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ABSTRACT 

 
Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions 

 
by 

 
Caleb J. Allpress, Doctor of Philosophy 

Utah State University, 2013 

 
Major Professor: Dr. Lisa M. Berreau 
Department: Chemistry and Biochemistry 

 
 The work presented in this dissertation has focused on synthesizing complexes of 

relevance to dioxygenase enzymes that oxidatively cleave aliphatic carbon-carbon bonds. 

The goal of this research was to elucidate mechanistic aspects of the activation of 

aliphatic carbon-carbon bonds towards cleavage by reaction with oxygen, and also 

investigate the regioselectivity of these reactions. The oxidative cleavage of a variety of 

enolizable substrates has been explored by utilizing several transition metal complexes 

supported by an aryl-appended tris(pyridylmethyl)amine ligand. 

 In order to probe the widely-accepted “chelate hypothesis” for how changes in 

regiospecificity are achieved as a function of metal ion, we synthesized the compound 

[(6-Ph2TPA)Fe(PhC(O)COHC(O)Ph)]OTf. Based on UV-vis and IR spectroscopy, the 

acireductone enolate was found to bind via a six-membered chelate ring. By comparison 

with the reactivity of [(6-Ph2TPA)Ni(PhC(O)COHC(O)Ph)]ClO4, we determined that the 

chelate hypothesis was an insufficient explanation of the observed regioselectivity. 
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Rather, ferrous ion-mediated hydration of a vicinal triketone intermediate was the key 

factor in determining the regioselectivity of the C-C cleavage reaction. 

 We have developed a high-yielding synthetic route to protected precursors of 

C(1)H acireductones. Preparation of the complexes [(6-

Ph2TPA)M(PhC(O)COCHOC(O)CH3)]ClO4 (M = Fe, Ni) followed by judicious choice 

of deprotecting conditions allowed us to investigate the oxygen reactivity of a mono-

nuclear complex with a dianionic acireductone substrate for the first time. This provides a 

promising strategy to continue investigations of complexes of relevance to the enzyme-

substrate adduct of the acireductone dioxygenases. 

 Divalent late first-row transition metal complexes have been used to investigate 

some new strategies for the activation of dioxygen and subsequent cleavage of C-C 

bonds. We have utilized photoreduction of a Ni(II) center to generate a highly O2-reactive 

Ni(I) fragment that leads to cleavage of a chloro-diketonate substrate. Additionally, we 

have found a Cu(II)-mediated thermal cleavage of chloro-diketonate substrates at room 

temperature. This reaction is interestingly accelerated by the addition of a catalytic 

amount of chloride ion.  

  
(315 pages) 
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PUBLIC ABSTRACT 

 
Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions 

 
by 

 
Caleb J. Allpress, Doctor of Philosophy 

Utah State University, 2013 

 
Major Professor: Dr. Lisa M. Berreau 
Department: Chemistry and Biochemistry 

 
The work presented in this dissertation has focused on the activation and cleavage 

of chemical bonds between two carbon atoms. The selective oxidative activation of 

carbon-carbon bonds is important due to potential applications in the utilization of 

biomass for fuel production, applications in wastewater treatment and bioremediation, 

and in developing new reactions for organic synthesis of fine chemicals including 

pharmaceuticals. Ideally these reactions would be carried out with high atom economy at 

low temperatures and pressures, and using earth-abundant elements as reagents and 

catalysts. With these points in mind, nature provides an ideal model framework, carrying 

out its chemistry at ambient temperature and pressure. Enzymes that cleave C-C bonds by 

a dioxygenolytic pathway have been our focus as they utilize dioxygen as a terminal 

oxidant and also do not require any coreductants, maximizing atom economy. 

Our strategy has been to use small molecular models to study complex biological 

systems or, conversely, to take inspiration from highly active biological systems to design 

new ways to activate small molecules. We have focused on exploring the reaction 
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pathways of several dioxygenase enzymes that cleave aliphatic C-C bonds, with the goal 

of understanding fundamental factors involved in the activation and direction of cleavage 

of these bonds. These efforts have led to several important advances in understanding of 

the cleavage of C-C bonds. Additionally, the work presented here has thus far led to five 

peer-reviewed publications and five presentations at scientific conferences across the 

country. 
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CHAPTER 1 

OXIDATIVE ALIPHATIC CARBON-CARBON BOND CLEAVAGE REACTIONS IN 

ENZYMATIC SYSTEMS AND RELATED MODEL SYSTEMS† 

 
Abstract 

Over the past decade, several metalloenzymes have been characterized that 

catalyze dioxygenase-type aliphatic carbon-carbon bond cleavage reactions. The 

substrates for these enzymes vary from species that are stable with respect to O2 under 

ambient conditions, to examples that in anionic form exhibit O2 reactivity in the absence 

of enzyme. Described herein are advances from studies of the enzymes themselves and 

model systems. These combined investigations provide insight into novel mechanistic 

pathways leading to aliphatic carbon-carbon bond cleavage and/or the factors that 

influence regioselectivity in the oxidative carbon-carbon bond cleavage reactions.  

 
1. Introduction 

One of the most challenging reactions in chemistry and biology is the selective 

oxidative cleavage of aliphatic carbon-carbon bonds. Despite the prevalence of such 

reactions in biological systems, there is currently little known regarding the mechanistic 

details of such processes. These types of reactions are of considerable current interest due 

to their potential for a broad array of applications, including the utilization of biomass in 

fuel production, the removal of otherwise intractable organic contaminants during 

wastewater treatment and other bioremediation, and for improving understanding of the 

treatment of human disease [1, 2].  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
† Coauthored by Caleb J. Allpress and Lisa M. Berreau. Reproduced in a modified format 
with permission from Coord. Chem. Rev. 2013, 257, 3005-3029. 
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In nature several types of oxidative carbon-carbon cleavage reactions are 

catalyzed by metalloenzymes and involve the incorporation of both atoms of dioxygen 

into their products. These reactions may be divided into two sets, those that result in the 

cleavage of carbon-carbon bonds within an aromatic π-system (aromatic carbon-carbon 

bonds), and those that result in the cleavage of other carbon-carbon bonds (aliphatic 

carbon-carbon bonds). The former, which includes reactions catalyzed by intradiol and 

extradiol catechol dioxygenases, as well as other ring-cleaving dioxygenases, have been 

extensively investigated in studies of both enzymes and synthetic model systems [3-5]. 

Important themes in these investigations included the elucidation of novel mechanistic 

pathways and the discovery of how the metal oxidation state and ligand environment 

influence the regioselectivity of the oxidative reaction. 

In contrast to systems that catalyze oxidative aromatic carbon-carbon bond 

cleavage, the metalloenzymes that cleave aliphatic carbon-carbon bonds have received 

much less attention until recently (with the exception of the quercetin dioxygenases), and 

are notable for their diversity in structure and substrate (Scheme 1-1). Most of the 

enzymes that catalyze these reactions are cupin-type proteins. The metal cofactor is most 

commonly iron, but other first-row transition metals, such as nickel and copper, are also 

found (Table 1-1). Metal binding residues at the active sites of these enzymes vary from 

the common 2-His, 1-carboxylate facial triad (hydroxyethylphosphonate dioxygenase, 

(HEPD)), to the 3-His (acetylacetone 2,3-dioxygenase (Dke1)) and 3-His, 1-carboxylate 

(quercetin dioxygenase (QDO), acireductone dioxygenases (ARD and ARD’)) binding 

motifs. The carbon-carbon bonds cleaved in these systems all have an accessible enol  
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Scheme 1-1. Oxidative aliphatic carbon-carbon bond cleavage reactions discussed in this 

chapter.  
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Table 1-1. Aliphatic carbon-carbon bond cleaving dioxygenase enzymes, active site 

metal ions, and metal coordination environment 

 

Enzyme Metal ion Protein-derived ligands 

Dke1 Fe(II) 3-His 

HEPD Fe(II) 2-His-1-carboxylate 

DAD Fe(II) a 

QDO Cu(II)b 3-His-1-carboxylate 

ARD/ARD’ Ni(II), Fe(II) 3-His-1-carboxylate 

aActive site ligand environment not yet determined.  bFungal quercetinases contain 

Cu(II). Bacterial quercetinases exhibit activity with a variety of metal ions including 

Mn(II), Fe(II), Ni(II) and Co(II).  

 

form, with the notable exception of hydroxyethylphosphonate. The relatively easily 

oxidizable quercetin and acireductone substrates are both oxygen-rich and are 

reminiscient of the common biological reductant ascorbic acid. 

Two of the systems that have received the most attention recently, acetylacetone 

2,3-dioxygenase and the acireductone dioxygenases, highlight the diversity of substrate 

oxidation in these enzymes and attendant mechanistic questions. In the former system the 

oxidation of the substrate is a difficult reaction with no synthetic model systems yet 

devised that can oxidatively cleave the native acetylacetone substrate in a biomimetic 

reaction. Thus, investigations have focused on the unique coordination motif and the role 

of charge at the enzyme active site. By contrast, the substrate for acireductone 

dioxygenases is readily oxidatively cleaved by O2 in the absence of catalyst by simply 
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raising the pH. In studies of relevance to this system, efforts have focused on 

understanding the role that metal center may play in directing the regiospecificity of 

carbon-carbon bond cleavage.  

Summarized herein are recent developments in understanding of metalloenzymes 

that catalyze oxidative aliphatic carbon-carbon bond cleavage via a dioxygenase-type 

reaction. Additionally, model systems of relevance to these enzymes are examined. 

Emphasis is placed on studies that have revealed mechanistic insight into overcoming the 

barrier to the spin-forbidden reaction between the organic substrate and O2, and factors 

that influence regioselectivity in aliphatic carbon-carbon bond cleavage.  We have limited 

the scope of this review to aliphatic carbon-carbon bond cleaving dioxygenases for which 

either mechanistic studies have been reported for the enzyme, or model systems have 

been reported. With this limitation, we have excluded systems such as carotenoid 

oxygenases, for which biochemical and computational studies have been summarized 

recently elsewhere [6]. Additionally, although the decarboxylation of 2-oxo acids such as 

α-ketoglutarate is a type of aliphatic carbon-carbon bond cleavage reaction that occurs in 

metalloenzymes, it is a chemically distinct process that is not included in this review. 

This is because it does not represent aliphatic carbon-carbon bond cleavage resulting 

from incorporation of both atoms of dioxygen into a single substrate [7]. Two exceptions 

that are included in this review are 4-hydroxyphenylpyruvate dioxygenase (HPPD) and 

hydroxymandelate synthase (HMS), which are functionally similar to α-ketoglutarate-

dependent oxygenases but are formally dioxygenases. 
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2. Metalloenzymes that oxidatively cleave aliphatic C-C bonds and their model 

systems 

2.1 Acetylacetone 2,3-Dioxygenase  (Dke1) 

Acetylacetone is used industrially in the production of anti-corrosion agents, 

pharmaceutical compounds, and pesticides. It is also a precursor to several heterocyclic 

compounds (pyrazoles, diketamines) via condensation reactions. Simple metal 

acetylacetonate complexes are useful as catalysts. With its wide array of uses, it is 

important to note that acetylacetone is toxic to mammals [8], as well as to aquatic species 

[9] and microorganisms [10]. Therefore, bioremediation approaches toward the 

degradation of acetylacetone to less toxic byproducts are of current interest. In 2002, 

Straganz, et al. reported the identification of a bacterium (A. johnsonii) that can grow 

with acetylacetone as its only carbon source [11, 12]. This bacterium degrades 

acetylacetone to produce acetate and methyl glyoxal (Scheme 1-1(a)), the latter of which 

is converted to pyruvate. The enzyme that catalyzes this oxidative cleavage reaction is 

termed acetylacetone 2,3-dioxygenase, or diketone-cleaving enzyme (Dke1) [11, 12]. It is 

a tetrameric cytosolic protein with each 16.6 kDa subunit containing a single non-heme 

Fe(II) center. Structural studies of the Zn(II)-containing form of the enzyme (PDB: 3bal) 

revealed Dke1 to be a member of the cupin superfamily [13] of proteins. The Fe(II) 

center is ligated facially by three histidine residues (His62, His64, His104). The 

coordination of these residues makes the active site of Dke1 distinct from the more 

typical two histidine, one carboxylate facial triad found in an array of mononuclear non-

heme iron enzymes that utilize O2 to oxidize organic substrates (e.g. alpha-ketoglutarate 

(α-KG) dependent dioxygenases) [3, 14]. X-ray absorption spectroscopic studies of an 
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Fe(II)-dependent cupin oxygenase protein (Bxe_A2876) from Burkholderia xenovorans, 

which similarly to Dke1 oxidatively cleaves β-diketones, revealed a five or six coordinate 

metal center in the resting state. Specifically, the Fe(II) center has three coordinated 

histidine residues at 1.98 Å, a carboxylate ligand (perhaps Glu98) at ~2.08 Å, and one or 

two coordinated water molecules at 2.04 Å [15]. CD, MCD and VTVH MCD 

spectroscopic studies of Dke1 are consistent with a six-coordinate metal center in the 

resting state [14]. Drawings of possible five- and six coordinate resting state structures 

are shown in the top portion of Figure 1-1.  

 

 

 
 
Figure 1-1. Proposed structures for resting state and substrate-bound forms of Dke1.  
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Bidentate coordination of the acetylacetonate substrate to the Fe(II) center in 

Dke1 results in the loss of glutamate as a ligand to the Fe(II) ion, and a reduction in the 

affinity of the Fe(II) center for a sixth water ligand (Figure 1-1(bottom)) [14]. Notably, 

computational studies suggest that the free Glu98 residue can act as a hydrogen bond 

acceptor for Nε-H of His104 (Figure 1-1(bottom)) [16]. This increases the electron 

density within His104 thus making it a better donor to the iron center, which may assist 

in stabilizing a higher oxidation state iron center during catalysis (vide infra). The 

importance of this interaction is suggested by the fact that mutation of Glu98 results in a 

100-fold decrease in the rate-determining step of O2 reduction [17]. 

The substrate-bound form of Dke1 is characterized by a new absorption feature, 

assigned as dπ→acac π* MLCT transition, in the visible region at ~415 nm (ε ~ 1000 M-

1cm-1). The increased charge within the active site of Dke1, versus 2-His-1-carboxylated 

ligated Fe(II) sites, decreases the energy of the d orbitals, which results in a shift to 

higher energy of the Fe(II)→acetylacetonate MLCT transition in the enzyme-substrate 

complex relative to that found in a typical α-KG dependent enzyme [14]. The Fe(II) 

center in the enzyme-substrate (ES) complex is proposed to be five-coordinate, thereby 

having an available coordination position for reaction with O2.   

O2 consumption studies, combined with NMR experiments, showed that for each 

equivalent of acetylacetone that is oxidatively cleaved by Dke1, one equivalent of O2 is 

consumed [11]. Use of 18O2 in the reaction revealed incorporation of a single labeled 

oxygen atom into methylglyoxal (70%) and acetate (97%), thus demonstrating a 

dioxygenase-type reaction [18]. Additionally, use of H2
18O and unlabeled O2 resulted in 
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no 18O incorporation into acetate, providing evidence that the reactive species formed are 

not susceptible to oxygen atom exchange from water.  

Dke1 catalyzes the oxidative cleavage of a variety of β-diketones [11, 19]. In 

general, β-diketones wherein a terminal methyl group of acetylacetone has been replaced 

with homo-alkyls or non-ionizable rings are reasonable substrates, whereas analogs 

containing a charged substituent (e.g. a carboxylate) are not [11, 12]. Studies of the 

oxidative cleavage specificity of a series of β-diketone substrates in which the electronic 

properties of the R1/R2 substituents (Figure 1-2) were systematically varied revealed a 

strong preference for oxidative cleavage at the carbon-carbon bond adjacent to the most 

electron-deficient carbonyl carbon.  

 

 

Figure 1-2. β-diketone substrates for Dke1.  
 

Single turnover kinetic studies of the reaction catalyzed by Dke 1 were performed 

by monitoring the loss of the MLCT band associated with the Fe(II)-diketonate enzyme-

substrate complex [19]. Overall the reaction was found to be second order, d[ES]/dt =      

-k2[ES][O2]. Kinetic studies as a function of substrate structure revealed a correlation 

between the energy of the substrate HOMO and the rate of the reaction, with a higher 
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energy substrate HOMO corresponding to a faster reaction. These studies provide 

evidence for a rate-determining step that involves oxidation of the enzyme-substrate 

complex by O2.  

The results of the mechanistic experiments described above are consistent with a 

reaction pathway wherein the coordinated enolate acts as a two-electron reductant toward 

dioxygen. This results in the formation of a C(3)-peroxidate species wherein the terminal 

oxygen can nucleophilically attack the most electron deficient adjacent carbon center 

leading to a dioxetane intermediate which subsequently undergoes O-O and C-C bond 

cleavage to give the observed products (Scheme 1-2(top)). Alternatively, recent 

computational studies provide evidence that a lower energy pathway involves Fe(II)-

mediated O2 activation to form a Fe(III)-superoxo species, which subsequently 

electrophilically attacks the HOMO of the coordinated enolate to form a C3-bridged 

peroxo species in the rate-determining step (Scheme 1-2(bottom)). Cleavage of the O-O 

bond leads to the formation of an Fe(IV)=O species and an epoxide. Opening of the 

epoxide, followed by attack of the Fe(IV)=O on the resultant C=C bond would give the 

observed products [20]. 

Features of the active site chemistry of Dke1 have been recently investigated 

using a synthetic analog approach. These include an evaluation of the influence of the 

atypical neutral three-histidine coordination motif on the electronic properties of the iron 

center, evaluation of spectroscopic features associated with the coordination of 

acetylacetonate and analogs to an N3-ligated Fe(II) center, and evaluation of the O2 

reactivity of five-coordinate compounds of relevance to ES adducts. The results of these 

studies are summarized below.   
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Scheme 1-2. Proposed mechanistic pathways for Dke1.  
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2.1.1. Structural and Spectroscopic Models. Synthetic complexes of structural 

relevance to the enzyme/substrate adduct of Dke1 have all utilized a tripodal supporting 

chelate ligand with three heterocyclic nitrogen donors in order to mimic the facial 

arrangement of three histidines at the active site of the enzyme [21-25]. The most 

commonly used ligands have been hydro(trispyrazolyl)borate (Tp) ligands, which are 

widely used in model systems of non-heme iron systems [3]. Tp ligands have been 

successfully used to mimic the 2-His-1-carboxylate facial triad donor set due to their 

inherent negative charge [3, 26]. However, an important distinction between three 

histidine ligands and the 2-His-1-carboxylate facial triad as Fe(II) binding motifs is the 

absence of negative charge in the former. For this reason, Fiedler has additionally utilized 

neutral tris(imidazolyl)phosphine ligands, which have the added advantage of containing 

imidazole rings, potentially making them better mimics of histidine ligands than 

pyrazole-based ligands [22, 23]. This variety of ligands has allowed the properties of 

[(L)Fe(acacx)] (acacx = a variety of acac-derived diketonates) complexes to be probed as 

a function of ligand electronics and sterics, including coordination number and geometry, 

redox potentials and electronic structure [22-24]. 

TpR2Fe(acacx) (Figure 1-3(a)) complexes have consistently been found to be six-

coordinate by X-ray crystallography, with a bound solvent molecule, although when the 

crushed solid is dried in vacuo, elemental analysis is consistent with the removal of 

solvent [22]. By contrast, complexes with a bulkier supporting chelate ligand such as 

TpPh2Fe(acacx) (Figure 1-3(b)) are consistently found to be five-coordinate in the solid 

state, with the geometry changing from distorted square-based pyramidal to distorted 

trigonal bipyramidal as the bulkiness of the substituents on the acacx ligand are increased 
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Figure 1-3. Synthetic complexes of relevance to the ES adduct in Dke1.  
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[22]. The tris(imidazole)phosphine-ligated [TIPPhFe(acacx)]+ complexes (Figure 1-3(c)) 

are all five-coordinate in the solid state, except for the case where both diketonate 

substituents are trifluoromethyl groups (Figure 1-3(d)), which is a six-coordinate 

complex [22, 23]. 

Similar to the acetylacetonate-bound form of Dke1, the electronic absorption 

features of the Fe(II) diketonate complexes shown in Figure 1-3 contain two features that 

have been assigned by DFT to a MLCT and a primarily diketonate-based transition, 

respectively (Table 1-2) [22, 23]. There is a notable blue-shifting of the MLCT 

absorption feature between the complexes TpMe2Fe(acacx) and TpPh2Fe(acacx), despite 

similarities in the electron donating ability of the supporting ligands, consistent with the 

transition from a six- to a five-coordinate complex lowering the d orbital energies [22]. 

Importantly, there is also a blue-shifting of the MLCT absorption feature between the 

five-coordinate complexes TpPh2Fe(acacx) and [TIPPh2Fe(acacx)]+ [22, 23]. A similar shift 

was observed between the acetylacetonate-bound forms of HPPD (4-

hydroxyphenylpyruvate dioxygenase), an iron-containing enzyme with a facial triad and 

Dke1, highlighting the important role of the more positive charge in a 3-His binding 

motif in lowering the energy of the d orbitals [14]. Within these series of complexes, for a 

given supporting ligand set, the absorption features move to lower energy as the electron-

withdrawing ability of the substituents on the acacx ligand increases, with the notable 

exception of [TIPPhFe(acacF6)]+, suggesting that this complex retains a six-coordinate 

geometry in solution, consistent with the poorer electron donating ability of the acacF6 π 

orbitals. 
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Table 1-2. Structural, spectroscopic, and redox properties of Fe(II) diketonate complexes 

of relevance to the enzyme/substrate adduct in Dke1.  

 
 
Diketonate 
Complex 

 
C.N. 

Ancilliary 
ligand 
charge 

 
τa 

 
Wavelength 
(nm) 

 
E (mV) 

 
Ref 

       Me2TpFe(acac) 6 -1 - 348, 438 -303 [22] 
Me2TpFe(acacF3) 6 -1 - 377, 479 -34 [22] 
Ph2TpFe(acac) 5 -1 0.0

9 

356, 420 -58 [22] 
Ph2TpFe(acacF3) 5 -1 0.3

3 

363, 462 158 [22] 

[PhTIPFe(acac)]+ 5 0 0.5

6 

351, 415 Ep,a = 120 [23] 

[PhTIPFe(acacF3)

]+ 

5 0 0.64 373, 461 Ep,a = 360 [23] 

[PhTIPFe(acacF6)

]+ 

6 0  382, 509 N/A [23] 

Dke1-acac 5 0 n.d. 357, 417 n.d. [14] 

Dke1-acacF3 n.d. 0  382. 450 n.d. [19] 

HPPD-acac 5 -1 n.d. 364, 435 n.d. [14] 

       n. d. = Not determined. aτ = 1.0 for a purely trigonal bipyramidal geometry and τ = 0 
for a purely square pyramidal geometry [27].  
 
 

Electrochemical studies have shown a redox wave for the Fe(II/III) couple that is 

reversible for TpPh2Fe(acacx) and TpMe2Fe(acacx), but irreversible for [TIPPhFe(acacx)]+ 

complexes (Table 1-2) [22, 23]. As expected, the complexes become more difficult to 

oxidize with greater electron-withdrawing substituents on the acetylacetonate derived 

ligands, with a lower coordination number, and with an increase in positive charge in the 

complex. 

2.1.2 Functional Models. The study of functional model systems of Dke1 began 

inadvertently in 1993 when Kitajima et al. synthesized TpiPr2Fe(acac) while studying the 

reaction of ferrous complexes with dioxygen to form peroxo-bridged diferric compounds 

[25]. This compound has some relevance to Dke1, having a facial arrangement of three 
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heterocyclic nitrogen donors and the acetylacetone substrate bound, and also exhibits 

cleavage reactivity of the diketonate ligand. Specifically, exposure of a toluene solution 

of TpiPr2Fe(acac) to air at -78°C led to the formation of a bluish green species (assigned 

as a µ-peroxo adduct), followed by subsequent decay to a reddish brown complex that 

was found by X-ray crystallography to be a trimeric Fe(III) complex with bridging 

acetate, oxo and hydroxo moieties (Scheme 1-3). Labeling studies confirmed that the 

source of the acetate ligand was acetylacetonate, although, unfortunately, 18O-labeling 

studies were not reported, which would have confirmed whether the acetate ligand was 

formed via a hydrolytic or oxidative process. In a subsequent study by Siewert et al., it 

was found that exposure of the related compound Tp Me2Fe(acac) to dry O2 led to 

oxidation of the iron center, although no cleavage products were detected [21]. However, 

when the reaction was repeated in the presence of H2O, iron complexes containing 

acetate ligands were detected by MS (Scheme 1-3), suggesting that in the Kitajima 

system, the observed products were due to hydrolytic chemistry rather than oxidative 

chemistry.  

 

 

Scheme 1-3. Acetoacetonate cleavage reactivity of TpiPr2Fe(acac) and Tp Me2Fe(acac). 
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In 2008, Siewert, et al. reported studies of Fe(Xanthmal)2 (Scheme 1-4) which 

undergoes O2-dependent reactivity at the malonate portion of the ligand to give an α-keto 

ester product resulting from oxidative aliphatic C-C bond cleavage [28]. This compound 

is notable for being the inspiration for the use of a malonate diketonate ligand in future 

systems of relevance to Dke1 [21, 24], and is proposed to react via the initial formation of 

a ferric-superoxo species. Interestingly, a monooxygenation of the ligand is also 

observed, proposed to occur via the initial formation of a µ-peroxo species between two 

iron centers, which cleaves to form Fe(IV)=O units which in turn oxidize the ligand.   

 

 

Scheme 1-4. O2-dependent aliphatic carbon-carbon bond cleavage reactivity of 

Fe(Xanthmal)2.  
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Siewert et al. also reported the oxygen reactivity of TpMe2Fe(Phmal) (Phmal = 3-

phenylmalonate) with dry O2, leading to the identification of ethyl benzoylformate and 

ethylcarbonate (which subsequently decomposes to CO2 and EtO-), the expected products 

of Dke1-type cleavage (Scheme 1-5) [21]. The system was found to be catalytic with 

regard to substrate oxidation with a TOF of 55 h-1. The lack of reactivity of an analogous 

ferric complex or a LiPhmal salt led to the proposal of iron-centered activation of O2 via 

the formation of a ferric superoxo species as the likely first step in the reaction 

mechanism of the Dke1 enzyme. 

 

 

Scheme 1-5. O2-dependent aliphatic carbon-carbon bond cleavage reactivity of 

TpMe2Fe(Phmal).  

 

The series of TpR2Fe(acacx) complexes reported by Fiedler exhibit O2 reactivity 

that is relatable to the complexes of Kitajima and Limberg. Specifically, reaction of 

TpMe2Fe(acacx) (except X = F6 (Figure 1-3)) with O2 leads to the formation of a green 

intermediate, followed by decay to a new species. Similar to the reactivity observed by 

Kitajima, the intermediate is assigned as a µ-peroxo species based on EPR, MCD and 

DFT calculations, and the product is assigned as a trinuclear ferric species with bridging 

acetato-derived ligands based on EPR and a crystal structure in the case of 

TpMe2Fe(acacx) (Scheme 1-6(top)) [24]. It is worth noting that the mechanism of the  

 



19	
  

 

Scheme 1-6. (top) O2 reactivity of TpR2Fe(acacX) (R = Me, iPr) complexes. (bottom) O2 

reactivity of TpPh2Fe(acacX) complexes. Substituents X, Y, and Z defined as in Figure 1-

3.  

 

cleavage of acetylacetonate derivatives to form acetate products has not yet been 

investigated and the results of 18O-labeling studies have not been reported. 

By contrast, the complexes TpPh2Fe(acacx) (Scheme 1-6 (bottom)) and 

TIPPhFe(acacx)+ do not rapidly react with O2 to form the same µ-peroxo species, due to 

the increased steric bulk preventing dimer formation in solution. The lower reactivity of 

these complexes with dioxygen suggests that the formation of a ferric superoxo species is 

endergonic, and without the thermodynamic driving force provided by the formation of a 

µ-peroxo species, any equilibrium that forms lies far toward reactants. It is likely that the 
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increased steric bulk does not significantly impede dioxygen access to the metal center, 

as when NO was added to solutions of TpPh2Fe(acacx) and TIPPhFe(acacx)+ binding was 

observed, giving the first spectroscopic and structural analogues of a superoxo adduct of 

relevance to Dke1. Interestingly, in the complexes TpPh2Fe(acacPhmal) and 

TpPh2Fe(acacOMe) (Figure 1-3), oxidative cleavage similar to that found by Siewert et al. 

was observed (Scheme 1-6(bottom)) [21]. Thus, in model systems without secondary 

structural interactions to stabilize intermediates, only activated, electron-rich substrates 

(malonates) can be cleaved (Schemes 1-5 and 1-6(bottom)), thus indicating the important 

role such secondary interactions may play in the enzymatic reaction mechanism. This is 

also consistent with the proposed reaction mechanism for Dke1 wherein the rate-

determining step is the electrophilic attack of an oxygen species on the central carbon of 

the diketonate, and thus substrates with a higher energy π system will react significantly 

faster. At present, the oxygen reactivity of TIPPhFe(malonate) species has not been 

reported, and thus the influence of increased positive charge on Dke1-like cleavage 

chemistry has not been investigated in model systems. 

2.1.3 Dke1-type reactivity in Ni(II) complexes. There has also been a nickel-

containing system reported that has some relevance to the diketonate-cleaving reactivity 

of Dke1. It was found that the combination of Ni(acac)2(H2O)2 with ethylenediamine in 

water, in the presence of dioxygen, leads to the formation of [Ni(en)2(OAc)]+ over the 

course of 18 days (Scheme 1-7) [29]. An anaerobic control resulted in no cleavage, 

leading the study’s authors to propose direct reaction of the NiII(acac) unit with dioxygen, 

without any redox changes occurring at the metal center. Such a reaction pathway would  
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Scheme 1-7. Oxidative aliphatic carbon-carbon bond cleavage reaction of 

Ni(acac)2(H2O)2 in the presence of ethylenediamine in water.  

 

be akin to that shown in Scheme 1-2(top) wherein the coordinated enolate reacts directly 

with O2 [30].  

2.1.4 Dke1-type reactivity in an Fe(III)-containing system. An interesting 

recently reported system involves an in situ generated ferric complex containing both 

imidazole and 2-oxocyclopentanecarboxylate (a diketone) as ligands [31]. In the presence 

of O2, reaction occurs leading to either a single oxygen or dioxygen being incorporated 

into the diketone (Scheme 1-8). Notably, the substrate in this system also has an ester 

moiety akin to the electron-rich malonate substrates described above. While the direct 

relevance of this system to Dke1 is unclear, due to the higher oxidation state of the iron 

center, the dioxygenase-like aliphatic carbon-carbon bond cleavage chemistry is 

interesting in that it is regioselective, leading to exclusive opening of the pentanone ring, 

suggesting that steric strain is an alternative means for activating ligands towards Dke1-

type chemistry.  

2.1.5 Perspective. Following the discovery of the Dke1 enzyme, interest quickly 

became focused on the elucidation of the relationship between structure and 

spectroscopic features, as well as  
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Scheme 1-8. Dke1-type reactivity in an Fe(III)-containing system.  
 

the reaction pathway by which oxidative cleavage of the strong aliphatic carbon-carbon 

bond of a metal-coordinated diketonate is achieved. The His3 ligand donor set for the 

Fe(II) center of Dke1 is notably different from many non-heme iron enzymes that are 

involved in the oxidation of organic substrates using O2. To date, studies of Dke1 and 

synthetic model complexes have provided considerable insight into how the electronic 

environment of the Fe(II) center relates to the observed physical properties of Fe(II)-

diketonate species. However, considerably less information is currently available with 

regard to the factors that govern carbon-carbon bond cleavage within the diketonate. For 

example, thus far only model systems that contain an electron-rich diketonate ligand (e.g. 

malonate) have been shown to undergo reaction with O2 to give oxidative carbon-carbon 

bond cleavage. Reactions involving less electron-rich Fe(II)-diketonate species (e.g. 

acetoacetonate) have been found to instead exhibit hydrolytic cleavage. The chemical 

factors that determine which reaction pathway is operable remain to be elucidated. In 

terms of oxidative reactivity, a clear target for future model studies are systems that 

stabilize the formation of a mononuclear Fe(III)-superoxo species in the presence of a 

coordinated diketonate ligand. Importantly, the ligand environments employed in such 
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complexes should prevent the subsequent formation of diiron(III)-µ-peroxo species, 

perhaps via secondary interactions. Additionally, future studies should also address how 

the charge of the supporting ligand environment influences aliphatic carbon-carbon bond 

cleavage reactivity. Finally, an alternative approach to studying oxidative carbon-carbon 

bond cleavage reactions of relevance to Dke1 are investigations of diketonate complexes 

of other metal ions capable of generating M(II)-O2
- species. Such systems may provide 

insight into the feasibility of carbon-carbon bond cleavage without the need to generate 

high-valent Fe(IV) species, such as is shown in Scheme 1-2. 

 
2.2 Hydroxyethylphosphonate dioxygenase (HEPD) 

 Organic compounds containing phosphorous-carbon bonds play important roles in 

agriculture and medicine. For example, phosphinothricin is a component of the herbicides 

Bast, Liberty, and Ignite, whereas fosfomycin is a naturally occurring antibiotic. Notably, 

the biosynthetic pathways for phosphinothricin tripeptide and fosfomycin both involve 

oxidation reactions catalyzed by non-heme iron dependent enzymes. However, whereas 

the reaction sequence leading to the formation of fosfomycin involves the formation of an 

expoxide [32-41], the reaction sequence leading to the formation of phosphinothricin 

tripeptide involves the oxidative cleavage of a C(sp3)-C(sp3) bond in the conversion of 2-

hydroxyethylphosphonate (HEP) to hydroxymethylphosphonate (HMP) and formate 

(Scheme 1-1(b)) [42-49]. This reaction is catalyzed by 2-hydroxyethylphosphonate 

dioxygenase (HEPD), a cupin-type protein with an active site that contains a 

mononuclear non-heme Fe(II) center ligated by a 2-His-1-carboxylate facial triad along 

with three molecules of water in the resting state. The HEP substrate coordinates in a 
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bidentate fashion, leaving one position on the Fe(II) center available for subsequent 

oxygen activation reactivity  (Scheme 1-9) [42, 46].  

Labeling studies involving the use of 18O2 showed that HEPD is a dioxygenase 

enzyme, albeit complementary studies using H2
18O provided evidence for an 

exchangeable oxygen atom in the reaction pathway [42]. Hydrogen atom abstraction 

occurs stereospecifically at C(2) [45], with the pro-S hydrogen atom being abstracted to 

generate a substrate radical. Notably, while the hydrogen atoms at the C(1) position of the 

substrate are not removed during the oxidative C(1)-C(2) carbon-carbon bond cleavage 

reaction, it has been found that the C(1) hydrogen substituents are racemized during the 

reaction [45]. Two possible mechanisms that account for the observed experimental 

outcomes during HEP oxidation are shown in Scheme 1-9 [44, 46, 47].  In one pathway 

(I-VII), an initially formed Fe(III)-superoxo species abstracts a hydrogen atom from the 

C(2) center in the rate determining step, giving a Fe(III) hydroperoxo complex and a 

substrate radical (III, Scheme 1-9). One-electron transfer to the iron center results in the 

formation of a coordinated aldehyde (IV). C-O bond formation between the distal oxygen 

and C(2), followed by homolytic cleavage of the O-O bond, gives a gemdiol radical and a 

ferric hydroxide species (VI), the latter of which is exchangeable with water.  This 

radical species can undergo homolytic C-C bond cleavage to give coordinated formate 

and a methyl phosphonate radical (VII). Attack of the substrate radical on the axial 

hydroxide gives the final products. Alternatively, the radical species III (Scheme 1-9) 

could undergo homolytic O-O bond cleavage resulting in hydroxylation of the substrate 

and the formation of an Fe(IV)=O moiety (IX, Scheme 1-9). Aliphatic carbon-carbon 

bond cleavage results in the extrusion of formic acid and the formation of an anion that is  
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Scheme 1-9. Proposed mechanistic pathways for aliphatic carbon-carbon bond cleavage 

reactivity in hydroxyethylphosphonate dioxygenase (HEPD). 
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oxidized to radical XI, at which point stereochemical information at C(1) could be lost. 

Rebound with the ferric hydroxide species would provide the HMP product. Recently, the 

roles of water, the active site environment and proton transfer processes in the aliphatic 

carbon-carbon bond cleavage portion of this pathway have been examined 

computationally [48, 49].  

 To date, there have been no model systems reported for HEPD.  

2.3  2,4’-Dihydroxyacetophenone dioxygenase (DAD) 

The degradation of bisphenol A, a xenobiote with endocrine-disrupting activity, is 

carried out by various bacteria. A minor dead-end product in this degradation pathway is 

2,4’-dihydroxyacetophenone (DHAP) [50]. In 1984, Hopper et al. discovered an enzyme 

from Alcaligenes sp. 4HAP capable of degrading 2,4’-dihydroxyacetophenone by a 

dioxygenase reaction to yield formate and 4-hydroxybenzoic acid (Scheme 1-1(c)) [51, 

52]. Purification and characterization of 2,4’-dihydroxyacetophenone dioxygenase 

(DAD), induced by growth of Alcaligenes sp. using 4-hydroxyacetophenone as the sole 

carbon source, showed the enzyme was a homotetramer that contained 0.95 equivalents 

of iron per tetramer, as determined colorimetrically using ferrozine [53]. A comparison of 

its sequence with other oxygenase enzymes showed no significant similarity. The 

structure of the enzyme has not yet been solved, although collection of a diffraction data 

set to 3.1 Å resolution has been reported [54]. 

Recently, a DAD from Burkholderia sp. strain AZ11 was isolated, purified and 

cloned [55]. This enzyme was found to oxidatively cleave 2,4’-dihydroxyacetophenone to 

form 4-hydroxybenzoic acid and formate, with concomitant consumption of one 

equivalent of dioxygen, with Km and Vmax determined to be 1.60 µM and 6.28 µM min-
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1mg-1, respectively, in air-saturated solvent. This enzyme is also a homotetramer, but was 

found to contain 1.63-1.69 equivalents of iron per enzyme. Based on the electronic 

absorption features of the protein (350 nm (5.8 mM-1cm-1) and 560 nm (1.4 mM-1cm-1)), 

the iron center has preliminarily been assigned as a ferric oxidation state, although it must 

be noted that EPR measurements to confirm this assignment have not yet been 

performed. It was also found that upon addition of substrate to the enzyme, there is 

growth of an absorption feature at 400 nm, strongly suggesting that the substrate is 

involved in direct binding to iron at the active site. Substrate specificity assays have 

shown the importance of the α-hydroxyketone unit, as total loss of activity was observed 

when DHAP was replaced with acetophenone or 2-phenylethanol derivatives. The only 

other molecule found to be a substrate for this enzyme was the less electron rich α-

hydroxyketone 2-hydroxyacetophenone, which exhibited an activity only 4.4% of that of 

the native substrate. 

The α-hydroxy ketone unit, necessary for the enzyme activity, is related by 

tautomerization to an enediol. This has led to suggestions that the DAD may catalyze the 

oxidation of its substrate in a manner similar to that of catechol dioxygenases. While it is 

not yet clear whether DAD contains a ferric or ferrous center at the active site, either 

oxidation state could be expected to lead to the observed chemistry – by oxidative 

activation of the substrate, or by reduction of dioxygen to form a superoxo species [4]. 

2.3.1 Model studies.  The production of model systems of relevance to DAD has 

been hindered by the absence of structural or definitive spectroscopic characterizations of 

the enzyme active site. Nonetheless, an important role of synthetic bioinorganic 

chemistry is the elucidation of structural motifs that may act as functional models of an 
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enzyme. In this regard, Paria et al. have synthesized a ferrous complex of 2-

hydroxyacetophenone, supported by a hydrotris(3,5-diphenylpyrazolyl)borate ligand 

(Scheme 1-10) [56]. The use of trispyrazolylborate ligands has a long history in the study 

of non-heme iron enzymes, typically used for the modeling of the facial triad. Although it 

is unclear whether this facial triad exists in DAD, given the lack of homology with other 

dioxygenases. The 2-hydroxyacetophenone binds to the iron center via the keto and 

alkoxo oxygens to form a five-membered chelate. The complex is a distorted trigonal 

bipyramid (τ = 0.62) [27], and exhibits absorption features at 505 and 560 nm, which are 

assigned to charge transfer bands by analogy to ferrous benzoylformate complexes. 

Exposure of benzene solutions of this complex to O2 leads to rapid decay of the 

charge transfer bands. Analysis of the organic products of the solution shows the 

production of benzoic acid and formate, the expected products of DAD-like cleavage; the 

inorganic product has been determined to remain in the ferrous oxidation state. 18O 

studies have shown low (~40%) incorporation of one label from dioxygen into the 

benzoic acid product, and the low level of incorporation has been attributed to water 

exchange with the product. However, this proposition is questionable, as the exchange of 

water into benzoic acid under acidic conditions has previously been found to occur only 

over prolonged reaction times [57].  

Use of low temperature studies has not allowed the characterization of any 

intermediate in the reaction, however the use of intercepting reagents such as 2,4-di-tert-

butylphenol (DTBP) and 2,4,6-tri-tert-butylphenol (TTBP) has provided evidence for a 

likely ferric superoxo intermediate. The lack of ligand oxidation, and progression of the 

reaction in the presence of radical scavengers, have been used to rule out the possibility  
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Scheme 1-10. Proposed mechanistic pathway for aliphatic carbon-carbon bond cleavage 

in 2,4’-dihydroxyacetophenone dioxygenase (DAD). 
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of a Fe(IV)=O intermediate and a free radical mechanism, respectively. The proposed 

overall mechanism is shown in Scheme 1-10. Interestingly, it is distinct from the catechol 

dioxygenase-like mechanism proposed in studies of the enzyme, in that rather than 

involving an alkenyl/acyl migration, the formation of a dioxetane ring and subsequent 

collapse is proposed for the carbon-carbon cleaving step. However, the alkenyl/acyl 

migration may be relevant in this system, as hydrolysis of the resulting anhydride would 

lead to the observed low ~50% 18O incorporation into the products. 

2.4 Quercetin dioxygenases (QDOs) 

 Quercetin is a flavonol that is produced in numerous fruits and vegetables and is 

well known for its antioxidant and antimicrobial properties [58-60]. Degradation of plants 

results in the deposition of quercetin in the soil where bacteria and fungi degrade this 

flavonol in a 2,4-dioxygenolytic type oxidative carbon-carbon bond cleavage reaction 

(Scheme 1-1(d)) that also results in the formation of CO. Fungal quercetinases are known 

to contain a mononuclear Cu(II) center and have been extensively investigated [61-68]. 

The active site Cu(II) center is typically ligated by three histidine residues and a water 

molecule in a distorted tetrahedral geometry. However, a five-coordinate structure 

containing an additional coordinated glutamate ligand has also been identified. The ES 

complex exhibits monodentate coordination of quercertin via a deprotonated O-3 atom 

[68]. It is proposed that this coordination motif enables the formation of a bridging 

peroxo species from which dioxygenase-type oxidative aliphatic carbon-carbon bond 

cleavage occurs (Scheme 1-11) [65-69]. Notably, the oxygen activation step may involve 

electron transfer to generate a Cu(II) superoxide species, or an internal redox tautomer  
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Scheme 1-11. (a) Proposed reaction pathway in fungal quercetinases. (b) Possible sites 

for O2 activation in copper-containing fungal quercetinases. (c) Proposed outer sphere 

electron transfer reactivity of metal-coordinated flavonol with O2 in bacterial 

quercetinases.  
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having Cu(I) flavonoxy radical character (Scheme 1-11(bottom)), with both enabling the 

subsequent formation of the required cyclic peroxide species.  

Recent studies of a bacterial quercetinase from B. subtilis showed that when this 

enzyme is produced in E. coli it binds a variety of divalent metals, with the highest level 

of reactivity being found for Mn(II) [70-73]. The Fe(II)-containing form of this protein 

has been characterized by X-ray crystallography, with the Fe(II) coordination 

environment of this bicupin-type protein being comprised of three histidine donors, one 

glutamate ligand, and a water molecule [70]. Notably, EPR studies using NO suggest that 

substrate binding blocks access of O2 to the Fe(II) center in this enzyme [70]. 

Interestingly, the quercetinase from Streptomyces sp. strain FLA is most active with 

Ni(II) as the cofactor, albeit incorporation of other divalent metal ions such as Co(II), 

Fe(II), and Mn(II) also produces active enzyme [74, 75].  

The wide variety of divalent metal ions utilized by bacterial quercetinases, the 

M(II)/M(III) couples of which span more than 1.5 V, suggest that a reaction mechanism 

involving oxidation of the divalent metal center to form a M(III)-O2
- species is not likely. 

Additionally, an internal redox processes leading to the formation of a M(I)-flavonoxy 

radical species akin to that proposed for Cu(II)-containing quercetinases also does not 

seem feasible for Mn(II), Fe(II), Ni(II), or Co(II) containing quercetinases due to the lack 

of accessibility of their M(I) oxidation state.  An alternative mechanistic pathway that has 

been proposed for such systems involves outer sphere electron transfer from the substrate 

to dioxygen to form a M(II)-O2
-/flavonoxy radical species (Scheme 1-11(bottom)) [5]. 

Recombination of the radicals would subsequently allow for a reaction pathway 

involving a cyclic peroxide species and aliphatic carbon-carbon bond cleavage. The outer 
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sphere electron transfer hypothesis is consistent with the observed chemical reactivity of 

free flavonolate anions (vida infra), which undergo reaction with O2 to generate 2,4-

dioxygenolytic cleavage products [76-79]. Thus, the role of the divalent metal ion in 

quercetinases may be to stabilize the deprotonated flavonolate, transition states and 

intermediates, versus mediating electron transfer to overcome the spin-barrier with O2.  

2.4.1 Cu(II)-containing structural models. Several synthetic Cu(II) flavonolate 

complexes have been prepared as structural models for the ES adduct in fungal 

quercetinases. These complexes are supported by a variety of chelating nitrogen donor 

ligands and contain flavonol ligands that vary in terms of the presence of electron 

donating/withdrawing substituents. The structural and spectroscopic properties of the 

majority of these compounds are described in recent reviews [80, 81].  

2.4.2 Functional models. 

2.4.2.1 Flavonolate anion reactivity with O2. Kinetic and mechanistic studies of 

the oxygenation of 3-hydroxyflavone and analogs under basic conditions, or in the form 

of alkali metal salts, have been previously reported [80, 82]. The products generated in 

reactions involving the anion of 3-hydroxyflavone (a carboxylate (O-benzoylsalicylate or 

hydrolysis products thereof) and CO) mimic the enzymatic reaction and result from 2,4-

dioxygenolytic type oxidative aliphatic carbon-carbon bond cleavage (Scheme 1-1(d)). 

Notably, increasing the electron density in the flavonolate anion through substitution at 

the 4’-position of the C(3)-aromatic substituent, increases the rate of reaction, which is 

consistent with a more electron rich flavonolate being a better reducing agent toward O2. 

Evidence for the reaction of the flavonolate with O2 involving single electron transfer 

was found in terms of a long-lived flavonoxy radical species that was identified by EPR 



34	
  
[78]. Overall, these studies provide evidence that an outer sphere single electron transfer 

pathway is feasible between the flavonolate anion and O2 as an initial step toward 2,4-

dioxygenolytic aliphatic carbon-carbon bond cleavage. 

2.4.2.2 Reactivity of Cu(II)-flavonolate complexes with O2. Upon heating, Cu(II)-

coordinated flavonolate complexes also undergo reaction with O2 to produce CO and a 

Cu(II)-coordinated carboxylate having two oxygen atoms derived from O2. However, 

other reaction pathways that do not lead to CO release have also been identified [80]. For 

the systems that exhibit biomimetic reactivity, the reaction is slower than that of 

potassium flavonolate. This is consistent with the copper center withdrawing electron 

density from the bidentate-coordinated flavonolate. In terms of the mechanism of oxygen 

activation, the presence of the redox active metal ion enables a valence tautomerism 

between Cu(II)-flavonolate and Cu(I)-flavonoxy radical species, the latter of which may 

react with triplet O2 at the metal center or at the organic radical (Scheme 1-11(b)). Kinetic 

studies have been performed for a variety of Cu(II) flavonolate complexes, with all of the 

reactions requiring temperatures of > 80 oC to proceed with a second order rate constant 

of at least 1.0 x 10-3  M-1s-1 [80, 81]. Notably, oxygenation of [Cu(3-Hfl)(idpa)]ClO4 in 

the presence of excess acetate or triphenylacetate dramatically increases the rate of 

reaction [83]. This rate enhancement has been suggested to be the result of competition 

between coordination of the flavonolate ketone moiety and acetate anion. A coordinated 

flavonolate ligand having enhanced monodentate coordination character is expected to be 

more electron-rich and therefore more reactive for electron transfer with O2.   
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2.4.2.3 O2 reactivity of metal flavonolate complexes of other 3d metals. Divalent 

metal flavonolate complexes of structural relevance to bacterial quercetinases are 

considerably fewer in number [84], and only a handful of synthetic metal flavonolate 

complexes for metals other than copper have been investigated in terms of their thermal 

O2 reactivity. Examples of reactive model systems have thus far been reported containing 

Co(II) [77], Co(III) [85, 86], Mn(II) [87, 88], Fe(III) [87-90], and Zn(II) [91]. For the 

Co(III) complex [Co(III)(salen)(4’MeOflaH)], reactivity between the flavonolate and O2 

is proposed to occur following dissociation of the flavonolate from the Co(III) center [85, 

86]. O2 reactivity studies of an Fe(III) flavonolate complex, [Fe(III)(salen)(3-Hfl)], 

demonstrated that the rate of reaction could be enhanced through the addition of bulky 

carboxylates (e.g. triphenylacetate) [89]. As noted previously for Cu(II)-containing 

systems, the rate enhancement is likely due to metal coordination of the carboxylate, 

which induces the formation of a more reactive monodentate flavonolate-ligated Fe(III) 

complex. Evidence for direct single electron transfer from the flavonolate to produce 

superoxide anion has been detected in reactions involving [Fe(III)(salen)(3-Hfl)] and 

[Zn(3-Hfl)(idpa)]ClO4 [82][89]. 

 2.4.3 Perspective. Studies of the Cu(II)-containing fungal quercetinases and 

relevant model compounds over the past decade have suggested that a Cu(II)-flavonolate 

species, or a Cu(I)-flavonoxy radical species, react with O2 to initiate aliphatic carbon-

carbon bond cleavage. The discovery of bacterial quercetinases that can utilize a variety 

of divalent metal ions of differing redox potentials to promote the same reaction suggests 

that in these systems it is the single electron transfer reactivity of the coordinated 

flavonolate moiety itself with O2, not metal-based oxygen activation, that is likely a key 
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step in the reaction pathway. Overall, the studies described herein suggest that the metal 

center in quercetinases is responsible for stabilizing the deprotonated form of the 

substrate and tuning it in terms of electron density (via coordination effects) for 

subsequent reactivity with O2. 

2.5 Acireductone Dioxygenases (ARDs) 

 The methionine salvage pathway, which has been identified in mammals, yeast, 

bacteria, protozoa, and plants, is involved in several major cellular functions related to 

cell proliferation and differentiation. The most well-studied methionine salvage pathway 

is from the bacterium K. pneumonia [92]. Within this pathway (Figure 1-4), an 

acireductone intermediate has been identified at the only branch point. This intermediate 

is a substrate for two different acireductone dioxygenase enzymes whose only 

constitutive difference is the nature of the metal ion coordinated within the active site. A 

divalent iron-containing enzyme, Fe(II)-ARD’, catalyzes oxidative C(1)-C(2) bond 

cleavage within the acireductone substrate and the production of 4-methylthio-2-

oxobutanoic acid (MTOB) and formate in an “on-pathway” reaction (Figure 1-4(inset)). 

MTOB is a precursor for the regeneration of methionine via a transaminase-catalyzed 

reaction. A nickel-containing dioxygenase, Ni(II)-ARD, catalyzes a reaction that is a 

shunt out of the methionine salvage pathway wherein the cleavage of the C(1)-C(2) and 

C(2)-C(3) bonds of the substrate results in the formation of 2-methylthiopropionic acid, 

formate, and CO (Figure 1-4(inset)).  

The Fe(II)-ARD’ and Ni(II)-ARD-catalyzed reactions are of interest for several 

reasons. First, while several metalloenzymes exhibit varying degrees of activity as a 

function of the metal ion present, the ARD/ARD’ system is the only demonstrated  
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Figure 1-4. Methionine salvage pathway in K. pneumonia.  
 

example of different chemical reactions resulting from a change of the metal ion bound 

within the same protein component [92]. Second, the reaction catalyzed by Ni(II)-ARD 

results in the generation of CO, a biological signaling molecule. Third, the role of the 

divalent metal ion in these dioxygenases is proposed to be that of a Lewis acid which 

stabilizes a dianionic form of the acireductone substrate for reaction with O2. This notion 

is supported by the fact that Mg(II)-containing ARD’ catalyzes MTOB formation. For 

Fe(II)-ARD’, the role of the divalent iron center thus contrasts from that found in other 
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Fe(II)-containing dioxygenases wherein the metal center is directly involved in oxygen 

activation via redox reactivity. Fourth, the observed regioselectivity of aliphatic carbon-

carbon cleavage promoted by Fe(II)-ARD’ and Ni(II)-ARD is proposed to be the result of 

differing coordination modes for the acireductone dianion (an enediolate) in the ES 

complexes. This proposed coordination chemistry-driven regioselectivity for carbon-

carbon cleavage is distinct from that proposed for the iron-containing catechol 

dioxygenases wherein the oxidation state of metal center (Fe(II) vs. Fe(III)) impacts 

substrate activation and the site of reactivity with O2.  

The “chelate-hypothesis” for ARDs was proposed on the basis of comparative 

spectroscopic investigations of Ni(II)-ARD and Fe(II)-ARD’ [93-98] The combined 

results of NMR and XAS studies, as well as evaluation of X-ray crystallographic studies 

of a putative Ni(II)-ARD (MmARD, PDB 1VR3), provide evidence that the divalent 

metal center in the resting state form of Ni(II)-ARD and Fe(II)-ARD’ is coordinated by 

three histidine residues (His96, His98, His 140), a glutamate (Glu102), and two water 

molecules (Figure 1-5(a)). For both metalloenzymes, the formation of the ES complex is 

proposed to result in displacement of at least one water ligand, and perhaps a histidine 

residue, to enable bidentate substrate coordination. Notably, Ni(II)-ARD and Fe(II)-

ARD’ appear to differ significantly in the structural features of the C-terminus, which 

results in differing secondary environments near the substrate coordination site. 

Specifically, NMR studies suggest that while in Ni(II)-ARD Trp162 is positioned within 

~7 Å of the metal center, in Fe(II)-ARD’ disorder within in the last 22 residues of the C-

terminus (Asp157-Ala179) results in a more open coordination environment. Substrate 

docking studies suggest that bidentate coordination within the more sterically congested 
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Ni(II)-ARD binding site occurs via the O(1) and O(3) atoms whereas within the more 

open active site of Fe(II)-ARD the substrate coordinates via the adjacent O(1) and O(2) 

atoms (Figure 1-5(b and c)). The “chelate hypothesis” is that these differing coordination 

modes activate specific carbon centers within the coordinated acireductone for reactivity 

with O2, leading to differences in the regiospecificity of aliphatic carbon-carbon bond 

cleavage.  

On the basis of spectroscopic and kinetic studies of Ni(II)-ARD and Fe(II)-ARD’, 

both enzymes exhibit an ordered sequential mechanism (Scheme 1-12), with the 

acireductone substrate initially coordinating to the metal center as a dianion in the 

 

  

Figure 1-5. (a) Metal coordination environment found in the resting state for Ni(II)-ARD 

and Fe(II)-ARD’. (b) and (c) Possible coordination motifs for the ES complexes of 

Ni(II)-ARD and Fe(II)-ARD’. 
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anaerobic ES complex. The electron-rich coordinated substrate for each is then proposed 

to react directly with O2, likely via one-electron steps, to generate a C(1)-coordinated 

peroxo species which subsequently forms a six-membered cyclic peroxide species for 

Ni(II)-ARD, or a five-membered analog in Fe(II)-ARD’. Subsequent O-O and C-C bond 

cleavage leads to the observed products. These proposed reaction pathways fit with 

results of 18O labeling experiments wherein one oxygen atom from 18O2 is found in each 

carboxylate product (%18O label incorporation ~75% for alkyl carboxylates) [99]. We 

note that as oxygen atoms of aliphatic carboxylates/carboxylic acids (e.g. butyrate/butyric 

acid) do not exchange to any significant extent under standard conditions (25 °C, water,  

 

 

Scheme 1-12. Proposed structures of ES complexes for Ni(II)-ARD and Fe(II)-ARD’ and 

reactions with O2.  
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14 days) [57], the level of 18O incorporation in the aliphatic product results from the 

ARD/ARD’ reactions. A 14C label incorporated at the C(2) position of the acireductone 

substrate was found in the CO product generated via the Ni(II)-ARD catalyzed reaction. 

Use of cyclopropyl analog substrate provided evidence for a radical pathway in the 

Ni(II)-ARD and Fe(II)-ARD’-catalyzed reactions [93]. Use of this analog substrate 

results in the irreversible inactivation of Ni(II)-ARD after ~100 turnovers and Fe(II)-

ARD’ after ~20 turnovers in the presence of O2.  

2.5.1 Structural features, coordination chemistry, and O2 reactivity of open-

chain acireductones. As shown in Figure 1-6(a), protonated, neutral forms of 

acireductone have been suggested to form structures involving a six-membered ring. 

However, the X-ray structures of the rubidium salt and protonated neutral form of triose 

reductone (R = R’ = H; Figure 1-6(b)) revealed that all three oxygen atoms are positioned 

on one side of the carbon chain [100, 101]. Prior to our studies outlined herein, only one 

transition metal compound having a coordinated acyclic acireductone ligand had been 

characterized by X-ray crystallography. This compound, [(Ru(bipy)2)2(µ-C4H4O3)](PF6)2 

(Figure 1-6(c)) was generated as a byproduct in reactions of [Ru(bipy)2Cl2⋅2H2O] in 

ethylene glycol in the presence of NH4PF6. Similar to the triose reductone structures, the 

acireductone ligand in [(Ru(bipy)2)2(µ-C4H4O3)](PF6)2 is coordinated with all three 

oxygen atoms on the same side of the carbon chain [102]. In this case, it is a dianion that 

bridges two Ru(II) centers. Similar backbone carbon-carbon bond distances, and C(1)-O 

and C(3)-O units (1.29 and 1.30 Å, respectively) that are shorter than the C(2)-O bond 

(1.39 Å), indicate a delocalized enolate anion along the three carbon backbone.   
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Figure 1-6. (a) Proposed structure of acireductones. (b) X-ray crystallographically 

determined structures of the protonated form and rubidium salt of triose reductone. (c) X-

ray crystallographically characterized structure of [(Ru(bipy)2)2(µ-C4H4O3)](PF6)2. 

 
Open chain acireductone anions exhibit a π→π* transition with the wavelength of 

this absorption feature depending on the protonation level. For example, the monoanions 

II- and III- (Figure 1-7), which are analog substrates for ARD enzymes, exhibit intense 

absorption bands at 305 (20,000 M-1cm-1) and 320 (14,000 M-1cm-1) nm, respectively 

[93]. This feature red-shifts upon formation of the dianion, with II2- and III2- exhibiting 

features at 345 (14,000 M-1cm-1) and 360 (11,000 M-1cm-1) nm, respectively. These 

protonation level-dependent spectral features enabled the assignment of the coordinated 

acireductone substrate as a dianion in the anaerobic ES complexes of Ni(II)-ARD and 

Fe(II)-ARD’ [93].  



43	
  
 

Acireductone anions are reactive with O2 in the absence of enzyme catalysis [93]. 

For example, exposure of aqueous solutions of II- and III- to air results in the formation 

of Fe(II)-ARD’-type products (α-ketoacid and formate). The second-order rate constant 

for the non-enzymatic reaction of O2 with II- is 66-times slower than the same reaction 

with the dianion II2- (0.12 vs. 8 M-1s-1) [93]. 

 

Figure 1-7. Native and alternative substrate for Ni(II)-ARD and Fe(II)-ARD’.  
 

Borowski has computationally examined the uncatalyzed reaction of a 

acireductone monoanion with O2 [103]. These DFT calculations provide a rationale for 

the observed formation of α-ketoacid and formate (Scheme 1-13). The initial step 

between the acireductone monoanion and 3O2 involves a single electron transfer reaction, 

resulting in the formation of superoxide and a radical anion via a thermodynamically 

neutral process. This reaction is akin to that proposed for the Ni(II)-ARD and Fe(II)-  
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Scheme 1-13. Reaction pathway for uncatalyzed reaction of acireductone monoanion 

with O2. Energies given are in kcal/mol.  
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Scheme 1-14. Two alternative mechanisms for reactivity of an acireductone monoanion 

with O2. These pathways, both of which involve formation of singlet peroxide species, 

produce two carboxylic acids and CO (Ni(II)-ARD-type products). Energies given are in 

kcal/mol. 
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ARD’ ES complexes with O2. In the absence of the enzyme, the lowest energy 

subsequent reaction is that of the radical anion with 3O2 to form a α-keto-acid radical and 

formate. A final radical propagation step involving the acireductone monoanion gives the 

α-ketoacid and formate products. The rate-determining step in this sequence involves the 

formation the four-membered cyclic peroxide transition state species that subsequently 

undergoes O-O and C(1)-C(2) bond cleavage. A five-membered ring TS species 

produced from the radical anion 2•- and 3O2 leads to Ni(II)-ARD products but involves a 

significantly transition state barrier (19.8 kcal/mol). Notably, mechanisms that involve a 

singlet peroxide species (Scheme 1-14) favor Ni(II)-ARD type CO release reactivity. 

These pathways have transition states at higher energy than the pathway leading to α-

ketoacid formation. 

2.5.2 Model systems containing an acireductone monoanion. For initial 

synthetic model studies, we used the bulky acireductone monoanion 

[PhC(O)C(OH)C(O)Ph]- (IV-, Scheme 1-15). While IV- is not a substrate for Ni(II)-ARD 

or Fe(II)-ARD’, it is convenient to use due to ease of synthesis relative to analogs of the 

native acireductone substrate [104]. Anion IV- is akin to Fe(II)-ARD’/Ni(II)-ARD 

substrate III- (Figure 1-7), but has an additional phenyl substituent at the C(1) position. 

The extended conjugation in IV- results in an absorption maximum at 385 nm. The most 

stable form of IV- has the terminal phenyl groups arranged cis with respect to each other 

and with the central oxygen protonated. The presence of the C(1)-phenyl group 

introduces important differences versus the C(1)-H enzyme substrates I-III. For example, 

reaction of the IV- with O2 results in C(1)-C(2) and C(2)-C(3) cleavage (Ni(II)-ARD-type 



47	
  
products), specifically, benzoic acid/benzoate and CO. The level of 18O incorporation in 

the benzoic acid/benzoate is 65-72%.  

To gain insight into the factors governing the O2 reaction of IV- versus the 

reactions of monoanion forms of I-III, computational studies were performed [105]. A 

radical mechanism akin to that described above for the C(1)-H type acireductones I-III 

was evaluated, along with a pathway leading to the formation peroxo species (termed a 

hydroperoxide mechanism). For IV-, the latter was found to be more energetically 

feasible [105]. This mechanism (Scheme 1-15) involves an initial two-electron oxidation 

of IV- with O2 to give 1,3-diphenylpropanetrione and hydroperoxide anion. Subsequent 

reaction between the trione and HO2
- gives a hydroperoxide group coordinated to the 

central carbon that can easily migrate to the terminal position. Attack of the terminally-

bound hydroperoxide at the C(3) carbonyl yields a five-membered ring that can 

decompose to benzoate anion, benzoic acid and CO. The radical mechanism is less 

feasible due to high barriers associated with the formation of cyclic peroxide species 

[105].   

In addition to the features of the primary coordination sphere of Ni(II)-ARD 

described above, the active site secondary environment of this metalloenzyme contains 

two phenylalanine residues that are proposed to help orient the coordinated substrate 

[96]. On the basis of these features, we used the aryl-appended N4-donor ligand 6-

Ph2TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine)) [106] to 

prepare the first analytically pure complex of structural relevance to the proposed ES 

adduct in Ni(II)-ARD ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1), Figure 1-8)  
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Scheme 1-15. Computationally determined reaction pathway for aliphatic carbon-carbon 

bond cleavage upon reaction of IV- with O2. Energies given are in kcal/mol. 
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[107]. A structurally similar complex can be constructed under identical conditions using 

a supporting chelate ligand wherein the two aryl appendages have been replaced by two 

hydrogen bond donors (3, Figure 1-8(b)) [108]. However, we encountered difficulties 

when trying to prepare similar complexes wherein either the metal has been changed (e.g. 

Co(II)), or the ligand environment is less sterically hindered (e.g. 6-PhTPA) [109, 110]. 

The complicating issue in these syntheses is a water-dependent, Lewis acid promoted 

rearrangement of IV to give an ester. Synthetic procedures performed under water-free or 

trace water conditions enabled the preparation of [(6-

Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]OTf (2) and isolation of analytically pure [(6-

PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (4, Figure 1-8), respectively [110].  

 

 

Figure 1-8. Synthetic routes for the preparation of 1-4.  
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Complexes 1 and 4 were characterized by single crystal X-ray crystallography 

[107, 110]. Overall, the Ni(II) centers in 1 and 4 are structurally similar to the ES adduct 

of Ni(II)-ARD in terms of the overall coordination number [98]. These complexes exhibit 

similar structural features with C-C bond distances within the six-membered ring chelate 

enolate being consistent with a delocalized formulation for the bound anion. The average 

Ni-O/N distances are slightly longer in the synthetic complexes (2.16 Å) than those found 

by XAS for the enzyme ES adduct (2.04 Å) [94]. The proposed six-membered chelate 

ring for the coordinated bulky acireductone in 2 and 3 is proposed based on comparison 

of 1H NMR spectroscopic comparisons to X-ray crystallographically characterized air 

stable acetylacetone- or dibenzoylmethane-coordinated analogs [108, 110]. It should be 

noted that while each of complexes 1-4 are paramagnetic, sharp signals associated with 

the supporting chelate ligand are diagnostic for particular structural features [107-110]. 

Additionally, each complex exhibits a νO-H vibration in the solid state IR spectrum, 

consistent with the presence of the bulky acireductone monoanion C(2)-OH substituent. 

When dissolved in acetonitrile, each complex forms an orange solution due to an 

absorption band in the region of 385-399 nm (Table 1-3).  

 
Table 1-3. UV-vis spectroscopic properties of acireductone monoanion complexes.a  

Complex Absorption Maximum 

nm (ε , M-1cm-1)a 

Reference 

   1 399 (6800) [111] 
2 397 (n.d.) [110] 
3 393 (10000) [108] 
4 399 (10300) [110] 
   aSpectra collected in CH3CN at ambient temperature. n.d. = not determined. 
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The absorption feature in the visible region of 1-4, which is comprised primarily 

of a π→π* transition of the coordinated enolate, is lost upon the introduction of O2. 

Kinetic studies of the reactions of 1 with O2 show that this reaction is second-order 

overall with a rate of 1.7 M-1s-1 [105]. Analysis of the acireductone-derived products 

generated upon reaction of analytically pure 1-4 with O2 revealed the formation of 

benzoic acid/benzoate, CO, the diketone benzil, and in some cases the acireductone 

isomerization product (Scheme 1-16). These products match those produced upon 

reaction of Me4N[PhC(O)C(OH)C(O)Ph] with O2, with the exception of benzil. The 

formation of benzil provides experimental evidence for the triketone pathway leading to 

aliphatic carbon-carbon bond cleavage as proposed computationally for the reaction of 

the bulky acireductone with O2 [105]. Specifically, benzil can be generated via a Lewis 

acid-promoted benzoyl migration involving 1,3-diphenyltriketone. Alternatively, 

diphenylpropantrione and hydroperoxide may react to generate Ni(II)-ARD-type products 

(carboxylic acid/carboxylate and CO) (Scheme 1-17).  Comparisons of the product 

mixtures obtained for the O2 reactions of 1 and 3 revealed that the amount of benzil 

produced relative to benzoic acid/benzoate depends on the nature of the supporting 

chelate ligand [108]. The benzoic acid/benzoate products generated in the reactions of 1  

 

Table 1-4. Level of 18O incorporation in benzoic acid/benzoate products 

Complex %18O incorporation 

using 18O2 (99+%) 

Reference 

   Me4N[PhC(O)C(OH)C(O)Ph] 65 [105] 
1 64a, 59b [111] 
   a[(6-Ph2TPA)Ni(O2CPh)]ClO4; bbenzoic acid 
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Scheme 1-16. O2 reactivity of divalent metal complexes of IV-.  
 

 
 

 

Scheme 1-17. Reaction pathway of 1 with O2 via the formation of a 1,3-

diphenyltriketone as an intermediate.  
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contain an 18O label when the reaction is performed using 18O2. The level of 18O isotope 

incorporation derived from 18O2 for the reactions of Me4N[PhC(O)C(OH)C(O)Ph], and 1 

is given in Table 1-4. Notably, while the level of incorporation is similar. 

2.5.3 Model systems containing an acireductone dianion. Our first attempt to 

generate an acireductone dianion complex of relevance to the proposed ES complex in 

Ni(II)-ARD involved treatment of 1 (Figure 1-8) with one equivalent of Me4NOH⋅5H2O 

in CH3CN under anaerobic conditions [107]. This resulted in a red-shift of the electronic 

absorption spectral feature to ~420 nm (ε ∼ 2500 M-1cm-1), suggesting the formation of a 

new enediolate complex (5). This structure of this complex was later verified as a 

hexanickel enediolate cluster, {Ni(PhC(O)C(O)C(O)Ph)(CH3OH)⋅1.33CH3OH}6 (5, 

Figure 1-9(top)), via independent synthesis [112]. Within this cluster, the enediolate form 

of the bulky acireductone is coordinated in a bridging position between two Ni(II) 

centers, forming two five-membered chelate rings akin to the motif found in 

[(Ru(bipy)2)2(µ-C4H4O3)](PF6)2 [102]. 

Addition of O2 to an in-situ generated CH3CN solution of 5 results in the rapid 

bleaching of the orange-red color and the formation of a Ni(II) dibenzoate complex, [(6-

Ph2TPA)Ni(O2CPh)2(H2O)] (6) and carbon monoxide (Scheme 1-18) [112]. Use of 18O in 

the reaction mixture resulted in ~86% incorporation of one labeled oxygen atom per 

benzoate ligand. It should be noted that benzil is also produced in this reaction providing 

evidence that the aliphatic carbon-carbon bond cleavage reaction occurs via the triketone 

pathway. 

 In an attempt to isolate a mononuclear Ni(II) enediolate complex of relevance to 

the ES adduct proposed for Ni(II)-ARD, we utilized a new ligand (6-NA-6-Ph2TPA)  
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Figure 1-9. Structural features of the hexanickel cluster 5. (a) A view of the entire 

{Ni(PhC(O)C(O)C(O)Ph)(CH3OH)}6 cluster. (b) View of a single layer.  
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Scheme 1-18. O2 reactivity of the hexanickel enediolate cluster compound 5.  

 
wherein the features of the 6-Ph2TPA ligand have been augmented with a hydrogen bond 

donor neopentyl group [113]. Using this ligand, repeated attempts to synthesize either a 

mononuclear diketonate monoanion complex, or an enediolate complex, resulted only the 

isolation of a trinuclear Ni(II) bis-enediolate complex (7, Scheme 1-19). Similar to the 

hexanickel cluster, each enediolate ligand in this trinuclear complex is positioned in a 

bridging motif between two Ni(II) centers and forms two five-membered chelate rings. In 

this case one Ni(II) center, the central metal ion within the trinuclear cation, is square 

planar. The two terminal pseudooctahedral Ni(II) centers are equivalent via a C2 rotation.  

 

Scheme 1-19. O2 reactivity of the trinuclear bis-enediolate complex 7.  
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 The absorption spectrum of 7 is notably different from that exhibited by the 

hexanickel cluster 5, with an intense broad absorption band centered at 463 nm (ε 

~16,000 M-1cm-1). This feature is likely comprised of both a ligand-based π→π* feature 

and a LMCT involving the square planar Ni(II) center.  

 Exposure of a CH3CN solution of 7 to O2 results in products akin to those 

generated from decomposition of the hexanickel cluster in the presence of a chelate 

ligand (e.g. 6-Ph2TPA), specifically, [(6-NA-6-Ph2TPA)Ni(O2CPh)]ClO4 (8) CO, and 

benzil [113]. The level of 18O incorporation in the benzoate product is similar to that 

found for the reaction of 5 with O2 (~86%). One additional product, 

Ni(O2CPh)2⋅nCH3OH, was identified and is proposed to be derived from the central 

Ni(II) center in the trinuclear compound.  

2.5.4 Perspective. The chemistry of acireductone dioxygenases is important 

based on the fact that these enzymes are found at the only branch point of the biologically 

universal methionine salvage pathway. The reactivity of these enzymes may represent a 

possible regulatory shunt and/or a source of the signaling molecule CO. The key open 

question for acireductone dioxygenases concerns what factors govern the regioselectivity 

of aliphatic carbon-carbon bond cleavage. XAS and NMR spectroscopic studies of Ni(II)-

ARD and Fe(II)-ARD’ have been used as the primary basis for formulating the “chelate 

hypothesis” to explain the reaction regioselectivity. However, the results of the Fe(II)-

ARD’ NMR studies need to be viewed with some caution. Specifically, the proposed 

structure of Fe(II)-ARD’, with its more open active site environment, is based on the 

spectroscopic similarity of this protein to a metal-free mutant (H98S). The assumption in 

this comparison is that the structural similarities of the proteins extend to the active site 
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and that any structural changes due to metal binding are minimal. As the chelate 

hypothesis is based on the fact that the active site secondary environments in Ni(II)-ARD 

and Fe(II)-ARD’ differ, it is important to note that clear evidence for a difference in the 

chelation mode of the substrate in the ES complexes of Ni(II)-ARD and Fe(II)-ARD’ 

cannot be discerned either from existing XAS or UV-vis data. Based on these issues, a 

significant advance in the field of acireductone dioxygenases would be the definitive 

structural characterization of ARD ES complexes of specific metal ion content.   

To date, no iron-containing model systems have been used to investigate the 

Fe(II)-ARD’. Such a model system would allow the investigation of important questions 

such as whether the subtle differences in Lewis acidity of Fe(II) and Ni(II) is sufficient to 

change the binding mode of an acireductone substrate. Additionally, the ability of a Fe(II) 

center to modulate the regioselectivity of oxidative cleavage of an acireductone substrate 

could also be probed. The lack of model iron-containing model systems is presumably 

due to the anaerobic reactivity of acireductone substrates (to produce an ester via an 

isomerization reaction). The varying water-sensitivity of a model acireductone substrate 

as a function of both metal ion identity and chelate ligand structure imply that this 

challenge may be overcome by judicious choice of reaction conditions.  

 Additional investigations are also necessary to further define the mechanism 

leading to regioselective aliphatic carbon-carbon cleavage in C(1)-H type acireductones 

by ARDs. Specifically, as the only computational study reported to date for C(1)-H type 

acireductones is not directly relevant to enzyme catalysis, in that turnover depends on a 

radical propagation step, further mechanistic investigations are clearly warranted. The 

synthetic model complexes reported to date have been useful in terms of developing 
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model systems of structural and functional relevance to ARDs, but have involved an 

acireductone analog containing a C(1)-phenyl group that is not a substrate for the 

enzyme. Thus, an important advance in terms of synthetic chemistry would be the 

preparation and characterization of Ni(II) and Fe(II) complexes of a C(1)-H acireductone 

ligand that is a substrate for the enzyme. Additionally, as the vast majority of the 

mechanistic studies reported to date have involved acireductone monoanion species, it is 

important that future studies focus on acireductone dianion species to be of more 

relevance to the enzyme chemistry.  

2.6 Dioxygenase-type reactivity of Fe(II) and Co(II) phenylpyruvate enolate 

complexes 

Of general relevance to the enzymes noted above are recent enzymatic and model 

studies of aliphatic carbon–carbon bond cleavage reactions of phenylpyruvate. The 

cleavage of carbon-carbon bonds within a phenylpyruvate moiety by a dioxygenase-type 

reaction has been the subject of numerous studies, both in enzymatic and small molecular 

systems. These reactions interestingly exhibit variable regioselectivity, with cleavage of 

the C(1)-C(2) bond of a phenylpyruvate substrate to liberate CO2 gas observed in the 

reactions catalyzed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) or 

hydroxymandelate synthase (HMS), while reactions catalyzed by Dke1 lead to cleavage 

of the C(2)-C(3) bond to form oxalate. The reasons for this differing regioselectivity have 

not yet been evaluated. 

The oxidation of 4-hydroxyphenylpyruvate, an important intermediate in tyrosine 

catabolism, has been extensively studied in enzymatic systems. In reactions with 

dioxygen, it is converted to 2,5-dihydroxyphenylacetate (homogentisate) by 4- 
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Scheme 1-20. Reaction pathways for the cleavage of 4-hydroxyphenylpyruvate by O2 

catalyzed by HMS or HPPD. Both reactions proceed by an initial oxidative 

decarboxylation to generate an Fe(IV)=O species. 

 
 

 

 

 

 

 

 

 

 



60	
  
hydroxyphenylpyruvate dioxygenase (HPPD), or alternatively to homomandelate by 

hydroxymandelate synthase (HMS). These two enzymes share many characteristics with 

alpha-keto acid-dependent enzymes, in that they oxidatively decarboxylate an alpha-keto 

acid to generate a high-valent Fe(IV)=O species, and subsequently oxygenate a substrate 

(Scheme 1-20). However, HPPD and HMS are unique in that the oxidized substrate and 

the oxidized alpha-keto acid are the same molecule, leading to a net dioxygenolytic 

cleavage of an aliphatic carbon-carbon bond. At present, no model systems have been 

reported that mimic the chemistry of HPPD and HMS. 

An atypical oxidative cleavage of the aliphatic C(2)-C(3) bond of phenylpyruvate 

by Dke1 to produce oxalate has also been recently reported [114]. The biological 

relevance of this reactivity has not yet been determined and mechanistic studies of this 

enzymatic reaction have not yet been reported. However, the reactivity of some Fe(II) 

and Co(II) complexes with a coordinated phenylpyruvate (pp) enolate ligand provide 

insight into how this reaction may take place [115, 116]. Importantly, these studies 

highlight the importance of an enolizable substrate, and the role a metal center can play in 

activating such a substrate towards reaction with dioxygen.  

Exposure of the bridging phenylpyruvate complex [(6-Me3TPA)2M2(R-pp)]2+ (M 

= Fe(II) or Co(II)) to O2 results in oxidative C(2)-C(3) bond cleavage within the 

phenylpyruvate ligand to give oxalate and benzaldehyde (or p-nitrobenzaldehyde) 

(Scheme 1-21(a)). Use of 18O2 in the reactions revealed incorporation of a single labeled 

oxygen atom into benzaldehyde (80% (M = Fe(II)) and oxalate, thus demonstrating a 

dioxygenase-type reaction. It is suggested that the reaction with O2 occurs at the enolate 

C(3) carbon atom and not at the metal center. In such a system, the role of the metal  



61	
  

 

Scheme 1-21. O2 reactivity of phenylpyruvate compounds. 
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center is not to directly interact with dioxygen, but rather to stabilize the enolized form of 

the substrate. In this regard, these model systems are very similar to the acireductone 

dioxygenases, which also do not require metal-centered redox chemistry. Formation of 

C(3)-peroxo moiety (Scheme 1-21(d)) is proposed, which would enable subsequent C(2)-

C(3) and O-O bond cleavage via a dioxetane ring and the generation of the final products.  

Mononuclear Fe(II) analogs having either a coordinated phenylpyruvate ester, or 

a tridentate (Bn-BQA) supporting ligand, have been shown to exhibit similar reactivity 

upon exposure to O2 (Scheme 1-21(b) and (c)). Notably, the binuclear phenylpyruvate  

compounds (Scheme 1-21(a)) are the most reactive, with the reaction with O2 being 

significantly faster than the mononuclear counterparts (Scheme 1-21(b)), or even systems 

having an unsaturated Fe(II) center (Scheme 1-21(c)). In contrast to the iron-containing 

systems, mononuclear Co(II) analogs do not lead to cleavage of the phenylpyruvate 

substrate. Rather, oxidation of Co(II) to Co(III) occurs and the coordinated substrate 

remains intact, albeit deprotonated. 

 
            3.0 Conclusions 

 The studies outlined herein provide initial insight into the chemistry involved in 

metalloenzyme-catalyzed aliphatic carbon-carbon cleavage reactions. This is a field that 

is at an early stage of development and additional investigations are clearly needed to 

advance fundamental understanding of these reactions. Of particular interest will be the 

development of synthetic systems that exhibit reactivity of relevance to enzyme turnover 

and are amenable to detailed mechanistic investigations. Studies of reactive compounds 

of this type will provide insight into the pathways of the biological reactions, as well as 
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provide insight into strategies for the development of novel oxidation catalysts to address 

important issues in energy, bioremediation, and medicine in the future.   

 
 3.1 Dissertation Outline 

 The research presented henceforth details our studies in the area of oxidative 

carbon-carbon bond cleavage via a dioxygenase-type reaction pathway. The goal of this 

research is to provide insight into the reaction pathways of dioxygenase enzymes and 

thus develop new methodology for the activation and direction of carbon-carbon 

cleavage. To investigate the oxidative cleavage of various enolizable substrates we have 

utilized late first-row transition metal complexes supported by an aryl-appended 

tris(pyridylmethyl)amine ligand. In Chapter 2, we have generated the first-ever functional 

small molecular model of the enzyme-substrate adduct of iron-containing acireductone 

dioxygenase and investigated the role a metal center plays in the regioselectivity of its 

cleavage reaction. Chapter 3 extends this work to use a substrate with electronic structure 

and protonation levels that are more directly relevant to the native substrate of the 

acireductone dioxygenases. In Chapter 4, we have utilized a novel photo-initiated method 

to generate a superoxo-diketonyl radical pair to investigate one of the proposed reaction 

pathways for acetylacetone dioxygenases. Finally, in Chapter 5 we extend this work 

using a copper center, and have found a new route to facile oxygen activation for carbon-

carbon bond cleavage. Overall, the complexes we have synthesized and studied have 

relevance to the enzymes acetylacetone dioxygenase, quercetin dioxygenase and the 

acireductone dioxygenases. 
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CHAPTER 2 

REGIOSELECTIVE ALIPHATIC CARBON-CARBON BOND CLEAVAGE BY A 

MODEL SYSTEM OF RELEVANCE TO IRON-CONTAINING ACIREDUCTONE 

DIOXYGENASE† 

 
Abstract 

Mononuclear Fe(II) complexes ([(6-Ph2TPA)Fe(PhC(O)C(R)C(O)Ph)]X (3-X: R 

= OH, X = ClO4 or OTf; 4: R = H, X = ClO4)) supported by the 6-Ph2TPA chelate ligand 

(6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) and 

containing a β-diketonate ligand bound via a six-membered chelate ring have been 

synthesized. The complexes have all been characterized by 1H NMR, UV-vis, infrared 

spectroscopy, and variably by elemental analysis, mass spectrometry and X-ray 

crystallography. Treatment of dry CH3CN solutions of 3-OTf with O2 leads to oxidative 

cleavage of the C(1)-C(2) and C(2)-C(3) bonds of the acireductone via a dioxygenase 

reaction, leading to formation of carbon monoxide and two equivalents of benzoic acid, 

as well as two other products not derived from dioxygenase reactivity: 2-oxo-2-

phenylethylbenzoate and benzil. Treatment of CH3CN/H2O solutions of 3-X with O2 

leads to the formation of an additional product, benzoylformic acid, indicative of the 

operation of a new reaction pathway in which only the C(1)-C(2) bond is cleaved. 

Mechanistic studies show that the change in regioselectivity is due to the hydration of a 

vicinal triketone intermediate in the presence of both an iron center and water. This is the 

first structural and functional model of relevance to iron-containing acireductone 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
†	
  Coauthored by Caleb J. Allpress, Katarzyna Grubel, Ewa Szajna-Fuller, Atta M. Arif, 
and Lisa M. Berreau. Reproduced in a modified format with permission from J. Am. 
Chem. Soc. 2013, 135, 659-668.	
  



74	
  
dioxygenase (Fe-ARD’), an enzyme in the methionine salvage pathway that catalyzes the 

regiospecific oxidation of 1,2-dihydroxy-3-oxo-(S)-methylthiopentene to form 2-oxo-4-

methylthiobutyrate. Importantly, this model system is found to control the 

regioselectivity of aliphatic carbon-carbon bond cleavage by changes involving an 

intermediate in the reaction pathway, rather than by the binding mode of the substrate, as 

had been proposed in studies of acireductone enzymes. 

 
Introduction 

One of the most challenging reactions in chemistry and biology is the selective 

oxidative cleavage of carbon-carbon bonds. The enzymes that carry out these reactions 

are typically dioxygenases, which incorporate two oxygen atoms into products via an 

oxidative mechanism, and often contain a metal co-factor (typically iron) in a non-heme 

binding pocket.1 While the mechanism of enzymes that cleave aromatic carbon-carbon 

bonds such as the extradiol and intradiol catechol dioxygenases have been extensively 

studied,2, 3 enzymes that cleave aliphatic carbon-carbon bonds have received much less 

attention until recently. These enzymes, which include acetylacetone-cleaving 

dioxygenase (Dke1)4
, 2,4’-dihydroxyacetophenone dioxygenase,5 

hydroxyethylphosphonate dioxygenase6 and the acireductone dioxygenases,7 are the 

subject of growing interest. The acireductone dioxygenases, found in the methionine 

salvage pathway, are of particular current interest due to the change in regiospecificity of 

the reaction as a function of metal ion bound at the active site. This differing reactivity 

within the enzymes as a function of metal ion identity is unique at present in biology. 

The methionine salvage pathway is ubiquitous in biological systems and is 

responsible for recycling the methylthio-unit of 5’-methylthioadenosine to regenerate 
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methionine.8 5’Methylthioadenosine is generated during the consumption of S-

adenosylmethionine in the synthesis of polyamines such as spermine and spermidine. 

These polyamines are associated with cell growth and apoptosis, and defects in 

polyamine regulation are associated with oncogensis.9 In aerobic systems, the methionine 

salvage pathway contains a single branch point. The reaction at this branch point involves 

an acireductone intermediate  (1,2-dihydroxy-3-oxo-(S)-methylthiopentene) that 

undergoes a reaction catalyzed by one of two different dioxygenase enzymes (Scheme 2-

1).9 In the on-pathway reaction, iron-containing acireductone dioxygenase (Fe-ARD’) 

catalyzes the oxidative cleavage of the C(1)-C(2) bond resulting in the formation of 

formic acid and an α-keto acid, the latter of which undergoes transamination in a 

subsequent step to regenerate methionine. In the off-pathway reaction, nickel-containing 

acireductone dioxygenase (Ni-ARD) catalyzes the oxidative cleavage of the C(1)-C(2) 

and C(2)-C(3) bonds of the acireductone to form formic acid, carbon monoxide (CO) and 

a carboxylic acid.10 The mechanism of Ni-ARD has been the focus of several recent 

studies, primarily through model systems, for two main reasons: (1) nickel-containing 

dioxygenases were hitherto unknown; and (2) the production of CO is of particular 

current interest due to its role in cellular signaling.11 In this context, the branch point in 

the methionine salvage pathway at which the acireductone dioxygenases operate 

represents a combination of a potential regulatory shunt coupled with the production of a 

signaling molecule.  

Despite catalyzing reactions with differing regiospecificity, Fe-ARD’ and Ni-

ARD contain identical peptide sequences, and bind the divalent metal cofactor with the 

same four amino acid residues (3His, 1Glu).9 Thus, the only constitutive difference for  
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Scheme 2-1. Regiospecificity of aliphatic carbon-carbon bond cleavage of 1,2-

dihydroxy-3-oxo-(S)-methylthiopentene by acireductone dioxygenases in the methionine 

salvage pathway. The on-pathway reaction (left) is catalyzed by the iron-containing 

enzyme Fe-ARD’, while the off-pathway reaction (right) is catalyzed by the nickel-

containing enzyme Ni-ARD. 

 

the two enzymes is the nature of the metal at the active site. To date, no model complexes 

have been synthesized to study the reaction pathway in Fe-ARD’. 

The current hypothesis for the difference in regiospecificity is that a change in the 

coordination mode of the substrate from a six-membered chelate in Ni-ARD, to a five-

membered chelate in Fe-ARD’ results in the observed differences in selectivity of bond 
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cleavage (Scheme 2-1).9 To probe this chelate ring hypothesis, we have previously 

prepared a Ni(II)-containing complex of a bulky acireductone (2-hydroxy-1,3-diphenyl-

propan-1,3-dione),  [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1), that is supported by 

an aryl-appended TPA ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-(2-

pyridylmethyl)amine) in order to mimic the hydrophobic binding pocket found in 

ARDs.12 X-ray crystallographic and 1H NMR solution studies of 1 revealed that the 

acireductone moiety in this complex is coordinated as a six-membered chelate ring. Upon 

treatment of 1 with O2, the C(1)-C(2) and C(2)-C(3) bonds of the acireductone were 

cleaved, and CO was generated, in a Ni-ARD-type reaction (Scheme 2-2 (top)). 

Mechanistic studies suggest this reaction proceeds by an initial net two-electron process 

to form 1,3-diphenylpropantrione (a vicinal triketone) and hydroperoxide anion, which 

may then combine to form a dioxetane ring and subsequently cleave the C-C bonds.13 

The triketone intermediate was implicated by the detection of benzil, which is formed in 

the reaction mixture via a benzoyl migration and decarbonylation (Scheme 2-2 

(bottom)).14 We note that the production of benzil was the only initial evidence for a 

reaction pathway involving a triketone intermediate. Benzoyl migration is not possible 

with the native ARD substrate, and so such a byproduct would not be produced in the 

enzyme, even if the reaction were to proceed via a triketone intermediate. 

In the present work, we have investigated the role of the metal center in the O2 

reactivity of acireductones by utilizing an iron-containing analogue of 1. While 

spectroscopic studies provide evidence for a six-membered chelate ring for the 

coordinated acireductone, we have found that the presence of iron and water in the 

reaction mixture opens up a new oxidative reaction pathway not accessible in our nickel- 
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Scheme 2-2. Reaction of 1 with O2 to form Ni-ARD-type products via the formation of 

an intermediate triketone species and hydroperoxide (top). Decarbonylation of 1,3-

diphenylpropantrione to form benzil via a Lewis acid-mediated benzoyl migration 

(bottom). 

 

containing system. This new reaction pathway results in the formation of benzoylformic 

acid, the α-keto acid product that would be expected in a Fe-ARD’ type reaction. 

 
Experimental 

General Methods. All reagents were obtained from commercial sources and were 

used without additional purification unless otherwise noted. 1,3-diphenylpropantrione 

was purchased from TCI America. Solvents were dried according to published 

procedures and were purified by distillation under N2 prior to use.15 Air-sensitive 

reactions were performed in an MBraun Unilab glovebox under a N2 atmosphere or by 

using standard Schlenk techniques. Fe(OTf)2·2CH3CN was prepared from Fe powder, 

and FeCl3 was prepared from FeCl3·6H2O using known procedures.16, 17 The bulky 
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acireductone 2-hydroxy-1,3-diphenylpropan-1,3-dione was synthesized by modifying a 

literature procedure as described below.18 The 6-Ph2TPA (N,N-bis((6-phenyl-2-

pyridyl)methyl)-N-(2-pyridylmethyl)amine) ligand, [(6-

Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 and 2-oxo-2-phenylethylbenzoate were synthesized 

by following previously published procedures.19-21 

Physical Methods. 1H NMR spectra of organic compounds were obtained using a 

JEOL ECX-300 spectrometer; chemical shifts were referenced to the residual solvent 

peak in CD2HCN (1.94 ppm, quintet). 1H NMR spectra of paramagnetic complexes were 

obtained using a Bruker ARX-400 spectrometer and parameters, as previously 

described.22 UV-vis data was collected on a HP8453A spectrometer at ambient 

temperature. IR spectra were recorded on a Shmidzu FTIR-8400 spectrometer as KBr 

pellets. Room temperature magnetic susceptibilities were determined using the Evans 

method.23 GC-MS data was obtained on a Shimadzu GCMS-QP5000 gas 

chromatograph/mass spectrometer with a GC-17A gas chromatograph, using an Alltech 

EC5 30 m × 25 mm × 25 µm thin film capillary column and temperature program: Tinitial: 

70 °C (5 min); temperature gradient: 23 °C min-1; TFinal: 250 °C (10 min). LC-MS data 

was obtained using negative-ion APCI on a LCQ Thermo Finnigan MS via a HP1100 

with a Betasil C18 10 × 2.1 mm column; solvent gradient from 5% aqueous methanol to 

50% aqueous methanol. CO was detected using an Agilent 3000A Micro gas 

chromatograph. Mass spectral data for metal complexes was collected by the Mass 

Spectrometry Facility, University of California, Riverside. Elemental analysis was 

performed by Atlantic Microlabs Inc., Norcross, GA for all compounds except 3-OTf, 

which was analyzed by Canadian Microanalytical Service, Ltd. 
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Kinetic Studies. Measurements were performed on a HP8453A spectrometer at 

20 ˚C. All manipulations of 3-X were performed under a nitrogen atmosphere. O2-

saturated solutions of CH3CN (8.2 mM) were prepared by bubbling dry O2 through a 

solution of dry CH3CN.24 Solutions containing lower O2 concentrations were prepared by 

diluting the 8.2 mM solution with N2-saturated CH3CN using gas tight syringes. 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially very explosive. Only small amounts of material should be prepared, and these 

should be handled with extreme caution.25 

2-Hydroxy-1,3-diphenyl-propan-1,3-dione. NaHCO3 (1.68 g, 20.0 mmol) was 

placed in a flask with 0.10 M RuCl3 (800 µL, 0.080 mmol) and diluted with H2O (7.2 

mL), CH3CN (48 mL) and EtOAc (48 mL). Oxone (24.4 g, 40.0 mmol) was added in one 

portion and stirred until a bright yellow suspension formed and effervescence ceased. 

Benzylidene acetophenone (1.66 g, 8.00 mmol) was added in one portion to initially form 

a brown solution that became yellow over time. The progress of reaction was carefully 

monitored by TLC (3:1 hexanes:EtOAc) and after 18 minutes the suspension was diluted 

with 50 mL EtOAc and the solid residue filtered off, washing with a further 30 mL 

EtOAc. The filtrate was washed with 40 mL saturated Na2SO3 and 40 mL H2O. The 

organic layer was dried over Na2SO4, filtered and then the solvent was removed under 

reduced pressure to yield the crude product. Recrystallization from hot EtOH afforded 

white needle-like crystals that were collected by filtration and washed with cold EtOH 

followed by Et2O (0.37 g, 20%). 1H NMR (300 MHz, CD3CN, 25˚C): δ = 7.99 (d, 

3J(H,H) = 7.2 Hz, 4H; Ar-H), 7.66 (t, 3J(H,H) = 7.6 Hz, 2H; Ar-H), 7.52 (t, 3J(H,H) = 7.5 
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Hz, 4H; Ar-H), 6.34 (d, 3J(H,H) = 7.2 Hz, 1H; CH), 4.68 (d, 3J(H,H) = 7.0 Hz, 1H; OH) 

ppm.  

[(6-Ph2TPA)Fe(CH3CN)](ClO4)2 (2-ClO4). Fe(ClO4)2⋅6H2O (0.040 g, 0.11 

mmol) was dissolved in CH3CN (~2 mL), added to 6-Ph2TPA (0.049 g, 0.11 mmol), and 

the resulting solution was stirred for 24 hours under an N2 atmosphere. The solution was 

then concentrated under reduced pressure and the metal complex was precipitated by 

introducing excess Et2O. The solid was then dried under reduced pressure (0.059 g, 

73%). Et2O diffusion into a CH3CN solution of 2-ClO4 afforded yellow crystals suitable 

for X-ray crystallography. Anal. Calcd for C34H32Cl2FeN6O8: C, 52.39; H, 4.14; N, 10.78. 

Found: C, 52.12; H, 4.25; N, 11.24. µeff = 5.21 µB; UV-vis, nm (ε, M-1cm-1): 285 (14800); 

FTIR (KBr, cm-1): 1093 (νClO4), 623 (νClO4).  

[(6-Ph2TPA)Fe(CH3CN)](OTf)2·0.5CH2Cl2 (2-OTf). Fe(OTf)2⋅2CH3CN (0.11 

mmol) was dissolved in CH3CN (~2 mL), added to 6-Ph2TPA (0.11 mmol) and the 

resulting mixture was stirred for 24 hours under a N2 atmosphere. The solvent was then 

removed under reduced pressure and the metal complex precipitated by addition of 

excess hexanes to a CH2Cl2 solution. Anal. Calcd for C34H29F6FeN4O6S2•0.5CH2Cl2: C, 

47.07; H, 3.44; N, 7.96. Found: C, 47.04; H, 3.58; N, 7.89. The presence of 0.5 

equivalents of CH2Cl2 in the EA sample was confirmed by integration of the signal of 

this solvent in the 1H NMR spectrum of the sample. µeff = 5.03 µB; FTIR (KBr, cm-1): 

1248 (νOTf), 1225 (νOTf), 1167 (νOTf), 1030 (νOTf).  

[(6-Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]ClO4 (3-ClO4). Me4NOH⋅5H2O 

(0.0049 g, 0.026 mmol) was dissolved in CH3CN (2.0 mL) and stirred with 2-hydroxy-

1,3-diphenyl-propan-1,3-dione (0.0063 g, 0.026 mmol) for 2 minutes under a N2 
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atmosphere. This solution was then added to a CH3CN (1.0 mL) solution of 2-ClO4 

(0.026 mmol) and stirred for 5 minutes. The solvent was then immediately removed 

under reduced pressure. UV-vis, nm (ε, M-1cm-1): 385 (5080). FTIR (KBr, cm-1): 3430 

(νOH), 1094 (νClO4), 623 (νClO4).  

[(6-Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]OTf (3-OTf). LiHMDS (0.015 g, 0.091 

mmol) was dissolved in Et2O (~2 mL) and added to a CH3CN solution of 2-hydroxy-1,3-

diphenyl-propan-1,3-dione (0.022 g, 0.090 mmol) under a N2 atmosphere to form an 

orange solution that became cloudy after 1 minute. To this solution was added a CH3CN 

solution of 2-OTf (0.090 mmol) and the resultant slurry was stirred for 12 hours and then 

filtered through a glass wool/Celite plug. The filtrate was then combined with a second 

slurry of LiHMDS (0.091 mmol) and 2-hydroxy-1,3-diphenyl-propan-1,3-dione (0.091 

mmol) in Et2O/CH3CN and stirred for 2 days. The solvent was removed under reduced 

pressure and the crude material was redissolved in CH2Cl2 and filtered through a celite 

plug. The compound was then precipitated, first by vapour diffusion of Et2O into a 

CH3CN solution, and then by addition of hexanes to a CH2Cl2 solution, to yield a brown 

solid (0.062 g, 71%). Anal. Calcd for C47H37F3FeN4O6S•CH2Cl2: C, 58.08; H, 4.05; N, 

5.77. Found: C, 58.03; H, 4.29; N, 5.39. µeff = 5.13 µB; UV-vis, nm (ε, M-1cm-1): 385 

(8090); FTIR (KBr, cm-1): 3430 (νOH), 1256 (νOTf), 1227 (νOTf), 1169 (νOTf), 1032 (νOTf).  

[(6-Ph2TPA)Fe(PhC(O)CHC(O)Ph)]ClO4 (4). Me4NOH⋅5H2O (0.0067 g, 0.037 

mmol) was dissolved in CH3CN (~2 mL) and stirred with dibenzoylmethane (0.0076 g, 

0.034 mmol) for ~1 hour under a N2 atmosphere. This solution was then added to a 

CH3CN (~2 mL) solution of 2-ClO4 (0.034 mmol) and stirred for 18 hours to produce a 

dark red solution. The solvent was then removed under reduced pressure and the residue 
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was dissolved in CH2Cl2 and filtered through a glass wool/Celite plug. The filtrate was 

condensed under reduced pressure and precipitation of the product was induced by the 

addition of excess hexanes. Recrystallization of the crude product from CH3CN/Et2O 

yielded red-brown crystals suitable for X-ray crystallography (0.016 g, 57%). Anal. 

Calcd for C45H37ClFeN4O6: C, 65.81; H, 4.54; N, 6.83. Found: C, 65.46; H, 4.57; N, 7.27. 

HRMS (ESI): m/z calcd for C45H37FeN4O2
+: 721.2266 [M-ClO4]+; found: 721.2279. µeff = 

5.12 µB; UV-vis, nm (ε, M-1cm-1): 357 (13400); FTIR (KBr, cm-1): 1094 (νClO4), 623 

(νClO4). 

2,2-dihydroxy-1,3-diphenylpropan-1,3-dione. Initially this triketone hydrate 

was prepared by exposing 1,3-diphenylpropantrione to moist air for several weeks, 

during which time it changed color from yellow to white. The hydrate may also be 

synthesized by crystallization of 1,3-diphenylpropantrione from wet ethanol. Notably the 

hydration is reversible, and dehydration will occur over the course of several hours when 

the hydrate is dissolved in dry solvent.  1H NMR (300 MHz, CD3CN, 25˚C): δ = 7.98 (d, 

3J(H,H) = 7.2 Hz, 4H; Ar-H), 7.58 (t, 3J(H,H) = 7.4 Hz, 2H; Ar-H), 7.44 (t, 3J(H,H) = 7.5 

Hz, 4H; Ar-H), 6.03 (s, 2H; OH) ppm. 13C NMR (100.6 MHz, CD3CN, 25˚C): δ = 196.3, 

135.6, 131.3, 130.7, 130.1, 96.8 ppm. 

Isomerization of 2-hydroxy-1,3-diphenyl-propan-1,3-dione promoted by 2-

ClO4. Complex 2-ClO4 (0.010 mmol) was dissolved in ~1 mL CH3CN and to this 

solution was added a CH3CN solution of 2-hydroxy-1,3-diphenyl-propan-1,3-dione 

(0.010 mmol) and Me4NOH⋅5H2O (0.010 mmol) under a N2 atmosphere. The resulting 

solution was stirred for 48 hours and the solvent was then removed under reduced 
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pressure. Analysis of the organic products by GC-MS and 1H NMR showed the major 

product was 2-oxo-2-phenylethylbenzoate.  

 Reaction of 3-X with O2. A 3.0 mL aliquot of 3-X (4.8 mM) in CH3CN or 95% 

CH3CN/H2O was placed in a vial. This solution was then purged with O2 for 15 seconds, 

sealed and stirred for 12 hours. The solvent was then removed under reduced pressure. 

The organic products were analyzed by LC-MS as described below. 

Control reaction testing for benzoylformic acid production from 2-hydroxy-

1,3-diphenyl-propan-1,3-dione. Me4NOH⋅5H2O (0.026 mmol) was dissolved in CH3CN 

or 85% CH3CN/H2O (1 mL) and was added to 2-hydroxy-1,3-diphenyl-propan-1,3-dione 

(0.026 mmol). This solution was then either diluted with 2 mL CH3CN, or was combined 

with 0.026 mmol of either [(6-Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 or 2-ClO4 dissolved in 

CH3CN (2 mL), and stirred for 5 minutes. These solutions were then purged with O2, 

sealed and stirred for 12 hours. The solvent was then removed under reduced pressure. 

The organic products were analyzed by LC-MS as described below. Benzoylformic acid 

was only detected in the reaction involving 2-ClO4. 

Control reaction testing for benzoylformic production from 1,3-

diphenylpropantrione. Either 1,3-diphenylpropantrione (0.026 mmol) was dissolved in 

CH3CN (1 mL), or 2,2-dihydroxy-1,3-diphenylpropan-1,3-dione was dissolved in 85% 

CH3CN/H2O (1 mL). This solution was then either diluted with 2 mL CH3CN, or 

combined with 0.026 mmol of either [(6-Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 or 2-ClO4 

dissolved in CH3CN (2 mL). To each solution was added 31% H2O2 (0.026 mmol) and 

NEt3 (0.026 mmol). The solutions were then sealed and stirred for 12 hours. The solvent 
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was then removed under reduced pressure. The organic products were analyzed by LC-

MS as described below.  

 Control reactions testing for benzoylformic production from 2-oxo-2-

phenylethylbenzoate. Me4NOH⋅5H2O (0.026 mmol) was dissolved in CH3CN or 85% 

CH3CN/H2O (1 mL) and added to 2-oxo-2-phenylethylbenzoate (0.026 mmol). This 

solution was then either diluted with 2 mL CH3CN or combined with 2-ClO4 (0.026 

mmol) dissolved in CH3CN (2 mL) and stirred for 5 minutes. These solutions were then 

purged with O2, sealed and stirred for 12 hours. The solvent was then removed under 

reduced pressure. The organic products were then analyzed by LC-MS as described 

below. Benzoylformic acid was not detected for either of these reactions. 

Reaction of 1,3-diphenylpropantrione with ferric salts. Under a nitrogen 

atmosphere, diphenylpropantrione or 2,2-dihydroxy-1,3-diphenylpropan-1,3-dione (0.026 

mmol) was dissolved in CH3CN or 85% CH3CN/H2O (1 mL), respectively, and to these 

solutions was added FeCl3 or Fe(ClO4)3·6H2O (0.105 mmol) in CH3CN (2 mL). The 

solutions were then sealed and stirred for 12 hours. The solvent was then removed under 

reduced pressure. The organic products were then analyzed by LC-MS as described 

below. 

Reaction of 2-hydroxy-1,3-diphenylpropan-1,3-dione with Fe(ClO4)3·6H2O. 

Under a nitrogen atmosphere, Me4NOH⋅5H2O (0.026 mmol) was dissolved in 85% 

CH3CN/H2O (1 mL) and was added to 2-hydroxy-1,3-diphenyl-propan-1,3-dione (0.026 

mmol). To this solution was added Fe(ClO4)3·6H2O (0.105 mmol) in CH3CN (2 mL). The 

solution was sealed and stirred for 12 hours. The solvent was then removed under 
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reduced pressure. The organic products were then analyzed by LC-MS as described 

below. 

General procedure for organic product recovery and analysis. To each crude 

product mixture, 1 mL of 10 mM HCl and 3 mL Et2O was added and stirred for three 

hours. The organic layer was then decanted and the aqueous layer extracted with a further 

3 mL Et2O. The organic fractions were combined and solvent evaporated under reduced 

pressure. Recovery of the organic material, determined as percent mass of the 

acireductone starting material, was typically ~80%. For further analysis, the organic 

products were redissolved in either CH3CN (GC-MS) or 1:1 MeOH:H2O (LC-MS). 

Products were identified by comparison to the retention times and fragmentation patterns 

of authentic compounds. The ratio of benzoic acid to benzoylformic acid was determined 

from a calibration curve based on peak area in the LC-MS spectrum. 

18O labeling studies. For H2
18O labeling, a 3.0 mL aliquot of 4.8 mM 3-ClO4 in 

CH3CN was combined with a 10 µL aliquot of H2
18O under an nitrogen atmosphere. This 

solution was then exposed to 16O2, sealed and stirred for 12 hours. The solvent was then 

removed under reduced pressure. 

For 18O2 labeling, a 3.0 mL aliquot of 4.8 mM 3-ClO4 was placed in a solvent 

transfer flask from which the atmosphere was removed by three freeze-pump-thaw 

cycles. 18O2 was then introduced into the flask, after which it was resealed and allowed to 

stir for 12 hours. The solvent was then removed under reduced pressure. 

18O incorporation levels in benzoic acid and benzoylformic acid were determined 

from the relative intensities of the [M-1]-, [M+1]- and [M+3]- molecular ions in the LC-

MS spectrum. 
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Results 

Complex synthesis and characterization. In our initial attempts to generate an 

iron-containing analogue of 1, admixture of equimolar amounts of Fe(ClO4)2⋅6H2O and 

6-Ph2TPA in CH3CN enabled the facile generation of [(6-Ph2TPA)Fe(CH3CN)](ClO4)2 

(2-ClO4) (Scheme 2-3). This compound has been isolated and comprehensively 

characterized (X-ray crystallography (Figure 2-1), elemental analysis, 1H NMR, IR and a 

magnetic susceptibility measurement). When 2-ClO4 is combined with the monoanion of 

the bulky acireductone in dry acetonitrile, a new complex, [(6-

Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]ClO4 (3-ClO4) is formed, however it has not been 

obtained in analytically pure form. Therefore, in an alternative synthetic approach, we 

combined the anhydrous salt Fe(OTf)2⋅2CH3CN with 6-Ph2TPA in dry CH3CN, which 

led to the facile generation of [(6-Ph2TPA)Fe(CH3CN)](OTf)2 (2-OTf). Reaction of this 

complex with an excess of LiHMDS and acireductone under strictly anhydrous 

conditions allowed the generation and isolation of analytically pure [(6-

Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]OTf (3-OTf). Thus far X-ray quality crystals of 3-X 

(X  = ClO4 or OTf) have not been obtained. Therefore, we have synthesized [(6-

Ph2TPA)Fe(PhC(O)CHC(O)Ph)]ClO4 (4) by combining 2-ClO4 with one equivalent of 

the anion of dibenzoylmethane, as outlined in Scheme 2-3, to use as a structural and 1H 

NMR spectroscopic model to evaluate the coordination mode of the acireductone ligand 

in 3-X. X-ray quality crystals of 4 were grown by diffusion of Et2O into a CH3CN 

solution of the complex. 

X-ray crystallography. As shown in Figure 2-1, X-ray crystallographic studies 

of 2-ClO4 revealed a cationic portion containing a single molecule of acetonitrile bound  
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Scheme 2-3. Synthesis of 2-4. All reactions were performed under anaerobic conditions. 

CH3CN was used as the solvent unless otherwise noted. 

 
 

Figure 2-1. Thermal ellipsoid representation of the cationic portions of 2-ClO4 (left) and 

4 (right). Ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for 

clarity. 
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Table 2-1.  Summary of X-ray Data Collection and Refinement.a 
 2-ClO4 4·0.5CH3CN 

Formula C36H35Cl2FeN7O8 C90H74Cl2Fe2N8O12⋅CH3CN 

Mr 820.46 1683.23 

Crystal system Monoclinic Tetragonal 

Space group P21/c I-4 

a /Å 13.7317(3) 34.4839(4) 

b / Å 19.1640(3) 34.4839(4) 

c / Å 14.2994(4) 13.5578(2) 

α /° 90 90 

β /° 94.5399(10) 90 

γ /° 90 90 

V / Å3 3751.14(15) 16122.1(4) 

Z 4 8 

Dc/ Mg m-3 1.453 1.387 

T/K 150(1) 150(1) 

Color yellow red-brown 

Crystal shape prism plate 

Crystal size/ mm 0.28x0.23x0.15 0.35x0.35x0.05 

µ/ mm-1 0.606 0.497 

F(000) 1696 6992 

θ range/ ° 3.75-27.48 2.00-26.00 

Completeness to θ/ % 99.2 99.3 

Reflections collected 15757 13636 

Independent reflections 8519 13631 

Rint 0.0365 0.0525 

Data/restraints/ parameters 8519 / 0 / 595 13631/0/1057 

GoF / F2 1.022 1.012 

R1, wR2/ I>2σ(I) 0.0542, 0.1379 
 

0.0515, 0.0914 

R1, wR2/ all data 0.0811, 0.1569 0.0817, 0.1028 

max./min. transmission 0.9146/0.8487 0.9756/0.8454 

Δρmax/min/ eÅ-3 0.696/-0.594 0.701/-0.395 
aRadiation used: Mo Kα (λ = 0.71073Å); diffractometer: Nonius KappaCCD. Crystallographic files in CIF 

format for 2-ClO4 and 4•0.5CH3CN have been deposited in The Cambridge Crystallographic Data Center (CCDC- 
954437). This data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. 
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 Table 2-2. Selected bond distances (Å) and angles (°) for 2-ClO4 and 4·0.5CH3CN. 

 
2-ClO4 

   

Fe(1)-N(1)  2.090(2) N(1)-Fe(1)-N(4) 108.19(9) 

Fe(1)-N(2)  2.190(2) N(1)-Fe(1)-N(5) 97.13(9) 

Fe(1)-N(3)  2.149(2) N(3)-Fe(1)-N(2) 76.11(9) 

Fe(1)-N(4)  2.123(2) N(1)-Fe(1)-N(2) 78.81(9) 

Fe(1)-N(5) 2.096(2) N(1)-Fe(1)-N(3) 123.11(9) 

  N(5)-Fe(1)-N(2) 172.11(9) 

  N(4)-Fe(1)-N(3) 113.93(9) 

  N(5)-Fe(1)-N(3) 100.93(9) 

  N(5)-Fe(1)-N(4) 111.60(9) 

  N(4)-Fe(1)-N(2) 76.21(8) 

    

    

4·0.5CH3CNa    

Fe(1)-N(1)  2.156(3) O(2)-Fe(1)-O(1) 88.82(12) 

Fe(1)-N(2)  2.194(3) O(2)-Fe(1)-N(1) 98.08(12) 

Fe(1)-N(3)  2.371(4) O(1)-Fe(1)-N(1) 172.73(13) 

Fe(1)-N(4)  2.293(4) O(2)-Fe(1)-N(2) 169.06(13) 

Fe(1)-O(1)  2.012(3) O(1)-Fe(1)-N(2) 94.92(12) 

Fe(1)-O(2)  1.979(3) N(1)-Fe(1)-N(2) 78.70(13) 

O(1)-C(31)  1.278(5) O(2)-Fe(1)-N(4) 111.32(13) 

O(2)-C(39)  1.270(5) O(1)-Fe(1)-N(4) 95.81(13) 

C(31)-C(38) 1.408(6) N(1)-Fe(1)-N(4) 79.61(13) 

C(38)-C(39) 1.403(6) N(2)-Fe(1)-N(4) 78.59(14) 

  O(2)-Fe(1)-N(3) 96.72(12) 

  O(1)-Fe(1)-N(3) 86.26(12) 

  N(1)-Fe(1)-N(3) 95.13(12) 

  N(2)-Fe(1)-N(3) 73.32(13) 
 

    
aData for one of two cations present in asymmetric unit. 
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to the iron center, resulting in a trigonal bipyramidal geometry (τ = 0.97).26 By contrast, 

4·0.5CH3CN has a cationic portion containing a distorted octahedral Fe(II) center, with 

the dibenzoylmethane anion coordinated in a bidentate fashion via a six-membered 

chelate ring. A summary of the parameters of data collection, and selected bond distances 

and angles of 2 and 4·0.5CH3CN are presented in Table 2-1 and Table 2-2. As is 

expected for the fully delocalized diketonate anion, the C-O bond lengths (O(1)-C(31) 

1.278(5)Å and O(2)-C(39) 1.270(5) Å) are similar, as are the C-C bond lengths within the 

chelate ring (C(31)-C(38) 1.408(6) Å and C(38)-C(39) 1.403(6) Å). The overall structural 

features of 4·0.5CH3CN, as well as the bond distances involving the coordinated 

diketonate anion, are highly similar to those found for the Ni(II)-containing acireductone 

complex 1.12  

1H NMR Spectroscopy. A previous study on the paramagnetically-shifted 

features in the 1H NMR spectra for a variety of nickel complexes with the same chelate 

ligand (6-Ph2TPA) has demonstrated the sensitivity of the peak distribution pattern to the 

coordination of different anions.22 As shown in Figure 2-2, complex 3-ClO4 exhibits 

signals in the paramagnetically-shifted region of the 1H NMR spectrum that are very 

similar to those exhibited by the dibenzoylmethane complex 4, albeit the signals for 3-

ClO4 are shifted slightly upfield. 27 By contrast, the solvate complex 2-ClO4 has a 

distinctly different pattern of peaks in the paramagnetic region. It is also worth noting 

that 2-OTf and 3-OTf have the same peak distribution patterns as 2-ClO4 and 3-ClO4, 

respectively.  On the basis of these spectroscopic comparisons, we formulate the solution 

structure of 3-X as [(6-Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]X wherein, similar to the  
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Figure 2-2. Comparison of selected paramagnetically shifted features in the 1H NMR 

specta of 2-4. Spectra were measured in CD3CN using a 400 MHz spectrometer at 298 K. 

 
Table 2-3. 1H NMR shifts for selected paramagnetic compounds (ppm). 

2-OTf 2-ClO4 3-OTfa 4a 

112.9  113.6  127.3 131.5  

102.1  101.5  92.7 94.5  

85.8  84.7  80.2 77.2  

60.5  60.5  67.6 67.0  

62.5 62.3 45.9 48.1 

61.2 61.3 40.4 39.3 

60.6 60.7 30.3 36.6 

44.8 44.8 21.3 32.0 

9.8 9.9 17.2 19.9 

4.6 4.6 16.5 18.9 

4.5 4.4 10.6 18.5 

-8.8 -8.6   

-12.3 -12.3   
a 3-OTf and 4 both contain additional overlapping peaks in the diamagnetic region, partially due to the diketonate 
phenyl protons, that are not presented in this table.  
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Ni(II)-analog 1, the bulky acireductone is bound via a six-membered chelate ring. A 

summary of the chemical shifts of 1H NMR resonances of 2-OTf, 2-ClO4, 3-OTf, and 4 

is presented in Table 2-3. 

UV-vis and Infrared Spectroscopy. The absorption spectra of 3-ClO4 and 3-

OTf exhibit features with λmax = 385 nm, albeit with differing extinction coefficients 

depending on the counter ion (5080 and 8090 M-1cm-1 respectively). We attribute this 

absorption band primarily to a π-π* transition of the acireductone diketonate that is 

coordinated to the iron center, consistent with our structural proposal of the acireductone 

being bound via a six-membered chelate ring. Similar features are found for both 4 (λmax 

= 357 nm; hypsochromically shifted, as expected in the absence of the hydroxyl group) 

and 1 (λmax = 399 nm) when dissolved in acetonitrile (Figure 2-3).12 We note that a 

shoulder feature on the longer wavelength side of the π-π*  transition of 3-X and 4 may be 

due to an MLCT transition as has been identified in spectroscopic studies of Dke1 and  

 

 

Figure 2-3. UV-vis spectra for 1-4 in CH3CN. 
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relevant model compounds.28,29 

The proposed six-membered chelate is additionally supported by the IR spectral 

features of 3-X wherein a O-H stretch is present at ~3430 cm-1, and no free C=O stretch 

is found at ~1700 cm-1. If the acireductone were coordinated as a five-membered ring, the 

hydroxyl group would instead likely be deprotonated and a free C=O moiety would be 

present.  

Thus, in contrast to the proposed binding mode of the acireductone in the enzyme-

substrate complex wherein changing the metal center from Ni to Fe changes the binding 

mode of the acireductone from a six-membered to a five-membered chelate ring, in our 

synthetic systems, our acireductone binds via a six-membered chelate when either metal 

ion is present. This is unsurprising, as the difference in Lewis acidity between Ni(II) and 

Fe(II) is modest, and is not proposed as the factor that differentiates the binding mode in 

the enzyme. It is, rather, changes in the tertiary structure of the enzyme, resulting in a 

more open binding pocket in Fe-ARD’ that are proposed to direct the acireductone to 

bind via a five-membered chelate.30 Our model systems have the same secondary 

structural features, as defined by having the same 6-Ph2TPA chelate ligand, and thus 

exhibit the same binding mode for the acireductone. Therefore, our model system is an 

ideal case to test the chelate hypothesis for the differing reactivity of Fe-ARD’ and Ni-

ARD; if the proposal is correct, our iron-containing complexes 3-X should exhibit the 

same dioxygenase reactivity as our previously reported nickel-containing system 1.  

Anaerobic Reactivity. Our inability to generate analytically pure 3-ClO4 has 

been due to an anaerobic water-promoted isomerization reaction of the acireductone 

ligand. The exclusion of water in the synthesis of 3-OTf was likely the factor that 
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allowed its generation in analytically pure form. Evidence for the formation of 3-ClO4, 

followed by its subsequent decay, was found by monitoring (UV-vis) of a reaction 

mixture wherein an acetonitrile solution of 2-ClO4 was combined with the bulky 

acireductone anion under anaerobic conditions. Slow decay of the 385 nm absorption 

band was observed upon prolonged stirring, and analysis of the organic products by GC-

MS showed that the ester 2-oxo-2-phenylethylbenzoate, an isomer of the bulky 

acireductone, had been produced. This same isomerization reactivity has been previously 

reported for the Co(II) analog [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (5), wherein 

a water and Lewis acid-mediated isomerization reaction of the acireductone ligand 

resulted in the formation of the same ester (2-oxo-2-phenylethylbenzoate, Scheme 2-4).21 

By contrast, the nickel-containing complex 1 does not efficiently promote this 

isomerization chemistry under wet conditions. We also note that in the O2 reactivity 

studies of 3-ClO4 described below, the reaction to generate ester is always operative.   

Aerobic reactivity. Exposure of acetonitrile solutions of 3-X to O2 at ambient 

temperature results in the rapid bleaching of the 385 nm absorption feature (Figure 2-4), 

indicating decomposition of the acireductone anion. Analysis of the headspace gas of the 

 

 

Scheme 2-4. Proposed mechanism for the Lewis acid-mediated isomerization of 2-

hydroxy-1,3-diphenylpropan-1,3-dione in the presence of a base to form 2-oxo-2-

phenylethylbenzoate. 
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reaction vessel shows that CO has been produced qualitatively. After prolonged exposure 

to O2, total loss of the well-defined paramagnetically-shifted features in the 1H NMR 

spectrum is observed, consistent with a change in oxidation state from Fe(II) to Fe(III). 

Our attempts to isolate and characterize the iron-containing products of these 

oxygenation reactions have thus far been unsuccessful, presumably due to the poor 

affinity of Fe(III), a hard Lewis acid, for the aryl-appended TPA ligand. However, 

acidification of the crude reaction mixture followed by extraction with Et2O has allowed 

us to analyze the organic compounds produced in the decomposition of the acireductone. 

In the reaction of 3-OTf with O2, the major products observed were benzoic acid and  

 

 

Figure 2-4. UV-vis spectra of 3-ClO4 in CH3CN before (solid line) and after (dashed 

line) the addition of O2. 
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benzil, along with small amounts of the ester (Scheme 2-5). These products were the 

same as were observed in the reaction of the Ni analogue 1 with O2
20, and thus are 

generally consistent with the chelate hypothesis, which predicts that 3-OTf and 1, having 

the same six-membered chelate ring for acireductone binding, should produce the same 

products in a dioxygenase reaction. 

 

 

Scheme 2-5. Organic products detected in the reaction of 3-X with O2 in CH3CN. 

Benzoylformic acid (red) was only detected when X = ClO4 or when the reaction of 3-

OTf was performed with the addition of H2O. 

 

It was therefore very surprising to discover that benzoylformic acid is produced in 

the reaction of 3-ClO4 with O2, in addition to the other products produced in the reaction 

of 3-OTf (Scheme 2-5; Figure 2-5). Benzoylformic acid is an α-keto acid, and is the 

expected product in the oxidation of the bulky acireductone if it were undergoing Fe-

ARD’ type reactivity. Given that all our spectroscopy detailed above strongly suggests 

that 3-OTf and 3-ClO4 have the same solution structure, precluding a five-membered 

chelate, this change in reactivity was very interesting. Our initial hypothesis was that the 

ester initially formed by an isomerization reaction could undergo a separate oxygenation 

reaction to generate benzoyl-2-oxo-2-phenylethanoate. This anhydride would  
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Figure 2-5. LC-MS data showing the chromatogram of a 1:1 benzoic acid:benzoylformic 

acid standard (top), and these products generated from the reaction of 3-ClO4 with O2 

(middle), and reaction of 1 with O2 (bottom). Mass spectra on the right show the relative 

abundance of molecular ions in each chromatogram from 3.5-4.5 min (upper) and 5-6 

min (lower), corresponding to the presence of benzoic acid ([M-1]- = 121 m/z) and 

benzoylformic acid ([M-1]- = 149 m/z), respectively.  
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subsequently undergo hydrolysis to generate the observed benzoylformic acid (and an 

equivalent of benzoic acid, Scheme 2-6). However, a control reaction in which the ester 

was exposed to O2 in the presence of 2-ClO4 did not lead to the generation of 

benzoylformic acid. Rather only trace amounts of the hydrolytic products benzoic acid 

and 2-hydroxyacetophenone were detected in addition to unreacted ester. 

 

 

Scheme 2-6. Proposed reaction pathway for the formation of benzoylformic acid from 2-

oxo-2-phenylethylbenzoate. A control experiment showed that this reaction did not 

proceed. 

 

Kinetics. In order to gain more insight into why 3-ClO4 exhibits different 

regioselectivity in C-C bond cleavage than 1 and 3-OTf, we undertook mechanistic 

studies. For both 3-ClO4 and 3-OTf, the reaction is found to be first order in each of 3-X 

and O2, with an overall rate constant, k2 = 0.40 M-1s-1 (Figures 2-6 and 2-7). The 

similarity of the rate in each case implies they have the same rate-determining step, and 

the differentiation in terms of reactivity likely occurs after the acireductone itself has  
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Figure 2-6. UV-vis spectra following the decay of 3-OTf in the presence of O2 at 

selected time intervals. An isosbestic point is observed at 332 nm. 

 

 

Figure 2-7. Plot of kobs (s-1) versus [O2] (M) for the reaction of 3-OTf (0.47mM) in 

CH3CN at 20˚C. [O2] was changed by adding varying aliquots of O2- and N2-saturated 

CH3CN to the reaction cell. 
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been consumed. It is also worth noting that these reactions are slightly slower than was 

observed in the analogous reaction of 1 (k = 1.7 M-1s-1).13 

Investigations of Fe/O2 Reactivity. A common paradigm in dioxygenase 

reactions involving a ferrous center is the direct metal-centered activation of O2, forming 

a ferric-superoxo species. Speculating that such a species could be partially responsible 

for the differentiation in reactivity between 1 and 3-ClO4, we investigated its feasibility. 

The formation of such a species would require the dissociation of one of the phenyl-

appended pyridyl arms of the chelate ligand to open up a coordination position. Low 

temperature 1H NMR studies of 4 in CD3CN (-40˚C) and CD3OD (-70˚C) have shown no 

evidence of loss of the Cs symmetry of the complex, suggesting that dissociation of a 

chelate ligand arm is unlikely to be occurring. Additionally, in the reaction of 3-X with 

O2 in acetonitrile at -40°C, we have observed no intermediates consistent with the 

formation of a ferric-superoxo species by UV-vis. Attempts to intercept a superoxo 

intermediate by hydrogen atom abstraction from common probes such as 

dihydroanthracene, 2,4-di-tbutylphenol and 2,4,6-tri-tbutylphenol have all yielded a 

negative result.31 Based on these results we conclude that it is unlikely that the reaction 

proceeds via a ferric-superoxo intermediate. 

Isotopic labeling. Labeling studies of the reaction of 3-ClO4 with 18O2 show a 

modest incorporation of a single label into both benzoic acid (36%) and benzoylformic 

acid (53%). We hypothesized that water in the reaction mixture (due to the use of the 

pentahydrate base Me4NOH⋅5H2O to generate 3-ClO4) was at least partially responsible 

for the loss of label, as addition of H2
18O to the 16O2 reaction results in modest label 

incorporation (Scheme 2-7). To probe whether water could have a role in the reaction, we  
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Scheme 2-7. 18O labeling studies in the reaction of 3-ClO4 with O2. Relative abundance 

was determined by intensity of appropriate molecular ions in the relevant LC-MS 

spectrum. 
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Table 2-4. Summary of production of benzoylformic acid. 

 
aRelative percentage of the total amount of benzoic acid and benzoylformic acid determined by LCMS 

peak area. Benzil and ester are additional products not presented in this table. bHO2
- generated in situ by 

combining 1.1 equivalents of 30% H2O2 (aq) and NEt3. 
 

repeated the reaction of 3-OTf with O2 in the presence of 5% added water. Gratifyingly, 

we observed the production of benzoylformic acid (Table 2-4), therefore indicating that 

the presence of water had been the reason for the differing observed reactivities of 3-OTf 

and 3-ClO4.  

Scope of α-keto acid formation. Having established the importance of water in 

the generation of the α-keto acid, we conducted a series of control reactions specifically 

searching for benzoylformic acid formation.  Most importantly, we have reinvestigated 
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the products generated in the reaction of the nickel complex 1 with O2 in both pure 

CH3CN and 95% CH3CN/H2O using the work-up procedure and analysis methods (GC-

MS and LC-MS) employed for the O2 reaction of 3-X. Notably, no benzoylformic acid 

formation was detected starting from 1 (Scheme 2-8; Figure 2-5 (LC-MS)). Additionally, 

reaction of the triketone (1,3-diphenylpropantrione) in the presence of the hydroperoxide 

anion and [(6-Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 resulted in no detectable benzoylformic 

acid formation (Scheme 2-8). Treatment of the tetramethylammonium salt of the bulky 

acireductone anion with O2 also failed to yield any α-keto acid formation. Taken 

together, these results imply that both water and an iron center are required for α-keto 

acid formation. 

Raising the amount of water present in the reaction of 3-OTf with O2 results in a 

marked increase in the amount of benzoylformic acid produced, as summarized in Table 

2-4. However, we have been unable to generate equimolar amounts of benzoic acid and 

benzoylformic acid regardless of the amount of water present in the system. Interestingly, 

reaction of the triketone (the two-electron oxidized form of the acireductone) with HO2
- 

in the presence of a ferrous complex also results in the generation of benzoylformic acid. 

When the same reaction is repeated, starting from the hydrated triketone (2,2-dihydroxy-

1,3-diphenylpropan-1,3-dione) an increase in the amount of benzoylformic acid produced 

is observed (Table 2-4). These results suggest that the water-sensitivity of the oxidation 

chemistry is due to the hydration of a triketone intermediate. 

We have also investigated the role of ferric species in the reaction chemistry. 

Attempts to isolate ferric complexes by the combination of Fe(ClO4)3⋅6H2O, 6-Ph2TPA, 

Me4NOH⋅5H2O and the bulky acireductone have been unsuccessful. Monitoring these  
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Scheme 2-8.  Summary of the detection of benzoylformic acid in control reactions. Each 

reaction was  carried out in CH3CN, and also in 95% CH3CN/H2O. Regardless of solvent 

conditions, no benzoylformic acid was detected in any of these control reactions. 
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Figure 2-8. [(6-Ph2TPA)Fe(sol)x](ClO4)3 before (top) and after (bottom) the addition of 

[Me4N][PhC(O)C(OH)C(O)Ph]. The bottom spectrum is consistent with the formation of 

a ferrous species, and is likely [(6-Ph2TPA)Fe(CH3CN)](ClO4)2 (2-ClO4); c.f. Figure 2-2. 
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reactions by 1H NMR in the paramagnetic region shows the growth of peaks consistent 

with the reduction of FeIII to form the ferrous species 2-ClO4 (Figure 2-8). Subsequent 

analysis of the organic products of this reaction shows the production of the ester as a 

major species as well as triketone, and trace amounts of benzoic acid (Scheme 2-9). 

Given that ferric/ferrous couple is a one-electron process, we next combined four 

equivalents of a ferric salt with the acireductone anion, or two equivalents with the 

triketone. As shown in Table 2-4, these reactions also lead to carbon-carbon bond 

cleavage, with the regioselectivity influenced by the water content of the reaction 

mixture. We note that the ferric-mediated oxidative cleavage of vicinal triketones in 

water has previously been reported,32 and the oxidation of acireductone analogues, such 

as ascorbic acid by ferric ions, is well documented.33, 34 This oxidation of an acireductone 

in the absence of molecular oxygen is particularly interesting due to the recent discovery 

of the operation of a methionine salvage pathway under anaerobic conditions.35
 

 

 
 

Scheme 2-9. Attempted synthesis of [(6-Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)](ClO4)2, and 

the resulting products including oxidized organic species. 
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Discussion 

The chelate ring hypothesis was formulated on the basis of a number of 

observations in studies of Ni-ARD and Fe-ARD’.9 First, oxygen uptake studies, as well as 

spectroscopic studies performed in the presence of oxygen, provided no evidence for 

oxygen binding at the active site in either metal-containing form of the enzyme. 

Additionally, Fe-ARD’-type reactivity was found to occur when the enzyme is 

reconstituted with magnesium, implying that iron-centered redox activity may not be 

important in directing the regiospecificity of the reaction. Second, NMR studies provided 

evidence for a metal-dependent entropy switch that converts the active site tertiary 

structure between a closed (Ni-ARD) and open (Fe-ARD’) form. Docking studies show 

that the acireductone would likely coordinate via a five-membered chelate in Fe-ARD’, 

but in the more congested Ni-ARD active site, it would bind via a less sterically-

demanding six-membered chelate.30 These binding modes would activate the C(1)/C(2) 

or C(1)/C(3) positions, respectively for reaction with oxygen (Scheme 2-1), leading in 

turn to the proposed products for the Fe-ARD’ and Ni-ARD catalyzed reactions. Notably, 

the structural data currently available for enzyme-substrate (ES) adducts of Fe-ARD’ or 

Ni-ARD, respectively, is limited to XAS data, which does not provide definitive proof of 

the substrate coordination motif.9 Additionally, the UV-vis absorption features of the ES 

adducts are similar, which may actually indicate that there is no difference in binding 

mode. 

Our previous studies of a nickel-containing complex (1) supported the chelate 

hypothesis in terms of the coordination mode of the bulky acireductone ligand, which is 
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akin to that proposed for the ES complex of Ni-ARD. The O2 reactivity of 1, while 

resulting in the formation of Ni-ARD type products, proceeded via a different pathway 

than that being proposed for the enzyme. Specifically, the initial reaction in the model 

system leads to the formation of triketone and hydroperoxide intermediates from which 

carbon-carbon bond cleavage was found to occur. In the enzyme, the coordinated 

acireductone is proposed to react directly with O2 to give a coordinated cyclic peroxide 

species from which aliphatic C-C bond cleavage occurs. The results described herein 

show that a simple change in the metal ion from Ni(II) in 1 to Fe(II) in 3-X, while 

maintaining the same supporting ligand coordination environment, has no effect on the 

coordination mode of the bulky acireductone. However, despite the congruence of the 

structure of 1 and 3-X, α-keto acid formation was found to occur upon reaction of 3-X 

with O2 in the presence of water. Thus, an oxidative pathway is accessible, leading to a 

change in the regiospecificity of carbon-carbon bond cleavage that does not require 

distinct acireductone coordination motifs. This is result is in contrast to the chelate 

hypothesis, and shows that this hypothesis is not sufficient to explain the chemistry 

encountered in our model system. 

An alternative proposed mechanism for the cleavage of the C(1)-C(2) bond in Fe-

ARD’ is a Baeyer-Villiger type oxidation (Scheme 2-10).13 In this reaction, a carbonyl 

moiety migrates to the peroxo oxygen in the tetrahedral intermediate to form an 

anhydride with subsequent release of OH-. Subsequent hydrolysis of this species would 

generate the observed α-keto acid product. This is an attractive proposition, as differences 

in the electronic structure of Fe(II) and Ni(II) could be used to rationalize the ability of 3-

X to promote this reaction more efficiently than 1. Fe(II) is a known catalyst for Baeyer-
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Villiger oxidations,42 and a prior computational study has shown that in oxidative 

cleavage of the bulky acireductone the transition state for a Baeyer-Villiger reaction is 

only 3.5 kcal/mol, suggesting that subtle variations in reaction conditions (i.e. Ni(II) vs 

Fe(II)) would be sufficient to change the reaction selectivity.13 However, while this 

Baeyer- Villiger pathway does include a hydrolytic step, it may be ruled out as it makes 

no provision for the necessity of water in changing the reaction regioselectivity. 

 

 

Scheme 2-10. A possible pathway for the reaction of 3-X leading to the formation of 

benzoylformic acid via a Baeyer-Villiger oxidation. The regioselectivity of this reaction 

does not depend upon the presence of water. 

 

In the reaction of 3-X with O2 in the presence of water we never observe the 

formation of benzoic acid and benzoylformic acid in an equimolar ratio (Table 2-4). 

Thus, there are always at least two oxidative pathways operative. Regardless of 

conditions, it appears that an O2 reaction akin to that found for 1 is always operative in 

the Fe(II)-containing system. This reaction leads to the formation of two equivalents of 

benzoic acid and carbon monoxide. When water is added, a new reaction pathway is 
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enabled wherein one equivalent each of benzoic acid and benzoylformic acid are 

generated. Because complex 1 exhibits only the first type of reactivity, comparative 

studies of the reactivity of 1 and 3-X enable us to probe for the chemical factors that 

enable α-keto acid formation. From these studies we find that regardless of metal ion or 

water content of the system, the initial step is the two-electron oxidation of the 

acireductone by dioxygen to form a triketone and the hydroperoxide anion as 

intermediates. This proposal is supported by our previous mechanistic studies of the O2 

reaction of 1, as well as kinetic studies that show a similar rate-determining step for the 

oxidation of 1 and 3-X in the presence or absence of water. The involvement of triketone 

and hydroperoxide intermediates is also supported by studies involving authentic 

triketone and hydrogen peroxide in the presence of the corresponding [(6-

Ph2TPA)M(CH3CN)x]2+ (M = Ni (x = 2) or Fe (x= 1)) complex. In these reactions we 

observed similar regioselectivity, as in the reaction of 1 or 3-X, indicating that it is at the 

triketone level that a differentiation in the chemistry occurs.  

In the absence of water, the triketone intermediate formed in the O2 reactions of 1 

and 3-X will undergo reaction with the hydroperoxide anion to selectively cleave the 

C(1)-C(2) and C(2)-C(3) bonds and release CO. This chemistry is consistent with that 

previously reported by Pochapsky wherein 2,3,4-pentanetrione was shown to undergo 

reaction with H2O2 to give two equivalents of acetic acid and carbon monoxide.36 For 3-

X in the presence of water, we propose that an additional reaction pathway is operative 

due to hydration of the triketone intermediate. Triketone hydration is a well-known 

process, and the central carbonyl of diphenyltriketone is the most electrophilic and 

therefore will be the site of initial hydration.37 Once formed, we propose that the hydrated 
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triketone may interact with the iron center to form a five-membered chelate ring (Scheme 

2-11), which becomes susceptible to attack by hydroperoxide at an activated terminal 

carbonyl moiety. Formation of a four-membered dioxetane ring via loss of water would 

generate the species from which C(1)-C(2) bond cleavage and α-ketoacid formation 

could occur.  

 

Scheme 2-11. Proposed reaction pathway involving triketone hydration as a means to 

generate Fe-ARD’-type products containing oxygen atoms derived from both O2 and 

H2O. 

 
The reaction pathway outlined in Scheme 2-11 shows that it is the hydration and 

subsequent coordination of an intermediate, not differences in chelation involving the 

acireductone substrate itself (chelate hypothesis), that determine the regioselectivity of 

the reaction.  This is in contrast to the reaction pathways of other metal-containing 

dioxygenases and their model systems wherein changes in the primary and/or secondary 

environment of the metal center determine the regioselectivity of carbon-carbon bond 

cleavage.38 In terms of ARD enzymes, it is important to note that the active site in Fe-

ARD’ is much more open, and thus solvent-exposed, when compared to the Ni-ARD 
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active site wherein a tryptophan loop maintains a hydrophobic microenvironment.30 The 

reaction pathway shown in Scheme 2-11 provides a means for 18O incorporation from 

18O2 in the α-ketoacid product. The substoichiometric 18O incorporation that is found in 

the α-keto acid generated in the O2 reaction of 3-X (~50%), and in the dioxygenase 

reactivity of Fe-ARD’ (~78%),39 suggests that water exchange may be important for both 

the model system and the enzyme. The involvement of a triketone-type intermediate in 

the enzymatic system cannot currently be ruled out on the basis of either experimental or 

computational studies. Therefore, our future work will involve approaches toward 

examining the feasibility of a triketone-type pathway in reactions involving C(1)-H-

containing ARD substrates. We note that recent advances in the synthesis of C(1)-H 

triketones will be instrumental in carrying out this work.40 

Of course the question then arises as to why the C(1)-C(2) cleavage pathway 

leading to α-keto acid formation is not operative for the nickel-containing complex 1. 

Our working hypothesis is that the Ni(II) center does not effectively mediate the 

hydration of the triketone intermediate, preventing this species from forming in 

significant amounts during the reaction progression. This hypothesis is supported by the 

differing anaerobic, water-dependent bulky acireductone isomerization chemistry of the 

nickel and iron complexes 1 and 3-X. While 1 does not undergo isomerization of the 

acireductone, 3-X undergoes rapid isomerization in the presence of water (Scheme 2-4). 

Similar water-dependent isomerization of the acireductone to the ester, as well as 

subsequent hydrolysis, was also observed in solutions containing the cobalt complex 5. 

Interestingly, the solid state structures of the solvate complexes [(6-

Ph2TPA)M(CH3CN)x]2+ are pentacoordinate, with a single solvent molecule when M = 
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Fe or Co, but hexacoordinate with two solvent molecules when M = Ni.19 The differing 

coordination preferences for the metal ions in these systems may be responsible for the 

differences in Lewis acid activation for the triketone and/or water that would influence 

the formation of hydrated triketone and acireductone isomerization.  

We note that an alternative route for α-keto acid formation could involve the 

direct oxidation a hydrated triketone by ferric ions generated in solution (Scheme 2-12). 

In this regard, it would be expected that ferric ions could rapidly promote hydration of the 

triketone, and previous studies have demonstrated ferric-mediated oxidative cleavage of 

vicinal triketones in aqueous solutions to give α-keto acid and carboxylic acid products.32 

While this type of reactivity is certainly viable in our systems, it would not explain the 

observed isotope incorporation data, wherein 18O from 18O2 is incorporated into the α-

keto acid product.41 In this regard, our studies do not exclude a pathway wherein the HO2
-  

 

 

Scheme 2-12. Proposed sequence for hydrated triketone aliphatic carbon-carbon bond 

cleavage promoted by ferric iron species. 
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produced in the reaction of 3-X with O2 first oxidizes Fe(II) to Fe(III), which then acts as 

Lewis acid to mediate triketone hydration. The hydrated triketone could then react with 

an additional equivalent of HO2
- to give Fe-ARD’ type products wherein the 18O label 

from 18O2 would be incorporated.   

 
Conclusion 

The chelate hypothesis had remained unchallenged in the literature to date as an 

explanation for the differing regiospecificity of Ni-ARD and Fe-ARD’ without the need 

to invoke metal-centered redox chemistry, which has not been observed in the native 

enzymes. In this first study of an iron-containing model system, designed to directly 

probe this hypothesis, we have found that the chelate hypothesis is not necessary to 

explain the differentiation in reactivity. Rather, in our model system, a difference 

between nickel and iron in the hydration of a triketone intermediate allows a change in 

regioselectivity of the reaction. This is an alternative proposition for the Fe-ARD’ 

reaction, as it would be accounted for by the differences in solvent accessibility in the 

active sites of Ni-ARD and Fe-ARD’ without a need to dismiss the similarity in 

absorption spectra for the enzyme-substrate adducts. The notion of hydration of an 

intermediate as the key factor differentiating regioselectivity also provides a potential 

framework for understanding how oxidation of an acireductone may occur in anaerobic 

systems using oxidants other than dioxygen. 
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CHAPTER 3 

IRON- AND NICKEL-CONTAINING MODEL SYSTEMS OF 

ACIREDUCTONE DIOXYGENASE THAT UTILIZE A C(1)H ACIREDUCTONE 

SUBSTRATE 

 
Abstract 

 An acetylated tautomer of phenyl reductone, 1-Acetoxy-3-phenylpropan-2,3-

dione (5), has been synthesized by a non-enzymatic route from commercially available 

precursors. Mononuclear complexes ([(6-Ph2TPA)M(PhC(O)C(O)CHOC(O)CH3)]ClO4 

(7: M = Ni; 8: M = Fe) containing the mono-anion of 5 bound to a divalent metal center 

supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-

pyridyl)methyl)-N-(2-pyridylmethyl)amine) have been synthesized. Complexes 7 and 8 

have been characterized by 1H NMR, UV-vis, infrared spectroscopy, mass spectrometry 

and elemental analysis. Exposure of solutions of 7 or 8 to O2 does not lead to their decay 

over the course of several hours. Complexes 7 and 8 may be deprotected by the addition 

of excess nucleophilic base to generate a mononuclear species with a dianionic 

acireductone bound (I); this species subsequently anaerobically decays with loss of the 6-

Ph2TPA ancillary ligand. Exposure of the in situ generated mononuclear dianionic 

acireductone complex I to O2 leads to oxidative cleavage of the diketonate. This is the 

first example of a strategy that allows examination of the oxidative reactivity of a 

mononuclear dianionic acireductone complex of relevance to the acireductone 

dioxygenase enzymes. 
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Introduction 

Methionine is an essential amino acid that plays an important role in protein 

structure, biosynthetic pathways and is the start codon for translation in eukaryotic cells.1 

Its function in biosynthetic pathways is dominated by its enzymatic derivatization by 

adenosine triphosphate (ATP) to form S-adenosylmethionine (SAM).2, 3 SAM has 

numerous important biological functions due in part to its sulfonium cation with three S-

C bonds.3, 4 These functions include: as a co-substrate for methyltransferases, which leads 

to the loss of the methyl group and formation of S-adenosylhomomethionine;5 as a co-

factor in radical SAM enzymes;6 and as a source of n-propylamine during polyamine 

biosynthesis, leading to the formation of methylthioadeniosine (MTA)7. Polyamines such 

as spermine and spermidine are associated with cell growth, and defects in polyamine 

biosynthesis regulation are associated with oncogenesis.8 Therefore, metabolic pathways 

that regulate polyamine synthesis are a potentially therapeutically important area of 

study. One such pathway is the methionine salvage pathway (MSP), a ubiquitous 

enzymatic pathway in eukaryotic organisms that functions to recycle the methylthio unit 

into methionine after SAM has been converted to MTA during polyamine biosynthesis.7, 9  

A pair of enzymes known as the acireductone dioxygenases catalyze the 

dioxygenolytic cleavage of an acireductone intermediate within the MSP.10 These 

enzymes represent the only known branch-point within this pathway, and thus are of 

current interest. In Klebsiella pneumonia the on-pathway reaction is catalyzed by an iron-

containing enzyme (Fe-ARD’), while the off-pathway reaction is catalyzed by a nickel-

containing enzyme (Ni-ARD).11-13 These enzymes cleave the carbon-carbon bond(s) of  
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Scheme 3-1. An overview of the methionine salvage pathway in K. pneumonia.  

 
their substrate with differing regiospecificity (Scheme 3-1), and are particularly 

interesting from a chemical standpoint as the only constitutive difference between the 

enzymes is the identity of the metal ion at the active site (FeII or NiII).13 The reaction 

catalyzed by Ni-ARD also produces CO, a well-known cellular signaling molecule with 

therapeutic potential,14 thereby combining a regulatory junction with the production of a 

cellular signal. Efforts to gain an understanding of the chemical factors that control the 



123	
  
regiospecificity of the acireductone dioxygenase cleavage reactions are therefore 

warranted. 

The original proposal for the changes in regiospecificity inferred changes in the 

binding mode of the acireductone to the metal center, from a five-membered chelate ring 

in Fe-ARD’ to a six-membered chelate ring in Ni-ARD, would respectively activate the 

C(1) and C(2) or C(1) and C(3) carbons towards attack by dioxygen (Scheme 3-2).15 

Subsequent collapse of the resulting dioxetane rings would lead to the observed  

 

 

Scheme 3-2. The proposed reaction pathways for Ni-ARD (top) and Fe-ARD’ (bottom), 

wherein a change in the binding mode of the acireductone activates different carbon 

atoms to attack by dioxygen. 
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regiospecificity of products. This “chelate hypothesis” was borne out by NMR studies of 

the tertiary structure of the enzymes, wherein it was found that the position of a 

tryptophan arm in the Ni-ARD active site could favor the six-membered chelate binding 

mode of the substrate.16 However, direct spectral probes of the enzyme-substrate adducts, 

including UV-vis spectroscopy and XAS, did not give conclusive evidence of a change in 

binding mode between Fe-ARD’ and Ni-ARD.17, 18  

As an alternative to enzymatic studies as a method for investigating the 

mechanistic details of the acireductone dioxygenases, we have previously synthesized 

functional small molecular models of Ni-ARD and Fe-ARD’.19, 20 To model the 3-His, 1-

Glu binding motif and hydrophobic pocket at the active site we utilized the ligand N,N-

bis((6-phenyl-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine (6-Ph2TPA) and as a model 

substrate we synthesized the bulky acireductone 2-hydroxy-1,3-diphenylpropan-1,3-

dione, which is not known to be a substrate for the native enzymes. The models of the 

enzyme-substrate adducts, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) and [(6-

Ph2TPA)Fe(PhC(O)C(OH)C(O)Ph)]ClO4 (2), undergo a dioxygenolytic reaction via the 

formation of an intermediate triketone/hydroperoxide pair (Scheme 3-3).20, 21 The 

triketone intermediate was initially identified by the detection of benzil, the product of a 

Lewis acid-mediated decarbonylation of 1,3-diphenylpropantrione.22 Due to the identical 

binding mode of the model acireductone substrate in these complexes, they were an ideal 

test-case for the chelate hypothesis. It was found that the regioselectivity of the reaction 

of 1 and 2 with O2 was identical in dry solvent, consistent with the chelate hypothesis. 

However, in the presence of H2O a change in regioselectivity was observed in the 

reaction of 2, but not for 1, suggesting that the chelate hypothesis was not sufficient to  
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Scheme 3-3. Reaction pathways of 1 and 2 with O2 via the formation of 1,3-

diphenylpropantrione as an intermediate. Both complexes may react via a Ni-ARD 

pathway in which both the C(1)-C(2) and C(2)-C(3) bonds within the propyl chain are 

cleaved, releasing CO. When water is added to the reaction, a new reaction pathway 

becomes accessible only for 2, in which only the C(1)-C(2) bond is cleaved. 

 

explain the chemistry in these model systems.21 We thereby proposed a new reaction 

pathway for 2 wherein the ferrous center promoted hydration of a triketone intermediate, 

facilitating the change in regioselectivity (Scheme 3-3). Unfortunately, this model system 

is not truly biomimetic since it reacts at a mono-anion protonation level (whereas the 

enzyme is proposed to react at a di-anionic protonation level) and utilizes an acireductone 

that is likely too bulky to fit into the active site of the acireductone dioxygenases.10 

Computational studies have additionally suggested significant differences in the 

electronic structure and thus reactivity between acireductones that have a phenyl group or 

a hydrogen atom at the C(1) position.21, 23 In order to provide better insight into the 
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acireductone dioxygenase reaction pathways, we have therefore endeavoured to utilize a 

C(1)H acireductone that is a substrate for the native enzyme. As a target we have chosen 

3-oxo-3-phenylpropen-1,2-diol (phenyl reductone), which has been reported as a 

substrate for the enzyme, due to its amenable UV-vis features (λmax = 320 nm as a mono-

anion).17 

There are no reported chemical syntheses of the native substrate of the 

acireductone dioxygenases (1,2-dihydroxy-3-oxo-S-methylthiopentene), presumably due 

to the presence of the methylthio unit.24 Synthetic routes to desthio analogues, such as 

phenyl reductone, have focused on generating a phosphorylated precursor to an 

acireductone, and subsequently using the E1 enolase/phosphatase enzyme from the MSP 

to dephosphorylate the precursor (Scheme 3-4).25 The resulting acireductone mono-anion 

is normally utilized in situ, although it has been isolated as a sodium salt with purity of up 

to ~90 %, as evaluated by 1H NMR.26 An attempted alternative, entirely chemical 

synthetic route to phenyl reductone has generated a barium salt of the mono-anion, but 

the purity of this salt was not reported (Scheme 3-5).27 The difficulty in isolating the 

acireductone is due to its propensity to oxidize under alkaline conditions utilized in its 

synthesis, and also due to a facile isomerization reaction that breaks a C-C bond to form 

an ester.27, 28 

We have previously generated a small molecular model of the enzyme-substrate 

adduct of Ni-ARD in situ, by utilizing the sodium salt of phenyl reductone (Scheme 3-6). 

Based on its 1H NMR and UV-vis features (λmax = 378 nm), the complex is formulated as 

[(6-Ph2TPA)Ni(PhC(O)COHC(O)H)]ClO4 (3).26 Exposure of a solution of this complex 

to O2 results in the slow decay of the 378 nm absorption feature. Analysis of the product  
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 Scheme 3-4. A combined chemical-enzymatic route for the synthesis of a C(1)H 

acireductone mono-anion that utilizes the E1 enolase/phosphatase enzyme from the 

methionine salvage pathway to generate a mono-anion in situ, with ~90% purity. All 

reactions were performed under a nitrogen atmosphere.  
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Scheme 3-5. A solely chemical synthetic route for the synthesis of a C(1)H acireductone 

has been used to generate the Ba2+ salt of the mono-anion. All reactions were performed 

under a nitrogen atmosphere. 

 

 

Scheme 3-6. A possible structure of an in situ generated phenyl reductone complex (3), 

and the product of its reaction with O2 in CH3CN.   
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mixture by 1H NMR and HRMS allowed the identification of [(6-

Ph2TPA)Ni(PhC(O)O)]+ as a product. No other products have yet been identified. No 

mixture by 1H NMR and HRMS allowed the identification of [(6-

Ph2TPA)Ni(PhC(O)O)]+ as a product. No other products have yet been identified. No 

analogous complex containing a ferrous center has yet been synthesized, and the 

reactivity of the complex in the presence of exogenous base (to generate the di-anion) has 

not been investigated.  

In order to generate model systems of direct relevance to the acireductone 

dioxygenases, our current goal is to generate nickel and iron complexes with a di-anionic 

phenyl reductone moiety bound. Our strategy is outlined in Scheme 3-7 and involves the 

generation of a protected acireductone. Binding of this protected acireductone to a metal 

center will allow us to generate a well-defined, analytically pure complex by eliminating 

the acireductone isomerization reaction. Subsequent deprotection and exposure to O2 will 

allow us to investigate the role that iron and nickel play in directing the regioselectivity 

of acireductone cleavage.  

 
Experimental 

General Methods. All reagents were obtained from commercial sources and were 

used without additional purification unless otherwise noted. Solvents were dried 

according to published procedures and were purified by distillation under N2 prior to 

use.29 Air-sensitive reactions were performed in an MBraun Unilab glovebox under a N2 

atmosphere or by using standard Schlenk techniques. The 6-Ph2TPA (N,N-bis((6-phenyl-

2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) ligand, [(6- 
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Scheme 3-7. Strategy for generating a well-defined C(1)H acireductone complex and 

subsequently deprotecting it to investigate the reactivity of a dianionic acireductone with 

O2.  
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Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2, and [(6-Ph2TPA)Fe(CH3CN)](ClO4) were 

synthesized by following previously published procedures.30, 31, 20 

Physical Methods. 1H NMR spectra of organic compounds were obtained using a 

JEOL ECX-300 spectrometer; chemical shifts were referenced to the residual solvent 

peak in CD2HCN (1.94 ppm, quintet). 13C NMR spectra of organic compounds were 

obtained using a Bruker ARX-400 spectrometer. 1H NMR spectra of paramagnetic 

complexes were obtained using a Bruker ARX-400 spectrometer and parameters as 

previously described.32 UV-vis data was collected on an HP8453A spectrometer at 

ambient temperature. IR spectra were recorded on a Shmidzu FTIR-8400 spectrometer as 

KBr pellets. GC-MS data was obtained on a Shimadzu GCMS-QP5000 gas 

chromatograph/mass spectrometer with a GC-17A gas chromatograph, using an Alltech 

EC5 30 m × 25 mm × 25 µm thin film capillary column and temperature program: Tinitial: 

70 °C (5 min); temperature gradient: 23 °C min-1; TFinal: 250 °C (10 min). GC-TCD data 

for analysis of reaction headspace gas was collected using an Agilent 3000A Micro gas 

chromatograph. Mass spectral data for metal complexes was collected by the Mass 

Spectrometry Facility, University of California, Riverside. Elemental analyses were 

performed by Atlantic Microlabs Inc., Norcross, GA. 

3-Phenyl-2-propynylacetate (4). 3-phenyl-2-propyn-1-ol (1.00 g, 7.57 mmol) 

and NEt3 (1 mL) were dissolved in Ac2O (5 mL) and stirred together for 16 hours under a 

N2 atmosphere. The resulting orange solution was diluted with 150 mL EtOAc and 

washed repeatedly with 100 mL portions of H2O. The organic layer was passed through 

an activated charcoal filter and dried over anhydrous Na2SO4. The solvent was then 

removed under reduced pressure to yield a yellow oil (1.10 g, 83%). 1H NMR (300 MHz, 
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CD3CN): δ = 7.46-7.35 (5H, m), 4.87 (2H, s), 2.07 (3H, s); 13C NMR (100 MHz, 

CD3CN): δ =  171.01, 132.54, 129.94, 129.58, 122.90, 86.47, 84.54, 53.23, 20.88. 

1-Acetoxy-3-phenylpropan-2,3-dione (5). NaIO4 (1.07 g, 5.00mmol) was 

dissolved in 15 mL H2O and combined with RuCl3 (0.037 mmol) to form a yellow 

solution.  3-Phenyl-2-propynylacetate (0.215 g, 1.23 mmol), dissolved in a mixture of 10 

mL CCl4 and 10 mL CH3CN was added to the aqueous solution, and the resulting slurry 

stirred for 15 minutes, monitoring carefully by TLC. The slurry was then diluted with 150 

mL CH2Cl2 and filtered. The filtrate was cooled in an ice bath and then carefully mixed 

with 100 mL Na2SO3 (1.0 M). The resulting suspension was placed in a separatory 

funnel, and the aqueous layer extracted with 3 × 100 mL CH2Cl2. The organic layers 

were combined, dried over anhydrous Na2SO4, and the solvent removed under reduced 

pressure. The crude yellow product mixture was purified by column chromatography 

using a silica gel solid phase and eluting with 4:1 hexanes:EtOAc (180 mg, 71%). 1H 

NMR (300 MHz, CD3CN): δ = 8.01 (2H, d, 3J(H,H) = 8.2 Hz), 7.73 (1H, t, 3J(H,H) = 7.2 

Hz), 7.57 (2H, t, 3J(H,H) = 7.9 Hz), 5.21 (2H, s), 2.13 (3H, s); 13C NMR (100 MHz, 

CD3CN) : δ = 196.23, 191.26, 171.24, 135.95, 132.94, 131.07, 129.92, 67.19, 20.49. UV-

vis (Et2O) λmax, nm (ε, M-1cm-1): 255 (12000). 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially very explosive. Only small amounts of material should be prepared, and these 

should be handled with extreme caution.33 

In situ generation of [(6-Ph2TPA)Ni(PhC(O)COHC(O)H)]ClO4 (3). Under a 

N2 atmosphere, 1-acetoxy-3-phenylpropan-2,3-dione (5) (19 mg, 0.091 mmol) was 

dissolved in a mixture of 100 mL MeOH and 5 mL H2O. 20 drops concentrated HCl(aq) 
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was added and the solution stirred for 12 hours. The solvent was then removed under 

reduced pressure to yield a yellow solid. The solid was washed with H2O and redissolved 

in 0.7 mL CD3CN. By integration of the aromatic region in the 1H NMR, the sample 

consisted of ~50% 2,3-dioxo-3-phenylpropanol (6).  1H NMR (300 MHz, CD3CN): δ = 

7.99 (2H, d, 3J(H,H) = 8.6 Hz), 7.62 (1H, t, 3J(H,H) = 7.2 Hz), 7.49 (2H, t, 3J(H,H) = 7.9 

Hz), 4.70 (2H, d, 3J(H,H) = 4.5 Hz; CH2), 3.37 (1H, t, 3J(H,H) = 5.4 Hz; OH). A 0.7 mL 

CD3CN solution of Ni(ClO4)2•6H2O (19 mg, 0.051 mmol) was stirred with 6-Ph2TPA (22 

mg, 0.051 mmol) for 15 minutes to form a pale purple solution. This solution was 

combined with the solution of 6. Me4NOH•5H2O (9 mg, 0.05mmol) was then added and 

the resulting slurry stirred for 1 hour, during which time the color became yellow.  

[(6-Ph2TPA)Ni(PhC(O)C(O)CHOC(O)CH3)]ClO4 (7). Under a N2 atmosphere, 

a CH3CN (5 mL) solution of [(6-Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 (0.078 mmol) was 

stirred with 1-acetoxy-3-phenylpropan-2,3-dione (16 mg, 0.078 mmol) until it was 

completely dissolved. This solution was then added to LiHMDS (14 mg, 0.082 mmol) in 

Et2O (1 mL) and stirred overnight. The solvent was removed under reduced pressure, and 

the solid redissolved in CH2Cl2 then filtered through a glass wool/Celite plug to remove 

the insoluble LiClO4. The CH2Cl2 solution was concentrated under reduced pressure, and 

then layered with hexanes to yield a pale yellow precipitate. The precipitate was 

collected, triturated with Et2O and then dried under vacuum for 48 hours (36 mg, 54%). 

HRMS (ESI): m/z calculated for [C41H35N4NiO4]+: 705.2012 ([M-ClO4]+); found: 

705.2010. FTIR (KBr, cm-1): 1749 (νCO), 1609 (νCO), 1451, 1355, 1094 (νClO4), 765, 623 

(νClO4). UV-vis (MeOH) λmax, nm (ε, M-1cm-1): 350 (6100). Analysis calculated for 
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C41H35ClN4NiO8·0.5CH2Cl2: C, 58.74; H, 4.28; N, 6.61. Found: C, 59.17; H, 4.67; N, 

7.09. 

[(6-Ph2TPA)Fe(PhC(O)C(O)CHOC(O)CH3)]ClO4 (8). Under a N2 atmosphere, 

1-acetoxy-3-phenylpropan-2,3-dione (14 mg, 0.068 mmol) was dissolved in Et2O (2 mL) 

was added to LiHMDS (12 mg, 0.071 mmol) in Et2O (1mL) and stirred for 15 minutes to 

form a slurry. The solvent was then removed under reduced pressure. This solid was then 

combined with a CH3CN (5 mL) solution of [(6-Ph2TPA)Fe(CH3CN)](ClO4)2 (0.068 

mmol) and allowed to stir overnight. The solvent was removed under reduced pressure, 

and the solid redissolved in CH2Cl2 then filtered through a glass wool/Celite plug to 

remove the insoluble LiClO4. The CH2Cl2 solution was concentrated under reduced 

pressure, and then layered with hexanes to yield a brown precipitate. The precipitate was 

collected, triturated with Et2O and then dried under vacuum for 48 hours (28 mg, 49%). 

FTIR (KBr, cm-1): 1750 (νCO), 1595 (νCO), 1451, 1094 (νClO4), 765, 698, 623 (νClO4). UV-

vis (CH3CN) λmax, nm (ε, M-1cm-1): 339 (8400), 518 (1100). HRMS (ESI): m/z calculated 

for [C41H35N4FeO4]+: 703.2008 ([M-ClO4]+); found: 703.2013. Analysis calculated for 

C41H35ClN4FeO8·0.5CH2Cl2: C, 58.93; H, 4.29; N, 6.63. Found: C, 58.71; H, 4.40; N, 

6.22. 

Treatment of 7 and 8 with NaOMe. For UV-vis experiments, a ~0.2 mM MeOH 

stock solution of 7 or 8 was prepared. A 2.4 mL aliquot of this solution (~0.48 µmol) was 

placed in a quartz UV-vis cell. This solution was then combined with a 200 µL aliquot of 

a 12 mM solution of NaOMe (2.4 µmol). For NMR experiments, ~2.5 mg complex (3 

µmol ) was dissolved in 0.75 mL CD3OD. Then,15 µmol NaOMe was also dissolved in 

0.25 mL CD3OD and the solutions combined. 
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Treatment of 7 with LiHMDS. A ~0.2 mM CH3CN stock solution of 7 was 

prepared. A 2.4 mL aliquot of this solution (~0.48 µmol) was placed in a quartz UV-vis 

cell. This solution was then combined with a 200 µL aliquot of a 12 mM Et2O solution of 

LiHMDS (2.4 µmol). 

O2 Reactivity. Solutions for monitoring by UV-vis or 1H NMR were prepared as 

described above. The solutions monitored included: a solution of 7; a solution of 8; a 

solution of 7 that had been treated with NaOMe; and a solution of 8 that had been treated 

with NaOMe. Oxygen was introduced by purging the solutions with dry O2 gas for 30 

seconds, and then the reaction vessels were sealed. In an alternative set of experiments, 

solutions of 7 and 8 were purged with O2 and then subsequently treated with 5 

equivalents of NaOMe. 

To analyze the products of reactions, MeOH solutions containing 2 mg/mL (~2.5 

mM) of 7 and 8 were prepared. The solutions were then purged with O2 for 30 seconds. 

The aerated solutions were then combined with 0.6 mg solid NaOMe per mL of solution, 

giving a NaOMe concentration of ~12.5 mM (5 eq). The solutions were then repurged 

with O2 for 30 seconds, sealed with a rubber septum and stirred for 12 hours. The solvent 

was then removed under reduced pressure and the products analyzed as described below. 

Detection of Formate. To detect the presence of formate, we derivatized it using 

4-phenylphenacylbromide to generate 4-phenylphenacylformate. If formate had been 

present in the crude reaction mixture, a M+ ion with m/z = 240 would be present, 

corresponding to 4-phenylphenacylformate, and with a retention time matching that of an 

authentic sample of 4-phenylphenacylformate. The crude solid reaction mixture was 

dissolved in 10 mL CH3CN and 10 mL benzene. To this reaction mixture was added 10 
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equivalents of 4-phenylphenacylbromide and 5 equivalents of 18-crown-6. The resulting 

slurry was refluxed under nitrogen for 18 hours. The solvent was removed under reduced 

pressure and the solid extracted with CH2Cl2. The CH2Cl2 solution was then passed 

through a short silica plug and analyzed by GCMS. 4-phenylphenacylformate was 

detected in the analysis of the products of the reactions of both 7 and 8. 

Analysis of Phenyl-Containing Products. The crude reaction mixture was 

redissolved in a small amount of CH3CN and passed through a short silica column, 

eluting with ethyl acetate. The organic products were then analyzed by GC-MS and 

identified by comparison to molecular ions, fragmentation patterns and retention times of 

authentic samples. 

Analysis of Gaseous Products. Complex 7 or 8 (0.01 mmol), dissolved in 1.0 

mL MeOH, was placed in a 50 mL round-bottomed flask equipped with a stir bar. The 

flask was filled with O2 gas at atmospheric pressure and sealed with a rubber septum. A 

solution of NaOMe (0.05 mmol) in 1.0 mL MeOH was injected into the round-bottomed 

flask using a gas-tight syringe. The resulting solution was stirred for 12 hours. 10 mL of 

the headspace gas was removed by gas-tight syringe and analyzed by GC-TCD. The yield 

of CO generated in the reactions were determined using calibration curves generated 

using gas mixtures of O2 and CO.  

 
Results and Discussion 

Synthesis of Protected Phenyl Reductone. 3-phenyl-2-propyn-1-ol was acylated 

using acetic anhydride to generate 3-phenyl-2-propynylacetate (4) (Scheme 3-8). 

Oxidation of the alkyne with NaIO4 and a RuCl3 catalyst generated the diketone (5). 

Careful monitoring of this reaction by TLC was necessary due to the propensity of 5 to  
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Scheme 3-8. Synthesis of 1-Acetoxy-3-phenylpropan-2,3-dione (5), a protected 

acireductone, from 3-phenyl-2-propyn-1-ol. 

 

over-oxidize to give carboxylic acids, presumably via an initial hydrolytic cleavage of the 

acetyl protecting group. Due to the formation of byproducts, purification by column 

chromatography was necessary. The diketone tautomeric form of 5 was confirmed by the 

presence of two ketone 13C signals (196.23, 191.26 ppm), an integral of two protons for 

the methylene group by 1H NMR, and by a UV absorption band at 255 nm. 

Synthesis and Characterization of Metal Complexes. While our goal was to 

generate metal complexes containing a protected acireductone, we also determined 

whether our protected acireductone (5) could be used to generate a mono-anionic 

complex such as 3. Hydrolysis of 5 under acidic conditions led to the generation of a new 

species 6 that has not yet been purified and isolated (Scheme 3-9). The 1H NMR signals 

of 6 are consistent with the formulation 2,3-dioxo-3-phenylpropanol, as evidenced by the 

coupling between a doublet methylene signal at 4.70 ppm and a triplet proton at 3.37  
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Scheme 3-9. Route to the in situ synthesis of 3 from 5 via the formation of a phenyl 

reductone tautomer (6).  

 

 

Figure 3-1. Selected portion of the paramagnetically-shifted 1H NMR spectrum of the 

previously reported compound 3 (top), and our in situ generated compound, assigned as 3 

(bottom). The peaks at 55 and 37 ppm in the bottom spectrum are likely impurities. Both 

spectra were recorded using a 400 MHz spectrometer in CD3CN at 25 ˚C. 
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ppm. Notably, the proton peak at 3.37 ppm disappears upon the addition of a drop of D2O 

to the NMR tube, consistent with its assignment as an exchangeable hydroxyl proton. 

Combination of 6 with [(6-Ph2TPA)Ni(CH3CN)(H2O)](ClO4)2 in the presence of base led 

to the formation of a species that has 1H NMR signals consistent with those previously 

reported for 3, albeit with additional signals due to impurities (Figure 3-1).26 Thus, our 

entirely chemically-generated, protected C(1)H acireductone provides a relatively high 

yielding route to generate precursors that can be converted to complexes of relevance to 

acireductone dioxygenases. This general method should be applicable to the synthesis of 

a broad array of C(1)H acireductones in which the phenyl-group is replaced with other 

aromatic or aliphatic groups. 

Deprotonation of 5 by LiHMDS, a non-nucleophilic base, in Et2O led to the 

formation of a pale yellow slurry. Combination of this with [(6-Ph2TPA)M(sol)x](ClO4)2 

(M = Ni, Fe) led to the formation of the complexes [(6-

Ph2TPA)Ni(PhC(O)C(O)CHOC(O)CH3)]ClO4 (7) and [(6-

Ph2TPA)Fe(PhC(O)C(O)CHOC(O)CH3)]ClO4 (8) in moderate yields (Scheme 3-10). 

Single crystals of 8 were grown by slow diffusion of hexanes into a concentrated CH2Cl2 

solution. The brown needle-like crystals produced a diffraction pattern, but were too  

 
 

 

Scheme 3-10. Synthesis of complexes 7 and 8. 
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small to generate a complete electron density map. Elemental analysis to determine the 

bulk purity of 7 and 8 was fit with 0.5 equivalents of CH2Cl2, which was visible by 1H 

NMR in each case, despite trituration and extensive drying. We note that other transition 

metal complexes with the same aryl-appended tris(pyridylmethyl)amine ligand have also 

exhibited a strong affinity for CH2Cl2.34, 35 

Complexes 7 and 8 have been evaluated by HRMS, and each exhibit a [M-ClO4]+ 

molecular ion with excellent agreement to calculated exact masses and isotopic 

distributions. UV-vis spectroscopy of 7 and 8 show that each contain an absorption 

feature due to the coordinated enolate, at 350 and 339 nm, respectively. Consistent with  

 
 

 

Figure 3-2. Selected portion of the paramagnetically-shifted 1H NMR spectra of 7 (top) 

and 8 (bottom). Both spectra were collected using a 400 MHz spectrometer using CD3CN 

as a solvent at 25 ˚C. 
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our proposed coordination motif, the FTIR spectrum of each complex has bands at ~1750 

cm-1, attributable to the acetyl ester group, and at ~1600 cm-1, due to the non-enolized 

ketone carbonyl group vicinal to the phenyl ring. 1H NMR of 7 and 8 (Figure 3-2), 

collected using paramagnetic parameters, show features consistent with those exhibited 

by other enolate complexes with the same 6-Ph2TPA ancillary ligand.19, 20, 35 

Anaerobic Reactivity. Addition of 5 equivalents of NaOMe to a MeOH solution 

of 7 leads to decay of the 350 nm absorption feature with concomitant growth of a new 

feature centered at 390 nm (Figure 3-3 (left)), consistent with nucleophilic substitution at 

the acetyl group, to generate methyl acetate and a complex with a bound dianionic 

acireductone. By contrast, addition of a strong, non-nucleophilic base, such as LiHMDS 

in CH3CN, does not lead to any change in the position of the 350 nm absorption 

maximum in the UV-vis spectrum. Removal of solvent from the reaction of 7 with 

NaOMe under reduced pressure and subsequent analysis of the product by FTIR, as KBr  

 
 

 

Figure 3-3. UV-vis spectra showing the effects of adding excess NaOMe to MeOH 

solutions of 7 (left) and 8 (right). 
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pellets, shows the disappearance of the 1749 cm-1 band, consistent with removal of the 

acetyl group and its subsequent volatilization as methyl acetate. When the reaction is 

carried out at higher concentrations, a white precipitate of NaClO4 is also formed as the 

reaction proceeds. Similarly to 7, the reaction of 8 with 5 equivalents of NaOMe leads to 

a shift of the 339 nm absorption feature in the UV-vis spectrum to 365 nm (Figure 3-3 

(right)), and loss of the 1750 cm-1 band in the infrared spectrum. 

Aerobic Reactivity. Exposure of CH3CN or MeOH solutions of 7 or 8 to O2 does 

not lead to decomposition over the course of 24 hours, as monitored by 1H NMR and 

UV-vis. This is an expected result as, due to the acetate protecting group on the bound 

acireductone, the acireductone should not be reactive with O2. However, once 

deprotected these complexes should react rapidly with O2. Methanolic solutions of 7 and 

8 were first deprotected by the addition of 5 equivalents of NaOMe. Once the 

deprotection was complete, as monitored by UV-vis spectroscopy, the resulting solutions 

were purged with O2. This led to rapid decay of the absorption features at 390 nm and 

365 nm for the solutions generated from 7 and 8 respectively (Figure 3-4 (top)), 

consistent with oxidative cleavage of the acireductone enolate.    

As an alternative route to induce O2 reactivity, methanolic solutions of 7 and 8 

were prepared and purged with O2. These O2 solutions were then mixed with 5 

equivalents of NaOMe, and the subsequent decay monitored by UV-vis (Figure 3-4 

(bottom)), leading to the decay of the 350 nm absorption feature for complex 7 and the 

339 nm absorption feature for complex 8, without any observation of growth of the peak 

at 390 or 365 nm for 7 and 8 respectively. This is consistent with rapid oxidative 

cleavage of the acireductone enolate (Scheme 3-11).  
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Figure 3-4. UV-vis spectra during the reactions of various species with O2 in MeOH. 

Top left: the reaction with O2 of a solution of 7 that had already been treated with 5 

equivalents of NaOMe; a decrease in the 390 nm band was observed. Top right: the 

reaction with O2 of a solution of 8 that had already been treated with 5 equivalents of 

NaOMe; a decrease in the 365 nm band was observed. Bottom left: the reaction when an 

O2 purged solution of 7 was treated with 5 equivalents of NaOMe; a decrease in the 350 

nm band was observed. Bottom right: the reaction when an O2 purged solution of 8 was 

treated with 5 equivalents of NaOMe; a decrease in the 339 nm band was observed. 
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Scheme 3-11. Proposed reaction pathways for the reactions of 7 and 8 with a 

nucleophilic base (NaOMe) in the presence and absence of O2. 
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1H NMR Studies. In addition to monitoring the reaction in real-time by UV-vis, 

we have also utilized 1H NMR to follow the progression of the reaction. Analysis of the  

reaction of 7 with 5 equivalents of NaOMe under anaerobic conditions by 1H NMR, in 

CD3OD as a solvent, shows the initial growth of a new species, followed by the gradual 

disappearance of the paramagnetically-shifted peaks associated with the methylene and 

pyridyl ring protons on the 6-Ph2TPA ligand (Figures 3-5 and 3-6 (top)). Analysis of the 

diamagnetic region at the end of the reaction shows the presence of peaks consistent with 

the presence of free 6-Ph2TPA ligand, albeit broadened due to the presence of 

paramagnetic species in the solution (Figure 3-7). These results are consistent with the 

formation of an intermediate in which the 6-Ph2TPA ligand remains coordinated to the 

metal center, followed by its subsequent demetallation (Scheme 3-11). We speculate that 

the intermediate is likely to be the neutral mononuclear complex [(6-

Ph2TPA)M(PhC(O)COCHO)] (I), in which the acetyl protecting group has been cleaved 

to generate an acireductone that has a dianionic protonation level. 

In previous attempts to isolate a dianionic acireductone nickel complex, with an 

alternative acireductone substrate, various degrees of ancillary ligand displacement to 

form hexa-nickel or tri-nickel species were observed (Scheme 3-12).36 In these 

complexes, the metal centers are bridged by the alkoxide groups of the dianionic 

acireductone. The displacement of the ancillary ligand is assumed to be due to the poor 

affinity of the phenyl pyridyl groups for Ni(II) relative to the affinity of the enolate 

moieties of the acireductone. It seems likely, therefore, that the displacement of 6-

Ph2TPA in the reaction of 7 and 8 with excess NaOMe is due to the formation of multi-

nuclear clusters (II), likely bridged by the alkoxide groups of the dianionic acireductone.  
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Figure 3-5. Selected regions of the 1H NMR spectra collected during the reaction of 7 

with 5 equivalents of NaOMe in CD3OD under a nitrogen atmosphere. The spectra were 

recorded at varying time intervals, as shown in minutes. All spectra were collected using 

a 400 MHz spectrometer in CD3OD at 25 ˚C. 
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Figure 3-6. Plot of the relative intensities of selected features in the 1H NMR during the 

reaction of 7 with 5 equivalents of NaOMe in CD3OD under a nitrogen atmosphere (top) 

and under an oxygen atmosphere (bottom). The features at 50.0 and 38.2 ppm correspond 

to the starting material, while the features at 49.2 and 46.3 ppm correspond to an 

intermediate in the reaction. Notably, in the presence of oxygen the intermediate is no 

longer observed. 
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Figure 3-7. 1H NMR spectra of the 6-Ph2TPA ligand (bottom) and the product mixture of 

the reaction of 7 with 5 equivalents of NaOMe under a nitrogen atmosphere (top). Both 

spectra were recorded using a 400 MHz spectrometer using CD3OD as a solvent and at 

25 ˚C. 
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Scheme 3-12. Previous attempts to generate a mononuclear nickel acireductone dianionic 

complex have resulted in displacement of the ancillary chelate ligand. Treatment of a 

bulky acireductone dianion with one equivalent of Ni2+ and one equivalent of N,N-bis((6-

phenyl-2-pyridyl)methyl)-N-(6-neopenylamino-2-pyridylmethyl)amine led to the 

formation of a trinuclear nickel complex with displacement of one equivalent of ancillary 

ligand (left). Treatment of a bulky acireductone anion with one equivalent of Ni2+ and 

one equivalent of 6-Ph2TPA led to the formation of a hexanuclear nickel complex with 

displacement of six equivalents of ancillary ligand (right).  
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We note that an enolate absorption feature is still present in the UV-vis spectrum at this 

point in the reaction. It is only after addition of O2 that the enolate is cleaved, which 

suggests that the cluster species is oxidatively sensitive. This is consistent with the 

previously reported reactivity of other nickel acireductone di-anion clusters, which in the 

presence of O2 will cleave to form carboxylate products.36 

We also monitored the addition of NaOMe to an oxygenated solution of 7 by 1H 

NMR (Figure 3-8). As we had seen in the reaction of 7 with NaOMe under anaerobic 

conditions, the peaks corresponding to 7 disappeared (Figure 3-6 (top)). Interestingly, the 

peaks that had previously been seen corresponding to the intermediate I were not 

observed in this aerobic reaction. In both cases, peaks associated with free 6-Ph2TPA 

were present in the diamagnetic region at the end of the reaction. This strongly suggests 

that O2 is in fact reacting directly with intermediate I, which appears to correspond to a 

mononuclear dianionic acireductone complex, in a very fast reaction. Thus, the 

intermediate is never observed spectroscopically as it is rapidly intercepted by the 

addition of O2. 

The goal of this work is to understand the reactivity of small molecular enolate 

complexes of structural relevance to the active sites of the acireductone dioxygenase 

enzyme substrate adducts. With this goal in mind, we have utilized the 6-Ph2TPA ligand 

to mimic the 3-His, 1-Glu primary coordination sphere of these enzymes and attempted to 

generate a dianionic substrate bound to the metal center. The formation of a multi-nuclear 

cluster species (II) is detrimental to this goal despite its O2 reactivity, as the resulting 

species has no structural relevance to the enzyme-substrate adduct. In order to investigate  
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Figure 3-8. Selected regions of the 1H NMR spectra collected during the reaction of 7 

with 5 equivalents of NaOMe in CD3OD under an oxygen atmosphere. The spectra were 

recorded at varying time intervals, as shown in minutes. All spectra were collected using 

a 400 MHz spectrometer in CD3OD at 25 ˚C. 
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Scheme 3-13. A summary of the various routes to oxidation of the C(1)H acireductone-

derived species presented in this work. The use of complexes 7 and 8 as precursors for 

investigating the O2 reaction of the enzymatically-relevant dianionic acireductone species 

I is advantageous as it avoids the inherent reactivity of 3. Additionally, the observed fast 

reaction rate of I with O2 allows the avoidance of oxidative chemistry associated with 

cluster species (II), which form at a much slower rate. 
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the O2 reactivity of an enzymatically relevant species, we would need to work in a regime 

in which the O2 reactivity of both the mono-anionic acireductone precursor, and the 

cluster, which is the thermodynamic product anaerobically, are excluded (Scheme 3-13). 

Our use of protected C(1)H acireductone complexes (7 and 8) is fortuitous as they do not 

react directly with O2, in contrast to 3 which proves to be unsuitable for these 

investigations due to its inherent oxygenase reactivity. The observation by NMR that the 

mononuclear intermediate species I can be rapidly intercepted by the addition of O2, on a 

time scale much faster than its subsequent decay to form a cluster, shows that these 

complexes can also exclude cluster-based oxygenation chemistry. Thus, we have 

discovered a method for generating an enzymatically relevant mononuclear dianionic 

complex in situ and monitoring its reactivity with oxygen (Scheme 3-13). 

Product Analysis. Analysis of the headspace gas once the reaction of 7 with 5 

equivalents of NaOMe in the presence of O2 had proceeded to completion showed that 

0.85 ± 0.01 equivalents CO had been produced in the reaction (Scheme 3-14). CO is an 

expected product if both the C(1)-C(2) and C(2)-C(3) bonds of the phenyl reductone 

substrate were to be cleaved. The yield of CO gas suggests that this cleavage reactivity is 

a major reaction pathway for 7. However, the substoichiometric yield implies that there 

may be additional reaction pathways available to 7 that do not lead to the production of 

CO gas. In contrast to 7, the reaction of 8 with 5 equivalents NaOMe in the presence of 

O2 produced only 0.38 ± 0.10 equivalents of CO. As for 7, the less-than-quantitative yield 

of CO suggests additional reaction pathways other than the oxidative cleavage of the 

C(1)-C(2) and C(2)-C(3) bonds. However, in the case of 8 these other reaction pathways 

appear to be responsible for a much more significant portion of the reaction products. 
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Scheme 3-14. Metal-dependent products of the oxidative enolate cleavage reactivity in 

the reactions of 7 and 8 with NaOMe in the presence of O2. 

 

If the C(1)-C(2) and C(2)-C(3) bonds are being oxidatively cleaved then, in 

addition to CO, benzoate and formate are the expected products. The detection of formate  

in the presence of a paramagnetic metal center proves to be difficult, and thus we have 

utilized a previously reported method for the analysis of low molecular weight 

carboxylates and derivatized the crude reaction mixture using 4’-

phenylphenacylbromide.11 Subsequent analysis by GC-MS shows the production of 4’-

phenylphenacylformate from the reaction mixtures of both 7 and 8, consistent with the 

generation of formate in these reactions. In addition to formate, we have also detected the 

presence of benzoic acid in the reactions of both 7 and 8 (Scheme 3-14). Interestingly in 

the reaction mixture of 8 we have also detected benzoylformic acid which, along with 

formate, would be the expected product of oxidative cleavage of only the C(1)-C(2) bond 

of phenylreductone.  
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Mechanistic Implications. The reactions of 7 and 8 with excess NaOMe in the 

presence of O2 show differences in the regioselectivity of their oxidative carbon-carbon 

bond cleavage reactions. Complex 7 predominantly reacts to cleave both the C(1)-C(2) 

and C(2)-C(3) bonds of its substrate, resulting in high yields of CO, while for complex 8 

the yield of CO is significantly lower and an alternative pathway that cleaves only the 

C(1)-C(2) bond to generate benzoylformic acid accounts for a larger portion of the 

products. This difference in regioselectivity of reaction is somewhat unexpected based on 

our prior work investigating the metal-dependence of oxidative cleavage of a bulky 

acireductone substrate.  

In the prior work, differences in regioselectivity were observed between the 

nickel-containing system (1) and the iron-containing system (2) only when water was 

present.20 This led us to propose a mechanistic pathway in which the ferrous center had a 

much greater ability than nickel to promote hydration of a vicinal triketone intermediate, 

leading to a differentiation in the regioselectivity (Scheme 3-3). In the present work, a 

differentiation in regioselectivity as a function of metal ion is observed in the absence of 

water, suggesting that hydration chemistry is not relevant to the cleavage of this dianionic 

C(1)H acireductone. Thus, we have discovered that differences between a bulky 

acireductone substrate and a C(1)H acireductone substrate are significant enough to 

induce changes in reaction pathway. 

This is not the first proposal for a change in the regioselectivity of the 

acireductone dioxygenases without invoking a water-dependent mechanism. A 

computational study has shown the lowest energy pathway for the reaction of a C(1)H 

acireductone mono-anion with oxygen in the absence of a metal center is via a radical  
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Scheme 3-15. A proposed radical propagation pathway to give Fe-ARD’-type products. 

This pathway was proposed based on a computational study. 

 

 

 

 

Scheme 3-16. A proposed Baeyer-Villager reaction to give Fe-ARD’-type products. This 

has been investigated computationally for a C(1)H acireductone monoanion in the 

absence of a metal center.  
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propagation pathway (Scheme 3-15).23 This computed pathway correctly predicts the 

cleavage products of C(1)H acireductones in the absence of a metal center (an alpha-keto 

carboxylate and formate – the same as for Fe-ARD’), but the relevance of a radical 

propagation pathway to the enzymatic system is unclear.  

A Baeyer-Villager reaction pathway to form Fe-ARD’-type products has also 

been proposed (Scheme 3-16). In computational studies of the cleavage of the mono-

anion of the bulky acireductone 2-hydroxy-1,3-diphenylpropan-1,3-dione, it was found 

that the Baeyer-Villager reaction to form Fe-ARD’ products was only 3.5 kcal/mol higher 

in energy than the observed reaction to form Ni-ARD products, suggesting that the 

Baeyer-Villager reaction is a viable reaction pathway with appropriate tuning of the 

electronic structure.21 A recent mixed QM/DMD study on Ni-ARD and Fe-ARD’ has 

also showed  

 

 

Scheme 3-17. Pathways proposed by QM/DMD simulations for the reactions catalyzed 

by the acireductone dioxygenases. 
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that there does not appear to be a difference in binding mode between the two enzymes.37 

Rather, the lower occupation of the FeII d-orbitals (by two electrons compared to NiII), 

and greater redox flexibility, facilitated a key O-O bond cleavage step that was not 

accessible in Ni-ARD (Scheme 3-17). This reaction pathway is qualitatively quite similar 

to the Baeyer-Villager reaction pathway, albeit invoking direct metal-mediated electron 

transfer during the reaction progression. And, this general Baeyer-Villager type reaction 

pathway in which electronic differences between NiII and FeII provide for changes in 

regioselectivity is our current favoured explanation for the differences in reactivity 

observed for complexes 7 and 8. 

 
Conclusions 

A high-yielding, relatively simple synethetic route to C(1)H acireductone 

precursors has been developed. This route can be utilized to generate tautomers of C(1)H 

acireductones, and has also allowed the synthesis of nickel and iron complexes with a 

protected C(1)H acireductone bound. This methodology will be expandable to the 

synthesis of a variety of C(1)H acireductones. Additionally, this work provides the first 

viable route to investigate the oxidative reactivity of mononuclear complexes with a 

coordinated acireductone dianion. Differences in regioselectivity are observed as a 

function of metal ion, suggesting that differences in the redox flexibility of Fe(II) and 

Ni(II) may be responsible for the reactivity differences. 
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CHAPTER 4 

PHOTOCHEMICALLY-INITIATED OXIDATIVE CARBON-CARBON BOND 

CLEAVAGE REACTIVITY IN CHLORODIKETONATE DIVALENT NICKEL 

COMPLEXES† 

 
Abstract 

Three mononuclear NiII complexes having a 2-chloro-1,3-diketonate ligand and 

supported by the 6-Ph2TPA chelate (4-6), as well as analogs that lack the 2-chloro 

substituent on the β-diketonate ligand (7-9), have been prepared and characterized. Upon 

irradiation at 350 nm under aerobic conditions, complexes 4-6 undergo reaction to 

generate products resulting from oxidative cleavage, α-cleavage, and radical-derived 

reactions involving the 2-chloro-1,3-diketonate ligand. Mechanistic studies suggest that 

the oxidative cleavage reactivity, which leads to the production of carboxylic acids, is a 

result of the formation of superoxide, which occurs via reaction of reduced nickel 

complexes with O2. The presence of the 2-chloro substituent was found to be a pre-

requisite for oxidative carbon-carbon bond cleavage reactivity, as 7-9 did not undergo 

reaction following prolonged irradiation. The novel approach toward investigating 

oxidative reactivity of metal β-diketonate species outlined herein has yielded results of 

relevance to the proposed mechanistic pathways of metalloenzyme-catalyzed β-

diketonate oxidative cleavage reactions.   
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Introduction 

Reaction pathways leading to the oxidative cleavage of the aliphatic carbon-

carbon bonds of β-diketonate type molecules are of current interest due to the 

identification of enzymes that catalyze the cleavage of these strong bonds.1 Of primary 

interest toward broadly understanding the chemistry of such systems is the elucidation of 

how changes in the nature of the metal center, or the structural and/or electronic features 

of the β-diketonate, influence the reaction mechanism. One potential role of the metal 

center is to act as a Lewis acid to stabilize a particular protonation level of a substrate. An 

example of a metalloenzyme of this class is acireductone dioxygenase (ARD), which uses 

a mononuclear NiII center as a Lewis acid to stabilize a dianionic form of the 

acireductone substrate in a β-diketonate type coordination motif (Scheme 4-1 (top)).2 The 

acireductone dianion acts as a reductant toward O2. Transfer of two electrons from the 

enediolate to O2 is proposed to occur via an initial single electron transfer to form 

superoxide and an organic radical, followed by collapse of the radical pair by attack of 

superoxide at the terminal carbon to yield an organoperoxo species. Attack of the 

terminal oxygen of the peroxo moiety at the other carbonyl produces a five-membered 

dioxetane ring from which aliphatic oxidative carbon-carbon bond cleavage and CO 

release is proposed to occur. 

Alternative roles for the metal center can include orbital mixing to help overcome 

the spin forbidden reaction between ground state (triplet) dioxygen and the singlet ground 

state β-diketonate, or the reductive activation of dioxygen to form a superoxide species. 

Both of these roles for a metal center have been proposed as potential roles for the FeII 

center in the reaction pathway of acetylacetone dioxygenase (Dke1), which catalyzes the  
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Scheme 4-1. Proposed reaction pathways for the aliphatic carbon-carbon bond cleavage 

reactions catalyzed by Ni-ARD (top) and Dke1. For Dke1, both a direct reaction of O2 

with the diketonate substrate (middle) and a metal-centered reductive activation of O2 

(bottom) have been proposed. 
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oxidative decomposition of acetylacetone to acetate and methyl glyoxal.3, 4 Kinetic 

studies on the enzyme suggest that the role of the FeII center is to help overcome the spin 

forbidden nature of the reaction between triplet dioxygen with the singlet substrate by 

delocalization of electron density via orbital mixing of the HOMOs of the β-diketonate 

and FeII center (Scheme 4-1 (middle)). Electron transfer from the coordinated β-

diketonate is suggested to occur in a concerted fashion with C-O bond formation at C(2) 

to give a peroxide species from which carbon-carbon bond cleavage occurs.4a An 

alternative reaction pathway has been suggested by computational studies and involves 

the initial formation of FeIII-O2
•- species which proceeds to C-C cleavage via an FeIV=O 

intermediate (Scheme 4-1 (bottom)).4b It should be noted that substitution of the FeII in 

Dke1 by other divalent metal ions, including NiII, results in a loss of catalytic activity.4a  

 A useful technique that provides insight into the reaction pathway of complicated 

enzymatic systems is the use of small molecular model systems that can be definitively 

characterized. In model studies of relevance to Dke1, Limberg et al. have shown that 

while [Tp*Fe(acac)] (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borato) does not 

undergo reaction with O2 to give products of acetylacetonate oxidative cleavage, a 

structurally similar complex of the more electron rich diethylphenylmalonate β-

diketonate, [Tp*Fe(Phmal)], catalyzes O2-dependent carbon-carbon bond cleavage 

reactivity to give Dke1-type products (ethyl benzoylformate, ethoxide and CO2 via 

decomposition of EtOCO2
-).5 Control studies indicate that the formation of a Fe(III) 

superoxide species is necessary in this model system for the observed reactivity.  In a 

very recent study of relevance to Dke1, Nunes et al. have reported the formation of 

[Ni(en)2(CH3CO2)]PF6 via treatment of [Ni(acac)2(H2O)2] with ethylenediamine in 
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aerobic, aqueous solution. The oxidative cleavage of acac- to give acetate is suggested to 

involve superoxide generated in the reaction mixture, however no further details were 

provided.6 

As can be seen in the chemistry of NiII-ARD and Dke1, and related model 

systems, specific combinations of β-diketonate ligand and metal ion impart oxidative 

carbon-carbon bond cleavage reactivity. In NiII-ARD, a typically redox-inactive metal 

center stabilizes the dianionic form of a β-diketonate type substrate having inherent 

reductive reactivity toward O2. In Dke1, a potentially redox active FeII center is partnered 

with the O2-stable acetylacetone substrate. In this latter case the metal center is important 

for either substrate activation or stabilization, or for redox reactivity with O2, to initiate 

the oxidative cleavage process.  

We have previously shown that the β-diketonate complex [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1, Figure 4-1) reacts with O2 to give products 

(carboxylates and CO) akin to those generated in the NiII-ARD catalyzed reaction.7 The 

mechanism by which this occurs involves two electron oxidation of the enediolate moiety 

to give an intermediate triketone species which subsequently undergoes reaction with 

HOO- generated in the reaction mixture to give aliphatic carbon-carbon bond cleavage 

products.8 While this mechanism differs from that proposed for the enzyme1, this system 

does mimic NiII-ARD in terms of incorporating the combination of an inherently O2-

reactive β-diketonate ligand with a redox-inactive NiII center.  

Complexes that are structurally similar to 1 but instead have an unsubstituted β-

diketonate ligand, such as [(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (9), are stable with 

respect to O2 under ambient conditions.7 As described herein, NiII complexes having a 
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mildly electron withdrawing chloride at the C(2) position, e.g. [(6-

Ph2TPA)Ni(PhC(O)C(Cl)C(O)Ph)]ClO4 (6), are also stable with respect to O2 under 

ambient conditions. The lack of dioxygen reactivity for 6 and 9 is not unexpected, as the 

reduced electron density within the π sytem of the β-diketonate moiety makes these 

anions poorer reducing agents than the α-hydroxy-containing analog.  

 

 

Figure 4-1. Structures of a synthetic complex studied as a model system for NiII-

containing acireductone dioxygenase 1 and analogues 6 and 9 that are O2-stable under 

ambient conditions. 

 

Prior studies of NiII β-diketonate species have shown that it is possible to 

photochemically induce redox activity at the nickel center. It is known, for example, that 

Ni(acac)2 undergoes photoreduction to produce transient NiI complexes in the presence of 

stabilizing ligands.9 This led us to consider how this approach might be used to induce 

redox activity at the nickel center of 6 and 9 as a means toward promoting oxidative 

carbon-carbon bond cleavage reactivity. Based on this literature precedent, if NiI β-

diketonate species can be photochemically generated starting from complexes such as 6 

and 9, this offers the possibility of producing a combination of a NiI center and a β-

diketonate radical. The NiI could then activate O2 to generate NiII and O2
- from which 

subsequent oxidative chemistry may occur (Scheme 4-2).10 This net transfer of one 
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electron from the β-diketonate to O2 would be similar to the mechanism proposed for the 

Dke1 enzyme wherein the ligand is also oxidized by one electron to form superoxide 

(Scheme 4-1 (middle)), albeit in the nickel case this would involve direct electron transfer 

rather than orbital mixing.  

 

 

Scheme 4-2. Proposed mechanism by which a NiII-β-diketonate unit may be 

photochemically activated to generate a superoxo-diketonyl radical pair. 

 

We outline herein the results of studies of the photochemical reactivity of 6 and 9 

and para-substituted analogs. The results show that oxidative cleavage products are 

generated for systems containing a 2-chloro substituent on the coordinated enolate.  

 
Experimental 

General Methods. All reagents and solvents were obtained from commercial 

sources, and were used without further purification unless noted. The 6-Ph2TPA ligand 

N,N-bis-((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine, 1,3-di-(4-tolyl)-

propane-1,3-dione (2b), [(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph]ClO4 (9), [(6-Ph2TPA)Ni-

Cl(CH3CN)]ClO4 (10), [(6-Ph2TPA)Ni(CH3CN)2](ClO4)2 (13) were synthesized 

according to literature procedures.7, 11-13 1,3-di-(4-methoxyphenyl)-propane-1,3-dione and 

1,3-di-phenyl-propane-1,3-dione were purchased from TCI and ACROS, respectively, 

and were used as received. Dry acetonitrile was prepared according to a literature 

procedure14 and was used in the metal complex syntheses. 
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Physical Methods. 1H NMR spectra of organic compounds were obtained using a 

JEOL ECX-300 or Bruker ARX-400 NMR spectrometer. Chemical shifts were 

referenced to the residual solvent peak in CD2HCN (1.94 ppm, quintet). 1H NMR spectra 

of paramagnetic NiII complexes were obtained using a Bruker ARX-400 spectrometer 

and parameters as previously described.11 FT-IR data collected on a Shimadzu FTIR-

8400 spectrometer as KBr pellets. UV-vis data was collected on a HP8453A spectrometer 

at ambient temperature. Photoreactions were carried out in a Srinivasan-Griffin Rayonet 

photochemical reactor equipped with 8 RPR-3500 lamps, having λmax = 350 nm. GC-MS 

data was obtained with a Shimadzu GCMS-QP5000 gas chromatograph/mass 

spectrometer with a GC-17A gas chromatograph, using an Alltech EC-5 30 m × 0.25 mm 

× 0.25 µm thin film capillary column and temperature program: TInitial 30°C (3 min); 

temperature gradient 23°C/min; TFinal 250°C (10 min). Quantum yields were determined 

by ferrioxalate actinometry, using an integrative analysis method.15 Anaerobic 

electrochemical measurements were carried out in a drybox under N2 in CH3CN with 0.1 

M [Bu4N][ClO4] as the supporting electrolyte using a model ED401 computer controlled 

potentiostat (eDAQ). A three-electrode configuration with a glassy carbon working 

electrode, a Ag wire quasi-reference electrode with a Fc/Fc+ internal reference, and a 

platinum wire auxiliary electrode was used. Aerobic electrochemical studies were 

performed after purging the cell with O2. The potential values were referenced to an 

internal ferrocenium/ferrocene couple, which is reported to be +0.38 V vs. SCE in 

CH3CN using [NBu4][ClO4] as a supporting electrolyte.16 

Preparation of 2-chloro-1,3-di(4-methoxyphenyl)-propane-1,3-dione (3a). A 

solution comprised of acetonitrile (20 mL), aqueous NH4Cl (1.0 M, 20 mL) and aqueous 
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RuCl3 (0.10 M, 250 µL) was cooled in an ice-bath. Oxone (4.08 g, 6.64 mmol) was added 

to this solution, which resulted in the formation of a yellow suspension. The mixture was 

then warmed to room temperature. Dropwise addition of a solution of 1,3-di-(4-

methoxyphenyl)-propane-1,3-dione (0.382 g, 1.34 mmol) in ethyl acetate (10 mL) 

resulted in darkening to a purplish color. After stirring overnight at ambient temperature, 

the solution was again a yellow color. The suspension was then diluted with water (100 

mL) and the mixture was extracted with ethyl acetate (3 × 100 mL). The combined 

organic fractions were dried over anhydrous Na2SO4, filtered, and the filtrate was brought 

to dryness under reduced pressure. The pale yellow solid was recrystallized from hot 

ethanol to give pale yellow crystals (338 mg, 79%), m.p. 94-96 ºC; 1H NMR (300 MHz, 

CD3CN, 25°C): δ = 7.96 (d, 3J(H,H) = 8.9 Hz, 4H; Ar-H), 7.03 (d, 3J(H,H) = 8.9 Hz, 4H; 

Ar-H), 6.83 (s, 1H; CH), 3.87 ppm (s, 6H; CH3); 13C{1H} NMR (100 MHz, CD3CN, 

25°C): δ = 189.8 (C=O), 166.0 (Cq
Ar), 132.8 (CHAr), 128.1 (Cq

Ar), 115.7 CHAr), 62.8 

(CHCl), 56.9 ppm (CH3); IR (KBr): ν = 1687 (C=O), 1659, 1601, 1572 cm-1; GC-MS: 

m/z = 320 (38%), 318 (18%).   

Preparation of 2-chloro-1,3-bis(4-methylphenyl)-propane-1,3-dione (3b) and 

2-chloro-1,3-bis-phenyl-propane-1,3-dione (3c). These compounds were prepared in a 

similar manner to 3a. 3b (32%): m.p. 140-141ºC; 1H NMR (300 MHz, CD3CN, 25°C): δ 

= 7.87 (d, 3J(H,H) = 8.5 Hz, 4H; Ar-H), 7.35 (d, 3J(H,H) = 8.5 Hz, 4H; Ar-H), 6.89 (s, 

1H; CH), 2.45 ppm (s, 6H; CH3); 13C{1H} NMR (100 MHz, CD3CN, 25°C): δ = 191.0 

(C=O), 147.3 (Cq
Ar), 132.8 (Cq

Ar), 131.1 (CHAr), 130.4 (CHAr), 62.7 (CHCl), 22.1 ppm 

(CH3); IR (KBr): ν=1695 (C=O), 1674, 1604 cm-1; GC-MS: m/z (%) = 286 (1.1), 288 

(0.4); elemental analysis calcd (%) for C17H15ClO2.0.2H2O: C 70.31, H 5.35; found: C 
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70.50, H 5.31. 3c (83%): m.p. 71-72 ºC; 1H NMR (300 MHz, CD3CN, 25°C): δ = 7.98 (d, 

3J(H,H) = 7.2 Hz, 4H; Ar-H), 7.69 (t, 3J(H,H) = 8.4 Hz, 2H; Ar-H), 7.55 (t, 3J(H,H) = 6.7 

Hz, 4H; Ar-H), 6.97 ppm (s, 1H; CH); IR (KBr): ν = 1699 (C=O), 1680, 1595, 1580 cm-1; 

GC-MS: m/z (%) = 258 (1.5), 260 (0.5). 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.17 

Preparation of [(6-Ph2TPA)Ni((4-OCH3Ph)C(O)C(Cl)C(O)(4-

OCH3Ph))]ClO4 (4). Ni(ClO4)2•6H2O (29 mg, 79 µmol) was dissolved in dry 

acetonitrile, (2 mL) and this solution was added to solid 6-Ph2TPA (35 mg, 79 µmol) and 

the resulting solution was stirred for 15 minutes during which time it became a pale 

purple. This solution was added to solid 2-chloro-1,3-di(4-methoxyphenyl)-propane-1,3-

dione (25 mg, 79 µmol) and the resulting mixture was stirred until completely dissolved. 

The pale purple solution was then added to solid Me4NOH•5H2O (13 mg, 79 µmol) and 

the mixture was stirred overnight at ambient temperature during which time it became 

yellow. The solvent was removed from the reaction mixture under vacuum and the 

remaining solid was redissolved in CH2Cl2, and the solution was filtered through a glass 

wool/Celite plug. Concentration of the filtrate under vacuum, followed by the addition of 

excess hexanes, resulted in the deposition of a yellow solid (50 mg, 70%) that was dried 

under vacuum. IR (KBr): ν = 1603, 1346, 1094 (ClO4), 623 cm-1 (ClO4); HRMS (ESI):  

m/z calcd for C47H40N4ClO4Ni+: 817.209 [M-ClO4]+; found: 817.209; elemental analysis 

calcd (%) for C47H40N4Cl2O8Ni: C 61.45, H 4.39, N 6.10; Found: C 61.48, H 4.90, N 

5.99. 
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Preparation of [(6-Ph2TPA)Ni((4-CH3Ph)C(O)C(Cl)C(O)(4-CHsPh))]ClO4 

(5), [(6-Ph2TPA)Ni(PhC(O)C(Cl)C(O)Ph)]ClO4 (6), [(6-Ph2TPA)Ni((4-

OCH3Ph)C(O)CHC(O)(4-OCH3Ph)]ClO4 (7) and [(6-Ph2TPA)Ni((4-

CH3Ph)C(O)CHC(O)(4-CH3Ph)]ClO4 (8). Compounds 5-8 were prepared and 

crystallized in a manner similar to that described for 4 using appropriate starting 

materials. 5 (62%): IR (KBr): ν =1346, 1094 (ClO4), 623 cm-1 (ClO4); HRMS (ESI)  m/z 

calcd for C47H40N4ClO2Ni+: 785.219 ([M-ClO4]+); found: 784.219; elemental analysis 

calcd (%) for C47H40N4Cl2O6Ni⋅1.5CH2Cl2: C 57.46, H 4.27, N 5.53; found: C 57.19, H 

4.26, N 5.50. 6 (83%): IR (KBr): ν = 1352, 1096 (ClO4), 623 cm-1 (ClO4); HRMS (ESI) 

m/z calcd for C45H36N4ClO2Ni+: 757.188  ([M-ClO4]+); found: 757.189; elemental 

analysis calcd (%) for C45H36N4Cl2O6Ni: C 62.95, H 4.23, N 6.53; found: C 63.22, H 

4.18, N 6.65. 7 (80%): IR (KBr): ν = 1094 (ClO4), 623 cm-1 (ClO4); elemental analysis 

calcd (%) for C47H41N4ClO8Ni⋅0.2(CH2Cl2): C 62.90, H 4.63, N 6.22; found: C 62.84, H 

4.65, N 6.18. 8 (80%):  IR (KBr): ν = 1094 (ClO4), 623 cm-1 (ClO4); elemental analysis 

calcd (%) for C47H41N4ClO6Ni: C 66.67, H 5.14, N 6.42; found: C 66.80, H 5.50, N 6.48. 

Preparation of [(6-Ph2TPA)Ni(O2C(4-OCH3Ph))]ClO4 (11). Solid 

Ni(ClO4)2•6H2O (22 mg, 61 µmol) was dissolved in acetonitrile, and this solution was 

added to 6-Ph2TPA (27 mg, 61 µmol) and the resulting mixture was stirred for one hour 

to form a purple homogeneous solution. Anisic acid (9.3 mg, 61 µmol) was dissolved in 

methanol (1 mL) and this solution was added to the NiII complex solution. The resulting 

mixture was stirred 15 minutes and was then added to solid Me4NOH⋅5H2O (11 mg, 61 

µmol) and the mixture was stirred overnight during which time a blue/green solution 

formed. The solvent was removed under reduced pressure, and the residue was dissolved 
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in CH2Cl2. This solution was passed through a glass wool/Celite plug twice and then the 

filtrate was reduced in volume under reduced pressure. The final product was precipitated 

by the addition of excess hexanes and was dried under vacuum (26 mg, 47%). IR (KBr): 

ν = 1607, 1096 (ClO4), 623 cm-1 (ClO4); HRMS (ESI): m/z calcd for C38H33ClN4NiO7
+: 

651.1906 ([M-ClO4]+); found: 651.1913;  elemental analysis calcd (%) for 

C38H33ClN4NiO7.0.2C6H14: C 61.83, H 4.76, N 7.25; found: C 61.73, H 4.62, N 7.66. 

Preparation of [(6-Ph2TPA)Ni(O2C(4-OCH3Ph))2] (12). Solid Ni(ClO4)2•6H2O 

(30 mg, 81 µmol) dissolved in acetonitrile (1 mL) was added to 6-Ph2TPA (40 mg, 80 

µmol) and the resulting solution was stirred for one hour during which time it became 

pale purple. Anisic acid (25 mg, 162 µmol) was dissolved in acetonitrile (1 mL) and this 

solution was added to solid Me4NOH⋅5H2O (29 mg, 162 µmol) and the resulting mixture 

was stirred for 1 h during which time the solution became yellow. The NiII-containing 

solution was combined with the anisic acid/ Me4NOH⋅5H2O solution and the mixture was 

stirred overnight, forming a blue/green homogeneous solution. The solvent was then 

removed under reduced pressure and the remaining solid was dissolved in CH2Cl2 and 

filtered through a glass wool/Celite plug. The filtrate was brought to ~1 mL in volume 

under reduced pressure and the final product was precipitated by the addition of hexanes 

(41 mg, 63%). IR (KBr): ν =1605 cm-1; HRMS (ESI): m/z calcd for C38H33ClN4NiO7
+: 

651.1906 ([M-(CH3OC6H4CO2]+); found: 651.1918; elemental analysis calcd (%) for 

C46H40N4O6Ni.1.5H2O: C 66.51, H 5.22, N 6.75; found: C 66.72, H 5.18, N 6.81. 

Product recovery for photochemical reactions. To identify products of the 

photo-reactions, acetonitrile solutions (5.0 mL, 2.0 mM) of complexes 4-6 were 

irradiated for 20 hours. The solvent was then removed under reduced pressure and the 
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crude reaction mixtures were analyzed by 1H NMR using paramagnetic parameters. To 

extract the organic component, each crude reaction mixture was passed through a short 

silica column, eluting with ethyl acetate and yield was greater than 80% (~2.5 mg) of the 

expected mass of the β-diketonate in the starting compound. The inorganic fraction was 

also recovered by eluting with acetonitrile, followed by methanol. The organic fraction 

was then analyzed by 1H NMR and GC-MS and the inorganic fraction by 1H NMR using 

paramagnetic parameters. As a control reaction, 0.01 mmol of complex 4 was passed 

through a short silica column using the same solvents, and dissociation of the complex to 

form the 2-chloro-1,3-dione (3a, 85% recovery) and [(6-Ph2TPA)Ni(CH3CN)2](ClO4)2 

(13s) was observed.  

Reactivity studies. For UV-vis experiments, solutions of the complexes 4-6 in 

acetonitrile (0.04 mM) were prepared. These solutions were found to be stable in the 

absence of light under aerobic or anaerobic conditions. Aliquots of these solutions (3.0 

mL) were placed in a UV-vis cell. The cell was then irradiated at 350 nm, monitoring the 

reaction by UV-vis spectroscopy. For anaerobic reactions, the solutions were prepared in 

a Vacuum Atmosphere glovebox under an atmosphere of N2, and the UV-vis cell was 

sealed with a Teflon stopcock. For reactions that included dihydroanthracene, solutions 

were prepared as above with the addition of dihydroanthracene (2.0 mM). 

Reactivity of 4-6 with KO2. Acetonitrile solutions (4.0 mL, 2.0 mM) of 4-6 were 

treated with KO2 (1.0 mg, 0.014 mmol) in the presence of 18-crown-6 (3.7 mg, 0.014 

mmol) and stirred for 15 minutes. The color of the solution rapidly faded from yellow to 

colorless. The solvent was then removed under reduced pressure, and the organic 

components of the reactions separated by silica column and analyzed by GC-MS, similar 
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to the photochemical reactions. In all cases, the major organic product, as determined by 

GC-MS, was the corresponding benzoic acid derivative I.  

X-ray Crystallography. Single crystal samples of 5, 6, and 8 were mounted on a 

glass fiber using a viscous oil and then transferred to a Nonius KappaCCD diffractometer 

(Mo Kα, λ = 0.71073 Å) for data collection at 150(1) K. Methods for determination of cell 

constants and unit cell refinement have been previously reported.18 Each structure was 

solved using a combination of direct methods and heavy atom using SIR97. All non-

hydrogen atoms were refined with anisotropic displacement coefficients.  

Complexes 5, 6 and 8 crystallize in the triclinic crystal system in the space group 

P-1. All hydrogen atoms in these complexes were assigned isotropic displacement 

coefficients U(H) = 1.2 U(C) or 1.5 U(Cmethyl) and their coordinates were allowed to ride 

on their respective carbon using SHELXL97. For 5 and 6, Z = 2, whereas for 8, Z = 4 and 

two independent molecules are present in the asymmetric unit. For 5, three atoms of the 

perchlorate anion were found to be disordered over two positions (0.68:0.32). One 

disordered molecule of Et2O is present per formula unit in the structure of 5. In the 

structure of 6, two oxygen atoms of the perchlorate anion are disordered over two 

positions (0.86:0.14). For 8, there are two molecules of CH2Cl2 per formula unit. 

 
Results and Discussion 

Preparation of 2-chloro-1,3-diones. β-diketones can be chlorinated at the α 

position using various reagents.19 Recent studies in this area have focused on the use of 

hypervalent iodine reagents20 and reactions performed using N-chlorosuccinimide in an 

ionic liquid21  or CCl4.22 In a new synthetic route (Scheme 4-3 (top)), we have found that 

treatment of the appropriate β-diketone 2a-2c with RuCl3/Oxone/NH4Cl in  
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Scheme 4-3. Synthesis of 2-chloro-1,3-diones (top) and NiII 2-chloro-1,3-diketonate 

complexes supported by the 6-Ph2TPA ligand (bottom). 

 

CH3CN/H2O/EtOAc gives the 2-chloro compounds (3a-3c) as crystalline solids in high 

purity following recrystallization(s).  

Complex synthesis and characterization: A series of mononuclear NiII 2-

chloro-1,3-diketonate complexes (4-6) supported by the 6-Ph2TPA ligand was prepared 

as outlined in the bottom equation in Scheme 4-3. Crystalline solids were isolated in 

yields greater than 70%. For reactivity comparison, structurally similar β-diketonate 

complexes lacking the 2-chloro substitutent (7-9) were generated. We note that complex 

9 has been previously reported.7 Each new complex was characterized by elemental 

analysis, IR, 1H NMR, UV-vis, and in some cases, mass spectrometry and/or X-ray 

crystallography.  
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Figure 4-2. Thermal ellipsoid representations of the cationic portions of 5 (top), 6 

(middle) and 8 (bottom). Ellipsoids are drawn at the 50% probability level. Hydrogen 

atoms have been omitted for clarity. 
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Table 4-1. Crystallographic data for 5, 6, and 8. 
 
 5⋅C4H10O 6 8⋅2CH2Cl2 

formula  C47H40Cl2N4NiO6⋅C4H10O C45H36Cl2N4NiO6 C49H41ClN4NiO6⋅2CH2Cl2 

Mr  960.56 858.39 1021.85 

T [K] 150(1)  150(1)  150(1)  

crystal size [mm] 0.30x0.28x0.20 0.38x0.15x0.13  0.30x0.22x0.12  

crystal system  triclinic triclinic triclinic 

space group  P ī P ī P ī 

a [Å] 11.96810(10)  9.7136(1)  13.5383(2)  

b [Å] 13.6006(2)  13.2959(2)  17.0153(2)  

c [Å] 16.1278(3)  16.7754(3)  23.0279(3)  

α [°] 108.5037(6) 77.5113(7) 97.2779(7) 

β [°] 104.6479(9) 76.7675(10) 92.9850(7) 

γ [°] 102.9892(9) 68.7334(9) 112.8856(7) 

V [Å3] 2271.55(6) 1944.11(5)  4817.82(11) 

Z 2 2 4 

ρcalcd [gcm-3] 1.404  1.466  1.409  

µ [mm-1] 0.603  0.693  0.733  

F(000) 1004 888 2112 

Θ range [°] 1.91–27.48 2.34–27.49 1.71–27.44 

Index ranges 
-14 ≤ h ≤ 15 
-17 ≤ k ≤ 17 
-20 ≤ l ≤ 20 

-12 ≤ h ≤ 12 
-17 ≤ k ≤ 17, 
 -21 ≤ l ≤ 21 

-16 ≤ h ≤ 17 
 -22 ≤ k ≤ 21 
 -29 ≤ l ≤ 29 

reflns collected 19512 16726 40512 

unique reflns 10319 [R(int) = 0.0235] 8901 [R(int) = 0.0237] 21813 [R(int) = 0.0420] 

Rint  0.0235 0.0237 0.0420 

data/restr./param 10319/24/632 8901/0/533 21813/12/1184 

GoF (F2) 1.024 1.027 1.026 

R1, wR2 [I > 2σ(I)] 0.0427, 0.1055 0.0364, 0.0816 0.0497, 0.1106 

R1, wR2 (all data) 0.0617, 0.1163 0.0553, 0.0889 0.0944, 0.1293 

Max. and min. 
transmission 0.8889 and 0.8398 0.9153 and 0.7786 0.9172 and 0.8101 

Δρ(max/min) [eÅ-3] 0.441/-0.664 0.333/-0.510 0.0820/-0.862 
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Table 4-2. Selected bond lengths (Å) and angles (°). 

 5⋅C4H10O 6 8⋅2CH2Cl2 

Ni(1) N(1) 2.0569(18) 2.0404(15) 2.068(2) 

Ni(1)-N(2) 2.0635(17) 2.0882(15) 2.085(2) 

Ni(1)-N(3) 2.3041(17) 2.3174(15) 2.283(2) 

Ni(1)-N(4) 2.2261(18) 2.1890(15) 2.238(2) 

Ni(1)-O(1) 1.9709(14) 1.9748(12) 1.9796(16) 

Ni(1) -O(2) 1.9968(14) 1.9883(13) 1.9885(17) 

C(37)-C(38) 1.418(3) 1.422(3) 1.401(3) 

C(38)-C(39) 1.411(3) 1.397(3) 1.405(3) 

C(38)-Cl(1) 1.760(2) 1.7571(18) - 

O(1)-Ni(1)-O(2) 88.78(6) 89.13(5) 91.57(7) 

O(1)-Ni(1)-N(1) 97.65(6) 94.17(6) 90.92(8) 

O(2)-Ni(1)-N(1) 172.50(6) 176.66(6) 175.39(8) 

O(1)-Ni(1)-N(2) 178.06(6) 174.91(5) 171.45(8) 

O(2)-Ni(1)-N(2) 89.74(6) 93.15(6) 95.57(7) 

N(1)-Ni(1)-N(2) 83.91(7) 83.51(6) 82.29(8) 

O(1)-Ni(1)-N(4) 100.33(6) 102.77(5) 103.07(8) 

O(2)-Ni(1)-N(4) 85.78(6) 92.08(5) 93.47(7) 

N(1)-Ni(1)-N(4) 96.80(7) 87.69(6) 82.18(8) 

N(2)-Ni(1)-N(4) 78.31(7) 81.71(6) 81.23(8) 

O(1)-Ni(1)-N(3) 101.07(6) 98.63(5) 100.47(7) 

O(2)-Ni(1)-N(3) 94.50(6) 84.69(5) 82.25(7) 

N(1)-Ni(1)-N(3) 80.52(7) 94.29(6) 101.11(8) 

N(2)-Ni(1)-N(3) 80.30(7) 77.08(6) 75.92(8) 

N(4)-Ni(1)-N(3) 158.60(7) 158.31(6) 156.18(7) 

O(1)-Ni(1)-O(2) 88.78(6) 89.13(5) 91.57(7) 

O(1)-Ni(1)-N(1) 97.65(6) 94.17(6) 90.92(8) 

O(2)-Ni(1)-N(1) 172.50(6) 176.66(6) 175.39(8) 

O(1)-Ni(1)-N(2) 178.06(6) 174.91(5) 171.45(8) 

O(2)-Ni(1)-N(2) 89.74(6) 93.15(6) 95.57(7) 

N(1)-Ni(1)-N(2) 83.91(7) 83.51(6) 82.29(8) 

O(1)-Ni(1)-N(4) 100.33(6) 102.77(5) 103.07(8) 

O(2)-Ni(1)-N(4) 85.78(6) 92.08(5) 93.47(7) 

N(1)-Ni(1)-N(4) 96.80(7) 87.69(6) 82.18(8) 
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Single crystal X-ray structures were obtained for 5, 6, and 8. Details of the data collection 

and refinement are given in Table 4-1. Selected bond distances and angles are given in 

Table 4-2. These complexes all contain a pseudo-octahedral NiII cation with bidentate 

coordination of the corresponding β-diketonate (Figure 4-2). Bond lengths within the six-

membered nickel-β-diketonate chelate ring in each complex are typical for nickel β-

diketonates.7 The C-Cl bond lengths in 5 and 6 are within the range previously reported 

for metal-bound 2-chloro-1,3-diketonates (1.68-1.81 Å), being particular close to that 

reported for CuII complexes  (1.739(3) and 1.755(3) Å).23 As can be seen in Table 4-2, 

there are only subtle changes in the Ni-N/O bond lengths as the nature of the substituents 

on the β-diketonate is changed. Comparison of the structural features of 6 to those of [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1, Figure 4-1) revealed that the Ni-NPhPy bonds 

are slightly elongated in the 2-hydroxy-1,3-diketonate complex relative those found in the 

2-chloro analog 6 (Ni-NPhPy, 1: av 2.30 Å; 6: av. 2.25Å).  

Selected spectroscopic data for 4-9 is given in Table 4-3. Each β-diketonate 

complex has an absorption feature at ~370 nm which may be assigned as a π→π* 

 

Table 4-3. Selected spectroscopic features for 4-9.  

 4 5 6 7 8 9 

λmax (nm)a 378 374 372 374 370 368 

ε (104M-1cm-1) 1.03 1.16 0.80 2.38 2.16 1.30 

       

β-pyb 48.4 42.8 48.1 
43.5 

48.4 
43.5 

46.0 
44.1 

47.0 44.4 46.6 
44.1 

β'-py 46.0 34.8 46.0 34.6 46.4 34.7 44.1 33.8 44.1 33.9 44.9 34.3 

γ-py 15.4 15.5 15.5 14.9 15.0 15.1 

α-CH - - - -14.1 -13.9 -13.6 
a UV-vis spectra obtained in CH3CN. b 1H NMR spectra obtained in CD3CN  
at ambient temperature at 400 MHz. Chemical shifts are reported in ppm.  
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involving the β-diketonate ligand. Comparison of the 2-chloro1,3-diketonate complexes 

(4-6) with their unsubstituted analogs (7-9) revealed a red shift of 4 nm for the former. 

The 1H NMR features of 1 and 9 have been previously reported.7, 24 Resonances in 

selected regions of the 1H NMR spectra of  4-6, 7 and 8 can be assigned on the basis of 

chemical shift, integrated intensity, and comparison to previously studied complexes.7, 11, 

24 All of the complexes (4-9) exhibit Cs symmetry in CD3CN on the NMR time scale, as 

evidenced by the presence of only two resonances for the β’ pyridyl protons (Figure 4-3), 

indicating that the phenyl-appended pyridyl rings are equivalent. Diagnostic resonances 

for the pyridyl ring β-H’s and phenyl-appended pyridyl ring β’-H’s (Figure 4-3) are 

found in the region of 44-48 ppm (Table 4-3). The effect of changing the para-substituent 

on the aryl groups of the β-diketonate ligand can be seen in the shift of the pyridyl γ-H’s 

in the series 4-6 and 7-9, and in a shift of the β-diketonate methyne proton in 7-9. In the 

latter set of complexes, the pyridyl β, β’, and γ proton resonances are shifted upfield by 

1-2 ppm relative to the 2-chloro analogues. 

 

 

Figure 4-3. Labeling scheme for the 6-Ph2TPA ligand. 
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Reactivity studies: It was found that the yellow color of acetonitrile solutions of 

the 2-chloro-1,3-diketonate complexes 4-6 faded upon exposure to UV light (λirr = 350 

nm) over the course of several hours under aerobic conditions. As shown in Figure 4-4 

for the methoxy-substituted 4, this corresponds to loss of the π→π* absorption band of 

the β-diketonate at 378 nm. An isosbestic point for the reaction was identified at 269 nm.   

The products of each aerobic photochemical reaction were determined after 

irradiating a 0.002 M acetonitrile solution of each complex (4-6) at 350 nm for 20 h 

under an aerobic atmosphere. The NiII-containing products were determined using 1H 

 

 

Figure 4-4. Absorption changes over time observed for the aerobic photochemical 

reaction of 4. 



184	
  

 

Figure 4-5. Selected features of the paramagnetic region of the 1H NMR spectra of 

analytically pure 4 and 10-13 and the reaction mixture produced upon irradiation of 4 

under aerobic conditions at 350 nm for 20 hours in CH3CN. All spectra were obtained 

using a 400 MHz spectrometer at 298 K in CD3CN. 
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Scheme 4-4. NiII complexes generated upon irradiation of 4 at 350 nm for 20 hours in an 

aerobic solution of CH3CN. 
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Figure 4-6. Selected features of the paramagnetic region of the 1H NMR spectra of 

analytically pure 5 and 10 and the reaction mixture produced upon irradiation of 5 under 

aerobic conditions at 350 nm for 20 hours in CH3CN. All spectra were obtained using a 

400 MHz spectrometer at 298 K in CD3CN. 
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Figure 4-7. Selected features of the paramagnetic region of the 1H NMR spectra of 

analytically pure 6 and 10 and the reaction mixture produced upon irradiation of 6 under 

aerobic conditions at 350 nm for 20 hours in CH3CN. All spectra were obtained using a 

400 MHz spectrometer at 298 K in CD3CN. 
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NMR (Figures 4-5. 4-6 and 4-7) and ESI-MS. The most reactive compound was found to 

be the methoxy derivative 4 (Figure 4-5). A major NiII product in this reaction is the 

chloride complex [(6-Ph2TPA)NiCl(CH3CN)]ClO4 (10)11, as evidenced by the presence 

of resonances at 54 and 37 ppm, respectively. Also present are resonances associated 

with a monoanisate complex  [(6-Ph2TPA)Ni(O2C(p-OCH3C6H4))]ClO4 (11) and the 

dianisate complex [(6-Ph2TPA)Ni(O2C(p-OCH3C6H4))2] (12). Complexes 11 and 12 were 

independently synthesized and characterized to confirm the assignment. The formation of 

10-12 in the photochemical reaction of 4 is supported by ESI-MS investigations which 

confirmed the presence of the corresponding [M-ClO4]+ and [M-C8H7O3]+ ions. From 

comparison of 1H NMR spectra, it is evident that the aerobic photochemical reaction of 4 

goes to completion in the 20 h irradiation period, as no signals for the starting compound 

could be identified. A summary of the reaction of the methoxy-substituted 4 is presented 

in Scheme 4-4.  

The reaction of the methyl-substituted 5 under aerobic conditions (Figure 4-6) 

also leads primarily to the formation of the chloro complex [(6-

Ph2TPA)NiCl(CH3CN)]ClO4 (10), although minor peaks that appear to correspond to the 

starting complex are also visible.11 The reaction of 6 (Figure 4-7) differs from that of 4 

and 5 in that 1H NMR resonances from the starting complex are clearly evident in 1H 

NMR and ESI-MS spectra after 20 h of irradiation, indicating that 6 reacts significantly 

slower than the other complexes. Note that as a control reaction, 0.002 M solutions of 4-6 

in CD3CN were stored in the dark under aerobic conditions at ambient temperature and 

pressure for several days and produced no decomposition products, as determined by 1H 

NMR. 
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For each reaction described above, the organic products could not be analyzed in 

the presence of the NiII complex(es). Therefore these products were separated via 

filtration of each reaction mixture through a short silica plug, using ethyl acetate as the 

eluent. Each sample was analyzed by 1H NMR and GC-MS. The amount of organic 

material isolated from each reaction mixture corresponds to >80% by mass of that 

expected from the respective starting 2-chloro-1,3-diketonate ligand. Control reactions 

indicate that the coordinated 1,3-diketonate ligand in 4-6, and the anisate ligands in 11 

and 12, are released upon passage of the complexes through the silica plug. Thus the 

presence of 2-chloro-1,3-dione in the organic products is further evidence for incomplete 

reaction. The inorganic residue on the silica is eluted by washing with acetonitrile, 

followed by methanol. 1H NMR analysis of the inorganic fractions showed the presence 

of [(6-Ph2TPA)Ni(CH3CN)2](ClO4)2 (13, Figure 4-5), which was not present in the 

reaction mixtures prior to work-up.  

Upon irradiation of 4 for 20 h under aerobic conditions, the primary organic 

product generated is p-anisic acid (I), along with lesser amounts of p-anisil methyl ketone 

(II), anisaldehyde, deoxyanisoin (III), and halogenated species (e.g. 2-chloro, 1-4-  

 
 

 

Figure 4-8. Structures of the organic products generated in photchemical reactions of 4-6 

under aerobic or anaerobic conditions with irradiation at 350nm for 20 hours in CH3CN.  
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Figure 4-9. Relative amounts of the organic products generated during the 350 nm 

irradiation of 4-6 in CH3CN for 20 hours under aerobic (top) and anerobic conditions 

(bottom). In each graph the column labeled completion corresponds to the relative 

percentage of reaction completion observed after 20 hours. The relative percentages of I-

IV refer to the amount of product generated as a percentage of the overall amount of 2-

chlro-1,3-diketonate that underwent reaction under the prescribed conditions. Other refers 

to species such as para-R-arylaldehyde, chloro-containing compounds and unidentifed 

compounds. 
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methoxyphenylpropan-1-one) (Figure 4-8 and Figure 4-9 (top)). Notably, performing the 

same reaction with 4 under N2 results in the formation of only α-cleavage products (e.g. 

II and III, Figure 4-9  (bottom)). Thus, oxygen is required for the generation of the 

carboxylic acid product. The photoreactivity of the methoxy-substituted 2-chloro-1,3-

dione 3a has previously been evalutated by Kosmrlj et al.25 After irradiation of a 0.002 M 

solutions of the diketone at 350 nm for 2 h under aerobic conditions they noted the 

formation of only α-cleavage products (Scheme 4-5). Thus, the presence of nickel is 

required for oxidative cleavage reactivity involving the 2-chloro-1,3-dione. 

 

 

Scheme 4-5. α-Cleavage products formed from the photoirradiation of 3a at 352 nm in 

aerobic CH3CN for 2 hours. 

 

The aerobic photochemical reaction involving the methyl-containing NiII 2-

chloro-1,3-diketonate complex 5 results in the formation of multiple products (Figure 4-

9) including flavone and deoxytoluoin, with lesser amounts of p-toluic acid, p-

tolualdehyde and methyl-p-tolyl ketone. Under a N2 atmosphere, the reaction involving 5 

reached only ~80% completion. The organic products were a similar mixture to that 

found under aerobic conditions, except p-toluic acid is not generated. As the 

photoreactivity of the methyl-substituted 3b had not been previously reported, we 

performed this reaction under the conditions previously employed for 3a and 3c (0.002 M 

in CH3CN under aerobic conditions with irradiation at 350 nm for 2 h).25 The primary 
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reaction products generated were the α-cleavage products methyl-p-tolyl ketone and p-

tolualdehyde, with no p-toluic acid.  

As noted above, the photochemical reaction of 6 under aerobic conditions does 

not go to completion after 20 h of irradiation at 350 nm. Hence the primary organic 

product isolated from the reaction mixture is the unreacted 2-chloro-1,3-dione 3c. 

However, of the remaining organic compounds generated, flavone is the primary product 

(Figure 4-9) along with a small amount of benzoic acid. Performing the irradiation of 6 

under a N2 amosphere resulted in less than 10% of the starting complex undergoing 

reaction, with only trace amounts of flavone generated. Kosmrlj et al., previously 

reported that irradiation of unsubstituted 2-chloro-1,3-dione 3c yielded the 

photocyclization flavone product IV as the sole product in ~50% yield regardless of 

conditions (air, argon or oxygen atmosphere).25 

Complexes 7-9 were tested for photoreactivity under both aerobic and anaerobic 

conditions identical to those used for the 2-chloro-1,3-diketonate complexes 4-6. 

Analysis of the product mixtures by 1H NMR using paramagnetic parameters showed no 

change from the starting material.  

Mechanistic Experiments. The differing product distributions found for the 

reactions of 4-6, and the overall lack of reactivity found for 7-9 was evaluated through 

consideration of literature precedent and the results of additional mechanistic 

experiments. In pioneering work by Lintvedt et al., it was found that when Ni(acac)2 is 

irradiated at 252 nm in ethanol in the absence of O2, free Hacac is produced along with a 

colloidal suspension of Ni0 or a Ni0 film (Scheme 4-6).26, 27 The mechanism for reduction 

of the NiII center in Ni(acac)2 is thought to involve a π-π* transition to a vibrationally-
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excited π* state from which the reduction can take place. However the involvement of 

ligand-to-metal charge transfer has also been proposed. In either scenario, an intial 

single-electron reduction of NiII to NiI can occur (Scheme 4-6).9 The NiI formed could 

then react with a second NiI species in solution to disproportionate to form NiII and Ni0. 

Interestingly, photochemical reduction of Ni(acac)2 is not observed to occur in the 

presence of O2.26 However, this observed overall lack of reactivity may represent the sum 

of a photochemical reduction followed by rapid reoxidation of the reduced nickel and 

complexation to give Ni(acac)2 (Scheme 4-6). This is consistent with the fact that the 

anaerobically generated photoreduction products of Ni(acac)2 readily oxidize in O2 to 

regenerate the starting material.27  

Given the literature precedent described above, we hypothesize that low-valent 

nickel complexes, likely NiI, are generated upon photoirradiation of the 6-Ph2TPA-ligated 

 

 

Scheme 4-6. Proposed reaction sequence for photoreduction of Ni(acac)2. 



194	
  
 

 

Scheme 4-7. Proposed photochemical reaction pathways for 4-6 leading to the formation 

of I-IV (diket = diketonate). 
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Figure 4-10. Cyclic voltammograms of 4 (top) and 7 (bottom) obtained in freshly 

distilled CH3CN (0.1 M [Me4N][ClO4]) with an analyte concentration of 1.0 mM (4; 1.3 

mM for 7) under an atmosphere of N2. Scan rate: 200 mV/s. Temperature: 298 K. 
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NiII β-diketonate complexes. Irradiation on the high-energy shoulder of the π-π* transition 

that is present at 368-380 nm could produce a high energy electronic state on the β-

diketonate with reducing character, leading to one-electron reduction of NiII to NiI and 

the formation of a β-diketonate radical (Scheme 4-7). While we cannot directly probe the 

NiI/ β-diketonate radical species, to provide  insight into the redox properties of the NiII 

2-chloro-1,3-diketonate complex 4, as well as an unsubstituted analog 7, cyclic 

voltammetry studies were performed. Complex 4 exhibits two poorly reversible cathodic 

features at approximately -1.82 and -1.91 V vs. Fc/Fc+ (Figure 4-10 (top)), respectively,  

suggesting that an initially formed NiI β-diketonate anion species is susceptible to further 

reduction and/or a chemical reactivity that limits reversiblity. A new oxidative wave at    

-0.44 mV generated after the cathodic scan indicates the formation of a possibly electrode 

deposited nickel species. Complex 7 exhibits a quasireversible cathodic wave at 

approximately -1.93 V (Figure 4-10 (bottom)), indicating that the stability of the NiI β-

diketonate anion species is influenced by the nature of the enolate ligand. In the presence 

of O2, solutions of 4 and 7 exhibit only a quasireversible cathodic wave consistent with 

the reduction of O2 to O2
-.28 The reversibility of this feature improves in the absence of 

complex, indicating that the electrochemically generated superoxide is reacting with the 

complex (either 4 or 7). Notably, we have found that the NiII β-diketonate complexes 4 

and 7 are reactive with potassium superoxide (solubilized by 18-crown-6) in acetonitrile. 

In the reaction of 4 with KO2, the carboxylic acid product I was detected as the major β-

diketonate-derived product. In sum, these observations suggest that a nickel-superoxo 

species forms, and this species is capable of oxidatively cleaving the diketonyl unit, as 

had been suggested in Scheme 4-2. 
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Literature precedent, as well as experimental evidence, suggests that the oxidative 

reactivity leading to carboxylic acid formation in the photoreactions of 4-6 likely 

involves the formation of a trione intermediate. Tada et al. have proposed that in situ 

generated α-I-β-diketones undergo reaction with O2 upon irradiation with fluorescent 

light to produce 1,3-diphenylpropanetrione, PhC(O)C(O)C(O)Ph.29 We have shown that 

the same trione is generated as a reactive intermediate upon reaction of 1 with O2.8  The 

trione is a transient intermediate that may then react with in situ generated peroxide to 

form the observed carboxylate cleavage products. Alternatively, triones with aryl groups  

 

 

Scheme 4-8. Possible triketone formation and subsequent degradation pathways to form 

either diketone or carboxylate products.  
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in the C(1) and C(3) positions may undergo a Lewis acid-promoted benzoyl migration 

and subsequent decarbonylation to form benzil (PhC(O)C(O)Ph), making the detection of 

benzil a potential probe for the detection of triketone intermediates.30 Careful 

examination of the products generated in the photoreaction of 6 (labeled as "other" in 

Figure 4-8) shows the presence of a small amount of benzil, strongly suggesting the 

formation of the triketone intermediate.31 A possible route leading to the formation of a 

triketone intermediate, starting from a nickel diketone peroxo species (formed by the 

combination of the proposed diketonyl and superoxo radicals from Scheme 4-2), and its 

subsequent cleavage is outlined in Scheme 4-8. 

To probe the formation of a trione intermediate, 18O labeling studies were 

undertaken and the results obtained for the aerobic photoreaction of 6 are consistent with 

previous reports. Specifically, the amount of benzoic acid containing one 18O label  

(36%) is generally similar to that found for the reaction of 1 (~50%).8 Labeling studies 

were also undertaken to further explore the photoinduced oxidative cleavage reactivity of 

4 under aerobic conditions. Irradiation of 4 in the presence of 18O2 (99%) resulted in the 

isolation of a sample of p-anisic acid that is ~31% unlabeled, ~46% containing one 18O, 

and ~23% containing two 18O atoms (Figure 4-11). We are cautious to avoid 

overinterpreting this labelling data in the absence of a more thorough kinetic analysis of 

the reactions. However, we tentatively propose that the observed formation of double-

labeled anisic acid in the reaction of 4 could be a result of previously-reported scrambling 

reactions in the presence of the electron-donating methoxy substituent.32 

To gain additional insight into the effect of the p-substituent on the reactivity of 

the 2-chloro-1,3-diketonate ligands in 4-6, the rates of the aerobic photoreactions were  
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Figure 4-11. 18O labelling studies for the photochemical reactions of 4 and 6. 

Incorporation of isotope into the carboxylate products was determined by the relative 

abundance of the [M]+, [M+2]+ and [M+4]+ ions by GCMS. 
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Figure 4-12. First-order plot for the photoreaction of 4-6 in aerobic CH3CN at 29(1)˚C, 

irradiating at 350 nm. Reactions were monitored at 378, 374 and 372 nm for 4-6 

respectively. 

 

 

Figure 4-13. Representative first order plots of side-by-side studies of the photochemical 

reaction of 4 under O2 and N2 at ~29˚C. Several repeat runs produced similar results 

wherein the reaction performed under oxygen was slightly faster. The data shown here 

were obtained monitoring at 378nm. 

 



201	
  
comparatively investigated. Monitoring the change in absorbance at 378 nm (Figure 4-4) 

as a function of time for the photochemical reaction of 4 under aerobic conditions 

indicated a first-order process (Figure 4-12). Similar experiments performed using 5 and 

6 demonstrated that the reaction slows in the order 4 > 5 > 6. This is consistent with 

quantum yields measured for the reactions wherein 4 (0.00038 ± 0.00002) > 5 (0.00032 ± 

0.00003) > 6 (0.00020 ± 0.00007). Thus, enhanced electron density within the 2-chloro-

1,3-diketonate ligand increases the quantum yield and the rate of the reaction. As shown 

in Scheme 4-7, the overall low quantum yield of these reactions may be attributed to 

recombination of the NiI species with the β-diketonate radical. 

The formation of the other organic products (II-IV) in the photoreactions of 4-6 

can be rationalized on the basis of the chemistry of the β-diketonate radical. The 

production of II and IV suggests that free neutral 2-chloro-1,3-dione is generated in the 

reaction mixture and subsequently undergoes the photochemical reactions previously 

reported by Kosmrlj et al.25 The formation of free neutral 3a-3c most likely occurs via 

hydrogen atom abstraction reactivity involving the β-diketonate radical. Although we 

have not definitively identified the H-atom donor in the system, we have found that an 

aerobic photochemical experiment involving 4 in the presence of the H-atom donor 9,10-

dihydroanthracene does significantly increase the rate of disappearance of the 2-chloro-

1,3-diketonate complex. 

The formation of III has not been reported in the photochemical reactions of 3a 

and 3c,25 although it has been detected as a product in the photochemical reactions of 

dibenzoyldiazomethane, suggesting decomposition involving the β-diketonyl radical.33 
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As depicted in Scheme 4-7, we propose that the observed rate of reaction for 4-6 

will be influenced by the magnitude of the pseudo first order rate constants k2, k3 and k4 

as compared to k-1. For example, the rate should increase in the presence of O2 as the 

pathway represented by k2 becomes operative. Addition of an H-atom donor compound, 

such as 9,10-dihydroanthracene, would also be expected to increase the rate, as the 

magnitude for k4 would increase and k2 may also increase due to the ability of a hydrogen 

atom donor to trap a nascent superoxide radical. The relative rates of reaction for 4 under 

an aerobic or nitrogen atmosphere (Figure 4-13), and in an aerobic mixture containing 

9,10-dihydroanthracene, were determined and qualitatively support the proposed reaction 

scheme. The reactivity trend 4 > 5 > 6 described earlier can be explained either in terms 

of the increased electron richness decreasing the magnitude of k-1 or increasing the 

magnitude of at least one of k2-k4. In fact, the two effects may be viewed as synergistic. 

Specifically, the electron-donating methoxy groups will stabilize the one-electron 

oxidized form of the β-diketonate with respect to reduction, decreasing k-1, and the 

increased electron density should facilitate oxidation, thereby increasing k2. 

The observed lack of reactivity for the unsubstituted NiII β-diketonate complexes 

7-9 was investigated using a crossover type experiment. Specifically, an acetonitrile 

solution containing equimolar amounts of the methoxy-substituted 7 with the sodium salt 

of dibenzoylmethane was irradiated for 20 h after which time the reaction was evaluated 

using 1H NMR under paramagnetic conditions. At this point a mixture of 7 and 9 was 

present. In the absence of irradiation, formation of a similar mixture took >7 days to 

form. These combined results indicate that similar to 4-6, the unsubstituted complexes 7-

9 undergo a photochemical reaction that labilizes the β-diketonate ligand. The lack of 
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formation of oxidation, α-cleavage, or flavone products in these systems appears to be 

due to the lack of the reactive 2-chloro moiety in that labilized β-diketonate radical 

species. The chloro substituent may be necessary as a leaving group34 to enable formation 

of a vicinal triketone, or to enhance the electrophilic character of the α-carbon center.  

 
Conclusion 

Oxidative carbon-carbon bond cleavage reactions of relevance to biological 

processes are of current interest, including those involving aliphatic carbon-carbon bond 

cleavage in β-diketone substrates. Herein we demonstrate that this type of oxidative 

chemistry can be achieved via photochemical reduction of NiII 2-chloro-1,3-diketonate 

complexes under aerobic conditions. We propose that the reduced nickel center generated 

in these reactions activates dioxygen to form superoxide and initiate a reaction sequence 

that ultimately results in the formation of carboxylic acid products. This novel reactivity 

has relevance to that proposed for the iron-containing Dke1 enzyme wherein the metal 

center mediates electron transfer from the β-diketonate ligand to O2 leading to the 

formation of superoxide. Overall, this work outlines a new approach toward examining 

chemistry of relevance to metal-containing dioxygenase enzymes that cleave a β-diketone 

ligand.   
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CHAPTER 5 

DIOXYGENASE-TYPE CARBON-CARBON BOND CLEAVAGE IN A 

MONONUCLEAR COPPER(II) CHLORO-DIKETONATE COMPLEX 

 
Abstract 

The scope of copper dioxygenase chemistry in well-defined synthetic systems has 

not been widely investigated, excepting the oxidative cleavage of flavonols by model 

systems of relevance to quercetin dioxygenase. In this article we report the synthesis and 

characterization of a mononuclear copper chloro-diketonate complex, [(6-

Ph2TPA)Cu(PhC(O)CClC(O)Ph)](ClO4) (1). Complex 1 is a five-coordinate complex 

with a bidentate coordination mode of the diketonate and has been characterized by UV-

vis, FTIR, EPR, magnetic susceptibility, elemental analysis, HRMS, and X-ray 

crystallography. Exposure of 1 to dioxygen in CH3CN leads to cleavage of the diketonate 

carbon-carbon bonds at ambient temperature and pressure to generate carboxylate 

products and [(6-Ph2TPA)CuCl]ClO4 (2). Mechanistic and computational studies show an 

important role for in situ generated chloride ions in promoting this oxidative cleavage 

reaction. 

 
Introduction 

One of the most important challenges for chemists in the 21st century is to develop 

new ways for converting chemical feedstocks (including biomass) into useful products, 

including pharmaceuticals, polymers, and fuels, in an environmentally benign and cost-

efficient manner.1 One area of chemistry that is still underdeveloped in this regard is the 

development of methods for the selective oxidative activation of carbon-carbon bonds.2 
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The principles of Green Chemistry provide a guiding framework for accomplishing such 

oxidations, including advocation of the use of low-cost, non-toxic catalysts, renewable 

feedstocks, and low temperature and pressure conditions.3 Ideally, oxidations could be 

achieved using the abundant gas dioxygen as a terminal oxidant, cheap and relatively 

non-toxic first-row transition metals as catalysts, and at ambient temperature and 

pressure.4 With this in mind, copper is a late first-row transition metal that appears ideally 

suited as a catalyst for selective carbon-carbon bond activations due to the rich redox 

chemistry available to it. This is due to its ability to access Cu(0), Cu(I), Cu(II) and 

Cu(III) oxidation states through appropriate tuning of its ligand environment.5  

 The chemistry of copper and dioxygen is rich and varied.6 Nature employs 

copper centers to facilitate numerous oxygen-involving reactions in enzymatic systems, 

including tyrosinase, particulate methane monooxygenase (pMMO), cytochrome C 

oxidase and galactose oxidase (Scheme 5-1 (top)).7-10 These reactions have been studied 

extensively both by direct investigation of the enzymatic systems and by the synthesis of 

well-defined copper coordination compounds that can act as model systems of the more 

complex enzyme active sites.6-11 A large focus within the synthetic inorganic community 

has been on understanding the spectroscopy and reactivity of Cu-O2 adducts, both to 

better understand enzymatic systems and to investigate their ability to oxidatively 

activate bonds for applications in energy-related applications, such as the oxidation of 

methane to methanol.11-13 Thus, there have been a wide variety of synthetic copper-

containing systems identified that are capable of selectively activating X-H (X = C, N, O) 

bonds, often via the initial synthesis of a Cu(I) center, or a dicopper core (Figure 5-1).11 

While the activation of X-H bonds has been extensively studied, the activation of C-C  
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Scheme 5-1. Selected examples of copper oxygen chemistry including examples from 

enzymatic systems (top), catalytic reactions for synthesis (middle), and reactions that lead 

to C-C bond cleavage (bottom). Many of these reactions also require a coreductant for the 

reaction to proceed. 
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Figure 5-1. A subset of Cu/O2 adducts that have been investigated for their spectroscopic 

features and reactivity to provide insight into a variety of copper-containing enzymatic 

systems. All of these Cu/O2 adducts are formed by the reaction of O2 with a Cu(I) 

center(s). * The formation of the η1-hydroperoxo and µ-1,1-hydroperoxo structures 

require the addition of a hydrogen atom and a proton, respectively. 
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bonds in well-defined copper complexes has only been extensively studied in model 

systems of a single family of enzymes – the quercetin dioxygenases.14 

Synthetic organic chemists have also utilized the oxygen chemistry of copper for 

numerous organic transformations, many of these inspired by enzymatic systems.5, 15-23 

These oxidations range from functional group interconversions, such as the oxidation of 

aldehydes to carboxylic acids, to monooxygenase reactions involving the insertion of 

oxygen into hydrocarbon C-H bonds or during the epoxidation of alkenes, to oxidase 

reactions such as coupling reactions generating C-C bonds (Scheme 5-1 (middle)).17-19 

Within the scope of oxidative C-C bond cleavage, copper catalysts have often been used 

in decarbonylation reactions of aldehydes, aldehyde-mediated Baeyer-Villager-type 

monooxygenase cleavage reactions of ketones to form esters, and in the cleavage of 

cyclic ketones via a dioxygenase-type pathway (Scheme 5-1 (bottom)).20-22  

The oxidative cleavage of cyclic ketones is very interesting as it does not require 

the presence of a co-reductant (Scheme 5-2 (top)), which is a major draw-back in the 

copper-catalysed Baeyer-Villager reactions. The reaction is reported to be catalyzed by 

simple Cu(II) salts at room temperature in CH3CN, and uses O2 as the terminal oxidant.22 

By analogy with the copper-catalyzed, aldehyde-mediated Baeyer Villager reaction, a 

reaction pathway has been proposed that involves the generation of a Cu(I)-ketonyl 

radical pair which intercepts dioxygen (Scheme 5-2 (top)). This proposal is very similar 

to that proposed for the reaction of quercetin dioxygenase (QDO, vide infra).14 No 

mechanistic studies have been reported, which might have provided insight into the 

appropriateness of the proposed mechanism. It is worth noting that the cleavage of 

acyclic ketones was not reported, suggesting that alleviation of ring strain may be  
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Scheme 5-2. Proposed reaction mechanisms for the copper-catalyzed oxidative cleavage 

of cyclic ketones (top) and of acyclic β-diketones (bottom). 
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involved in facilitating the reaction. 

Recently, the copper-catalyzed oxidative cleavage of an acyclic β-diketonate 

substrate has also been reported (Scheme 5-2 (bottom)).23 The reaction proceeds by 

combining a CuBr or CuBr2 salt, pyridine, the diketone substrate and oxygen in toluene at 

90˚C. While some mechanistic experiments were undertaken, suggesting that the reaction 

may proceed via generating a superoxide intermediate, the poorly defined catalytic 

complex precluded any useful conclusions being drawn about the reaction pathway. For 

example, while pyridine was found to be necessary for the reaction to proceed, its exact 

role is unknown. Varying the concentration of pyridine from 2 to 20 equivalents per 

copper had only minor effects on the reaction progression. EPR experiments appeared to 

show that the presence of pyridine was required to oxidize CuBr using O2 to generate 

superoxide, although the importance of this is unclear as the reaction still proceeds in 

similar yields and product distributions when only CuBr2 is present as a copper source.  

We are interested in utilizing well-defined copper coordination complexes to 

understand the chemical factors that influence the reactivity, and selectivity thereof, of 

copper-containing systems that oxidatively cleave C-C bonds using oxygen as the 

terminal oxidant and that proceed via a dioxygenase-type pathway. We are especially 

interested in these dioxygenase-type pathways as they do not require external co-

reductants, like some oxidase or monooxygenase reactions, and also due to their 

relevance in understanding the role of the metal center in biologically important 

dioxygenase reactions.2a Despite the prevalence of well-defined copper-containing 

systems for X-H bond activation, and the numerous copper-containing catalytic systems 

that can oxidatively cleave C-C bonds, there are very few well-defined copper-containing 
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systems that can cleave C-C bonds by a dioxygenase-type pathway.14b, 15b We hope that 

such studies would inform design of future catalytic systems for organic synthesis. The 

only well-defined system to date that has allowed extensive mechanistic investigations of 

the role of the copper center in O2 activation is quercetion dioxygenase (QDO).14 

QDO is the only dioxygenase unambiguously known to contain copper.14b It is 

also one of the few dioxygenase enzymes capable of cleaving aliphatic carbon-carbon 

bonds.2a QDO contains a mononuclear Cu(II) center at the active site, ligated by three 

histidines, a water molecule and sometimes by a mobile carboxylate.24 The enzyme-

substrate adduct of QDO is proposed to react with dioxygen via the formation of a Cu(I)-

substrate radical pair, facilitated by binding of the carboxylate residue that favours 

monodentate coordination of the flavonol substrate (Scheme 5-3).14 Functional model 

systems of QDO containing a copper ion have been able to replicate the dioxygenase 

reactivity of flavonol substrates and also exhibit rate enhancement in the presence of 

excess carboxylate.14c These functional models only operate at elevated temperatures 

(>80˚C), usually with DMF as a solvent. The wider scope of using a Cu(II)-substrate 

anion/Cu(I)-substrate radical equilibrium to dioxygenolytically cleave substrates has been 

rarely studied.25 Our previous studies of the photo-induced dioxygenase-type reactivity of  

 

 

Scheme 5-3. A proposed oxygen activation step in the dioxygenase reaction of quercetin 

dioxygenase. 
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Scheme 5-4. Photo-induced dioxygenase cleavage of a chloro-diketonate substrate 

utilizing a Ni(II) center. Since a Cu(I) center is more stable than Ni(I), it was proposed 

that it should allow facile oxidative cleavage of the diketonate substrate. 

 

a nickel chloro-diketonate (Scheme 5-4) suggested that this substrate would be a 

candidate for this chemistry in a copper system.26 Herein we report our discovery of 

dioxygenase-type aliphatic carbon-carbon bond cleavage in a copper chloro-diketonate 

system at ambient temperature. To our knowledge, this is the only example of facile 

Cu(II) dioxygenase chemistry in a well-defined synthetic system without elevated 

temperatures or photochemical activation.14b, 27 

 
Experimental 

General methods: All reagents were obtained from commercial sources, and 

were used without further purification unless otherwise stated. Solvents were dried 

according to published procedures and purified by distillation under N2 prior to use.28 6-

Ph2TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and 2-

chloro-1,3-diphenylpropane-1,3-dione were prepared according to previously published 
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procedures.29, 30 All manipulations were carried out in an MBraun Unilab glovebox with a 

N2 atmosphere, or using standard Schlenk techniques, unless otherwise noted. 

Physical methods: 1H NMR spectra were collected on a Bruker ARX-400 

spectrometer at 25 °C; chemical shifts were referenced to the residual solvent peak in 

CD2HCN (1.94 ppm, quintet). UV-vis data was collected on a HP8453A spectrometer at 

ambient temperature; kinetic measurements were performed at 21 °C in 1 mm pathlength 

quartz cells with Teflon stopcocks. FTIR spectra were collected on a Shimadzu FTIR-

8400 as KBr pellets.  Room temperature magnetic susceptibilities were determined by the 

Evans method, using a Bruker ARX-400 spectrometer.31 GC-MS data was collected on a 

Shimadzu GCMS-QP5000 GC-MS with a GC-17A gas chromatograph, using an Alltech 

EC5 30 m × 25 mm × 25 µm thin film capillary column. CO and CO2 gases were 

detected on an Agilent 3000A Micro Gas Chromatograph, with molecular sieve and Plot 

U columns, and a thermal conductivity detector. Mass spectral data for the metal 

complexes were collected by the Mass Spectrometry Facility, University of California, 

Riverside. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. 

EPR: X-band EPR spectra were recorded with a Bruker EMX EPR spectrometer 

on degassed 50 µM 80/20 CH2Cl2/toluene solutions. Low temperature spectra were 

obtained using an Oxford ESR900 liquid helium cryostat. The spectra in Figure 5-3 

represent the average of four scans each. Other conditions, unless otherwise noted: νMW = 

9.385 GHz (20 µW); 2 G field modulation (100 kHz); receiver gain = 50000; time 

constant/conversion time = 82 ms. Spectra were simulated using the program QPOW.32 

The final simulations include weighted contributions from both 63Cu and 65Cu, and 
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uncorrelated mI and frequency-dependent contributions to the observed line width,33 

totaling less than 20 % of the overall EPR line width.  

Caution! Perchlorates are potentially explosive, and should be handled with 

extreme care and in small quantities (<50 mg).34 

Synthesis of [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1) Cu(ClO4)2.6H2O 

(18 mg, 0.047 mmol) was dissolved in CH3CN (2 mL) and added to 6-Ph2TPA (21 mg, 

0.047 mmol). The resulting pale green solution was stirred together for 30 minutes until 

all solids had completely dissolved. 2-chloro-1,3-diphenylpropane-1,3-dione (12 mg, 

0.047 mmol) was dissolved in Et2O (1 mL), added to lithium bis(trimethylsilyl)amide 

(7.9 mg, 0.047 mmol) and the mixture was stirred for five minutes, resulting in a pale 

yellow suspension. The solutions were combined and stirred for 16 hours to produce a 

green solution. The solvent was removed under reduced pressure, and the crude material 

was dissolved in CH2Cl2 and filtered through a glass wool/Celite plug. The solution was 

then concentrated under reduced pressure, and the metal complex precipitated by addition 

of excess hexanes, yielding a green powder (36 mg, 88 % yield). Crystals suitable for x-

ray diffraction were grown by vapour diffusion of Et2O into a CH2Cl2 solution. Elemental 

analysis calculated (%) for C45H36Cl2CuN4O6: C 62.59, H 4.21, N 6.49; found: C 62.79, 

H 4.47, N 6.49. HRMS: m/z calculated for C45H36ClCuN4O2: 762.1823 [M-ClO4]+; 

found: 762.1806. UV-vis λmax, nm (ε, M-1cm-1): 253 (34000), 363 (10200). FTIR (KBr, 

cm-1): 1541, 1339, 1105 (νClO4), 623 (νClO4). µeff  1.82 µB. 

Synthesis of [(6-Ph2TPA)CuCl]ClO4 (2) Cu(ClO4)2.6H2O (27 mg, 0.074 mmol) 

was dissolved in CH3CN (3 mL) and added to 6-Ph2TPA (33 mg, 0.074 mmol). The 

resulting pale green solution was stirred for half an hour until all solids had completely 
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dissolved. The solution was added to solid Me4NCl (8.1 mg, 0.074 mmol) and stirred for 

four hours to produce a pale green solution. The solution was concentrated under reduced 

pressure, causing a precipitate to form. The precipitate was collected on a glass 

wool/Celite plug, washing with a small amount of CH3CN. The precipitate was 

redissolved in CH2Cl2, to generate a green solution. Addition of excess hexanes to this 

solution caused a precipitate to form. Decantation of the supernatant, followed by 

extensive drying in vacuo yielded a blue/green powder (43 mg, 90% yield). Elemental 

analysis calculated (%) for C30H26Cl2CuN4O4•0.5CH2Cl2: C 53.58, H 3.98, N 8.20; 

found: C 53.23, H 4.34, N 8.95. HRMS: m/z calculated for C30H26ClCuN4: 540.1124 [M-

ClO4]+; found: 540.1143. FTIR (KBr, cm-1): 1092 (νClO4), 624 (νClO4). µeff  1.83 µB. 

Reaction of 1 with O2. A CH3CN solution of 1 (1.2 mM) was prepared under a 

N2 atmosphere. Aliquots of this solution were purged for 30 seconds with O2. The 

reaction vessel was then sealed with a Teflon stopcock and stirred for 2 hours. The 

progression of the reactions was conveniently monitored by removing aliquots of solution 

and following the decay of the absorption feature at 363nm using a 1mm quartz UV-vis 

cell. In order to determine whether the reactions were photo initiated, as has been 

previously reported for some nickel-containing chloro-diketonate systems,26 we 

performed the reactions in foil-wrapped glassware, and found that light was not required 

for the reaction to proceed. We also attempted irradiation of 1 at 350 nm in the presence 

of O2. By comparing the reaction progression of this irradiated sample with that of a 

sample kept in the dark, we found a slight increase in rate in the photo reaction. However, 

this photo reaction was very slow (quantum yield ~ 10-4, as determined by ferrioxalate 
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actinometry),35 and thus we focused our efforts on characterizing the more interesting 

thermal reaction. 

The reactions were stopped by removing the solvent under reduced pressure. 

Analysis of the crude solid by HRMS showed a molecular ion at 540.1142 m/z consistent 

with a [(6-Ph2TPA)CuCl]+ ion, and had a fragmentation pattern that matched that of an 

authentic sample of 2. Vapor diffusion of Et2O into a CH2Cl2 solution of the crude 

product mixture yielded green crystals of 2.CH2Cl2 suitable for analysis by x-ray 

diffraction. The organic products of the reaction were analyzed as described below. 

For consistency with the 18O experiments, the reaction was also repeated with the 

addition of 10µL H2O to the reaction mixture per mL CH3CN.  

Analysis of Organic Products To separate the organic components of the 

product mixture from the metal-containing species, the crude product mixture was passed 

through a silica column, eluting with EtOAc. The total yield of these organic products 

was greater than 80%, determined as a percentage by mass of the diketonate in the 

starting material. The organic species were analyzed by GC-MS, and identified by 

comparing to retention times and fragmentation patterns of authentic samples. Four 

species were present, and were identified to be benzoic acid, benzil, benzoic anhydride 

and diphenylpropantrione. When the reactions were repeated with the addition of H2O 

(see above), benzoic anhydride was no longer detected among the products. 

Recovery of the Ligand 6-Ph2TPA A CH2Cl2 solution of the crude product 

mixture was stirred vigorously with NH3 (aq). The blue aqueous layer was removed by 

decantation, then the CH2Cl2 solution was dried over Na2SO4 and the solvent removed 

under reduced pressure. Yield by mass of chelate ligand was 85%. Analysis by 1H NMR 
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showed peaks corresponding predominantly to the intact chelate ligand, in addition to a 

minor component of benzil. 

18O Labeling Experiments To introduce 18O2, a 1.2 mM CH3CN solution of 1 

was prepared under a N2 atmosphere, and a 5 mL aliquot placed in a flask sealed with a 

stopcock. 50 µL H2
16O was introduced, and then the atmosphere removed from the flask 

by freeze-pump-thaw cycles. 18O2 gas was then introduced to the frozen solution on a 

Schlenk line, the flask sealed, thawed, and allowed to stir for 12 hours.  

To introduce H2
18O, 5 mL of a 1.2 mM CH3CN solution of 1 was prepared under 

a N2 atmosphere. 50 µL H2
18O was added and the solution purged with 16O2 for 30 

seconds. The reaction vessel was then sealed and allowed to stir for 12 hours.  

In each case the organic products were isolated and analyzed as described above. 

Levels of 18O incorporation into benzoic acid were determined from the ratios of the 

[M]+, [M+2]+ and [M+4]+ ion intensities. 

X-ray Crystallography: Single crystal samples of 1, and the product of the O2 

reaction of 1, which was determined to be the chloride complex [(6-Ph2TPA)CuCl]ClO4 

(2), were mounted on a glass fiber using a viscous oil and then transferred to a Nonius 

KappaCCD diffractometer (Mo Kα, λ = 0.71073 Å) for data collection at 150(1) K. 

Methods for determination of cell constants and unit cell refinement have been previously 

reported.36 Each structure was solved by a combination of direct methods and heavy atom 

using SIR97. All of the non-hydrogen atoms were refined with anisotropic displacement 

coefficients. 

Complex 1 crystallizes in the orthorhombic space group P bca while complex 2 

crystallizes in the monoclinic space group P 21/a. All hydrogen atoms were assigned 
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isotropic displacement coefficients U(H) = 1.2(C) or 1.5U(Cmethyl) and their coordinates 

allowed to ride on their respective carbons using SHELXL97. Complex 2 contains a 

single molecule of CH2Cl2 per formula unit. 

 
Results and Discussion 

Synthesis and Characterization: Admixture of a CH3CN solution containing 

equimolar amounts of N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine 

(6-Ph2TPA) and Cu(ClO4).6H2O in CH3CN to a slurry of 2-chloro-1,3-diphenylpropan-

1,3-dione and LiHMDS in Et2O under a N2(g) atmosphere generated a green solution 

(Scheme 5-5). Nucleophilic bases, such as hydroxides, were avoided in this step due to 

the potential for substitution at the C-Cl position. After removing the solvent under 

reduced pressure, the resulting green powder was redissolved in CH2Cl2, filtered through 

a Celite/glass wool plug and precipitated with hexanes to generate analytically pure [(6-

Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1) in 88 % yield.  

Crystals of 1 suitable for X-ray crystallography were grown by vapour diffusion 

of Et2O into a CH2Cl2 solution (Tables 5-1 and 5-2). Crystallographic studies showed a 

five-coordinate copper center in which one of the phenylpyridyl arms of the 6-Ph2TPA  

 

 

Scheme 5-5. Synthesis of 1. 
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Table 5-1. Summary of X-ray data collection and refinement. 

 1 2·CH2Cl2 

Formula  C45H36Cl2CuN4O6 C31H28Cl4CuN4O4 

Mr 863.22 725.91 

Crystal system  Orthorhombic Monoclinic 

Space group  P b c a P 21/a 

a/Å 12.7335(2) a = 13.1354(2) Å 

b/ Å 19.3738(2)  b = 15.4508(3) Å 

c/ Å 31.7858(4) c = 15.3363(3) Å 

α /° 90 90 

β /° 90 90.3769(12) 

γ /° 90 90 

V / Å3 7841.44(18) 3112.47(10) 

Z 8 4 

Dc/ Mg m-3 1.462 1.549 

T/K 150(1) K 150(1) K 

Color green green 

Crystal shape Prism needle 

Crystal size/ mm 0.30 x 0.30 x 0.15 0.30 x 0.15 x 0.05 

µ/ mm-1 0.750 1.089 

F(000) 3560 1484 

θ range/ ° 2.46-27.48 2.03-26.38 

Completeness to θ/ % 27.48°/99.9 % 26.38°/99.9 % 

Reflections collected 17118 12435 

Independent reflections 8993 6371 

Rint 0.0351 0.0237 

Data/restraints/ parameters 8993 / 0 / 550 6371 / 12 / 434 

GoF / F2 1.011 1.017 

R1, wR2/ I>2σ(I) 0.0396, 0.0882  0.0394, 0.0970 

R1, wR2/ all data 0.0729, 0.1008 0.0631, 0.1098 

max./min. transmission 0.8958/0.8063 0.9476/0.7359 

Δρmax/min/ eÅ-3 0.348/-0.582 0.430/ -0.606 e.Å-3 

Radiation Mo Kα (λ = 0.71073Å) Mo Kα (λ = 0.71073Å) 

Diffractometer Nonius KappaCCD Nonius KappaCCD 
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Table 5-2. Selected bond distances (Å) and angles (°) for 1 and 2·CH2Cl2 

    

1    

Cu(1)-O(1)  1.9199(14) O(1)-Cu(1)-O(2) 91.01(6) 

Cu(1)-O(2)  1.9245(15) O(1)-Cu(1)-N(1) 95.46(7) 

Cu(1)-N(1)  1.9992(18) O(2)-Cu(1)-N(1) 155.95(7) 

Cu(1)-N(2)  2.0333(17) O(1)-Cu(1)-N(2) 179.79(7) 

Cu(1)-N(3)  2.3394(18) O(2)-Cu(1)-N(2) 89.07(7) 

Cu(1)---N(4) 3.089(2) N(1)-Cu(1)-N(2) 84.39(7) 

Cl(1)-C(38)  1.747(2) O(1)-Cu(1)-N(3) 102.74(6) 

O(1)-C(37)  1.277(3) O(2)-Cu(1)-N(3) 97.91(6) 

O(2)-C(39)  1.277(3) N(1)-Cu(1)-N(3) 103.17(7) 

C(37)-C(38)  1.420(3) N(2)-Cu(1)-N(3) 77.44(6) 

C(38)-C(39)  1.402(3)   

    

2·CH2Cl2    

Cu(1)-N(2)  2.019(2) N(2)-Cu(1)-N(1) 82.27(9) 

Cu(1)-N(1)  2.033(2) N(2)-Cu(1)-N(3) 78.67(9) 

Cu(1)-N(3)  2.103(2) N(1)-Cu(1)-N(3) 137.32(9) 

Cu(1)-Cl(1)  2.1989(7) N(2)-Cu(1)-Cl(1) 173.98(6) 

Cu(1)-N(4)  2.247(2) N(1)-Cu(1)-Cl(1) 97.71(7) 

  N(3)-Cu(1)-Cl(1) 97.54(6) 

  N(2)-Cu(1)-N(4) 76.79(8) 

  N(1)-Cu(1)-N(4) 104.86(8) 

  N(3)-Cu(1)-N(4) 107.35(8) 

  Cl(1)-Cu(1)-N(4) 108.94(6) 
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chelate ligand has a distance of 3.089(2) Å between the nitrogen atom and the metal 

center (Figure 5-2). The second phenylpyridyl arm, which coordinates directly to the 

copper via its pyridyl nitrogen, is elongated by ~0.3 Å relative to the other nitrogen 

donors. Compared to the nickel-containing analogue [(6-

Ph2TPA)Ni(PhC(O)CClC(O)Ph)]ClO4 (3), 1 has contracted M-O, M-Namine and M-NPy 

bond lengths by an average of 0.05 Å.26 This is attributable to both the higher Lewis 

acidity of the Cu(II) center relative to Ni(II), as well as to the greater Jahn-Teller 

distortion of the Cu(II) center that led to dissociation of one of the NPhPy arms.  The 

geometry of the center is intermediate between square-based pyramidal and trigonal 

bipyramidal (τ value of 0.40).37 Bond distances within the six-membered chelate ring 

formed by the diketonate binding to the metal center are consistent with a fully-

delocalized diketonate (Table 5-2), and the C-Cl bond distance (1.747(2) Å) is in the  

 

 

Figure 5-2. Thermal ellipsoid representation of the cationic portion of 1. Ellipsoids are 

drawn at 50% probability and hydrogen atoms are omitted for clarity. 
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Figure 5-3. X-band EPR spectrum (top) and representative simulation (bottom) of 1 at 20 

K. (Inset) Expanded view of the g� region. The vertical lines are added to facilitate 

comparison; the lower simulation represents the 63,65Cu contribution to the line shape. For 

detailed simulation information, see Figure 5-4. 
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Figure 5-4. X-band EPR of 1 and representative simulations, (top) at elevated 

temperature and low power, and (bottom) at low temperature and high power. The 

simulations only differ in the presence (top) or absence (bottom) of three equivalent 14N 

couplings, and in their line width parameters. In the 20 K simulation, an isotropic EPR 

line width of 10 MHz was used, with uncorrelated strains in both g and A of 2.5 MHz (25 

%). In the 4.5 K simulation, the isotropic EPR line width was increased to 50 MHz, with 

the same uncorrelated strains in g and A (2.5 MHz, 5 %). Other parameters: (both) g = 

[2.058, 2.058, 2.260]; A(63,65Cu) = [52, 52, 540] MHz; (top) A(14N) = [34, 34, 24] MHz. 

The value of Az(14N) derives from poorly resolved hyperfine structure on the lowest field 

Cu hyperfine line in the 20 K spectrum. 
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range typically found for other chloro-diketonates (1.739-1.755 Å).38 

The low temperature EPR spectrum of 1 (Figure 5-3) is consistent with a five-

coordinate Cu(II) ion in solution,39 with axial g (g||, � = [2.058, 2.260]) and A (A||, � = [52, 

540] MHz). An adequate simulation could only be obtained by inclusion of three  

equivalent 14N atoms with largely isotropic hyperfine couplings, A||, �(14N) = [34, 23] 

MHz. Inclusion of two or four 14N did not reproduce all of the features near g�. 

Aerobic reactivity: Complex 1 has a prominent absorption feature at 363 nm 

(10200 M-1cm-1) (Figure 5-5). A similar feature was observed in the nickel-containing 

analogue of 1, albeit red-shifted to 372 nm, and was assigned as a π-π* transition on the 

diketonate, with LMCT character on the high energy side of the band.26 Exposure of  

 

 

Figure 5-5. Selected UV-vis spectra during the decay of the 363 nm absorption feature of 

1 upon exposure to O2. 
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CH3CN solutions of 1 to O2 in CH3CN at 25 ˚C in the absence of light leads to the decay 

of this feature within 1 hour, consistent with destruction of the diketonate unit. This was a 

very surprising observation as our previous studies on nickel-containing analogues of 1 

required photo-activation for cleavage of the diketonate, while oxidative cleavage of 

enolates by copper-containing functional models of QDO typically require elevated 

temperatures (greater than 80 ˚C) to proceed.26, 14b 

Product Identification: Analysis of the crude reaction mixture by HRMS reveals 

an ion at m/z = 540.1143, with exact mass and isotope pattern consistent with the 

formulation [(6-Ph2TPA)CuCl]ClO4 (2); this formulation has been confirmed by 

comparison to the HRMS of an authentic sample of independently synthesized 2. 

Removal of solvent followed by recrystallization of a CH2Cl2 solution of the product 

mixture by vapor diffusion of Et2O yielded crystals suitable for X-ray crystallography 

(Tables 5-1 and 5-2). Crystallographic studies revealed a five-coordinate copper center 

(Figure 5-6) in a geometry intermediate between trigonal bipyramidal and square-based  

 

 

Figure 5-6. Thermal ellipsoid representation of the cationic portion of 2. Ellipsoids are 

drawn at 50% probability and hydrogen atoms are omitted for clarity. 
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pyramidal (τ = 0.61),37 although with more trigonal bipyramidal character than 1. In this 

structure, the Cu-NPhPy bond lengths are roughly equivalent and only an average of ~0.2 

Å longer than the other Cu-N bonds, in contrast to the structure of 1. Notably, the Cu-Cl 

bond length in this structure (2.1989(7) Å) is, to our knowledge, the shortest reported Cu-

Cl bond length in a mononuclear copper species with a tris(2-methylpyridyl)amine-based 

ligand, with the shortest other Cu-Cl bond lengths being 2.206(2) and 2.211(3) Å.40  

In reactions of chlorodiketonate Ni(II) complexes with O2, products have included 

carboxylate species in addition to mono-chloride complexes (Scheme 5-6).26 

Carboxylates are the oxidative cleavage products of the diketonate substrate. To 

determine whether 2 was the sole Cu(II)-containing product, or if additional carboxylate 

species may be present, EPR was used to analyze the crude product mixture from the 

reaction of 1 with O2. Upon exposure of 1 to O2, there is a significant change in the EPR 

spectrum. While the Cu(II) ion g-tensor is largely unaffected, suggesting that it remains 

penta-coordinate, the 63,65Cu hyperfine coupling becomes significantly more isotropic, 

A(63,65Cu) = [130, 375] MHz. Simulations showed the only way to reproduce the product 

complex spectrum is to include a second, strongly coupled I = 3/2 nucleus, consistent with 

formation of a chloride complex. This is demonstrated convincingly, on comparison of 

the product complex EPR spectrum to that of the synthetically prepared complex 2 

(Figure 5-7). Thus, 2 is the only Cu(II)-containing species in the reaction of 1 (Scheme 5-

7). 

 To determine the fate of the diketonate substrate, the product mixture was passed 

through a short silica column, eluting with ethyl acetate. The yield of the organics by this 

process was greater than 80%, and analysis by GCMS and 1H NMR revealed the  
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Scheme 5-6. Products of the dioxygenolytic photoreactivity of a nickel chlorodiketonate 

include both chloride and carboxylate species. 
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Figure 5-7. X-band EPR of 2 and the product mixture from the reaction of 1 with O2. 

Top: 2 at 15 K (50 µW microwave power). Bottom: The product mixture from the 

reaction of 1 with O2 at 10 K (200 µW). The patterns are adequately simulated (inset) 

with a pair of I = 3/2 nuclei (35,37Cl and 63,65Cu) that have similar A values at g�, as 

expected in the Cl complex. Simulation parameters: g = [2.06, 2.06, 2.24]; A(63,65Cu) = 

[130, 130, 375] MHz; A(35,37Cl) = [100, 100, 10] MHz; isotropic EPR line width of 50 

MHz, uncorrelated strains in both g and A of 2.5 MHz (25 %). These parameters were 

adequate to match peak positions and the overall breadth of the pattern, but no 

combination of line shape parameters were found that would then match the final line 

shape. 
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Figure 5-8. Organic species formed in the reaction of 1 with O2 in CH3CN (top) and 

identification of their corresponding aromatic signals in the 1H NMR of the organic 

products (bottom). When the reaction is repeated in the presence of 1% H2O, benzoic 

anhydride is no longer detected and a corresponding increase in the intensity of the 

benzoic acid peaks are observed. 
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Scheme 5-7. Reaction of 1 with O2 in CH3CN to form the chloride complex 2. 

 
presence of four species (Figure 5-8). The production of the carboxylate species benzoic 

acid and benzoic anhydride are indicative of oxidative cleavage of the diketonate unit in 

the reaction of 1 with O2.  We note that benzoic anhydride is produced in a water-

dependent manner, and may be completely removed from the product mixture by the 

addition of 1% water to the reaction. 18O2 labelling studies in the presence of 1% H2
16O 

show incorporation of at least one oxygen atom into 60% of the benzoic acid. The 

corresponding 16O2/H2
18O experiment shows incorporation into 30% of the benzoic acid 

(Scheme 5-8). The hydrolysis of benzoic anhydride presumably provides a route for 

incorporation of oxygen atoms from water. Using a separate extraction technique, adding 

NH3(aq) to the crude reaction products and extracting with CH2Cl2, we have also 

determined that the supporting chelate ligand remains intact during the course of the 

reaction by 1H NMR (Figure 5-9). 

Benzoic acid, benzil and diphenylpropantrione have previously been observed as 

products in model systems of nickel- and iron-containing acireductone dioxygenases, and 

were indicative of a reaction pathway in which an alpha-substituted diketonate reacts 

with dioxygen via a hydroperoxide-triketone intermediate (Scheme 5-9).41, 42 Two-

electron oxidation of the α-chloro diketonate by dioxygen could lead to the formation of 

the intermediate A shown in Scheme 5-10. Subsequent hydrolysis of A would generate  
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Scheme 5-8. 18O incorporation into benzoic acid during the reaction of 1 with O2 in 

CH3CN/H2O. Isotope incorporation levels were determined from the relative intensities 

of the [M]+, [M+2]+ and [M+4]+ ions in the GCMS spectrum. 
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Figure 5-9. 1H NMR spectrum (CD3CN) of the recovered ligand. 

 

 
 
Scheme 5-9. Reactions of diphenylpropantrione in the presence of hydroperoxide and a 

Lewis acid. 
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Scheme 5-10. Proposed reaction pathways for O2 with the diketonate anion of α-chloro-

1,3-diphenylpropan-1,3-dione. 

 

the proposed hydroperoxide-triketone pair and a chloride ion. Analysis of the reaction 

headspace gas showed the production of both CO2 and CO gases, however while 0.80 

equivalents of CO2 were produced, less than 0.05 equivalents of CO was detected. This 

suggests that a hydroperoxide-triketone pathway, which would produce predominantly 

CO gas, is likely a minor pathway.41a  

Analysis of the products generated when 1 was allowed to react with 18O2 in dry 

CH3CN showed quantitative incorporation of one equivalent of 18O into 

diphenylpropantrione. This suggested that rather than hydrolysis of intermediate A to 

form diphenylpropantrione and hydroperoxide, it instead extrudes hypochlorite (Scheme 

5-10). To test the feasibility of this proposal, we reacted diphenylpropantrione with one 
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equivalent of NaOCl in the presence of one equivalent of Cu(ClO4)2.6H2O and 6-Ph2TPA 

in CH3CN. Analysis of the organic products showed that the products were benzoic acid, 

benzoic anhydride, benzil and a minor amount of unreacted diphenylpropantrione. 

Additionally, analysis of the headspace gas showed the production of 0.79 equivalents of 

CO2 and only a trace amount of CO. These are the same products as in the reaction of 1 

with O2, validating the viability of this proposed hypochlorite pathway. 

Kinetic Studies. In order to determine the role of the copper center in the 

oxidation reaction of 1, we performed some kinetic studies. In the presence of excess O2, 

after a short induction period, this reaction proceeds with a first-order dependence on 1 

(Figure 5-10). The first-order dependence on 1 suggests a mononuclear copper species is 

involved in the rate-determining step, precluding the involvement of a dinuclear copper 

species bridged by a reactive oxygen species (i.e. a structure similar to one of the 

dinuclear structures shown in Figure 5-1).  

Mechanistic Studies. The induction period in the oxidation reaction is an 

interesting phenomenon, and implies the reaction proceeds via a slow initial step to 

generate some catalytic species, the presence of which greatly accelerates the rate of the 

reaction of 1 with O2. There are two related possibilities for the catalytic species. In the 

first possibility (termed the “pre-catalyst pathway”), the catalyst is a reaction intermediate 

that is originally generated by an initiation step, and then during the decay of this 

intermediate to products, it regenerates another equivalent of this catalyst via a 

propagation pathway. The second possibility for the identity of the catalyst (termed the 

“autocatalytic pathway”) would be that one of the reaction products may act as a catalyst 

for the oxidation reaction.43 
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Figure 5-10. Time trace of the decay of 1 in the presence of O2 (blue line), or in the 

presence of O2 and Cl- (red line) (top). A natural log plot shows that after the induction 

period, the reaction of 1 with O2 is first order in 1 in either the presence of absence of Cl- 

(bottom). 
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Scheme 5-11. A proposed radical propagation pathway for the reaction of 1 with O2.  

 
One possibility for a pre-catalyst pathway that we have considered is a radical-

initiated oxidative propagation pathway. We have outlined one possible reaction pathway 

in Scheme 5-11. In the first step of this pathway, we propose a very endergonic 

equilibrium between 1 and a Cu(I)-diketonyl radical pair. Addition of O2 to this pair 

could oxidize the Cu(I) center to Cu(II), forming the intermediate I1 with concomitant 

loss of O2
-·. After this initiation step, I1 may react with a second equivalent of O2 to form 

a diketonyl-superoxo species (I2). Decay of this species would lead to the formation of 

the observed copper-containing product (2), as well as an organic radical species. Decay 
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of the organic radical, coupled to oxidation of another molecule of 1, leads to the 

production of observed carboxylate products. The oxidation of 1 to form I1 completes the 

propagation cycle. We note that a similar pathway has previously been computationally 

studied in the reactions of α-hydroxy diketonates with oxygen, albeit in the absence of a 

metal center.44 

To test the possibility of a radical-initiated propagation pathway, we attempted to 

use an exogenous radical initiator to generate radical species and eliminate the induction 

period. However, addition of AIBN to generate radicals by photolysis did not eliminate 

the induction period. We also attempted to trap radicals using 2,4-di-tertbutylphenol, 

however addition of this to the reaction greatly slowed the rate of reaction (less than 5% 

complete after 1 hour, as judged by UV-vis). We do not attribute the slowing of the 

reaction by 2,4-di-tertbutylphenol to its ability to act as a radical trap, as no coupling 

products were identified by 1H NMR. In a separate experiment, we found that MeOH, 

which would not be expected to act as a radical trap, also slowed the rate of reaction, 

suggesting its coordinating or hydrogen-bonding properties were responsible for the 

slowing of reaction rate. Dihydroanthracene is an alternative radical trap due to its weak 

C-H bonds, which can be oxidized by radical species that abstract a hydrogen atom.26 

Addition of dihydroanthracene to the reaction did lead to its oxidation to produce 

anthracene (Figure 5-11), which suggests that a species capable of oxidizing weak C-H 

bonds, such as a putative O2
-· intermediate may be generated in the reaction.  

We have also considered the feasibility of an auto-catalytic (product-catalyzed) 

reaction pathway. The crude product mixture from a reaction of 1 with O2 that had 

reached completion was generated. A solution of 1 in MeOH was prepared at UV-vis  
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Figure 5-11. UV-vis spectra showing the appearance of characteristic peaks associated 

with anthracene during the loss of the 363 nm feature of 1 when a solution of 1 is 

exposed to O2 in the presence of dihydroanthracene. Inset: the oxidation of 

dihydroanthracene in the presence of a H-atom acceptor to generate anthracene. 

 

concentrations and combined with the crude product mixture. The decay of the diketonate 

band of 1 upon addition of O2 was then monitored by UV-vis spectroscopy, and no 

induction period was observed. This result strongly suggests that one of the products in 

the reaction has a catalytic role, and thus is responsible for the induction period. Addition 

of 0.05 equivalents tetramethylammonium chloride results in a total loss of the induction 

period (although a short induction period may have been present, albeit not observed, 

during the mixing time), and the reaction immediately exhibits a decay that is first-order 

in 1 (Figure 5-10). We therefore have assigned the induction period to the time required 

to build up a catalytic amount of chloride ion in situ. A possible reaction pathway is 

shown in Scheme 5-12, wherein an endergonic Cu(II)/Cu(I) equilibrium may be  
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Scheme 5-12. A possible reaction pathway for the auto-catalytic reaction of 1 with O2.  
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Figure 5-12. Linear dependence of kobs on the concentration of added Cl- salt. 

 
intercepted with O2 in a slow reaction to generate a catalytic amount of chloride. The 

catalytic amount of chloride could then generate an activated form of the complex, 

allowing the reaction to proceed rapidly. To test this, we have modified the concentration 

of chloride and found a linear dependence of the kobs on [Cl-] (Figure 5-12). 

Computational Studies. We have also undertaken computational studies of the 

reaction of 1 with O2 (Scheme 5-13).45 Consistent with the proposal outlined in Scheme 

5-12, we have found that the reaction of 1 to form 1-Peroxo is exergonic by -0.5 

kcal/mol. Preliminary attempts to determine the role of copper show that the excitation of 

an electron from the Cu(II)-diketonate species (1) to from a Cu(I)-diketonyl species (1*) 

is highly endergonic (by ~40 kcal/mol), suggesting that this species may not directly 

form. Rather, in attempts to locate transition states between 1 and 1-Peroxo, we have 

found that one-electron oxidation of the diketonate by O2 to form a Cu(II)-superoxo 

transition state (TS1), or two-electron oxidation of the diketonate by Cu(II) and O2 to 

form TS2, provide reaction pathways with more reasonable free energies of 34.3 and 31.3  
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Scheme 5-13. Preliminary computational results for the reaction of 1 with O2 to form 1-

Peroxo. 

 

 

 

 

 

 

 

 

 

 

 

 



246	
  
kcal/mol respectively. Thus the role of the Cu(II) effectively appears to be to act as a 

conduit for electrons from the diketonate to O2 without ever forming a formally reduced 

state on the copper center. The role of the chloride ion in accelerating the rate is the 

subject of ongoing computational, as well as mechanistic, investigations. 

Evaluation of Mechanistic Implications. The reaction of 1 with O2 exhibits an 

induction period that implies that the reaction proceeds by a complicated mechanism. The 

induction period shows that the reaction proceeds by a slow initial step to generate a 

catalytic species that then enables the reaction to proceed much more rapidly. To explain 

this induction period, we have considered a radical-based pre-catalyst pathway (Scheme 

5-11), which seems unlikely due to our inability to remove the induction period by the 

introduction of exogenous radical generators. We have also considered an auto-catalytic 

pathway, and found this pathway to be viable due to the ability of chloride ions to remove 

the induction period and accelerate the rate of reaction. A possible route for the auto-

catalytic pathway is outlined in Scheme 5-12, and involves an initial simple Cu(II)-

diketonate/Cu(I)-diketonyl radical equilibrium that may be intercepted by O2 to form an 

organo-peroxo species (1-Peroxo) in a slow step, similar to QDO (Scheme 5-3).46 

However, whether a Cu(I) species ever actually forms in the reaction of 1 has been 

brought into doubt by our computational data. The diketonate-based fragment of 1-

Peroxo is similar to intermediate A in Scheme 5-10, so subsequent decay of this species 

would yield an equivalent of chloride. Additionally, formation of 1-Peroxo has been 

found computationally to be viable (Scheme 5-13). Once a small amount of complex has 

reacted by this pathway, the chloride generated allows a new rapid reaction to proceed. 

This role of chloride was confirmed by observing a linear dependence of the rate on 
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chloride concentration. We note that the sigmoidal (albeit asymmetric) reaction profile is 

generally consistent with an auto-catalytic reaction pathway.47 

The exact role the chloride ion plays to accelerate the reaction rate so dramatically 

remains unclear. By analogy with the role of carboxylates in QDO, we have proposed the 

intermediate 1-Cl, although it is by no means the only possible role of chloride. In 1-Cl 

the chloride competes with the diketonate for access to the Cu center, favouring a 

monodentate coordination of the diketonate ligand. In computational studies of QDO 

enzyme-substrate adducts, it was found that bidentate binding of the substrate resulted in 

an equilibrium with the radical tautomer via the enolate π system, greatly stabilizing the 

bound flavonolate and preventing its reaction with O2.48 However, in the monodentate 

binding mode, the substrate exhibited no such stabilization, making it more reactive.  

It is also worth noting that LCu(Fla)2 complexes have been found to be more 

reactive with O2 than the corresponding [LCu(Fla)]+ complexes, suggesting an alternative 

role for Cl- may involve modulating the electron density on the Cu center itself.49 A third 

possible role for Cl- may be to aid in the generation of a Cu(I) center for reaction with O2 

via homolysis of the Cu-Cl bond. 

 
Conclusions 

We have synthesized and fully characterized the mononuclear α-chloro diketonate 

complex 1, which has a five-coordinate geometry. Complex 1 was found to be inherently 

reactive with O2 at room temperature in the absence of photoirradiation, a striking 

contrast to previous reported reactivity of nickel complexes of α-chloro diketonates. 

Analysis of the organic products confirmed that oxidative cleavage of the diketonate to 

form carboxylates had taken place. Typically, Cu(I) rather than Cu(II) is used to activate 



248	
  
O2 to react with organic substrates, and so it was very surprising to find this facile 

thermal reactivity with a Cu(II) center. To our knowledge, this is the only example of 

room temperature and pressure dioxygenase-type thermal cleavage of aliphatic carbon-

carbon bonds in a well-defined mononuclear Cu(II) complex. Other well-defined Cu(II) 

complexes that exhibit dioxygenase-type aliphatic carbon-carbon bond cleavage (most 

commonly functional model systems of QDO) require harsh reaction conditions (greater 

than 80 ˚C and often in DMF), or photochemical activation.14b, 27  

The potential of this Cu(II)-based activation of C-C bonds towards reaction with 

O2 has not yet been extensively explored. We envision that this chemistry may well be 

expandable to other supporting ligand environments, as well as a potentially wide range 

of substrates. With this in mind, our well-defined coordination environment provides an 

excellent template for the continuation of these investigations. Further investigation of 

the role of the chloride ion, both by experimental and computational studies, will be of 

paramount importance in continuing this work. 
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CHAPTER 6 

CONCLUSIONS 

 
Summary 

 The work that has been outlined in this dissertation has focused on generating 

complexes of relevance to dioxygenase enzymes that oxidatively cleave aliphatic carbon-

carbon bonds (Figure 6-1), including nickel- and iron-containing acireductone 

dioxygenases (Ni-ARD and Fe-ARD’), acetylacetone dioxygenase (Dke1) and quercetin  

 
 

 

Figure 6-1. A selection of complexes investigated in this dissertation of relevance to C-C 

cleaving dioxygenases. 

 



256	
  
dioxygenase (QDO). The enzymes that carry out these reactions are diverse in terms of 

the identity of the metal co-factor at the active site, in terms of the amino acid residues 

that function as ligands at the active site, and in terms of the substrate that is cleaved.1 

We have utilized a variety of first-row transition metals supported by an aryl-appended 

tris(pyridylmethyl)amine ligand to investigate the reactivity of a number of enolizable 

substrates. The systems we have generated have focused on: understanding aspects of the 

regioselectivity of Ni-ARD and Fe-ARD’; probing mechanistic pathways that have 

relevance to Dke1; and studying unique ways to utilize late first-row transition metal 

divalent complexes for the activation of O2.  

 Chapter 2. The acireductone dioxygenases are a unique pair of enzymes in 

biology in that, despite having identical peptide sequences, they catalyze the oxidative 

cleavage of their substrate with differing regiospecificity.2 The only constitutive 

difference is the identity of the metal ion (either nickel or iron) at the active site.3 A 

generally-accepted reaction pathway was that changes in the tertiary structure of the 

enzymes favoured different binding modes of the acireductone substrate (either via a six- 

or five-membered chelate ring, for Ni-ARD and Fe-ARD’ respectively).2 This change in 

chelate ring size would activate different carbon atoms toward reaction with O2, leading 

to a change in regiospecificity. Prior work on a nickel-containing model system, [(6-

Ph2TPA)Ni(PhC(O)COHC(O)Ph)]ClO4 (1) in which the substrate bound via a six-

membered chelate ring, led to Ni-ARD type products when the complex was exposed to 

O2, consistent with the chelate hypothesis (Scheme 6-1).4 However, until the present 

work, no model systems investigating the role of the identity of the metal center on the 

reaction regioselectivity had been reported. 
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  We have synthesized [(6-Ph2TPA)Fe(PhC(O)COHC(O)Ph)]OTf (2), the first-

ever model of the enzyme-substrate adduct of Fe-ARD’. The complex has been 

characterized by UV-vis, FTIR, 1H NMR, magnetic susceptibility and elemental analysis. 

The characterization data is consistent with binding of the acireductone substrate via a 

six-membered chelate ring, as had previously been observed in the nickel analogue 1.4 

Thus, this complex was the ideal test-case for the chelate hypothesis. Reaction of 2 with 

O2 was found to produce Ni-ARD like products under dry conditions, but in the presence 

of water produced Fe-ARD’ like products (Scheme 6-1). This showed that the chelate 

hypothesis was not sufficient to explain the differences in reactivity between the nickel- 

and iron-containing systems, as water was not found to affect the binding mode of the 

substrate. Instead, we found that the iron-promoted hydration of an intermediate was 

likely the determining factor in the change in regioselectivity. This was  

 

 

Scheme 6-1. O2 reactivity of the acireductone dioxygenase model systems 1 and 2 in the 

presence and absence of water. 
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the first time such a notion had been proposed. We also found that in situ generated ferric 

species were capable of oxidatively cleaving the acireductone substrate. 

Chapter 3. While our results highlighted that there could well be alternative 

explanations to a chelate-differentiated regioselectivity of C-C cleavage, our system was 

not truly biomimetic. Two issues that were not addressed in the prior work were: 

differences in electronic structure between our “bulky acireductone” substrate and native 

substrates for the enzyme, that all have a C(1)H functionality; and the protonation level 

of the substrate - mono-anionic in our model system, but believed to be di-anionic in the 

enzyme-substrate adduct.5 Prior methods for generating C(1)H acireductones have been 

low-yielding and involved multiple-step syntheses, often utilizing an enolase/phosphatase 

enzyme to generate an acireductone mono-anion in situ.6 We have developed a relatively 

simple, high-yielding, non-enzymatic synthetic route to an acetylated precursor of a 

C(1)H acireductone. This acetylated acireductone may either be bound to a metal center 

directly for subsequent deprotection, or deprotected to form a C(1)H acireductone 

tautomer and bound to a metal center. The former strategy was found to be advantageous, 

as it allowed us to investigate the O2 reactivity of mononuclear di-anionic acireductone 

complexes that were generated in situ by deacetylation of the air-stable complexes [(6-

Ph2TPA)Ni(PhC(O)C(O)CHOC(O)CH3)]ClO4 (3) and [(6-

Ph2TPA)Fe(PhC(O)C(O)CHOC(O)CH3)]ClO4 (4) (Scheme 6-2). To date, all previous 

attempts at investigating the O2 reactivity of mononuclear di-anionic acireductone 

complexes had failed due to the propensity for the ancillary ligand to be displaced to 

form multi-nuclear clusters, bridged by the acireductone, that were also O2 reactive.7  
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Scheme 6-2. In situ generation of mono-nuclear di-anionic C(1)H acireductone 

complexes from 3 and 4 allowed investigation of their O2 cleavage reactivity.	
  

 

Under anaerobic conditions 3 and 4 exhibit the same cluster formation. However, when 

the deprotection is carried out in the presence of O2, a sufficiently long-lived 

mononuclear dianionic species is intercepted by O2 allowing us to investigate the 

regioselectivity of cleavage of this species for the first time ever.  

 Chapter 4. One of the most important questions in studies of acetylacetone 

dioxygenase (Dke1), is what the role of the metal center is in promoting the C-C cleavage 

reaction. Initial studies suggested that the role of the metal center was to act as an 

“electron conduit”, facilitating the spin-forbidden reaction between 3O2 and the singlet 

substrate via a superoxo/substrate radical pair.8 More recent work in model systems 

suggested a redox-active role of the ferrous center to generate a ferric-superoxo adduct, 

while computational studies have postulated that a Fe(IV)O species may be involved.9 To 

test whether the “electron conduit” pathway would be viable, we have taken a unique 

approach to generating a superoxo/substrate radical pair and investigating its interaction 

with dioxygen.  
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We have synthesized a series of complexes with the formulation [(6-

Ph2TPA)Ni(ArC(O)CXC(O)Ar)]ClO4 (5: X = H, 6: X = Cl) and characterized them by 

UV-vis, FTIR, 1H NMR, elemental analysis, HRMS and variably by x-ray 

crystallography. Photoirradiation in the presence of O2 led to decay of the ~370 nm 

absorption feature associated with a combined enolate π-π* transition and a diketonate-

based LMCT for the series of compounds 6 (Scheme 6-3), but for 5 no reactivity was 

observed. Analysis of the products in the reaction of 6 showed the production of 

carboxylic acids, and 18O labeling studies confirmed the cleavage proceeded by a 

dioxygenolytic mechanism. Mechanistic studies strongly supported the photogeneration 

of a Ni(I)-diketonyl radical species that could be intercepted by O2 to form a Ni(II)-

superoxo/diketonyl radical intermediate. Thus, we showed that reaction via a 

 

 

Scheme 6-3. Reaction pathway for the oxidative photo-cleavage of a Ni(II)-supported α-

chloro diketonate. 
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superoxo/diketonyl radical pair was a viable route to C-C cleavage. However, the lack of 

reactivity of 5 showed the unexpected requirement of a chloride leaving group for this 

reaction to proceed. 

Chapter 5. We attempted to expand the photo cleavage exhibited by 6 to a 

copper-containing system, expecting the potentially longer lifetime of the putative Cu(I)-

diketonyl radical intermediate to result in higher reactivity. The complex [(6-

Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (7) was synthesized and characterized by UV-vis, 

FTIR, magnetic susceptibility, EPR, elemental analysis, mass spectrometry and x-ray 

crystallography. It was found to undergo photoreaction similar to 6, albeit with a 

disappointingly low quantum yield of ~10-4. However, a facile thermal reaction was also 

discovered at room temperature in the presence of O2 (Scheme 6-4). Interestingly, a short 

induction period was observed that could be removed by the addition of a catalytic 

amount of a soluble chloride salt. The exact role of the chloride ion in accelerating the 

rate of reaction has not yet been fully determined, and is the subject of ongoing 

computational investigations. Nonetheless, the discovery of thermal dioxygenolysis of C-

C bonds at room temperature, mediated by a well-defined Cu(II) complex is very 

interesting and, to our knowledge, unique. 

  
Significance 

One of the most important challenges for chemists in the 21st century is the 

selective oxidative activation of carbon-carbon bonds.1, 10 Such reactions are of current 

interest due to their potential applications in the utilization of biomass for fuel 

production, applications in wastewater treatment and bioremediation, and in developing 
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Scheme 6-4. A proposed role of chloride in accelerating the thermal oxidative cleavage 

of an α-chloro diketonate by complex 7.  

 

new reactions for organic synthesis of fine chemicals including pharmaceuticals.11 Ideally 

these reactions would be carried out with high atom economy at low temperatures and 

pressures, and using earth-abundant elements as reagents and catalysts.12 With these 

points in mind, nature provides an ideal framework, carrying out its chemistry at ambient 

temperature and pressure. Enzymes that cleave C-C bonds by a dioxygenolytic pathway 

are particularly interesting as they utilize dioxygen as a terminal oxidant and also do not 

require any coreductants, maximizing atom economy. While dioxygenases that cleave 

aromatic C-C bonds have been extensively studied, those that cleave aliphatic C-C bonds 

have only recently become an area of extensive investigation.1 We have focused on 

exploring the reaction pathways of several dioxygenase enzymes that cleave aliphatic C-

C bonds, with the goal of understanding fundamental factors involved in the activation 
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and direction of cleavage of these bonds. These efforts have led to several important 

advances in understanding of the cleavage of C-C bonds. 

Chapters 2 and 3. Our work on model systems of the enzyme-substrate adducts 

of the acireductone dioxygenases allowed us to probe the reasons for the metal-dependent 

changes in regiospecificity of C-C cleavage of the substrate. In contrast to the widely-

accepted chelate hypothesis,2 we found in our model systems (complexes 1-4) that the 

binding mode of the substrate was not sufficient to explain the observed changes in 

regioselectivity of C-C cleavage. Rather, the identity of the metal center (in conjunction 

with the presence of water in the case of 2), either the redox inactive Ni(II) or the redox 

active Fe(II), was more important than substrate binding mode in determining the 

regioselectivity. This role of the redox activity of a metal center in determining 

regioselectivity may have some utility in organic syntheses, although the current lack of a 

priori predictive power of how redox activity may affect regioselectivity is a drawback. 

However, a more important aspect of this work is in highlighting the predictive power of 

small molecular model systems. A recent QM/DMD computational study has shown that, 

as we predicted, the binding mode of the substrate does not actually change between Ni-

ARD and Fe-ARD’.13 It is, rather, differences in the electronic structure of the metal ion 

at the active site that alters the energy of an intermediate in the reaction pathway, leading 

to the observed changes in regioselectivity. 

Our discovery that the reaction catalyzed by acireductone dioxygenases to cleave 

an acireductone substrate and form an α-keto acid (methylthiobutyrate (MTOB) in the 

enzymatic reaction) can be carried out under anaerobic conditions is also a very 

important discovery. The methionine salvage pathway, that regenerates methionine from 
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the toxic methylthioadenosine generated when S-adenosylmethionine is consumed during 

polyamine biosynthesis, is a ubiquitous pathway in eukaryotic organisms.14 However, 

despite the discovery of a methionine salvage pathway in anaerobic organisms, including 

a Rubisco-like protein that can carry out the same reactions as the enolase/phosphatase 

enzyme in the methionine salvage pathway of Klebsiella oxytoca, the route by which the 

resulting acireductone intermediate is converted to MTOB, and subsequently 

transaminated to form methionine, has remained unclear.15 It has been proposed that this 

reaction likely proceeds via a non-oxidative route. Our discovery, then, that ferric ions 

can both act as a terminal oxidant for the cleavage of an acireductone substrate, and do so 

in a regioselective manner (Scheme 6-5), suggests that an enzyme that carries out this 

reaction oxidatively under anaerobic conditions may yet be found.  

Chapter 4. The utilization of complexes 5 and 6 to investigate the reactivity of a 

superoxo/diketonyl radical pair with O2 provided some insight into the feasibility of this 

reaction pathway for the cleavage of acetylacetone by Dke1. However, the real 

significance of this work is in the methodology of utilizing a Ni(II) center to activate O2. 

There is currently a strong interest in understanding how late first-row transition 

metals such as nickel and copper can be utilized to activate 3O2 towards reactions with 

 

 

Scheme 6-5. Oxidative cleavage of an acireductone by ferric species in a regioselective 

manner. 
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singlet ground state organic molecules.16 The typical current strategy involves the use of 

a ligand set that allows stabilization of a Ni(I) center as a precursor for the generation of a 

Ni(II)-superoxo species.17 This active oxidant is known to exhibit high reactivity, 

including via dioxygenase-type reaction pathways.18 However, the strategy of utilizing a 

Ni(I) center is not likely to be sustainable for catalysis, as it is generated by the use of a 

strong external reductant from a Ni(II) complex (Scheme 6-6).19 Our strategy of 

photoirradiation into a LMCT band of a Ni(II)-substrate complex to form a Ni(I)-

substrate radical adduct (Scheme 6-3) provides an alternative pathway to activating O2 at 

nickel as a superoxo. This strategy is likely to be expandable to the oxidative cleavage of 

other substrates using catalytic amounts of metal complex. However, a remaining 

challenge is increasing the quantum yields of these photoreactions, which will likely 

require the utilization of a ligand set that can better stabilize Ni(I), preventing 

recombination of the radical pair. 

Chapter 5. Attempted expansion of the nickel photochemistry to a copper system 

did not improve the quantum yields of the photoreaction, but instead a much more 

interesting thermal oxidative cleavage of C-C bonds was discovered. The field of Cu- 

oxygen chemistry has been dominated by investigations of the reaction of Cu(I) species 

with O2, or the reaction of Cu(II) species with peroxides.20 This copper oxygen chemistry 

 

 

Scheme 6-6. The most common current strategy for the activation of O2 by a nickel 

system involves the initial reduction of a Ni(II) precursor by an external electron source 

to generate an O2-reactive Ni(I) species. 
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has not been widely expanded to C-C cleavage reactivity. The only well-defined systems 

that have allowed investigations of the role of a Cu(II) ion in facilitating C-C cleavage by 

O2 are models of the enzyme-substrate adducts of QDO, which react only under relatively 

harsh conditions with elevated temperatures, greater than 80 ˚C.21 The lack of well-

defined systems that investigate how Cu(II) may be utilized is particularly surprising 

given reports of seemingly anomalous room temperature oxidative C-C cleavage of 

cyclic ketones catalyzed by simple Cu(II) salts.22 There is no experimental or theoretical 

framework currently in place to investigate the factors that lead to this facile reactivity. 

The facile cleavage of a diketonate substrate by our Cu(II) complex 7 is therefore 

particularly interesting. While experimental and computational studies are ongoing to 

fully understand the reasons this complex allows for facile room temperature C-C 

cleavage chemistry, the well-defined nature of the complex and the observation of a 

chloride-dependent induction period both provide an excellent starting point for 

elucidating important mechanistic details. We envision that this chemistry may well be 

expandable to other supporting ligand environments, as well as a potentially wide range 

of substrates. And, such chemistry will be of exceeding interest to both the organic 

synthetic community, which already uses some poorly defined copper catalysts for O2 

activation,20c and the inorganic community. Therefore, although this chemistry is still at a 

very early stage, it may well be the most important area expounded upon in this 

dissertation with a view to moving forward. 

 
Future Directions 

 There are numerous potential avenues of research that build out of the work 

presented in this dissertation. Herein we discuss aspects of possibilities of future 
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directions in this work. While the directions presented here are by no means 

comprehensive, they highlight some areas that would provide much-desired mechanistic 

insight into aspects of C-C oxidative cleavage. Other avenues of investigation that would 

mark significant advances in the field but are not directly relevant to the mechanism of C-

C cleavage are not actively discussed. These include, but are not limited to: extensions of 

LMCT-based photoreduction to induce O2 reactivity in divalent complexes via ligand 

modification and introduction of antennae moieties; and extension of the chloride-

mediated thermal cleavage of copper diketonates into catalytic systems. 

Chapter 2. The differing reactivity of 1 and 2 in the presence of H2O raises a number of 

interesting questions concerning the reasons why Fe(II) is able to promote the postulated 

hydration chemistry while Ni(II) is not, and what role (if any) the supporting 6-Ph2TPA 

chelate ligand plays in directing the regioselectivity. While differences are observed in 

both coordination number preferences of the [(6-Ph2TPA)M(sol)x]2+ complex, and in its 

ability to facilitate a Lewis acid mediated side reaction, it is not clear that Ni(II) should 

be categorically unable to promote the same hydration chemistry. It is also unclear 

whether other metal centers, such as Co(II) can promote the reaction with any 

regioselectivity preferences (notably when the acireductone dioxygenase apo enzyme is 

reconstituted with Co(II), it exhibits Ni-ARD type reactivity). Another question that 

arises is whether the only role of H2O is the hydration of the triketone intermediate, or if 

it also facilitates other processes such as acting as a hydrogen bond donor to promote 

dissociation of one of the phenylpyridyl arms of the tetradentate ligand.  

With these points in mind, an important advance in the modeling of acireductone 

dioxygenases would be the systematic construction of a series of divalent metal 
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Scheme 6-7. Proposed synthetic scheme for investigating the role of ligand bulkiness, 

coordination number and metal ion identity in determining the regioselectivity of the 

dioxygenolytic reaction of a bulky acireductone. 
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complexes with varying features on the supporting chelate ligand (Scheme 6-7). We do 

note that some attempts at this have been previously reported, that identified some metal- 

and ligand-dependent hydrolysis chemistry. However, the study was hindered by Lewis 

acid-promoted isomerization of the acireductone substrate to produce an ester in the  

presence of H2O; this was minimized by some convoluted drying processes of the 

hydroxide base, but never fully eliminated to generate analytically pure material in all 

cases.23 The exclusion of hydroxide bases to completely eliminate water from the 

reactions was not reported. However, our work utilizing anhydrous metal salts and 

lithium amide bases with the effect of the total exclusion of water provides a promising 

framework for advancing this chemistry. A series of potential synthetic targets is outlined 

in Scheme 6-7. We note that all proposed ligands are known compounds. Synthesis of 

these complexes would be followed by evaluation of their O2 reactivity both in the 

presence and absence of H2O. Special attention would be paid to the formation of 

benzoylformic acid, to determine the role of ligand bulkiness, coordination number and 

metal ion identity in allowing cleavage of only the C(1)-C(2) bond of the acireductone. It 

is possible that the redox flexibility of a ferrous center is absolutely required for such 

chemistry, but that has not yet been definitively demonstrated. 

  The ease of oxidation of the bulky acireductone substrate exhibited in complexes 

1 and 2 also provides another interesting potential area of investigation. Recently, the 

Farmer group reported that a manganese-containing form of quercetin dioxygenase 

promoted the facile cleavage of its quercetin substrate in the presence of nitroxyl (HNO) 

in a regioselective manner (Scheme 6-8 (top)).24 This “nitroxygenase” reactivity is  



270	
  

 

 

Scheme 6-8. The nitroxygenase reaction catalyzed by the manganese-containing form of 

QDO proceeds in a regiospecific manner (top). A proposed reaction of acireductone 

complexes with the nitroxyl donor Piloty’s acid (bottom). 
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interesting for several reasons. Nitroxyl is related to the potent signaling molecule nitric 

oxide by one electron reduction and protonation, and its biological role is still poorly 

understood.25 Thus, the observation of substrate cleavage by nitroxyl is very interesting 

as most prior investigations had focused on its interaction with metal centers as the 

deprotonated NO- anion. Also, while NO- is isoelectronic with 3O2, protonation to form 

HNO splits the degeneracy of the π* orbitals and leads to a singlet ground state – making 

nitroxyl isoelectronic with 1O2.26 HNO could therefore be used as a replacement for 

singlet oxygen in mechanistic investigations. Unfortunately, the application of HNO for 

nitroxygenase reactivity in model systems of the quercetin dioxygenases is hindered by 

the slow thermal reactivity of these complexes, requiring elevated temperatures greater 

than 80 ˚C.21 By contrast, our acireductone dioxygenase models (1 and 2) undergo facile 

reactivity at room temperature, and provide an ideal system for investigating the 

regioselectivity effects of utilizing HNO rather than O2 as a terminal oxidant. We 

envision a regime in which nitroxyl is introduced to the reaction in a solution buffered at 

pH ~9 by the decomposition of the nitroxyl donor Piloty’s acid (Scheme 6-8 (bottom)).27 

 Chapter 3. The synthetic methodology we have developed for acetylated C(1)H 

acireductone precursors will allow the rapid synthesis of a series of para-substituted 

phenyl reductones. This series would vary the electron density within the acireductone π 

system, allowing us to evaluate the effect of this on the regioselectivity of the cleavage 

reaction.28 Another important question that has not yet been answered is whether the 

C(1)H acireductone complexes (3 and 4) that we have been investigating undergo their 

cleavage via the formation of a vicinal tricarbonyl intermediate, as occurred for the 

related complexes 1 and 2 that utilized a bulky acireductone substrate. This tricarbonyl 
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intermediate is formed by the two-electron oxidation of the acireductone with the 

concomitant formation of hydroperoxide. Unlike in the reactions of 1 and 2, in which the 

diphenylpropantrione intermediate “trapped” itself, via a Lewis acid mediated benzoyl 

migration to form benzil, no equivalent byproduct has yet been observed in the reactions 

of 3 and 4. An important test would be whether the tricarbonyl intermediate, 2,3-dioxo-3-

phenylpropanal can react with hydroperoxide in the presence of a Ni(II) or Fe(II) center 

to lead to oxidative C-C cleavage. The regioselectivity of this process as a function of 

metal ion would be a good indicator as to whether the tricarbonyl compound is a viable 

intermediate in C(1)H acireductone oxidation. Recent advances in the synthesis of vicinal 

tricarbonyls provide a viable synthetic route to  2,3-dioxo-3-phenylpropanal.29 

Chapter 5. The facile oxidative cleavage of a α-chloro diketonate mediated by a 

Cu(II) complex at room temperature is very interesting. However, much remains to be 

determined both about the mechanism of the reaction and its scope in terms of substrates. 

With this in mind, there are several important questions that remain to be answered. First 

and foremost, the role of the α-substituent is not entirely clear. Therefore, we propose the 

synthesis of a series of α-substituted diketonate Cu(II) complexes, where the α-  

 

 

Scheme 6-9. Proposed variations of substituents of the diketonate moiety from 7 to 

investigate the scope of substrate cleavage by O2. 
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substituent contains a series of halides and a hydrogen atom, and evaluating their O2 

reactivity (Scheme 6-9). Addition of electron-rich substituents, such as a hydroxyl group, 

is unlikely to be beneficial, as the anions of these compounds are known to undergo 

dioxygenolysis even in the absence of a metal center. The scope of substitution at the aryl 

groups of the substrate is also a potential area of investigation. While varying the para-

substituent on the phenyl rings would allow a Hammett analysis of the nature of the rate-

determining step of the reaction, replacing the aryl groups with alkyl chains would open 

up this chemistry to much broader applications. Another important question involves the 

role of the copper center, which currently remains unclear. In contrast to complex 7, the 

related Ni(II) complexes 6 were found to be thermally stable and only reacted during 

photoirradiation, and thus we are interested in understanding how varying the metal 

center across the first-row transition metals may influence the cleavage of the substrate. 

 
Perspective 

 Overall, the work presented in this dissertation encompasses an important body of 

original research and investigation that adds to our understanding of the chemistry of 

carbon-carbon bond cleavage. We have made important experimental contributions to 

understanding the role of a metal center in the regioselectivity of the acireductone 

dioxygenases – work that is now supported by advanced computational investigations. 

We have also investigated some new ways to utilize divalent late first-row transition 

metals for the activation of dioxygen, an approach that may hold great promise for 

application to diverse substrates. The merit of this work is apparent, not just in the raw 

science itself, but also in its acknowledgement in peer-reviewed literature and at 

presentations at scientific meetings.30 
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 Most importantly, however, even though we have answered a number of 

important questions, both about how carbon-carbon bonds are activated to react with 

dioxygen, and about how the selectivity of the subsequent reaction is determined, at the 

end of this body of research we are left more questions than we began and with a better 

appreciation of how much more yet remains to be understood. 
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