mac 

commonUC.tcl 
 

customUC.tcl 
 

material.tcl 
 

microtype.tcl 
 

microsolve.tcl 

const_analy.tpl attrib.lst 

Fig. A.12: Flow chart of interface coding structure

*createbuttongroup (0, 0, "Disp", 1, 0, 5, BUTTON , "Display options.", "

macroSetActivePage", 1)

*createbuttongroup (0, 0, "QA/Model", 1, 5, 5, BUTTON , "Element quality

checking + Model Setup.", "macroSetActivePage", 2)

*createbuttongroup (0, 0, "Geom/Mesh", 2, 0, 5, BUTTON , "Geometry/Meshing

editing tools.", "macroSetActivePage", 3)

*createbuttongroup (0, 0, "User", 2, 5, 5, BUTTON , "User defined tools.", "

macroSetActivePage", 5)

*createbuttongroup (0, 0, "MicroModel",1, 10, 5, BUTTON , "Micromechanics

modeling.", "macroSetActivePage", 6)

*setactivegroup (0,0,1)

*setbuttongroupactivecolor(GREY)

*beginmacro (" EvalTcl ")

*evaltclscript($1 ,0)

*endmacro ()

*beginmacro(macroSetActivePage)

*setactivepage($1)
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*endmacro ()

*beginmacro(macroMacroMenuStatus)

*enablemacromenu (0)

*endmacro ()

A.6 The Source Code of micro Macro File

/////////////////////////////////////////////////////////////////

// Filename: micro.mac

// Purpose: Macro menu ’Micromechanics modeling ’ page

// definitions.

// Function: VAMUCH & HyperWorks Interface

// Copyright (C) 2013 by Wenbin Yu, and Chong Teng.

// Support: Chong Teng <chongteng@aggiemail.usu.edu >

/////////////////////////////////////////////////////////////////

*createbutton (6," Solve",10,0,10,BUTTON ,"Run Micro Analysis ", "EvalTcl","

microsolve.tcl")

*createbutton (6," Analysis Type",11,0,10,BUTTON ," Choose Micro Analysis Type",

"EvalTcl"," microtype.tcl")

*createtext (6, "Micro Analysis Tools", 0, 0)

*createbutton (6, "Material Properties ",13,0,10,BUTTON , "Define Material

Tables", "EvalTcl","material.tcl")

*createbutton (6," Custom Unit Cell",14,0,10,BUTTON ,"User Customized Unit Cell

", "EvalTcl","customUC.tcl")

*createbutton (6," Common Unit Cell",15,0,10,BUTTON ," Common Used Unit Cell", "

EvalTcl","commonUC.tcl")

*createtext (6, "Model Tools", 0, 0)

// User Page Macro Definitions

*beginmacro (" ConnectToDebugger ")

*evaltclstring (" source /Program\ Files/tclPro1 .4/win32 -ix86/bin/

prodebug.tcl; debugger_init ;",0)

*endmacro ()

*beginmacro (" LaunchWidgetTour ")

// Purpose: Launch the HyperWorks Widget Tour dialog.

*evaltclstring (":: VAMUCHUI :: WidgetTour ",0)
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*endmacro ()

*beginmacro (" EvalTcl ")

*evaltclscript($1 ,0)

*endmacro ()

A.7 The Source Code of commonUC Tcl File

###################################################################

## Filename: commonUC.tcl

## Purpose: Build up micromechanics models

## Function: VAMUCH & HyperWorks Interface

## Copyright (C) 2013 by Wenbin Yu, and Chong Teng.

## Support: Chong Teng <chongteng@aggiemail.usu.edu >

##

################################################################

namespace eval :: altair :: commonUC \

{

variable recess;

variable fillType;

variable namemark;

variable altair_dir;

array set VoF \

{

present 0

past 0

}

array set LoS \

{

present 0

past 0

}
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array set EX1 \

{

present 0

past 0

}

array set PRXY1 \

{

present 0

past 0

}

array set EX2 \

{

present 0

past 0

}

array set PRXY2 \

{

present 0

past 0

}

array set DENS1 \

{

present 0

past 0

}

array set DENS2 \

{

present 0

past 0

}

array set TREF \

{

present 0

past 0

}
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array set meshpara\

{

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

}

}

set altair_dir [hm_info -appinfo ALTAIR_HOME ];

*templatefileset "$altair_dir/templates/feoutput/ansys/ansys.tpl"

namespace eval :: altair :: ucparam \

{

variable recess;

variable namemark;

}

proc :: altair :: commonUC :: commonUCdialog {} {

if {[winfo exists .cmonUCopt ]} {

destroy .cmonUCopt;

}

variable recess;
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set miny 150

if {![:: hwt::OnPc]} {set miny 175};

################################################################

## create window and buttons

################################################################

::hwt:: CreateWindow cmonUCopt \

-windowtitle "Common Unit Cell Options" \

-cancelButton "Close" \

-cancelFunc :: altair :: commonUC ::Quit \

-addButton Select :: altair :: commonUC :: Select no_icon \

-minsize 350 $miny \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .cmonUCopt +$xloc+$yloc;

KeepOnTop .cmonUCopt

set recess [ ::hwt:: WindowRecess cmonUCopt ];

grid columnconfigure $recess 1 -weight 3

set :: altair :: commonUC :: fillType 2Dstand;

################################################################

## define option layouts

################################################################

radiobutton $recess .2 DstandUC \

-text "2D Standard Unit Cell" \

-variable :: altair :: commonUC :: fillType \

-value 2Dstand \
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-state normal;

radiobutton $recess .3 DstandUC \

-text "3D Standard Unit Cell" \

-variable :: altair :: commonUC :: fillType \

-value 3Dstand \

-state normal;

# radiobutton $recess .2 DrandUC \

# -text "2D Random Unit Cell" \

# -variable :: altair :: commonUC :: fillType \

# -value 2Drand \

# -state normal;

# radiobutton $recess .3 DrandUC \

# -text "3D Random Unit Cell" \

# -variable :: altair :: commonUC :: fillType \

# -value 3Drand \

# -state normal;

label $recess.l1\

-text "Choose the Type of Common Unit Cell:" \

-state normal;

################################################################

## position of the options

################################################################

grid $recess.l1 -row 1 -column 0 -padx 20 -pady 15 -sticky nw;

grid $recess .2 DstandUC -row 2 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess .3 DstandUC -row 3 -column 0 -padx 20 -pady 10 -sticky nw;

# grid $recess .2 DrandUC -row 4 -column 0 -padx 20 -pady 10 -#sticky nw;

# grid $recess .3 DrandUC -row 5 -column 0 -padx 20 -pady 10 -#sticky nw;

::hwt:: RemoveDefaultButtonBinding $recess
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};

proc :: altair :: commonUC ::Quit {} \

{

::hwt:: UnpostWindow cmonUCopt

hm_usermessage "";

};

#Call the function

:: altair :: commonUC :: commonUCdialog

# parent function called by triggering the select button.

proc :: altair :: commonUC :: Select {} \

{

if {[winfo exists .ucparam ]} {

destroy .ucparam;

}

variable fillType;

variable namemark;

variable recess;

variable VoF;

variable LoS;

variable EX1;

variable PRXY1;

variable EX2;

variable PRXY2;

# get the name of the new window

if { $fillType == "2 Dstand" } \
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{

set namemark "2D Standard Unit Cell" ;

} \

elseif { $fillType == "3 Dstand" } \

{

set namemark "3D Standard Unit Cell" ;

} \

elseif { $fillType == "2Drand" } \

{

set namemark "2D Random Unit Cell" ;

} \

else \

{

set namemark "3D Random Unit Cell" ;

}

:: altair :: commonUC ::Quit;

::hwt:: CreateWindow ucparam \

-windowtitle "$namemark "\

-cancelButton "Close" \

-cancelFunc :: altair :: ucparam ::Quit \

-addButton Create :: altair :: commonUC :: Create no_icon \

-addButton Return :: altair :: ucparam :: Return no_icon \

-minsize 350 150 \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .ucparam +$xloc+$yloc;

KeepOnTop .ucparam

set recess [ ::hwt:: WindowRecess ucparam ];
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grid columnconfigure $recess 1 -weight 3

label $recess.l2 -text "Input $namemark Information :" -state normal;

if { $fillType == "2 Dstand" } \

{

label $recess.l3 -text "Volume Fraction (0.5~75.0) :" -state normal;

}\

elseif { $fillType == "3 Dstand" } \

{

label $recess.l3 -text "Volume Fraction (0.1~49.0) :" -state normal;

};

label $recess.l4 -text "Length of Square :" -state normal;

label $recess.l5 -text "Material 1, EX , PRXY , DENS:" -state normal;

label $recess.l6 -text "Material 2, EX , PRXY , DENS:" -state normal;

label $recess.l7 -text "Reference Temperature :" -state normal;

entry $recess.e1 \

-textvariable :: altair :: commonUC ::VoF(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC ::VoF(present) 40;

entry $recess.e2 \

-textvariable :: altair :: commonUC ::LoS(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC ::LoS(present) 1;

entry $recess.e3 \

-textvariable :: altair :: commonUC ::EX1(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC ::EX1(present) 379300;

entry $recess.e4 \

-textvariable :: altair :: commonUC ::PRXY1(present) \
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-width 5 -justify left \

-state normal;

set :: altair :: commonUC :: PRXY1(present) 0.1;

entry $recess.e5 \

-textvariable :: altair :: commonUC ::EX2(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC ::EX2(present) 68300;

entry $recess.e6 \

-textvariable :: altair :: commonUC ::PRXY2(present) \

-width 5 -justify left \

-state normal;

set :: altair :: commonUC :: PRXY2(present) 0.3;

entry $recess.e7 \

-textvariable :: altair :: commonUC ::DENS1(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC :: DENS1(present) 1E-7;

entry $recess.e8 \

-textvariable :: altair :: commonUC ::DENS2(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC :: DENS2(present) 1E-7;

entry $recess.e9 \

-textvariable :: altair :: commonUC ::TREF(present) \

-width 10 -justify left \

-state normal;

set :: altair :: commonUC ::TREF(present) 20;

grid $recess.l2 -row 1 -column 0 -padx 0 -pady 15 -sticky nw;

grid $recess.l3 -row 2 -column 0 -padx 0 -pady 8 -sticky nw;

grid $recess.e1 -row 2 -column 1 -pady 8 -sticky nw;

grid $recess.l4 -row 3 -column 0 -padx 0 -pady 8 -sticky nw;

grid $recess.e2 -row 3 -column 1 -pady 8 -sticky nw;
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grid $recess.l5 -row 4 -column 0 -padx 0 -pady 8 -sticky nw;

grid $recess.e3 -row 4 -column 1 -pady 8 -sticky nw;

grid $recess.e4 -row 4 -column 2 -pady 8 -sticky nw;

grid $recess.e7 -row 4 -column 3 -pady 8 -sticky nw;

grid $recess.l6 -row 5 -column 0 -padx 0 -pady 8 -sticky nw;

grid $recess.e5 -row 5 -column 1 -pady 8 -sticky nw;

grid $recess.e6 -row 5 -column 2 -pady 8 -sticky nw;

grid $recess.e8 -row 5 -column 3 -pady 8 -sticky nw;

grid $recess.l7 -row 6 -column 0 -padx 0 -pady 8 -sticky nw;

grid $recess.e9 -row 6 -column 1 -pady 8 -sticky nw;

};

proc :: altair :: ucparam ::Quit {} \

{

::hwt:: UnpostWindow ucparam;

};

proc :: altair :: ucparam :: Return {} \

{

::hwt:: UnpostWindow ucparam;

::hwt:: PostWindow cmonUCopt;

};

proc :: altair :: commonUC :: Create {} \

{

variable fillType;

variable namemark;

variable recess;

variable VoF;

variable LoS;

variable EX1;

variable PRXY1;

variable EX2;

variable PRXY2;
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variable radius;

variable Pi;

variable length;

variable blcc;

variable blcl;

variable countnum;

variable meshpara;

variable miniblcl;

variable DENS1;

variable DENS2;

variable TREF;

set Pi [expr 2*asin (1.0)];

set blcc [expr $LoS(present)/4.0000];

set blcl [expr $LoS(present)/2.0000];

if { $fillType == "2 Dstand" } \

{

set radius [expr sqrt($VoF(present)*$LoS(present)**2.0000/( $Pi *100.0000))];

#create 1/4 unit cell

*surfacemode 4

*createplane 1 1.0000 0.0000 0.0000 0.0000 $blcc $blcc

*surfaceplane 1 $blcl

*createnode 0 0 0 0 0 0

*createlist nodes 1 1

*createvector 1 1.0000 0.0000 0.0000

*createcirclefromcenterradius 1 1 $radius 360 0

*clearlist nodes 1 1

*createmark lines 1 5

*linesplitatline 1 3

*createmark lines 1 6

*linesplitatline 1 4

*createmark lines 1 9 7
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*deletemark lines 1

*createmark lines 1 "all"

*renumber lines 1 1 1 0 0

*createmark surfaces 1 1

*createmark lines 2 2

*createvector 1 1 0000 0.0000 0.0000

*surfacemarksplitwithlines 1 2 1 1 0

*normalsoff

*createmark nodes 1 1-3

*nodemarkcleartempmark 1

#create 1/4 mesh

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 1

*interactiveremeshsurf 1 0.10001 2 2 2 1 1

*set_meshfaceparams 0 5 2 0 0 1 0.5 1 1

*automesh 0 5 2

*set_meshfaceparams 0 4 1 0 0 1 0.5 1 1

*set_meshedgeparams 0 8 1 0 0 0 0.10001 0 0

*set_meshedgeparams 1 5 1 0 0 0 0.10001 0 0

*set_meshedgeparams 2 16 1 0 0 0 0.10001 0 0

*set_meshedgeparams 3 5 1 0 0 0 0.10001 0 0

*set_meshedgeparams 4 8 1 0 0 0 0.10001 0 0

*automesh 0 4 1

*storemeshtodatabase 1

*ameshclearsurface
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*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 2

*interactiveremeshsurf 1 0.10001 2 2 2 1 1

*set_meshfaceparams 0 3 2 0 0 1 0.5 1 1

*automesh 0 5 1

*set_meshfaceparams 0 4 1 0 0 1 0.5 1 1

*set_meshedgeparams 0 16 1 0 0 0 0.10001 0 0

*set_meshedgeparams 2 16 1 0 0 0 0.10001 0 0

*automesh 0 5 1

*storemeshtodatabase 1

*ameshclearsurface

#create 2nd surface by reflecting with y axis and reflect

*createmark surfaces 1 1 2

*duplicatemark surfaces 1 1

*createmark surfaces 1 3 4

*createvector 1 0.0000 1.0000 0.0000

*translatemark surfaces 1 1 -$blcl

*createmark surfaces 1 3 4

*createplane 1 0.0000 1.0000 0.0000 0.0000 -$blcc $blcc

*reflectmark surfaces 1 1

#create 3rd and 4th surfaces and reflect

*createmark surfaces 1 1-4

*duplicatemark surfaces 1 1

*createmark surfaces 1 5-8

*createvector 1 0.0000 0.0000 1.0000

*translatemark surfaces 1 1 -$blcl

*createmark surfaces 1 5-8

*createplane 1 0.0000 0.0000 1.0000 0.0000 0.0000 -$blcc
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*reflectmark surfaces 1 1

#duplicate mesh and reflect

## calculate element numbers

set countnum (1) [hm_count elements all 0 0]

set countnum (2) [expr $countnum (1) +1]

set countnum (3) [expr $countnum (1) *2]

set countnum (4) [expr $countnum (3) +1]

set countnum (5) [expr $countnum (3) *2]

##start duplicate and reflect

*createmark elements 1 1-$countnum (1)

*duplicatemark elements 1 1

*createmark elements 1 $countnum (2)-$countnum (3)

*createvector 1 0.0000 1.0000 0.0000

*translatemark elements 1 1 -$blcl

*createmark elements 1 $countnum (2)-$countnum (3)

*createplane 1 0.0000 1.0000 0.0000 0.0000 -$blcc $blcc

*reflectmark elements 1 1

*createmark elements 1 1-$countnum (3)

*duplicatemark elements 1 1

*createmark elements 1 $countnum (4)-$countnum (5)

*createvector 1 0.0000 0.0000 1.0000

*translatemark elements 1 1 -$blcl

*createmark elements 1 $countnum (4)-$countnum (5)

*createplane 1 0.0000 0.0000 1.0000 0.0000 0.0000 -$blcc

*reflectmark elements 1 1

#create addtional component collecter



142

*createmark materials 1

*clearmark materials 1

*collectorcreateonly components "fiber" "" 7

*createmark components 1

*clearmark components 1

*createmark components 1 "fiber"

*materialupdate components 1 ""

*createmark components 1

*clearmark components 1

*createmark components 1 "fiber"

*clearmark components 1

*createmark properties 1

*clearmark properties 1

*createmark materials 1

*clearmark materials 1

*createmark elements 1

*clearmark elements 1

#organize surface

*createmark surfaces 1 2 4 6 8

*movemark surfaces 1 "fiber"

*retainmarkselections 1

*renamecollector components "auto1" "matrix"

*retainmarkselections 0

*retainmarkselections 1

*createmark components 1 "matrix"

*colormark components 1 8

*retainmarkselections 0

#organize elements

set countnum (6) [expr $countnum (1) +81]

set countnum (7) [expr $countnum (3) +81]

set countnum (8) [expr $countnum (1) *3]
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set countnum (9) [expr $countnum (8) +81]

*createmark elements 1 81- $countnum (1) $countnum (6)-$countnum (3) $countnum

(7)-$countnum (8) $countnum (9)-$countnum (5)

*movemark elements 1 "fiber"

#merge edge nodes

*createmark elements 1 "all"

*equivalence elements 1 1e-006 1 0 0

#renumber nodes and elements

*renumbersolveridall 1 1 0 0 0 0 0

*createmark nodes 2 "all"

*renumber nodes 2 1 1 0 0

*createmark elements 1 "all"

*renumber elements 1 1 1 0 0

#display control

*window 0 0 0 0 0

*view "rear"

*setdisplayattributes 2 0

#create material & properties (follow Ansys template)

*collectorcreate materials "MAT1" "" 4

*createmark materials 1 "MAT1"

*renumber materials 1 1 1 0 0

*createmark materials 1 "MAT1"

*dictionaryload materials 1 "C:/ Program Files/Altair /11.0/ templates/feoutput

/ansys/ansys.tpl" "MATERIAL"

*attributeupdateint materials 1 504 8 0 0 1

*createdoublearray 1 $TREF(present)

*attributeupdatedoublearray materials 1 505 8 2 0 1 1
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*attributeupdateint materials 1 502 8 2 0 1

*attributeupdateint materials 1 56 8 0 0 1

*attributeupdateint materials 1 2644 8 0 0 1

*createdoublearray 1 $EX1(present)

*attributeupdatedoublearray materials 1 2645 8 2 0 1 1

*attributeupdateint materials 1 76 8 0 0 1

*attributeupdateint materials 1 2571 8 0 0 1

*createdoublearray 1 $PRXY1(present)

*attributeupdatedoublearray materials 1 2611 8 2 0 1 1

*attributeupdateint materials 1 502 8 2 0 1

*attributeupdateint materials 1 53 8 0 0 1

*attributeupdateint materials 1 2579 8 0 0 1

*createdoublearray 1 $DENS1(present)

*attributeupdatedoublearray materials 1 2619 8 2 0 1 1

*collectorcreate materials "MAT2" "" 3

*createmark materials 1 "MAT2"

*renumber materials 1 2 1 0 0

*createmark materials 1 "MAT2"

*dictionaryload materials 1 "C:/ Program Files/Altair /11.0/ templates/feoutput

/ansys/ansys.tpl" "MATERIAL"

*attributeupdateint materials 2 504 8 0 0 1

*createdoublearray 1 $TREF(present)

*attributeupdatedoublearray materials 2 505 8 2 0 1 1

*attributeupdateint materials 2 502 8 2 0 1

*attributeupdateint materials 2 56 8 0 0 1

*attributeupdateint materials 2 2644 8 0 0 1

*createdoublearray 1 $EX2(present)

*attributeupdatedoublearray materials 2 2645 8 2 0 1 1

*attributeupdateint materials 2 76 8 0 0 1

*attributeupdateint materials 2 2571 8 0 0 1

*createdoublearray 1 $PRXY2(present)

*attributeupdatedoublearray materials 2 2611 8 2 0 1 1
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*attributeupdateint materials 2 502 8 2 0 1

*attributeupdateint materials 2 53 8 0 0 1

*attributeupdateint materials 2 2579 8 0 0 1

*createdoublearray 1 $DENS2(present)

*attributeupdatedoublearray materials 2 2619 8 2 0 1 1

*collectorcreateonly properties "PROP1" "" 5

*collectorcreateonly properties "PROP2" "" 6

#assign materials & properties to components

*createmark components 1 "fiber"

*materialupdate components 1 "MAT1"

*clearmark components 1

*createmark components 1 "fiber"

*propertyupdate components 1 "PROP1"

*clearmark components 1

*createmark components 1 "matrix"

*materialupdate components 1 "MAT2"

*clearmark components 1

*createmark components 1 "matrix"

*propertyupdate components 1 "PROP2"

*clearmark components 1

}\

elseif { $fillType == "3 Dstand" } \

{

set radius [expr (0.0300* $VoF(present)*$LoS(present)**3.0000/(4.0000* $Pi))

**(1.0000/3.0000) ];

#create 1/8 unit cell
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*solidblock 0 0 $blcl 0 -$blcl 0 0 0 -$blcl $blcl 0 0

*createnode 0 0 0 0 0 0

*createnode 0 -$blcl 0 0 0 0

*createnode $blcl 0 0 0 0 0

*surfacemode 4

*surfacespherefromthreepoints 1 $radius 3 0 90 2 0 -90 0

*createmark solids 1 1

*createmark lines 1 13-15

*body_split_with_lines solids 1 1 0

*createmark materials 1

*clearmark materials 1

*collectorcreateonly components "particle" "" 7

*createmark components 1

*clearmark components 1

*createmark components 1 "particle"

*materialupdate components 1 ""

*createmark components 1

*clearmark components 1

*createmark components 1 "particle"

*clearmark components 1

*createmark properties 1

*clearmark properties 1

*createmark materials 1

*clearmark materials 1

*createmark elements 1

*clearmark elements 1

*createmark solids 1 1

*movemark solids 1 "auto1"

*createmark solids 1 2

*movemark solids 1 "particle"

*retainmarkselections 1

*createmark components 1 "auto1"
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*colormark components 1 8

*renamecollector components "auto1" "matrix"

*retainmarkselections 0

## delete 3 nodes that used for generalize partial sphere

*createmark nodes 1 1-3

*nodemarkcleartempmark 1

#create 1/8 mesh

## create a small block particle for spherical particle

set miniblcl [expr 0.3000* $radius ];

*linecreatestraight $miniblcl -$blcl 0 $miniblcl 0 0

*createmark solids 1 "by comp" "particle"

*createdoublearray 3 0 0 1

*createlist lines 1 "-1"

*body_split_with_morphed_lines solids 1 1 1 3 0 1

*linecreatestraight 0 0 $miniblcl $blcl 0 $miniblcl

*createmark solids 1 "-1"

*createdoublearray 3 0 1 0

*createlist lines 1 "-1"

*body_split_with_morphed_lines solids 1 1 1 3 0 1

*linecreatestraight 0 -$miniblcl 0 0 -$miniblcl $blcl

*createmark solids 1 "-1"

*createdoublearray 3 1 0 0

*createlist lines 1 "-1"

*body_split_with_morphed_lines solids 1 1 1 3 0 1
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##find the surfaces that needs to be merged

*createmark solids 1 2

*findmark solids 1 1 1 surfaces 0 2

set surf1 [hm_getmark surfaces 2]

*createmark solids 1 3

*findmark solids 1 1 1 surfaces 0 2

set surf2 [hm_getmark surfaces 2]

set intersect1 [list]

foreach elem $surf1\

{

if {$elem in $surf2 }\

{

lappend intersect1 $elem;

}

}

*createmark solids 1 2

*findmark solids 1 1 1 surfaces 0 2

set surf1 [hm_getmark surfaces 2]

*createmark solids 1 5

*findmark solids 1 1 1 surfaces 0 2

set surf2 [hm_getmark surfaces 2]

set intersect2 [list]

foreach elem $surf1\

{

if {$elem in $surf2 }\

{

lappend intersect2 $elem;

}

}

*createmark solids 1 3

*findmark solids 1 1 1 surfaces 0 2
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set surf1 [hm_getmark surfaces 2]

*createmark solids 1 5

*findmark solids 1 1 1 surfaces 0 2

set surf2 [hm_getmark surfaces 2]

set intersect3 [list]

foreach elem $surf1\

{

if {$elem in $surf2 }\

{

lappend intersect3 $elem;

}

}

##merge solids and delete cut lines

*createmark surfaces 1 $intersect1 $intersect2 $intersect3

*solid_untrim 1 0

*renumbersolveridall 1 1 0 0 0 0 0

*createmark lines 1 1-3

*deletemark lines 1

## create mesh for matrix

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 2

*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 2 2 0 0 1 0.5 1 1

*automesh 0 2 2

*set_meshfaceparams 0 4 1 0 0 1 0.5 1 1

*set_meshedgeparams 0 4 1 0 0 0 10 0 0

*set_meshedgeparams 1 4 1 0 0 0 10 0 0

*set_meshedgeparams 2 4 1 0 0 0 10 0 0

*set_meshedgeparams 3 4 1 0 0 0 10 0 0

*automesh 0 4 2



150

*storemeshtodatabase 0

*ameshclearsurface

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 1

*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 5 2 0 0 1 0.5 1 1

*automesh 0 5 2

*set_meshfaceparams 0 4 2 0 0 1 0.5 1 1

*set_meshedgeparams 0 4 1 0 0 0 10 0 0

*set_meshedgeparams 2 2 1 0 0 0 10 0 0

*set_meshedgeparams 3 8 1 0 0 0 10 0 0

*set_meshedgeparams 4 2 1 0 0 0 10 0 0

*automesh 0 4 2

*storemeshtodatabase 0

*ameshclearsurface

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 3

*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 5 2 0 0 1 0.5 1 1

*automesh 0 5 2

*set_meshfaceparams 0 4 2 0 0 1 0.5 1 1

*set_meshedgeparams 0 4 1 0 0 0 10 0 0

*set_meshedgeparams 1 2 1 0 0 0 10 0 0

*set_meshedgeparams 2 8 1 0 0 0 10 0 0

*automesh 0 4 2

*storemeshtodatabase 0

*ameshclearsurface

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 5
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*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 5 2 0 0 1 0.5 1 1

*automesh 0 5 2

*set_meshfaceparams 0 4 2 0 0 1 0.5 1 1

*set_meshedgeparams 0 4 1 0 0 0 10 0 0

*set_meshedgeparams 1 4 1 0 0 0 10 0 0

*set_meshedgeparams 3 8 1 0 0 0 10 0 0

*automesh 0 4 2

*storemeshtodatabase 0

*ameshclearsurface

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 4

*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 2 2 0 0 1 0.5 1 1

*automesh 0 2 2

*set_meshfaceparams 0 4 2 0 0 1 0.5 1 1

*set_meshedgeparams 1 4 1 0 0 0 10 0 0

*automesh 0 4 2

*storemeshtodatabase 0

*ameshclearsurface

*setedgedensitylink 0

*elementorder 1

*createmark surfaces 1 6

*interactiveremeshsurf 1 10 2 2 2 1 1

*set_meshfaceparams 0 2 2 0 0 1 0.5 1 1

*automesh 0 2 2

*storemeshtodatabase 0

*ameshclearsurface

*createmark elements 2 "all"

*createmark solids 1 1

*solidmap_solids_begin 1 828034 0.1



152

*createmark lines 1 29

*solidmap_solids_set_elemsize 1 0.0427116493

*solidmap_solids_end

*deletemark elements 2

*createmark elements 1 "all"

*movemark elements 1 "matrix"

##mesh the particle

*solidmap_begin 0

*solidmap_prepare_usrdataptr "SOURCE" 4

*solidmap_prepare_usrdataptr "DEST" 4

*solidmap_prepare_usrdataptr "ALONG" 32

*createmark solids 1 4

*solid_prepare_entitylst solids 0

*solidmap_end 74498 4 0 0

*solidmap_begin 0

*solidmap_prepare_usrdataptr "SOURCE" 4

*solidmap_prepare_usrdataptr "DEST" 4

*solidmap_prepare_usrdataptr "ALONG" 32

*createmark solids 1 2

*solid_prepare_entitylst solids 0

*solidmap_end 74498 4 0 0

*renumbersolveridall 1 1 0 0 0 0 0

#create another 1/2 solid by reflecting with x and y axis and reflect

*createmark solids 1 "all"

*duplicatemark solids 1 1

*createmark solids 1 5 4 6

*createvector 1 1.0000 0.0000 0.0000
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*translatemark solids 1 1 -$blcl

*createmark solids 1 5 4 6

*createplane 1 1.0000 0.0000 0.0000 -$blcc 0.0000 0.0000

*reflectmark solids 1 1

*createmark solids 1 "all"

*duplicatemark solids 1 1

*createmark solids 1 7-12

*createvector 1 0.0000 1.0000 0.0000

*translatemark solids 1 1 $blcl

*createmark solids 1 7-12

*createplane 1 0.0000 1.0000 0.0000 0.0000 $blcc 0.0000

*reflectmark solids 1 1

#create the rest 1/2 solid and reflect

*createmark solids 1 "all"

*duplicatemark solids 1 1

*createmark solids 1 13-24

*createvector 1 0.0000 0.0000 1.0000

*translatemark solids 1 1 -$blcl

*createmark solids 1 13-24

*createplane 1 0.0000 0.0000 1.0000 0.0000 0.0000 -$blcc

*reflectmark solids 1 1

#organize solids

*createmark solids 1 4 7 11 13 17 19 23

*movemark solids 1 "matrix"

#duplicate mesh and reflect them

#renumber nodes and elements
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*createmark nodes 1 "all"

*renumber nodes 1 1 1 0 0

*createmark elements 1 "all"

*renumber elements 1 1 1 0 0

## calculate element numbers

set countnum (1) [hm_count elements all 0 0]

set countnum (2) [expr $countnum (1) +1]

set countnum (3) [expr $countnum (1) *2]

set countnum (4) [expr $countnum (3) +1]

set countnum (5) [expr $countnum (3) *2]

set countnum (6) [expr $countnum (5) +1]

set countnum (7) [expr $countnum (5) *2]

##start duplicate and reflect

*createmark elements 1 "all"

*duplicatemark elements 1 1

*createmark elements 1 $countnum (2)-$countnum (3)

*createvector 1 1.0000 0.0000 0.0000

*translatemark elements 1 1 -$blcl

*createmark elements 1 $countnum (2)-$countnum (3)

*createplane 1 1.0000 0.0000 0.0000 -$blcc 0.0000 0.0000

*reflectmark elements 1 1

*createmark elements 1 "all"

*duplicatemark elements 1 1

*createmark elements 1 $countnum (4)-$countnum (5)

*createvector 1 0.0000 1.0000 0.0000

*translatemark elements 1 1 $blcl

*createmark elements 1 $countnum (4)-$countnum (5)

*createplane 1 0.0000 1.0000 0.0000 0.0000 $blcc 0.0000

*reflectmark elements 1 1

*createmark elements 1 "all"
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*duplicatemark elements 1 1

*createmark elements 1 $countnum (6)-$countnum (7)

*createvector 1 0.0000 0.0000 1.0000

*translatemark elements 1 1 -$blcl

*createmark elements 1 $countnum (6)-$countnum (7)

*createplane 1 0.0000 0.0000 1.0000 0.0000 0.0000 -$blcc

*reflectmark elements 1 1

#organize elements

set countnum (8) [expr $countnum (2) +95]

set countnum (9) [expr $countnum (4) +95]

set countnum (10) [expr $countnum (9) +257]

set countnum (11) [expr $countnum (10) +95]

set countnum (12) [expr $countnum (6) +95]

set countnum (13) [expr $countnum (12) +257]

set countnum (14) [expr $countnum (13) +95]

set countnum (15) [expr $countnum (14) +257]

set countnum (16) [expr $countnum (15) +95]

set countnum (17) [expr $countnum (16) +257]

set countnum (18) [expr $countnum (17) +95]

*createmark elements 1 $countnum (2)-$countnum (8) $countnum (4)-$countnum (9)

$countnum (10)-$countnum (11) $countnum (6)-$countnum (12) $countnum (13)-

$countnum (14) $countnum (15)-$countnum (16) $countnum (17)-$countnum (18)

*movemark elements 1 "matrix"

#merge edge nodes

*createmark elements 1 "all"

*equivalence elements 1 1e-006 1 0 0

#renumber nodes and elements

*createmark nodes 1 "all"
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*renumber nodes 1 1 1 0 0

*createmark elements 1 "all"

*renumber elements 1 1 1 0 0

#display control

*window 0 0 0 0 0

*displaycollectorwithfilter components "off" "matrix" 0 1

*displaycollectorwithfilter components "off" "particle" 0 1

*view "iso1"

*setdisplayattributes 2 0

#create material & properties (follow Ansys template)

*collectorcreate materials "MAT1" "" 4

*createmark materials 1 "MAT1"

*renumber materials 1 1 1 0 0

*createmark materials 1 "MAT1"

*dictionaryload materials 1 "C:/ Program Files/Altair /11.0/ templates/feoutput

/ansys/ansys.tpl" "MATERIAL"

*attributeupdateint materials 1 504 8 0 0 1

*createdoublearray 1 $TREF(present)

*attributeupdatedoublearray materials 1 505 8 2 0 1 1

*attributeupdateint materials 1 502 8 2 0 1

*attributeupdateint materials 1 56 8 0 0 1

*attributeupdateint materials 1 2644 8 0 0 1

*createdoublearray 1 $EX1(present)

*attributeupdatedoublearray materials 1 2645 8 2 0 1 1

*attributeupdateint materials 1 76 8 0 0 1

*attributeupdateint materials 1 2571 8 0 0 1

*createdoublearray 1 $PRXY1(present)

*attributeupdatedoublearray materials 1 2611 8 2 0 1 1

*attributeupdateint materials 1 502 8 2 0 1

*attributeupdateint materials 1 53 8 0 0 1

*attributeupdateint materials 1 2579 8 0 0 1
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*createdoublearray 1 $DENS1(present)

*attributeupdatedoublearray materials 1 2619 8 2 0 1 1

*collectorcreate materials "MAT2" "" 3

*createmark materials 1 "MAT2"

*renumber materials 1 2 1 0 0

*createmark materials 1 "MAT2"

*dictionaryload materials 1 "C:/ Program Files/Altair /11.0/ templates/feoutput

/ansys/ansys.tpl" "MATERIAL"

*attributeupdateint materials 2 504 8 0 0 1

*createdoublearray 1 $TREF(present)

*attributeupdatedoublearray materials 2 505 8 2 0 1 1

*attributeupdateint materials 2 502 8 2 0 1

*attributeupdateint materials 2 56 8 0 0 1

*attributeupdateint materials 2 2644 8 0 0 1

*createdoublearray 1 $EX2(present)

*attributeupdatedoublearray materials 2 2645 8 2 0 1 1

*attributeupdateint materials 2 76 8 0 0 1

*attributeupdateint materials 2 2571 8 0 0 1

*createdoublearray 1 $PRXY2(present)

*attributeupdatedoublearray materials 2 2611 8 2 0 1 1

*attributeupdateint materials 2 502 8 2 0 1

*attributeupdateint materials 2 53 8 0 0 1

*attributeupdateint materials 2 2579 8 0 0 1

*createdoublearray 1 $DENS2(present)

*attributeupdatedoublearray materials 2 2619 8 2 0 1 1

*collectorcreateonly properties "PROP1" "" 5

*collectorcreateonly properties "PROP2" "" 6

#assign materials & properties to components

*createmark components 1 "particle"

*materialupdate components 1 "MAT1"

*clearmark components 1



158

*createmark components 1 "particle"

*propertyupdate components 1 "PROP1"

*clearmark components 1

*createmark components 1 "matrix"

*materialupdate components 1 "MAT2"

*clearmark components 1

*createmark components 1 "matrix"

*propertyupdate components 1 "PROP2"

*clearmark components 1

}

::hwt:: UnpostWindow ucparam;

};

A.8 The Source Code of customUC Tcl File

###################################################################

## Filename: customUC.tcl

## Purpose: Build up micromechanics models

## Function: VAMUCH & HyperWorks Interface

## Copyright (C) 2013 by Wenbin Yu, and Chong Teng.

## Support: Chong Teng <chongteng@aggiemail.usu.edu >

##

################################################################

namespace eval :: altair :: customUC \

{

variable recess;

variable fillType;

variable line_list_1;

variable line_length;

variable line_index;
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#variable line_index_2;

variable i;

variable node_list;

#variable node_list_2;

variable line_length;

variable node_index_1;

variable node_index_2;

variable j;

variable k;

variable m;

variable node_index_1_x;

variable node_index_1_y;

variable node_index_1_z;

variable node_index_2_x;

variable node_index_2_y;

variable node_index_2_z;

variable coordflag;

variable edgeflag;

}

namespace eval :: altair :: autoparam\

{

variable recess;

array set X_dir \

{

present 0

past 0

}

array set Y_dir \

{

present 0

past 0
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}

array set Z_dir \

{

present 0

past 0

}

array set X_base \

{

present 0

past 0

}

array set Y_base \

{

present 0

past 0

}

array set Z_base \

{

present 0

past 0

}

}

proc :: altair :: customUC :: customUCdialog {} {

if {[winfo exists .custUCopt ]} {

destroy .custUCopt;

}

variable recess;

set miny 150

if {![:: hwt::OnPc]} {set miny 175};

################################################################
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## create window and buttons

################################################################

::hwt:: CreateWindow custUCopt \

-windowtitle "Customize Unit Cell Options" \

-cancelButton "Close" \

-cancelFunc :: altair :: customUC ::Quit \

-addButton Apply :: altair :: customUC :: Select no_icon \

-minsize 350 $miny \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .custUCopt +$xloc+$yloc;

KeepOnTop .custUCopt

set recess [ ::hwt:: WindowRecess custUCopt ];

grid columnconfigure $recess 1 -weight 3

set :: altair :: customUC :: fillType manual;

radiobutton $recess.manual \

-text "Manual" \

-variable :: altair :: customUC :: fillType \

-value manual \

-state normal;

radiobutton $recess.automatic \

-text "Automatic" \

-variable :: altair :: customUC :: fillType \

-value automatic \

-state normal;
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label $recess.l1\

-text "Choose the Way to Apply Periodic Boundary Conditions :" \

-state normal;

grid $recess.l1 -row 1 -column 0 -padx 20 -pady 15 -sticky nw;

grid $recess.manual -row 2 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess.automatic -row 3 -column 0 -padx 20 -pady 10 -sticky nw;

::hwt:: RemoveDefaultButtonBinding $recess

};

#Call the function

:: altair :: customUC :: customUCdialog

proc :: altair :: customUC ::Quit {} \

{

::hwt:: UnpostWindow custUCopt

hm_usermessage "";

};

proc :: altair :: customUC :: Select {} \

{

variable fillType;

variable namemark;

variable recess;

if { $fillType == "manual" } \

{

:: altair :: customUC ::Quit ;

set miny 150
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if {![:: hwt::OnPc]} {set miny 175};

################################################################

## create window and buttons

################################################################

::hwt:: CreateWindow manuparamopt \

-windowtitle "Manually Apply Periodic Boundary Condition" \

-cancelButton "Return" \

-cancelFunc :: altair :: customUC :: Quit_2 \

-addButton Apply :: altair :: customUC :: Select_2 no_icon \

-minsize 350 $miny \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .manuparamopt +$xloc+$yloc;

KeepOnTop .manuparamopt

set recess [ ::hwt:: WindowRecess manuparamopt ];

grid columnconfigure $recess 1 -weight 3

label $recess.l1\

-text "Select Periodic Edges :" \

-state normal;

label $recess.l2 \

-text "Notice :"\

-bg yellow\

-state normal;

label $recess.l3 \

-text "If your model has more than one lines on a single edge"\

-bg yellow\

-state normal;

label $recess.l4 \
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-text "you will need to add rigidlink between nodes manually. " \

-bg yellow\

-state normal;

button $recess.b1 \

-text "Select One Set of Periodic Edges" \

-height [:: hwt:: DluHeight 1] \

-width [:: hwt:: DluHeight 20] \

-command :: altair :: customUC :: SelectLines \

-bg yellow \

-state normal;

grid $recess.l1 -row 1 -column 0 -padx 10 -pady 15 -sticky nw;

grid $recess.b1 -row 2 -column 0 -padx 60 -pady 15 -sticky nw;

grid $recess.l2 -row 3 -column 0 -padx 10 -pady 15 -sticky nw;

grid $recess.l3 -row 4 -column 0 -padx 40 -pady 0 -sticky nw;

grid $recess.l4 -row 5 -column 0 -padx 40 -pady 0 -sticky nw;

} \

elseif { $fillType == "automatic" } \

{

:: altair :: customUC ::Quit ;

if {[winfo exists .autoparamopt ]} {

destroy .autoparamopt ;

}

set miny 150

if {![:: hwt::OnPc]} {set miny 175};

################################################################

## create window and buttons

################################################################

::hwt:: CreateWindow autoparamopt \

-windowtitle "Automatically Apply Periodic Boundary Condition" \

-cancelButton "Close" \

-cancelFunc :: altair :: autoparam ::Quit \
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-addButton Apply :: altair :: autoparam :: Select no_icon \

-minsize 350 $miny \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .autoparamopt +$xloc+$yloc;

KeepOnTop .autoparamopt

set recess [ ::hwt:: WindowRecess autoparamopt ];

grid columnconfigure $recess 1 -weight 3

label $recess.l1 -text "Input Periodic Boundary Condition Information :" -

state normal;

label $recess.l2 -text "Dimension along X Direction :" -state normal;

label $recess.l3 -text "Dimension along Y Direction :" -state normal;

label $recess.l4 -text "Dimension along Z Direction :" -state normal;

label $recess.l5 -text "Origin of the Model:" -state normal;

label $recess.l6 -text "Origin X Coordinate (X0):" -state normal;

label $recess.l7 -text "Origin Y Coordinate (Y0):" -state normal;

label $recess.l8 -text "Origin Z Coordinate (Z0):" -state normal;

label $recess.l9 \

-text "Use Zero if Certain Dimension is Not Exist in Model" -bg

yellow -state normal;

entry $recess.e1 \

-textvariable :: altair :: autoparam ::X_dir(present) \

-width 10 -justify left \

-state normal;

set :: altair :: autoparam :: X_dir(present) 0;

entry $recess.e2 \

-textvariable :: altair :: autoparam ::Y_dir(present) \

-width 10 -justify left \
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-state normal;

set :: altair :: autoparam :: Y_dir(present) 0;

entry $recess.e3 \

-textvariable :: altair :: autoparam ::Z_dir(present) \

-width 10 -justify left \

-state normal;

set :: altair :: autoparam :: Z_dir(present) 0;

entry $recess.e4 \

-textvariable :: altair :: autoparam :: X_base(present) \

-width 10 -justify left \

-state normal;

set :: altair :: autoparam :: X_base(present) 0;

entry $recess.e5 \

-textvariable :: altair :: autoparam :: Y_base(present) \

-width 10 -justify left \

-state normal;

set :: altair :: autoparam :: Y_base(present) 0;

entry $recess.e6 \

-textvariable :: altair :: autoparam :: Z_base(present) \

-width 10 -justify left \

-state normal;

set :: altair :: autoparam :: Z_base(present) 0;

grid $recess.l1 -row 1 -column 0 -padx 20 -pady 8 -sticky nw;

grid $recess.l2 -row 2 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e1 -row 2 -column 1 -pady 8 -sticky nw;

grid $recess.l3 -row 3 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e2 -row 3 -column 1 -pady 8 -sticky nw;

grid $recess.l4 -row 4 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e3 -row 4 -column 1 -pady 8 -sticky nw;

grid $recess.l9 -row 5 -column 0 -padx 20 -pady 4 -sticky nw;

grid $recess.l5 -row 6 -column 0 -padx 20 -pady 15 -sticky nw;

grid $recess.l6 -row 7 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e4 -row 7 -column 1 -pady 8 -sticky nw;
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grid $recess.l7 -row 8 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e5 -row 8 -column 1 -pady 8 -sticky nw;

grid $recess.l8 -row 9 -column 0 -padx 40 -pady 8 -sticky nw;

grid $recess.e6 -row 9 -column 1 -pady 8 -sticky nw;

}

};

proc :: altair :: customUC :: SelectLines {} \

{

variable recess;

variable line_list_1;

::hwt:: UnpostWindow manuparamopt;

*clearmark lines 1

*createlistpanel lines 1 "Select One Set of Periodic Edges"

set line_list_1 [hm_getlist lines 1];

if {![ Null line_list_1 ]} {

$recess.b1 config -bg green;

} else {

$recess.b1 config -bg yellow;

}

::hwt:: PostWindow manuparamopt;

};

proc :: altair :: customUC :: Quit_2 {} \

{

::hwt:: UnpostWindow manuparamopt;

:: altair :: customUC :: customUCdialog;

hm_usermessage "";

};
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proc :: altair :: customUC :: Select_2 {}\

{

variable line_list_1;

variable line_length;

variable line_index;

#variable line_index_2;

variable i;

variable node_list;

#variable node_list_2;

variable line_length;

variable node_index_1;

variable node_index_2;

variable j;

variable k;

variable m;

variable node_index_1_x;

variable node_index_1_y;

variable node_index_1_z;

variable node_index_2_x;

variable node_index_2_y;

variable node_index_2_z;

variable coordflag;

variable edgeflag;

set line_length [llength [hm_getlist lines 1]]

for {set i 1} {$i <= $line_length} {incr i} {

set line_index($i) [lindex $line_list_1 [expr $i -1]]

hm_createmark nodes 1 "by lines" $line_index($i);

set node_list($i) [hm_getmarkvalue nodes 1 id 0];

set node_length [llength [hm_getmarkvalue nodes 1 id 0]];

for {set k 1} {$k <=$i -1} {incr k} {

for {set j 1} {$j <= $node_length} {incr j} {

set node_index_1 [lindex $node_list($i) [expr $j -1]]
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set node_index_1_x [hm_getentityvalue nodes $node_index_1 "x" 0]

set node_index_1_y [hm_getentityvalue nodes $node_index_1 "y" 0]

set node_index_1_z [hm_getentityvalue nodes $node_index_1 "z" 0]

set edgeflag 0;

for {set m 1} {$m <= $node_length} {incr m} {

set node_index_2 [lindex $node_list($k) [expr $m -1]]

set coordflag 0;

set node_index_2_x [hm_getentityvalue nodes $node_index_2 "x" 0]

set node_index_2_y [hm_getentityvalue nodes $node_index_2 "y" 0]

set node_index_2_z [hm_getentityvalue nodes $node_index_2 "z" 0]

if {[expr abs($node_index_1_x -$node_index_2_x) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {[expr abs($node_index_1_y -$node_index_2_y) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {[expr abs($node_index_1_z -$node_index_2_z) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {$coordflag <=1} {

set edgeflag [expr $edgeflag +1]

}

if {$coordflag ==2} {

*rigidlinkwithset_twonodes $node_index_1 $node_index_2 123456;

}

if {$edgeflag == $node_length} {

break

}

}

}

}
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}

*createmark elements 1 "by config" "rigidlink"

*maskentitymark elements 1 0

hm_usermessage "The Periodic Boundary Condition has been Successfully Added

";

::hwt:: UnpostWindow manuparamopt;

};

proc :: altair :: autoparam ::Quit {} \

{

::hwt:: UnpostWindow autoparamopt;

:: altair :: customUC :: customUCdialog;

hm_usermessage "";

};

proc :: altair :: autoparam :: Select {} \

{

variable X_dir;

variable Y_dir;

variable Z_dir;

variable X_base;

variable Y_base;

variable Z_base;

variable countnum;

variable node_list_1;

variable node_list_2;

variable node_length;

variable node_index_1;

variable node_index_2;

variable i;

variable node_index_1_x;

variable node_index_1_y;

variable node_index_1_z;
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variable node_index_2_x;

variable node_index_2_y;

variable node_index_2_z;

variable coordflag;

variable j;

set countnum (1) [expr $X_base(present)+$X_dir(present)/2.0000]

set countnum (2) [expr $X_base(present)-$X_dir(present)/2.0000]

set countnum (3) [expr $Y_base(present)+$Y_dir(present)/2.0000]

set countnum (4) [expr $Y_base(present)-$Y_dir(present)/2.0000]

set countnum (5) [expr $Z_base(present)+$Z_dir(present)/2.0000]

set countnum (6) [expr $Z_base(present)-$Z_dir(present)/2.0000]

# couple nodes by adding 1D rigid bar elements between them

if {$X_dir(present)!=0} {

*createmark nodes 1 "on plane" $countnum (1) $Y_base(present) $Z_base(present

) 1 0 0 .0004 1 1

set node_list_1 [hm_getmark nodes 1]

set node_length [llength [hm_getmark nodes 1]]

*createmark nodes 2 "on plane" $countnum (2) $Y_base(present) $Z_base(present

) 1 0 0 .0004 1 1

set node_list_2 [hm_getmark nodes 2]

for {set i 1} {$i <= $node_length} {incr i} {

set node_index_1 [lindex $node_list_1 [expr $i -1]]

set node_index_1_y [hm_getentityvalue nodes $node_index_1 "y" 0]

set node_index_1_z [hm_getentityvalue nodes $node_index_1 "z" 0]

for {set m 1} {$m <= $node_length} {incr m} {

set node_index_2 [lindex $node_list_2 [expr $m -1]]
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set coordflag 0;

set node_index_2_y [hm_getentityvalue nodes $node_index_2 "y" 0]

set node_index_2_z [hm_getentityvalue nodes $node_index_2 "z" 0]

if {[expr abs($node_index_1_y -$node_index_2_y) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {[expr abs($node_index_1_z -$node_index_2_z) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {$coordflag ==2} {

*rigidlinkwithset_twonodes $node_index_1 $node_index_2 123456;

}

}

}

}

if {$Y_dir(present)!=0} {

*createmark nodes 1 "on plane" $X_base(present) $countnum (3) $Z_base(present

) 0 1 0 .0004 1 1

set node_list_1 [hm_getmark nodes 1]

set node_length [llength [hm_getmark nodes 1]]

*createmark nodes 2 "on plane" $X_base(present) $countnum (4) $Z_base(present

) 0 1 0 .0004 1 1

set node_list_2 [hm_getmark nodes 2]

for {set i 1} {$i <= $node_length} {incr i} {

set node_index_1 [lindex $node_list_1 [expr $i -1]]

set node_index_1_x [hm_getentityvalue nodes $node_index_1 "x" 0]

set node_index_1_z [hm_getentityvalue nodes $node_index_1 "z" 0]
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for {set m 1} {$m <= $node_length} {incr m} {

set node_index_2 [lindex $node_list_2 [expr $m -1]]

set coordflag 0;

set node_index_2_x [hm_getentityvalue nodes $node_index_2 "x" 0]

set node_index_2_z [hm_getentityvalue nodes $node_index_2 "z" 0]

if {[expr abs($node_index_1_x -$node_index_2_x) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {[expr abs($node_index_1_z -$node_index_2_z) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {$coordflag ==2} {

*rigidlinkwithset_twonodes $node_index_1 $node_index_2 123456;

}

}

}

}

if {$Z_dir(present)!=0} {

*createmark nodes 1 "on plane" $X_base(present) $Y_base(present) $countnum

(5) 0 0 1 .0004 1 1

set node_list_1 [hm_getmark nodes 1]

set node_length [llength [hm_getmark nodes 1]]

*createmark nodes 2 "on plane" $X_base(present) $Y_base(present) $countnum

(6) 0 0 1 .0004 1 1

set node_list_2 [hm_getmark nodes 2]
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for {set i 1} {$i <= $node_length} {incr i} {

set node_index_1 [lindex $node_list_1 [expr $i -1]]

set node_index_1_x [hm_getentityvalue nodes $node_index_1 "x" 0]

set node_index_1_y [hm_getentityvalue nodes $node_index_1 "y" 0]

for {set m 1} {$m <= $node_length} {incr m} {

set node_index_2 [lindex $node_list_2 [expr $m -1]]

set coordflag 0;

set node_index_2_x [hm_getentityvalue nodes $node_index_2 "x" 0]

set node_index_2_y [hm_getentityvalue nodes $node_index_2 "y" 0]

if {[expr abs($node_index_1_x -$node_index_2_x) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {[expr abs($node_index_1_y -$node_index_2_y) <=0.0001]} {

set coordflag [expr $coordflag +1]

}

if {$coordflag ==2} {

*rigidlinkwithset_twonodes $node_index_1 $node_index_2 123456;

}

}

}

}

*createmark elements 1 "by config" "rigidlink"

*maskentitymark elements 1 0

hm_usermessage "The Periodic Boundary Condition has been Successfully Added

";
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::hwt:: UnpostWindow autoparamopt

};

A.9 The Source Code of microtype Tcl File

###################################################################

## Filename: microtype.tcl

## Purpose: Define the type of micromechanics analysis and start ##

generating input file for VAMUCH

## Function: VAMUCH & HyperWorks Interface

## Copyright (C) 2013 by Wenbin Yu, and Chong Teng.

## Support: Chong Teng <chongteng@aggiemail.usu.edu >

##

################################################################

namespace eval :: altair :: microtype \

{

variable recess;

variable microType;

variable constType;

variable tempFlag;

variable flag;

variable altair_dir;

variable usr_dir;

array set VolTot \

{

present 0

past 0

}

array set Disp_m1 \

{

present 0

past 0
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}

array set Disp_m2 \

{

present 0

past 0

}

array set Disp_m3 \

{

present 0

past 0

}

array set DisGrad_11 \

{

present 0

past 0

}

array set DisGrad_12 \

{

present 0

past 0

}

array set DisGrad_13 \

{

present 0

past 0

}

array set DisGrad_21 \

{

present 0

past 0

}

array set DisGrad_22 \

{

present 0

past 0
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}

array set DisGrad_23 \

{

present 0

past 0

}

array set DisGrad_31 \

{

present 0

past 0

}

array set DisGrad_32 \

{

present 0

past 0

}

array set DisGrad_33 \

{

present 0

past 0

}

array set Temp_m \

{

present 0

past 0

}

array set Temp_1 \

{

present 0

past 0

}

array set Temp_2 \

{

present 0



178

past 0

}

array set Temp_3 \

{

present 0

past 0

}

}

namespace eval :: altair :: analyparam \

{

variable recess;

}

namespace eval :: altair :: recovparam \

{

variable recess;

}

proc :: altair :: microtype :: MicrotypeDialog {} {

if {[winfo exists .microanalyopt ]} {

destroy .microanalyopt;

}

variable recess;

################################################################

## create window and buttons

################################################################

::hwt:: CreateWindow microanalyopt \

-windowtitle "Micromechanics Analysis Type" \

-cancelButton "Close" \

-cancelFunc :: altair :: microtype ::Quit \
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-addButton OK :: altair :: microtype ::OK no_icon \

-minsize 350 150 \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .microanalyopt +$xloc+$yloc;

KeepOnTop .microanalyopt

set recess [ ::hwt:: WindowRecess microanalyopt ];

grid columnconfigure $recess 1 -weight 3

set :: altair :: microtype :: microType 0;

################################################################

## define option layouts

################################################################

radiobutton $recess.effanalysis \

-text "Effective Properties Analysis" \

-variable :: altair :: microtype :: microType \

-value 0 \

-state normal;

radiobutton $recess.rcvanalysis \

-text "Recovery Analysis" \

-variable :: altair :: microtype :: microType \

-value 1 \

-state normal;

label $recess.l1 \

-text "Choose Micro -Analysis Type:" -state normal;
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label $recess.l2 \

-text "Notice :" -bg yellow -state normal;

label $recess.l3 \

-text "Effective Properties Analysis Must be Done before Recovery

Analysis" -bg yellow -state normal;

################################################################

## position of the options

################################################################

grid $recess.l1 -row 1 -column 0 -padx 5 -pady 5 -sticky nw;

grid $recess.effanalysis -row 2 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess.rcvanalysis -row 3 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess.l2 -row 4 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.l3 -row 5 -column 0 -padx 0 -pady 5 -sticky nw;

::hwt:: RemoveDefaultButtonBinding $recess

};

proc :: altair :: microtype ::Quit {} \

{

::hwt:: UnpostWindow microanalyopt

hm_usermessage "";

};

#Call the function

:: altair :: microtype :: MicrotypeDialog

proc :: altair :: microtype ::OK {} \

{

::hwt:: UnpostWindow microanalyopt

:: altair :: microtype :: Inputgenerate

};
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proc :: altair :: microtype :: Inputgenerate {}\

{

variable microType;

:: altair :: microtype ::Quit;

::hwt:: CreateWindow analyparam \

-windowtitle "Constitutive Analysis Type"\

-cancelButton "Close" \

-cancelFunc :: altair :: analyparam ::Quit \

-addButton OK :: altair :: microtype :: FinalOK no_icon \

-addButton Return :: altair :: analyparam :: Return no_icon \

-minsize 350 150 \

post;

set xloc [ :: fepre:: GetXLocation 350 ];

set yloc [ :: fepre:: GetYLocation 190 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .analyparam +$xloc+$yloc;

KeepOnTop .analyparam

set recess [ ::hwt:: WindowRecess analyparam ];

grid columnconfigure $recess 1 -weight 3

set :: altair :: microtype :: constType 0;

set :: altair :: microtype :: tempFlag 0;

label $recess.l4 -text "Choose the Type of Constitutive Analysis :" -

state normal;

label $recess.l5 -text "Choose whether the Model Temperature

Distribution is Uniform :" -state normal;

label $recess.l6 -text "Enter the Volume of the Whole Structure :" -state

normal;
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label $recess.l7 \

-text "Notice: Do Not Subtract Void Volume" -bg yellow -state normal;

entry $recess.e1 \

-textvariable :: altair :: microtype :: VolTot(present)\

-width 10 -justify left \

-state normal;

set :: altair :: microtype :: VolTot(present) 1.0;

radiobutton $recess.elastanalysis \

-text "Elastic Analysis" \

-variable :: altair :: microtype :: constType \

-value 0 \

-state normal;

radiobutton $recess.thermoanalysis \

-text "Thermoelastic Analysis" \

-variable :: altair :: microtype :: constType \

-value 1 \

-state normal;

radiobutton $recess.conductanalysis \

-text "Conduction Analysis" \

-variable :: altair :: microtype :: constType \

-value 2 \

-state normal;

radiobutton $recess.tempindepend \

-text "Uniform Temperature Distribution" \

-variable :: altair :: microtype :: tempFlag \

-value 0 \

-state normal;

radiobutton $recess.tempdepend \

-text "Non -uniform Temperature Distribution" \

-variable :: altair :: microtype :: tempFlag \
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-value 1 \

-state normal;

grid $recess.l4 -row 1 -column 0 -padx 5 -pady 5 -sticky nw;

grid $recess.elastanalysis -row 2 -column 0 -padx 20 -pady 5 -sticky nw;

grid $recess.thermoanalysis -row 3 -column 0 -padx 20 -pady 5 -sticky nw

;

grid $recess.conductanalysis -row 4 -column 0 -padx 20 -pady 5 -sticky

nw;

grid $recess.l5 -row 5 -column 0 -padx 5 -pady 5 -sticky nw;

grid $recess.tempindepend -row 6 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess.tempdepend -row 7 -column 0 -padx 20 -pady 10 -sticky nw;

grid $recess.l6 -row 8 -column 0 -padx 5 -pady 5 -sticky nw;

grid $recess.e1 -row 9 -column 0 -padx 200 -pady 5 -sticky nw;

grid $recess.l7 -row 10 -column 0 -padx 5 -pady 5 -sticky nw;

};

proc :: altair :: analyparam ::Quit {} \

{

::hwt:: UnpostWindow analyparam;

};

proc :: altair :: analyparam :: Return {} \

{

::hwt:: UnpostWindow analyparam;

::hwt:: PostWindow microanalyopt;

};

proc :: altair :: microtype :: FinalOK {} \

{

variable microType;

variable constType;

variable tempFlag;

variable npairFlag;
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variable totalelems;

variable nelems;

variable VolTot;

variable altair_dir;

variable usr_dir;

variable rootname;

if { $microType == "0" }\

{

set npairFlag [hm_count elems all 55 0];

set totalelems [hm_count elems all 0 0];

set nelems [expr $totalelems -$npairFlag]

*createmark undef 1;

*createdoublearray 6 $microType $constType $tempFlag $npairFlag $nelems

$VolTot(present);

*metadatamarkremove undef 1 "flag"

*metadatamarkdoublearray undef 1 "flag" 1 6;

set altair_dir [hm_info -appinfo ALTAIR_HOME ];

set usr_dir [hm_info -appinfo CURRENTWORKINGDIR ];

set rootname [file rootname [file tail [hm_info currentfile ]]];

if {[ llength $rootname] == "0" }\

{set rootname Untitled}

*feoutputwithdata "$altair_dir/templates/feoutput/vamuch/const_analy.tpl" "

$usr_dir/$rootname.vam" 0 0 2 1 0

}

if { $microType == "1" }\

{

:: altair :: analyparam ::Quit;

::hwt:: CreateWindow recovparam \

-windowtitle "Input Macro Fields "\

-cancelButton "Close" \
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-cancelFunc :: altair :: recovparam ::Quit \

-addButton OK :: altair :: microtype :: RecovOK no_icon \

-addButton Return :: altair :: recovparam :: Return no_icon \

-minsize 600 100 \

post;

set xloc [ :: fepre:: GetXLocation 600 ];

set yloc [ :: fepre:: GetYLocation 100 ];

if {$yloc < 0} {set yloc 100}; ##yloc coming out negative on linux

sometimes

wm geometry .recovparam +$xloc+$yloc;

KeepOnTop .recovparam

set recess [ ::hwt:: WindowRecess recovparam ];

grid columnconfigure $recess 1 -weight 3

label $recess.l1 -text "V_1 ,V_2 ,V_3 (Displacment):" -state normal;

label $recess.l2 -text "V_11 ,V_12 ,V_13 (Disp Gradient):" -state normal;

label $recess.l3 -text "V_21 ,V_22 ,V_23 (Disp Gradient):" -state normal;

label $recess.l4 -text "V_31 ,V_32 ,V_33 (Disp Gradient):" -state normal;

label $recess.l5 -text "T_m (Temperature):" -state normal;

label $recess.l6 -text "T_1 ,T_2 ,T_3 (Temp Gradient):" -state normal;

entry $recess.e1 \

-textvariable :: altair :: microtype :: Disp_m1(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Disp_m1(present) 0.0;

entry $recess.e2 \

-textvariable :: altair :: microtype :: Disp_m2(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Disp_m2(present) 0.0;

entry $recess.e3 \

-textvariable :: altair :: microtype :: Disp_m3(present)\
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-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Disp_m3(present) 0.0;

entry $recess.e4 \

-textvariable :: altair :: microtype :: DisGrad_11(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_11(present) 0.0;

entry $recess.e5 \

-textvariable :: altair :: microtype :: DisGrad_12(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_12(present) 0.0;

entry $recess.e6 \

-textvariable :: altair :: microtype :: DisGrad_13(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_13(present) 0.003;

entry $recess.e7 \

-textvariable :: altair :: microtype :: DisGrad_21(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_21(present) 0.0;

entry $recess.e8 \

-textvariable :: altair :: microtype :: DisGrad_22(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_22(present) 0.0;

entry $recess.e9 \

-textvariable :: altair :: microtype :: DisGrad_23(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_23(present) 0.006;

entry $recess.e10 \

-textvariable :: altair :: microtype :: DisGrad_31(present)\
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-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_31(present) 0.0;

entry $recess.e11 \

-textvariable :: altair :: microtype :: DisGrad_32(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_32(present) 0.0;

entry $recess.e12 \

-textvariable :: altair :: microtype :: DisGrad_33(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: DisGrad_33(present) 0.009;

entry $recess.e13 \

-textvariable :: altair :: microtype :: Temp_m(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Temp_m(present) 100.0;

entry $recess.e14 \

-textvariable :: altair :: microtype :: Temp_1(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Temp_1(present) 0.1;

entry $recess.e15 \

-textvariable :: altair :: microtype :: Temp_2(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Temp_2(present) 0.2;

entry $recess.e16 \

-textvariable :: altair :: microtype :: Temp_3(present)\

-width 8 -justify left \

-state normal;

set :: altair :: microtype :: Temp_3(present) 0.3;
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if { $constType == "0" }\

{

label $recess.l7 -text "Input Macro Displacement and Displacement Gradient

:" -state normal;

grid $recess.l7 -row 1 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.l1 -row 2 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e1 -row 2 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e2 -row 2 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e3 -row 2 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l2 -row 3 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e4 -row 3 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e5 -row 3 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e6 -row 3 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l3 -row 4 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e7 -row 4 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e8 -row 4 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e9 -row 4 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l4 -row 5 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e10 -row 5 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e11 -row 5 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e12 -row 5 -column 3 -padx 28 -pady 5 -sticky nw;

}

if { $constType == "1" }\

{

label $recess.l7 -text "Input Macro Dispacement , Disp_Grad and Temperature :"

-state normal;

grid $recess.l7 -row 1 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.l1 -row 2 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e1 -row 2 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e2 -row 2 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e3 -row 2 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l2 -row 3 -column 0 -padx 0 -pady 5 -sticky nw;



189

grid $recess.e4 -row 3 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e5 -row 3 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e6 -row 3 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l3 -row 4 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e7 -row 4 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e8 -row 4 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e9 -row 4 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l4 -row 5 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e10 -row 5 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e11 -row 5 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e12 -row 5 -column 3 -padx 28 -pady 5 -sticky nw;

grid $recess.l5 -row 6 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e13 -row 6 -column 1 -padx 28 -pady 5 -sticky nw;

}

if { $constType == "2" }\

{

label $recess.l7 -text "Input Macro Temperature and Temperature Gradient :"

-state normal;

grid $recess.l7 -row 1 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.l5 -row 2 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e13 -row 2 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.l6 -row 3 -column 0 -padx 0 -pady 5 -sticky nw;

grid $recess.e14 -row 3 -column 1 -padx 28 -pady 5 -sticky nw;

grid $recess.e15 -row 3 -column 2 -padx 28 -pady 5 -sticky nw;

grid $recess.e16 -row 3 -column 3 -padx 28 -pady 5 -sticky nw;

}

};

::hwt:: UnpostWindow analyparam;

};

proc :: altair :: recovparam ::Quit {} \

{
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::hwt:: UnpostWindow recovparam;

};

proc :: altair :: recovparam :: Return {} \

{

::hwt:: UnpostWindow recovparam;

::hwt:: PostWindow analyparam;

};

proc :: altair :: microtype :: RecovOK {} \

{

variable microType;

variable constType;

variable tempFlag;

variable npairFlag;

variable totalelems;

variable nelems;

variable VolTot;

variable Disp_m1;

variable Disp_m2;

variable Disp_m3;

variable DisGrad_11;

variable DisGrad_12;

variable DisGrad_13;

variable DisGrad_21;

variable DisGrad_22;

variable DisGrad_23;

variable DisGrad_31;

variable DisGrad_32;

variable DisGrad_33;

variable Temp_m;

variable Temp_1;

variable Temp_2;

variable Temp_3;
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variable altair_dir;

variable usr_dir;

variable rootname;

set npairFlag [hm_count elems all 55 0];

set totalelems [hm_count elems all 0 0];

set nelems [expr $totalelems -$npairFlag]

*createmark undef 1;

*createdoublearray 22 $microType $constType $tempFlag $npairFlag $nelems

$VolTot(present) $Disp_m1(present) $Disp_m2(present) $Disp_m3(present)

$DisGrad_11(present) $DisGrad_12(present) $DisGrad_13(present)

$DisGrad_21(present) $DisGrad_22(present) $DisGrad_23(present)

$DisGrad_31(present) $DisGrad_32(present) $DisGrad_33(present) $Temp_m(

present) $Temp_1(present) $Temp_2(present) $Temp_3(present);

*metadatamarkremove undef 1 "flag"

*metadatamarkdoublearray undef 1 "flag" 1 22;

set altair_dir [hm_info -appinfo ALTAIR_HOME ];

set usr_dir [hm_info -appinfo CURRENTWORKINGDIR ];

set rootname [file rootname [file tail [hm_info currentfile ]]];

if {[ llength $rootname] == "0" }\

{set rootname Untitled}

*feoutputwithdata "$altair_dir/templates/feoutput/vamuch/const_analy.tpl" "

$usr_dir/$rootname.vam" 0 0 2 1 0

::hwt:: UnpostWindow recovparam;

}

A.10 The Source Code of microsolve Tcl File

namespace eval :: altair :: microsolve \
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{

variable microType;

variable usr_dir;

variable res_file;

variable res_vamfile;

variable u_data;

variable es_data;

variable ese_data;

variable data_clmn;

variable one;

variable node_num;

variable npairFlag;

variable totalelems;

variable nelems;

variable u_x;

variable u_y;

variable u_z;

variable node_count;

variable lgth_count;

variable cc;

variable dd;

variable nn_counter;

variable e_comp;

variable s_comp;

variable countnum;

variable rootname;

}

proc :: altair :: microsolve ::solve {} {

variable microType;

variable usr_dir;

variable res_file;

variable res_vamfile;
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variable u_data;

variable es_data;

variable ese_data;

variable data_clmn;

variable one;

variable node_num;

variable npairFlag;

variable totalelems;

variable nelems;

variable u_x;

variable u_y;

variable u_z;

variable node_count;

variable lgth_count;

variable cc;

variable dd;

variable nn_counter;

variable e_comp;

variable s_comp;

variable countnum;

variable rootname;

set microType [hm_metadata findbyname flag undef]

set microType [lindex $microType 0 end]

set microType [lindex $microType 0]

set rootname [file rootname [file tail [hm_info currentfile ]]];

if {[ llength $rootname] == "0" }\

{set rootname Untitled}

if {$microType ==0.0} {

file delete $rootname.vam.k



194

*systemcommand "vamuch $rootname.vam"

*systemcommand "NOTEPAD $rootname.vam.k"

hm_usermessage "The SwiftComp Micromechanics Effective Properties Analysis

is Carried Out";

}

if {$microType ==1.0} {

*systemcommand "vamuch $rootname.vam"

hm_usermessage "The SwiftComp Micromechanics Recovery Analysis is Carried

Out";

set usr_dir [hm_info -appinfo CURRENTWORKINGDIR ];

*writeh3dtofile "$usr_dir/$rootname.h3d" 1

}

};

:: altair :: microsolve ::solve;

A.11 The Source Code of const analy Template File

/////////////////////////////////////////////////////////////////

// Filename: const_analy.tpl

// Purpose: Template file to generate VAMUCH input file

// Function: VAMUCH & HyperWorks Interface

// Copyright (C) 2013 by Wenbin Yu, and Chong Teng.

// Support: Chong Teng <chongteng@aggiemail.usu.edu >
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//

/////////////////////////////////////////////////////////////////

*realprecision (15)

*setelementcolorbypropsmethod (1)

*setelementcolorbymatsmethod (1)

*compressreal (1)

*globalmenuminimumstringlength (8)

*text()

*scalefieldwidth(string ,0)

*output ()

*include(attrib.lst)

*metadata ()

*format ()

*treataslocal(counter20)

*if([ @getentityvalue(elems , 1, config)=104])

*counterset(counter20 ,2)

*endif()

*if([ @getentityvalue(elems , 1, config)=108])

*counterset(counter20 ,2)

*endif()

*if([ @getentityvalue(elems , 1, config)=103])

*counterset(counter20 ,2)

*endif()

*if([ @getentityvalue(elems , 1, config)=106])

*counterset(counter20 ,2)

*endif()

*if([ @getentityvalue(elems , 1, config)=204])

*counterset(counter20 ,3)

*endif()

*if([ @getentityvalue(elems , 1, config)=210])

*counterset(counter20 ,3)
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*endif()

*if([ @getentityvalue(elems , 1, config)=208])

*counterset(counter20 ,3)

*endif()

*if([ @getentityvalue(elems , 1, config)=220])

*counterset(counter20 ,3)

*endif()

*field(integer ,counter20 ,10)

*string ("")

*string (" ")

*treataslocal(counter15)

*pointerset(pointer1 ,data ,0)

*counterset(counter15 ,pointer1.pointervalue)

*field(integer ,counter15 ,10)

*string (" ")

*treataslocal(counter14)

*pointerset(pointer1 ,data ,1)

*counterset(counter14 ,pointer1.pointervalue)

*field(integer ,counter14 ,10)

*string (" ")

*treataslocal(counter13)

*pointerset(pointer1 ,data ,2)

*counterset(counter13 ,pointer1.pointervalue)

*field(integer ,counter13 ,10)

*string (" ")

*treataslocal(counter7)

*counterset(counter7 ,0)

*field(integer ,counter7 ,10)

*treataslocal(counter12)

*pointerset(pointer1 ,data ,3)

*counterset(counter12 ,pointer1.pointervalue)

*treataslocal(counter18)

*pointerset(pointer1 ,data ,4)

*counterset(counter18 ,pointer1.pointervalue)
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*pointerset(pointer2 ,data ,5)

*end()

*output ()

*text()

*treataslocal(counter19)

*counterset(counter19 ,[ @entitymaxid(nodes)])

*string (" ")

*field(integer ,counter19 ,10)

*string (" ")

*field(integer ,counter18 ,10)

*string (" ")

*field(integer ,counter12 ,10)

*string (" ")

*treataslocal(counter17)

*counterset(counter17 ,[ @entitymaxid(materials)])

*field(integer ,counter17 ,10)

*string (" ")

*treataslocal(counter10)

*counterset(counter10 ,[ @getentityvalue(mats , 1, $MPTEMP_LEN)])

*field(integer ,counter10 ,10)

*string (" ")

*treataslocal(counter9)

*counterset(counter9 ,0)

*field(integer ,counter9 ,10)

*string (" ")

*treataslocal(counter8)

*counterset(counter8 ,0)

*field(integer ,counter8 ,10)

*string (" ")

*end()

*output ()

*nodes()



198

*before ()

*string (" ")

*sortnodes(byid)

*end()

*format ()

*field(integer ,id ,10)

*string (" ")

*if([ counter20 ==1])

*field(real ,x,15)

*string (" ")

*end()

*endif()

*if([ counter20 ==2])

*field(real ,y,15)

*string (" ")

*field(real ,z,15)

*string (" ")

*end()

*endif()

*if([ counter20 ==3])

*field(real ,x,15)

*string (" ")

*field(real ,y,15)

*string (" ")

*field(real ,z,15)

*string (" ")

*end()

*endif()

*output ()

*elements (104,0," Quad4 ","")

*before ()

*sortelements(byid)

*end()
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*format ()

*field(integer ,id ,10)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,10)

*string (" ")

*field(integer ,node2.id ,10)

*string (" ")

*field(integer ,node3.id ,10)

*string (" ")

*field(integer ,node4.id ,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*end()

*output ()

*elements (108,0," Quad8 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,10)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")
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*field(integer ,node1.id ,10)

*string (" ")

*field(integer ,node2.id ,10)

*string (" ")

*field(integer ,node3.id ,10)

*string (" ")

*field(integer ,node4.id ,10)

*string (" ")

*field(integer ,node5.id ,10)

*string (" ")

*field(integer ,node6.id ,10)

*string (" ")

*field(integer ,node7.id ,10)

*string (" ")

*field(integer ,node8.id ,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*end()

*output ()

*elements (103,0," Tria3 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,10)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,10)

*string (" ")

*field(integer ,node2.id ,10)

*string (" ")
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*field(integer ,node3.id ,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*end()

*output ()

*elements (106,0," Tria6 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,10)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,10)

*string (" ")

*field(integer ,node2.id ,10)

*string (" ")

*field(integer ,node3.id ,10)

*string (" ")

*field(integer ,node4.id ,10)

*string (" ")

*field(integer ,node5.id ,10)
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*string (" ")

*field(integer ,node6.id ,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*field(integer ,0,10)

*string (" ")

*end()

*output ()

*elements (204,0," Tetra4 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,10)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,5)

*string (" ")

*field(integer ,node2.id ,5)

*string (" ")

*field(integer ,node3.id ,5)

*string (" ")

*field(integer ,node4.id ,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")
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*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*end()

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*end()

*output ()
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*elements (210,0," Tetra10 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,5)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,5)

*string (" ")

*field(integer ,node2.id ,5)

*string (" ")

*field(integer ,node3.id ,5)

*string (" ")

*field(integer ,node4.id ,5)

*string (" ")

*field(integer ,node5.id ,5)

*string (" ")

*field(integer ,node6.id ,5)

*string (" ")

*field(integer ,node7.id ,5)

*string (" ")

*field(integer ,node8.id ,5)

*string (" ")

*field(integer ,node9.id ,5)

*string (" ")

*field(integer ,node10.id ,5)

*end()

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)
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*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*end()

*output ()

*elements (208,0," Hex8 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,5)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,5)

*string (" ")

*field(integer ,node2.id ,5)

*string (" ")

*field(integer ,node3.id ,5)

*string (" ")
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*field(integer ,node4.id ,5)

*string (" ")

*field(integer ,node5.id ,5)

*string (" ")

*field(integer ,node6.id ,5)

*string (" ")

*field(integer ,node7.id ,5)

*string (" ")

*field(integer ,node8.id ,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*end()

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)
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*string (" ")

*end()

*output ()

*elements (220,0," Hex20 ","")

*before ()

*sortelements(byid)

*end()

*format ()

*field(integer ,id ,5)

*string ("")

*field(integer ,propertyid ,5)

*string (" ")

*field(integer ,node1.id ,5)

*string (" ")

*field(integer ,node2.id ,5)

*string (" ")

*field(integer ,node3.id ,5)

*string (" ")

*field(integer ,node4.id ,5)

*string (" ")

*field(integer ,node5.id ,5)

*string (" ")

*field(integer ,node6.id ,5)

*string (" ")

*field(integer ,node7.id ,5)

*string (" ")

*field(integer ,node8.id ,5)

*string (" ")

*field(integer ,node9.id ,5)

*string (" ")

*field(integer ,node10.id ,5)

*end()

*string (" ")

*field(integer ,node11.id ,5)
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*string (" ")

*field(integer ,node12.id ,5)

*string (" ")

*field(integer ,node13.id ,5)

*string (" ")

*field(integer ,node14.id ,5)

*string (" ")

*field(integer ,node15.id ,5)

*string (" ")

*field(integer ,node16.id ,5)

*string (" ")

*field(integer ,node17.id ,5)

*string (" ")

*field(integer ,node18.id ,5)

*string (" ")

*field(integer ,node19.id ,5)

*string (" ")

*field(integer ,node20.id ,5)

*string (" ")

*end()

*output ()

*elements (55,1," CERIG ","")

*format ()

*treataslocal(counter11)

*counterset(counter11 ,1)

*loopif ([ counter11 <= dependentnodesmax ])

*string (" ")

*fieldright(integer ,independentnode.id ,0)

*pointerset(pointer1 ,dependentnodes ,[counter11 -1])

*string (" ")

*fieldright(integer ,pointer1.node.id ,0)

*string (" ")

*field(integer ,1,5)

*string (" ")
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*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*field(integer ,0,5)

*string (" ")

*end()

*counterinc(counter11)

*endloop ()

*end()
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*output ()

*materials ()

*format ()

*string (" ")

*fieldleft(integer ,id ,8)

*string (" ")

*treataslocal(counter16)

*counterset(counter16 ,1)

*if([ @attributearrayvalue($MP_EY_VAL2 ,1) < 0.000001])

*counterset(counter16 ,0)

*endif()

*fieldleft(integer ,counter16 ,8)

*end()

*treataslocal(counter1)

*counterset(counter1 ,1)

*loopif ([ counter1 <= counter10 ])

*if([ counter16 == 0])

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_EX_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_PRXY_VAL2 ,counter1)],10)

*end()

*if([ counter14 == 1])

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_ALPX_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_KXX_VAL2 ,counter1)],10)

*end()

*endif()
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*else()

*if([ counter16 == 1])

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_EX_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_EY_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_EZ_VAL2 ,counter1)],10)

*end()

*string (" ")

*fieldleft(real ,[ @attributearrayvalue(MP_GXY_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue(MP_GXZ_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue(MP_GYZ_VAL2 ,counter1)],10)

*end()

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_PRXY_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_PRXZ_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_PRYZ_VAL2 ,counter1)],10)

*end()

*if([ counter14 == 1])

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_ALPX_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_ALPY_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_ALPZ_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_KXX_VAL2 ,counter1)],10)

*end()

*endif()
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*endif()

*endif()

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MP_DENS_VAL2 ,counter1)],10)

*string (" ")

*fieldleft(real ,[ @attributearrayvalue($MPT_VAL2 ,counter1)],10)

*end()

*end()

*counterinc(counter1)

*endloop ()

*output ()

*text()

*string (" ")

*field(real ,pointer2.pointervalue ,15)

*end()

*end()

*output ()

*metadata ()

*format ()

*if([ counter15 == 1 && counter14 != 2])

*string (" ")

*pointerset(pointer1 ,data ,6)

*field(real ,pointer1.pointervalue ,15)

*string (" ")

*pointerset(pointer2 ,data ,7)

*field(real ,pointer2.pointervalue ,15)

*string (" ")

*pointerset(pointer3 ,data ,8)

*field(real ,pointer3.pointervalue ,15)
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*end()

*string (" ")

*pointerset(pointer4 ,data ,9)

*field(real ,pointer4.pointervalue ,15)

*string (" ")

*pointerset(pointer5 ,data ,10)

*field(real ,pointer5.pointervalue ,15)

*string (" ")

*pointerset(pointer6 ,data ,11)

*field(real ,pointer6.pointervalue ,15)

*end()

*string (" ")

*pointerset(pointer7 ,data ,12)

*field(real ,pointer7.pointervalue ,15)

*string (" ")

*pointerset(pointer8 ,data ,13)

*field(real ,pointer8.pointervalue ,15)

*string (" ")

*pointerset(pointer9 ,data ,14)

*field(real ,pointer9.pointervalue ,15)

*end()

*string (" ")

*pointerset(pointer1 ,data ,15)

*field(real ,pointer1.pointervalue ,15)

*string (" ")

*pointerset(pointer2 ,data ,16)

*field(real ,pointer2.pointervalue ,15)

*string (" ")

*pointerset(pointer3 ,data ,17)

*field(real ,pointer3.pointervalue ,15)

*end()

*if([ counter14 == 1])

*string (" ")

*pointerset(pointer4 ,data ,18)
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*field(real ,pointer4.pointervalue ,15)

*end()

*endif()

*endif()

*if([ counter15 == 1 && counter14 == 2])

*string (" ")

*pointerset(pointer1 ,data ,18)

*field(real ,pointer1.pointervalue ,15)

*end()

*string (" ")

*pointerset(pointer2 ,data ,19)

*field(real ,pointer2.pointervalue ,15)

*string (" ")

*pointerset(pointer3 ,data ,20)

*field(real ,pointer3.pointervalue ,15)

*string (" ")

*pointerset(pointer4 ,data ,21)

*field(real ,pointer4.pointervalue ,15)

*end()

*endif()

*output ()
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