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Abstract. Biological assessments should both estimate the condition of a biological
resource (magnitude of alteration) and provide environmental managers with a diagnosis of
the potential causes of impairment. Although methods of quantifying condition are well
developed, identifying and proportionately attributing impairment to probable causes remain
problematic. Furthermore, analyses of both condition and cause have often been difficult to
communicate. We developed an approach that (1) links fish, habitat, and chemistry data
collected from hundreds of sites in Ohio (USA) streams, (2) assesses the biological condition
at each site, (3) attributes impairment to multiple probable causes, and (4) provides the
results of the analyses in simple-to-interpret pie charts. The data set was managed using a
geographic information system. Biological condition was assessed using a RIVPACS (river
invertebrate prediction and classification system)-like predictive model. The model provided
probabilities of capture for 117 fish species based on the geographic location of sites and
local habitat descriptors. Impaired biological condition was defined as the proportion of
those native species predicted to occur at a site that were observed. The potential toxic effects
of exposure to mixtures of contaminants were estimated using species sensitivity distributions
and mixture toxicity principles. Generalized linear regression models described species
abundance as a function of habitat characteristics. Statistically linking biological condition,
habitat characteristics including mixture risks, and species abundance allowed us to evaluate
the losses of species with environmental conditions. Results were mapped as simple effect
and probable-cause pie charts (EPC pie diagrams), with pie sizes corresponding to magnitude
of local impairment, and slice sizes to the relative probable contributions of different
stressors. The types of models we used have been successfully applied in ecology and
ecotoxicology, but they have not previously been used in concert to quantify impairment and
its likely causes. Although data limitations constrained our ability to examine complex
interactions between stressors and species, the direct relationships we detected likely
represent conservative estimates of stressor contributions to local impairment. Future
refinements of the general approach and specific methods described here should yield even
more promising results.

Key words: bioassessment; biological-resource impairment; ecological, ecotoxicological, and exposure
modeling; effect and probable-cause pie charts; environmental management; habitat degradation; integrated
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INTRODUCTION

Prevention and minimization of adverse alterations to

ecosystems are the principal goals of environmental

management. Ecosystem degradation is caused by one

or more physical and chemical stressors operating

together (Baird and Burton 2001), which produce a

typical sequence of biotic change with increasing stress

(Davies and Jackson 2006). Somehuman-caused stressors

have no natural counterparts, whereas other stresses

represent alterations in naturally occurring factors.

Assessing the degree of alteration and assigning

causality often requires a wide array of tools. Methods

for measuring the magnitude of biotic degradation in

aquatic communities are well developed (e.g., Karr 1981,

Moss et al. 1987), but diagnoses of probable causes rely

on various combinations of expert judgment, applica-

tion of multivariate statistics, and weighting of evidence.

Unfortunately, these methods often require a great deal

of expertise to use and interpret, and their results are

often difficult to communicate. Further, mixtures of

potentially toxic compounds are often not a part of such

assessments. Although identification of the causes of

Manuscript received 17 September 2004; revised 19 August
2005; accepted 23 August 2005. Corresponding Editor: E. H.
Stanley. For reprints of this Invited Feature, see footnote 1, p.
1249.

4 E-mail: d.de.zwart@rivm.nl

1295

August 2006 1295FRESHWATER BIOASSESSMENT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32557533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


biological impairment may always require application of

sophisticated tools, there may be more elegant and

effective ways of presenting complicated information. A

method is needed that communicates both the magni-

tude of impairment and the likely relative importance of

different stressors in that impairment. In this paper, we

describe such a method.

Our purpose is to describe a general eco-epidemio-

logical diagnostic framework for linking measures of

ecological impairment with likely causes (Bro-Rasmus-

sen and Løkke 1984). The specific method combines

ecological, ecotoxicological, and exposure modeling to

provide statistical estimates of the probable effects of

different natural and anthropogenic stressors on stream

fish assemblages. We show the outcome of such analyses

as easily understood pie diagrams. We initially con-

ducted this analysis with anonymous sites and species as

a way of ensuring a ‘‘double blind’’ procedure. Once we

created maps showing species loss and likely stressors,

we then examined the literature to determine if the

observed patterns were consistent with previous obser-

vations.

Schematic outline

We used a large (1552 sites) data set consisting of

measures of fish species composition and abundance,

habitat descriptors, and water chemistry to assess how

well we could link local impairment to site information.

All data were placed into a geographic information

system (GIS) to facilitate data management and linkage

with various statistical and graphic programs. In the

following sections we describe the data set, analyses, and

methods in which results were simplified to effect and

probable-cause pie charts (hereafter, EPC). A schematic

outline of the analytical steps is presented in Fig. 1.

DATA SOURCES AND ASSUMPTIONS

River network data

We obtained baseline data for Ohio rivers (see Plate 1)

from the U.S. Environmental Protection Agency’s (U.S.

EPA) reach file Version 1 (RF1) (USEPA 1992a). This

file presents rivers as a series of connected line segments

at a scale of 1:500,000. However, the data do not have

network features, which are essential for establishing up-

down stream relationships. We therefore used ARC/

INFO version 7.0.4 (Environmental Systems Research

Institute [ESRI], Redlands, California, USA) to create a

river network from the RF1 line file within a GIS

database (Dyer et al. 2000).

Fish data

We used survey data provided by the Ohio Environ-

mental Protection Agency (Ohio EPA), Columbus,

Ohio, USA, for 98 native and 19 introduced fish species

(Trautman 1981, Barbour et al. 1999) for the years

1990–1996. Prior to analysis all sample counts were

standardized to �300 individuals by randomly resam-

pling any original field count .300 individuals to 300

individuals. Resampling was done without replacement

to mimic how a large field sample of fish would be

FIG. 1. Schematic outline of the steps in data analysis needed to derive the degree of impact per site (pie sizes), the unexplained
deviance slice, and the statistical association of impact to the predictors (other slice sizes).

INVITED FEATURE1296
Ecological Applications

Vol. 16, No. 4



subsampled manually. If the original sample contained

,300 individuals, we used the original count.

Physical-habitat data

Local, site-specific, fish habitat data were provided by

the Ohio EPA. Habitat data included sampling location

(latitude, longitude), drainage area above each sample

site, and the individual metrics used to derive Ohio

EPA’s qualitative habitat evaluation index (QHEI;

Rankin 1989). Briefly, the QHEI is derived from seven

metrics scored by expert judgment: substrate, in-stream

cover (cover), channel quality (channel), riparian/ero-

sion condition (riparian), pool, riffle, and vertical

gradient (slope). In addition to the QHEI metrics, the

number of modified warm-water habitat attributes

(WWATR, data set range 0–9) were included as an

indicator of the degree to which sites conformed to

reference conditions. Reference WWATR included: no

channelization; silt-free substrates; boulders, cobbles.

and gravel in substrate; moderate to high sinuosity; low

overall riffle embeddedness; presence of fast current and

eddies; presence of varied cover; and a maximum depth

.40 cm. The number of modified WWATR provided an

antithesis metric to the other habitat factors, indicative

of altered sites.

We extracted locations of wastewater treatment plants

(WWTP) from U.S. EPA’s Needs Survey (USEPA 1989)

and Permit Compliance System (PCS; USEPA 1992b)

databases, which included a total of 567 Ohio WWTP

facilities discharging to RF1 river reaches.

Chemical-habitat data

Measured water chemistry.—We extracted ambient

water-chemistry data for Ohio streams from U.S. EPA’s

STORET database (USEPA 1995). Parameters were:

total metal concentrations (Cd, Cu, Pb, Ni, Zn),

dissolved oxygen, hardness, total ammonia, pH, and

total suspended solids. Too few data for organic

contaminants, BOD, and inorganic nutrients (P and

N) were available for use in this study. Water-chemistry

data were retrieved for the years 1990–1996, the same

time period over which data on fish assemblages were

compiled. The median and 90th-percentile concentra-

tions for each water-chemistry parameter were deter-

mined per site.

Calculation of cumulative effluent.—We obtained

mean flow data for all receiving waters from U.S. EPA’s

RF1 river file (USEPA 1992a). We combined these

values with flow data obtained from municipal WWTPs

to estimate dilution factors and cumulative percentage

WWTP effluent. We used cumulative percentage WWTP

effluent as a surrogate measure of persistent wastewater

constituents within stream reaches. Percentage cumu-

lative effluent was calculated as the ratio of WWTP flow

to receiving-stream flow for headwater segments. For all

other segments, WWTP flow included not only contri-

PLATE 1. Fish reference site located on the East Fork of the Little Miami River, near Batavia, southwest Ohio (USA). The
Little Miami River is a National and State Scenic River. Photo credit: Donna Morrall.
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butions from facilities on those river segments, but also

contributions from facilities upstream (e.g., main stem,
tributaries) of those segments.

Estimation of household product chemicals in rivers.—
We used the GIS-ROUT model (Dyer and Caprara

1997, Wang et al. 2000, 2005) to estimate riverine
concentrations of chemicals derived from household

products. GIS-ROUT is a national-scale model that
assumes a per capita use per day of product ingredients

to determine WWTP loads, derives effluent concentra-
tions by estimating removal of these chemicals as a

function of treatment type, and then predicts receiving
water concentrations in all RF1 river reaches by

accounting for dilution, first-order losses, and upstream
contributions via the simultaneous routing of reaches

(Wang et al. 2000). We estimated environmental
concentrations of five consumer-product ingredients

(triclosan, linear alkylbenzenesulfonate (LAS), alcohol
ethoxylates (AE), alcohol ethoxylate sulfates (AES), and
boron) at both mean and critical low flows (7Q10).

Loadings and treatment-plant removal varied substan-
tially for each compound as did in-stream losses (Table

1).
Exposure modeling of toxicants.—

1. Heavy metals.—The toxicity of heavy metals for
fish is strongly associated with the dissolved fraction in

ionized form (Sorensen 1991), which depends on water
hardness. We estimated the bioavailable fractions of Cd,

Cu, Ni, Pb, and Zn in each reach using Ohio EPA’s
hardness-based criteria (Ohio EPA 1996).

2. Household product chemicals.—We considered the
modeled concentrations of the household-product

chemicals boron, AE, AES, LAS, and triclosan to be
entirely bioavailable.

3. Total ammonia.—Unionized ammonia (NH3) is 100
times more toxic for fish than the ammonium ion

(NH4
þ) (USEPA 1999). We expressed total ammonia as

the 90th percentile value of total ammonia values

measured at a site. We estimated NH3 from total
ammonia following methods given in USEPA (1999).

Because ionization of ammonia is dependent on pH and

temperature, we used site-specific median pH and

assumed a constant temperature of 128C in the

calculations.

METHODS

Risk estimation of chemicals and mixtures

Instead of using separate compound concentrations,

we calculated two summary indicators of risk based on

the bioavailable fractions of the studied chemicals to

depict the potential influence of various contaminants

on fish: (1) the multi-substance potentially affected

fraction (msPAF) of species for chemicals of industrial

and geochemical origin (NH3, Cd, Cu, Ni, Pb, and Zn),

and (2) the msPAF of species for household-product

constituents (boron, AE [alcohol ethoxylates], AES

[alcohol ethoxylate sulfates], LAS [linear alkylbenzene-

sulfonates], and triclosan). This procedure provides

indicators for potential toxic stress, while minimizing

the number of parameters to the assessment (entering

the concentrations of individual contaminants would

imply added degrees of freedom and reduction of

statistical power). Converting the exposure concentra-

tions of each contaminant to a msPAF value required

two steps.

We first used species sensitivity distributions (SSD)

(Posthuma et al. 2002) to estimate toxic risk for each

compound (Fig. 2). Toxic risk is expressed as the

potentially affected fraction (PAF) of species at a given

concentration. A SSD is defined by a log-logistic

function in which alpha (a) specifies its median and

beta (b) its slope. We used laboratory aquatic toxicity

data from the U.S. Environmental Protection Agency

ECOTOX database (USEPA 2002) to construct SSDs

for ammonia and heavy metals. Our goal was to derive

SSDs for chronic effects. Since chronic-toxicity data

were scarce compared to the availability of acute-

toxicity test data, even for common chemicals like heavy

metals and ammonia, we estimated chronic SSDs by first

calculating acute SSDs and then applied an assessment

factor of 10 (i.e., left-shifted) following De Zwart (2002).

TABLE 1. Annual U.S. consumption volumes for five chemicals used as ingredients in consumer products as well as wastewater
treatment plant (WWTP) removals and first-order river loss rates, as used for GIS-ROUT model estimations for riverine
concentrations in Ohio, USA.

Chemical�

U.S. usage WWTP removal (%)

In-stream
degradation

(d�1)�

National
average

(metric tons)

Per
capita per
day (g)

Activated
sludge

Oxidation
ditch

Rotating
biological
contactor Lagoon

Trickling
filter Primary

Triclosan 6001 0.0062 951 951 951 951 801 301 0.2642

LAS (C12) 303 4583 3.137 994 994 984 984 804 274 0.72

AE (C13-E3.1) 141 9763 1.467 994 994 994 994 964 18.94 31.22

AES (C13.45-E1.5S) 268 0773 2.771 984 984 984 984 934 04 242

Boron 45363 0.0467 04 04 04 04 04 04 05

� The five consumer-product ingredients are triclosan, linear alkylbenzene sulfonate (LAS), alcohol ethoxylates (AE), alcohol
ethoxylate sulfates (AES), and boron. Items in parentheses below chemical names refer to the average alkyl and ethoxylate chain
lengths, respectively. Data sources are denoted by numerical superscripts: 1, McAvoy et al. (2002); 2, T. Federle and E. Schwab
(unpublished manuscript); 3, SRI (2002); 4, McAvoy et al. (1998); 5, Dyer and Caprara (1997).

� First-order river loss (degradation fraction per day). Data are average national rate constants.

INVITED FEATURE1298
Ecological Applications

Vol. 16, No. 4



That is, we estimated the chronic SSD for metals and

ammonia from acute toxicity data by applying achr ¼
aacu – 1 and bchr¼bacu. The assessment factor we used is

different from and far more robust than a standard

acute-to-chronic ratio for individual species. The deri-

vation of surfactant (LAS, AE, AES) SSDs required

normalization to mean surfactant structures following a

procedure based on quantitative structure–activity

relationships (Van de Plassche et al. 1999). Hence, for

all compounds we derived chronic a and b values (Table

2) to estimate potential risk. To account for both direct

and indirect effects, we included data on fish toxicity, as

well as on toxicity for other species that may constitute

the food supply of fish (algae and invertebrates).

We then combined the PAF values for individual

compounds within both industrial chemicals and house-

hold-product categories to derive msPAF values. In

doing so, we assumed that all compounds had different

FIG. 2. Derivation of a potentially affected fraction (PAF) of species from aquatic toxicity data used to build a species
sensitivity distribution (SSD) per chemical. Each SSD consisted of a log-logistic model where a and b correspond to the median and
slope, respectively. Key to abbreviations: n, number of species; NOEC, no-observed-effect concentration; L(E)C50, median lethal or
effective concentration; F(C), fraction affected.

TABLE 2. Chronic (chr) aquatic species sensitivity distributions (SSD) information needed to calculate the potentially affected
fraction (PAF) of species for each toxicant, with Kolmogorov-Smirnov test for goodness-of-fit by the log-logistic model.

Toxicant� achr� bchr§
Number of
species|| Dmax} P

Logistic
model

Ammonia (lg/L) 2.42 0.39 14 0.17 0.78 accepted
Cadmium (lg/L) 1.98 0.72 134 0.08 0.41 accepted
Copper (lg/L) 1.10 0.60 33 0.07 0.99 accepted
Nickel (lg/L) 2.50 0.66 19 0.15 0.74 accepted
Lead (lg/L) 2.29 0.31 18 0.16 0.68 accepted
Zinc (lg/L) 2.26 0.70 58 0.08 0.82 accepted
Boron (mg/L) 1.15 0.38 20 0.18 0.50 accepted
AE (mg/L) �0.18 0.33 22 0.08 1.00 accepted
AES (mg/L) �0.34 0.34 10 0.25 0.50 accepted
C12LAS (mg/L) 0.16 0.27 19 0.14 0.78 accepted
Triclosan (lg/L) 1.18 0.45 11 0.23 0.52 accepted

� Key to abbreviations: AE, alcohol ethoxylates; AES, alcohol ethoxylate sulfates; C12LAS, linear alkylbenzenesulfonate with
12 C alkyl group.

� Average log toxicity (midpoint of SSD curve).
§ Slope of SSD curve.
|| All species in the SSD: fish, algae, and invertebrate species.
} Kolmogorov-Smirnov maximum deviation statistic.
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toxic modes of action and calculated both msPAF

values as though responses were additive and species

were uncorrelated in their sensitivity for the different

toxicants (de Zwart and Posthuma 2005).

Data integration

We used an imputation scheme (Dyer and Wang

2002) to associate biological samples with the nearest

habitat and chemistry samples. Briefly, we created a

point coverage of the locations of water chemistry, fish,

and habitat samples in ARC/INFO, which was overlaid

on the RF1 river network. We then divided the RF1

(U.S. EPA’s reach file version 1) river network into

segments whose boundaries were defined by significant

changes in hydrologic features, such as the confluence of

WWTP (wastewater treatment plant) discharges and

tributaries. We combined segments ,30 m long with the

next downstream segment. Finally, we assigned each

sample to a river segment, and associated biological

samples with the nearest habitat and chemistry samples

within a segment. Applying this procedure resulted in a

total of 1552 river sampling sites with both fish-survey

data and geographical information (latitude, longitude,

slope, and drainage area). About 45% (695) of these sites

had complete biological, habitat, and chemical data

representation (Table 3).

Site classification

Ohio EPA classified 114 of the 1552 sites as least-

altered reference sites (Stoddard et al. 2006) based on

best professional judgment (Rankin 1989), of which 60

sites had complete data as described above. For sites

with complete data, abiotic variables were usually only

weakly correlated with one another, if at all (see

correlation structure in Appendix A). Most significant

(P , 0.001) correlations were expected, e.g., slope was

negatively correlated with drainage area (r¼�0.57), the
cumulative amount of effluent (r ¼ �0.21), and

TABLE 3. Statistical attributes of measured and modeled abiotic predictors and their use in RIVPACS and general-linear models.

Variable Abbreviation Units

Percentile

5th 25th 50th 75th 95th

Habitat characteristics

Latitude LAT degrees 39.23 39.73 40.14 41.1 41.46
Longitude LONG degrees �84.47 �83.88 �83.03 �81.98 �80.97
Log(drainage area) logDA km2 1.18 1.96 2.54 3.11 3.77
Log(gradient) logGRAD m drop/km �0.80 �0.32 0.03 0.36 0.77
Alterations§
Channel CHANNEL range 0–20 6.5 12.5 15.25 17 19
Cover COVER range 0–20 6 11 13 15 18
Pool POOL range 0–12 5 8 9.5 11 12
Riffle RIFFLE range 0–8 1.5 3 4.5 6 7
Riparian RIPARIAN range 0–10 3.5 4.75 6 7 9
Substrate SUBSTR range 0–20 6 12.5 15 17 19

No. modified warm-water habitat attributes WWATR range 0–9 1 2 4 5 7

Measured chemistry

Dissolved oxygen (median) DOMED mg O2/L 4.96 6.82 7.82 8.71 10.39
pH (median) PHMED std. units 7.5 7.81 8 8.17 8.4
Hardness (median) HARDMED mg CaCO3/L 138.5 236 290.5 343 411.3
Total suspended solids (median) TSSMED mg/L 5 8 15 26 58
Total ammonia (90th percentile) NH3 mg N/L 0 0 0.08 0.22 2.8
Total heavy metals HM
Total cadmium (90th percentile) lg/L 0 0 0 0 0.8
Total copper (90th percentile) lg/L 0 0 0 0 17
Total lead (90th percentile) lg/L 0 0 0 0 50
Total nickel (90th percentile) lg/L 0 0 3 5 15.3
Total zinc (90th percentile) lg/L 0 17 32 60 170

Calculated effluent and modeled ecotoxicity

Percentage cumulative effluent (median) % 0 0.37 2.01 4.91 20.42
msPAFNH3-Metals|| (90th percentile) PNH3HM90 % 0 0.07 0.11 0.21 0.43
msPAFHH} (low flow) PHHL % 0.01 0.03 0.08 0.14 0.36

� Key to model abbreviations: RIVPACS, river invertebrate prediction and classification system predictive model; GLM4,
generalized linear model with four predictors; GLM18, GLM with 18 predictors. In the data field, an ‘‘X’’ means used in the model
specified in the column heading; a blank cell means not used in the model.

� See grouping in Figs. 7, 8, and 9.
§ High values indicate less alteration in the particular habitat aspect.
|| Multi-substance potentially affected fraction (PAF) of species based on species sensitivity distributions for ammonia and heavy

metals, including cadmium, copper, lead, nickel, and zinc.
} Multi-substance PAF of species based on species sensitivity distributions for the household (HH) product constituents, boron,

AE (alcohol ethoxylates), AES (alcohol ethoxylate sulfates), LAS (linear alkylbenzene sulfonate), and triclosan.
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suspended solids (r ¼ �0.17) and positively correlated

with dissolved oxygen (r¼ 0.18) and pH (r¼ 0.13). Most

habitat characteristics were positively correlated with

one another (r¼ 0.34–0.54), indicating that altered sites

had been degraded in a variety of ways. The number of

modified warm-water habitat attributes was negatively

correlated with all other habitat factors (r ¼ �0.38 to

�0.67), because it represents the count of lower scores in
the other habitat factors.

Ecological and statistical techniques

Quantifying the amount of biological alteration and

identifying likely causes of impairment required two

main series of analyses, each of which consisted of

several steps (Fig. 1).

Quantifying biological condition and impairment:

RIVPACS modeling.—Comparison of the observed

fauna with that expected to occur in the absence of

human-caused stress provides a basis for quantifying the

biological condition of potentially stressed ecosystems.

Given a standard sampling effort, RIVPACS-type

models (Moss et al. 1987, Hawkins 2006) estimate the

probabilities of capturing (PC) each species in the

regional species pool at each local site assuming

reference conditions. The PC values are used to estimate

the number of species expected (E) at a site. The ratio of

observed (O) to expected taxa (O/E) at a site provides an

indicator of condition that is easy to interpret (i.e., the

proportion of expected species that were present). Only
species native to the state of Ohio were used to build the

model used here. Any exotic species that had been
introduced to Ohio were tracked, but not used in

assemblage-level assessments, i.e., calculations of O/E,
which therefore provided a measure of the integrity of

the native fish fauna. The mechanics of RIVPACS
models have been thoroughly described elsewhere (e.g.,

Wright et al. 2000, Hawkins and Carlisle 2001) and we
give only a brief description here.

We derived a RIVPACS model with only four
predictors of assemblage composition (latitude, longi-

tude, drainage area, and stream- channel slope). These
predictors are considered to be surrogates for naturally

occurring factors (e.g., temperature, substrate type), and
are needed when predicting the biota that should have

occurred at sites prior to modification of the actual
causal factors by human activity. In this sense,
RIVPACS is a strictly empirical modeling approach.

For the model we developed, latitude and longitude were
surrogates for historical biogeographic factors and

broad-scale factors associated with ecoregion. Drainage
area was a surrogate for the multiple environmental

features that change with increasing stream size, and
stream slope was likely a surrogate for both current

speed and substrate character. We evaluated a model
that used ecoregions as predictors, but it performed less

well than the model based on latitude and longitude.
We built the RIVPACS-type model from data

collected at the 114 reference sites and then applied the
model to all 1552 sampling sites. We used estimates of

PC for each species at each site to estimate the expected
number of species at a site by summation of PC over all

species with a PC � 0.5. We then determined how many
of the species predicted to occur at a site with PC � 0.5

were actually observed and calculated the ratio O/E as a
measure of departure from expectation in missing
species. Models that use PC � 0.5 are typically more

precise than models based on PC . 0 (Hawkins 2006)
and base assessments on the more common and more

reliably sampled and modeled species.
From the output of each RIVPACS assessment, we

could also identify the specific species that were expected
but missing at each site. We used this information for

the attribution of impact to probable causes (see
Identification of likely causes. . ., below).

When applied to sets of non-reference sites, RIV-
PACS output can also be summarized to identify those

taxa that were either found at more sites than expected
(‘‘increasers’’) or fewer sites than expected (‘‘decreas-

ers’’). The number of sites at which a species is expected
is estimated as the sum of PC’s for that species across all

assessed sites. The ratio of observed/expected sites (SO/
SE) describes a species overall type of response to

stressors at these sites. We calculated these ratios for all
species. To evaluate the RIVPACS assessment, we

compared SO/SE values with species-specific tolerance

TABLE 3. Extended.

Model�

RIVPACS GLM4 GLM18 Group�

X X X habitat
X X X habitat
X X X habitat
X X X habitat

X habitat
X habitat
X habitat
X habitat
X habitat
X habitat
X habitat

X chemistry
X chemistry
X chemistry
X chemistry

X effluent
X toxicity
X toxicity
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information extracted from the seven sources (Karr et

al. 1986, Ohio EPA 1987, Plafkin et al. 1989, Simon

1991, Lyons 1992, Hall et al. 1996, and Halliwell et al.

1999) that were summarized in Barbour et al. (1999). We

arbitrarily assigned all taxa with SO/SE values . 1.25 as

tolerant, those with SO/SE values , 0.75 as intolerant,

and those with values between 0.75 and 1.25 as neutral

or intermediate, terms used in Barbour et al. (1999). We

then compared these tolerant, intermediate, and intol-

erant assignments to the similar three-category assign-

ments compiled in Barbour et al. (1999) and then noted

if one or more of the seven sources they used differed

with our assignments.

The O/E ratios per site were the basis for calculating

the radius of the effect and probable-cause (EPC) pie

charts in which a larger radius implies more missing

species and a larger impairment. To calculate the radius,

impairment was expressed on an absolute scale of 0 to 1.

However, by applying the O/E method, O can theoret-

ically exceed E because of sampling or prediction error.

This could result in pie sizes (1� O/E ) that are negative.

Furthermore, this way of scaling may also result in a

positive pie size that would imply impairment even when

all species that are expected are actually observed. To

address this issue we considered any species with PC �
0.5 as expected to occur and counted these species as an

alternative way of estimating E and calculating pie sizes.

This alteration resolved both problems of negative pie

size and the potential problem of implying impairment

when no species were missing. This approach did not

compromise the analyses because estimates of E based

on counting species with PC � 0.5 and summing all PC

� 0.5 were strongly correlated (r2 ¼ 0.98).

Construction of GLM models.—We used generalized

linear models (GLM; McCullagh and Nelder 1989) to

quantify the associations between each of the 117 fish

species and the environmental variables. We initially

planned to model the presence/absence of species using

binomial logistic GLM regression, but this approach did

not explain much of the variance. We therefore used

Poisson GLM regression to quantify associations

between species abundances and environmental varia-

bles, which yielded substantially better results.

We built two sets of models from data collected at the

695 sites with full data representation. We used one set

of models (GLM4) to predict species abundances from

the same four natural predictors used in the RIVPACS

model. The form of those models was

lnðAiÞ ¼ ai þ biðLATÞ þ ciðLONGÞ þ diðlogDAÞ
þ eiðlogGRADÞ

where Ai¼ the predicted abundance of species i, LAT¼
latitude, LONG ¼ longitude, DA ¼ drainage area, and

GRAD ¼ gradient. We then constructed another set of

models (GLM18) to describe species responses to both

natural gradients and the other variables (Table 3).

These models took the following form:

lnðAiÞ ¼ ai þ biðLATÞ þ ciðLONGÞ þ diðlogDAÞ
þ eiðlogGRADÞþ f1;iðDOMEDÞ þ f2;iðDOMED2Þ
þ g1;iðHARDMEDÞ þ g2;iðHARDMED2Þ þ � � �
þ r1;iðPHHLÞ þ r2;iðPHHL2Þ þ s1;iðPNH3HM90Þ
þ s2;iðPNH3HM902Þ

where DOMED stands for median dissolved oxygen;

HARDMED is median water hardness; PHHL is

msPAFHH(low flow), i.e., the multi-substance, poten-

tially affected fraction (msPAF) of species for house-

hold-product chemical constituents; and PNH3HM90 is

msPAF for NH3 and heavy metals, 90th percentile.

We forced all GLM18 models to use the four natural

variables that were used in the RIVPACS and GLM4

models. We then added both linear and quadratic forms

of the seven habitat-related and seven contaminant-

related variables to the models by a stepwise procedure.

The stepwise procedure used the Bayesian information

criterion (BIC; Schwarz 1978) to restrict the addition of

terms to those that had a significant contribution to the

overall model (P , 0.05), based on Type I evaluation of

sums of squares. Calculations were conducted with S-

Plus 2000, Professional Release 3 (MathSoft, Cam-

bridge, Massachusetts, USA). Predictor variables that

were not selected by this procedure received a regression

coefficient of zero value.

We considered, but did not include interactions of

predictor variables on the response of species into our

analyses. Several types of interactions are likely to occur.

Some assemblages may be more sensitive than others,

leading to interactions among natural and stressor

variables. Jointly acting stressors may be more damaging

than the sum of individual effects (synergistic effects).

There may be a limit to the extent of degradation, i.e.,

once a portion of the fauna is lost to one stressor, the

assemblage may be insensitive to other stressors (antag-

onistic effects). We did not include interactions in our

analyses at this time for three reasons. (1) With only 695

observations, the addition of interaction terms would

reduce statistical power due to added degrees of freedom,

and would violate ‘‘Simpson’s rule of thumb’’. This rule

is also known as the ‘‘curse of dimensionality’’ (Bellman

1961), which implies that to minimize error in regression

analysis, an absolute minimum of 10 observations are

needed for each predictor variable (Vaughan and

Ormerod 2003). Safer interpretations of this rule of

thumb mention a requirement of 20, 50 or even 100

observations per predictor. (2) There is little pre-existing

knowledge available to guide us on what predictors are

likely to interact in their effect. The restrictions implied

by dimensionality would only allow us to make a

haphazard selection of a subset of the possible inter-

actions. (3) By not considering interactions, estimates of

stressor contribution to the overall effect on species

assemblages likely are conservative. Therefore, attribu-

tions of different stressors to biological impairments are

likely underestimates of their actual contribution.
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We created both full and null models for each species.

Null models were of the form ln(abundance)¼ a, where
a is the mean abundance of the species across all sites.

GLM output consisted of regression coefficients, degrees
of freedom, and deviance residuals for both the full

(DEVf) and null models (DEVn). We used explained
deviance (ED) as a measure of the explanatory capacity

of each model, where ED ¼ (DEVn – DEVf)/DEVn.
The objective of the GLM modeling was to isolate the

likely effects of different stressor variables on fish
abundance. As in the RIVPACS models, we needed to

distinguish between the effects of stressor variables on
fish and effects associated with natural factors. How-

ever, direct regression of the differences between
observed abundances and those expected from the

GLM4 models, i.e., [ln(Oi) � ln(Ei)], on the 14 stressor
variables resulted in significant convergence problems.
To avoid this problem, we fit GLM18 models directly to

the ln(Oi) data but included the abundance predicted by
the GLM4 model (Ei,GLM4) as a way of accounting for

naturally occurring variation. For example, ln(Oi,GLM18)
¼ ln(Ei,GLM4)þGLM18 modeled effects of the stressors

that are potentially of anthropogenic origin. This
approach is only valid when the natural and other

stressor variables are not substantially correlated,
otherwise the values of the regression coefficients would

not be independent of one another.
Identification of likely causes of impairment.—We used

statistically significant associations between species
abundances and stressor variables to identify likely

causes of biological impairment. While we recognize
that such associations do not necessarily imply causa-

tion we use the term ‘‘cause’’ in this restricted sense in
the remainder of the paper.

We linked the abundances of individual species and
the stressors occurring at individual sites as follows:

1) Predicted abundance. We applied the calibrated
GLM18 regression models to predict the abundance of
species i at any site (Ei,GLM18) as a function of both the

naturally occurring and stressor conditions occurring at
a site.

2) Unexplained variance (unknown causes). We calcu-
lated the unexplained variance in species abundances at

each site as thedeparture froma linearassociationbetween
observed [ln(Oi)] and expected [ln(Ei,GLM18)] abundances

over all species.We expressedunexplainedvariationas 100
� (r23100), and included this value as one of the slices in

the EPC pie diagrams. We realize that the unexplained
variance may contain model error, the influence of

unknown environmental factors, and may also reflect the
omission of factor interactions in our analyses.

3) Identity of missing species. The RIVPACS model
output allowed us to identify those species that were

expected at PC � 0.5 but not observed at the 695 Ohio
river sites.

4) Associations with different stressor variables. If a
species was missing at a site, as a possible consequence

of unfavorable levels of some or all stressors, the

contribution of those stressor variables in the GLM18

model prediction should be negative. For example, if
species i is missing at site x because of a lack of dissolved
oxygen, the value of (f1,i � DOMEDxþ f2,i � DOMEDx

2)

should be negative. The relative potential influence of
each stressor variable is simply that stressor’s negative
contribution divided by the sum of all negative stressor

contributions for missing species. These proportions
along with the unexplained variance were used to size
the pie slices in the EPC graphs.

5) Aggregation over sites. We aggregated site-based
estimates to derive insight regarding the overall regional
importance of different stressors. We calculated regional

values as simple averages of the percentages of variation
in abundances associated with different measured
factors observed at individual sites. These percentages

were used along with percentage unexplained variation
to construct a regional summary EPC pie graph.

We recognize that variables used in this study are in

part composites, and need not be purely of natural or
anthropogenic origin. In particular, we recognize that
stressor attribution does not require only human-

induced changes. For example, the local pH can be
determined by both natural causes (e.g., humic acids)
and human-related causes (e.g., acid mine drainage).

Note that the RIVPACS model also identifies species
that are not expected at a site, but were nonetheless
observed. The attribution model can be adjusted to also
identify the likely causes for such additions by evaluat-

ing just the positive contributions of individual stressor
variables in the GLM 18 models for unexpected species
observed. However, because of length and complexity

limitations, we do not present these complementary
assessments in this paper.

RESULTS AND DISCUSSION

RIVPACS modeling

Latitude, longitude, drainage area, and stream-chan-
nel slope accounted for 51% of the variation in observed

species richness at reference sites (Fig. 3). Although the
RIVPACS model accounted for a considerable amount
of natural variation in species composition and richness

among reference sites, at least some of the unexplained
variation was likely associated with natural factors that
we did not or could not measure, factors that were only

partly associated with the surrogate predictors, or
incomplete representation in the reference data set of
the fish fauna found in certain types of streams. For

example, some species may have been introduced into
water bodies at which they were historically absent and
thus partly disassociated with factors that naturally

controlled their distribution. In contrast, the natural
distribution of some species may be largely the result of
biogeographic accidents, and such species with small

populations would be especially difficult to model as a
function of environmental conditions. These errors in
RIVPACS assessments must therefore be considered

when inferences are made both on overall biological
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condition and apparent abundance change of specific

species.

O/E values (the ratio of number of species observed

[O] at a site vs. the number expected [E]) of 0.8 and 1.2

approximately corresponded to the 10th and 90th

percentiles of the reference-site values and were used

as error thresholds for inferring if non-reference sites

were biologically impaired (Fig. 4). Of the 1438 non-

reference sites, ;50% were in non-reference condition

(O/E , 0.8) and we considered 23% of sites as being

severely impaired (O/E , 0.5).

Although little quantitative information was available

from the literature on which to base comparisons, the

RIVPACS assessments of individual species responses

(Appendix B) were more often than not consistent with

qualitative assignments found in the literature (Traut-

man 1981, Barbour et al. 1999). However, for several

species, our assignments of species sensitivities were

somewhat different than that inferred from the liter-

ature. Of the 98 taxa native to Ohio and the 19

introduced species, our assignments agreed with the

literature for 63 species and disagreed with 33. Disagree-

ments never involved differences of more than one

category (e.g., tolerant [T] in one and intolerant [I] in the

other). The RIVPACS-based estimates showed that 17

species native to Ohio were found at more sites than

expected. Our analyses imply that these species should

be tolerant species, and the majority of them presumably

expanded into streams that they did not historically

occupy as habitat conditions were altered. This inter-

pretation assumes that the reference-site data used to

train the model were representative of all the assessed

sites. Although we know this assumption to be

imperfect, we attempted to minimize this type of

problem by excluding any site from analysis whose

predictor-variable values were outside the experience of

the model. In other cases, human introductions helped

spread species into streams they would have historically

not inhabited. For example, the gizzard shad (Dorsoma

cepadianum), whose habitat typically includes lakes,

oxbows, sloughs, and large, slow rivers, was never

predicted by the model to occur at any site with a

probability of capture . 0.5, but it was found in 499

samples, a likely consequence of both escape from

suitable human created habitats (e.g., reservoirs) and

their generally high tolerance. The RIVPACS-based

assessments also flagged as tolerant any nonnative

species that was introduced into these streams and that

was captured in a sample. For example, as an exotic

FIG. 3. The goodness-of-fit of the RIVPACS model, based
on 114 reference sites.

FIG. 4. The distribution of O/E values (the ratio of observed to expected abundances of species) generated by the RIVPACS
model for both reference sites (n ¼ 114) and potentially impacted sites (n ¼ 1438).
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species, the common carp (Cyprinus carpio) was

predicted to occur at no sites, but it was found at 803

sites. In this case, the high SO/SE value (the ratio of

observed/expected sites) was a consequence of both its

introduction and subsequent spread and it being

tolerant of the altered conditions in many Ohio streams.

Forty species were found at substantially fewer sites

than predicted by the model and were considered to be

likely sensitive species, i.e., decreasers. Some of these

species were predicted to be widespread given their

distribution among different types of reference sites.

GLM modeling and the derivation of slice sizes

Response of species abundances to natural and stressor

variables.—We were able to produce two sets of

generalized linear models, GLM4 and GLM18, for 96

of the 117 species assessed by the RIVPACS model. The

species for which we could not construct models had low

numbers of occurrences in the 695-site data set. The

regression coefficients for the natural predictors in both

sets of models were generally similar (Fig. 5) implying

that the values of the four natural and the 14 potential

predictors of habitat deterioration and contamination

were not seriously correlated, a necessary condition for

assessing the effects of stressor variables with the

approach we used. Only logGRAD (log(gradient)) had

significantly different GLM4 and GLM18 regression

coefficients (slope¼0.79), which is not surprising in view

of its observed correlation with some of the other

predictors. However, logGRAD had little effect on

overall GLM model predictions (1%). Much more

natural variation in species abundances was associated

with variation in latitude (50%) and longitude (46%)

than with drainage area (4%). The remaining correla-

tions in the predictor data set were mainly associated

with habitat factors. These correlations may have

FIG. 5. Comparison of the regression coefficients for 96 different species for the four chosen natural descriptors: latitude
(LAT), longitude (LONG), log(drainage area) (logDA), and log(gradient) (logGRAD) in the two sets of generalized linear models,
GLM4 and GLM18.
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introduced some bias in the attribution of effects to
individual habitat factors. In the final presentation of

the results, we therefore grouped the different habitat

factors into a single pie slice. In view of these
considerations, we are confident that our combined use

of GLM4 and GLM18 models described realistic

responses of species to the different stressors.

Explanatory capacity of the GLM models.—GLM4
models explained between 15% and 25% of the variation

in species abundances, whereas the GLM18 models

explained between 45% and 55% of abundances (Fig. 6).
The difference in the amount of variation associated

with GLM4 and GLM18 models indicated that, on

average, stressor variables influenced species abundanc-
es by about 15–25% above that associated with the four

natural variables.

Geographic patterns in likely causes of impairment.—
Sites that were highly impaired by loss of species

occurred throughout Ohio (Fig. 7) and in both urban

and rural areas. Stressors associated with water chem-
istry were most often associated with species loss,

followed by degraded habitat, percentage cumulative

effluent, and ecotoxicity. Sites with deviating stressor
attribution were first identified by double-blind analysis

(anonymous sites and species). Mapping of sites with

stress-associated loss of species uncovered that partic-
ular combinations of stressors were regionalized

throughout Ohio. Our inferences regarding the types

of stressors affecting species in these regions were
generally consistent with previous analyses as illustrated

in the following four examples (Fig. 7).

A) Black River. The Black River, located in northern

Ohio, west of the city of Cleveland, consists of two

branches, East and West. Impairment was greater in the
West Branch than the East Branch, and water chemistry

appeared to be the dominant stressor, followed by

habitat alteration, ecotoxicity, and percentage municipal
effluent. The smaller amount of impairment observed at

the East Branch was mostly associated with water

chemistry and modified habitats. These results agree

with Ohio EPA’s assessment of the biological impair-
ment of the Black River and selected tributaries (Ohio

EPA 1994a). More recently, Ohio EPA’s section 305b

report (2000) specifically indicated that the primary
stressors for the West Branch were heavy silt loads and

bank erosion as a result of row-crop agriculture. Failing

septic systems were also identified as potential sources of
impairment. In contrast, the East Branch was noted as

having a high-quality fish assemblage, typically attaining

the state’s warm-water habitat criteria. Unknown
factors dominated likely stressors in the city of Elyria

and downstream to Lake Erie. At these sites, U.S. EPA

judged nutrients, organic enrichment, and flow alter-
ation from combined sewer overflows and storm sewers

as the primary causes for impact (USEPA 1998), factors

that we could not include in our analyses.
B) Cuyahoga River. Located in northeastern Ohio, the

Cuyahoga River flows through the major metropolitan

areas of Akron and Cleveland. Minimal impairment was

evident in the headwaters of the Cuyahoga (upstream of
City of Akron) with most measured degradation

associated with water chemistry and unknown factors.

However, from Akron downstream, impairment greatly
increased, and our assessment identified water chem-

istry, habitat alteration, municipal effluent, and toxicity

from metals and ammonia as likely causes. Ohio EPA

FIG. 6. Frequency distributions over 96 species of explained deviance in the GLM4 and GLM18 models as well as the
difference in explained deviance between the two models.
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(1994b) identified habitat degradation and exposure to

pollutants (land use, number of spills, and number of

combined sewer overflows and storm sewer overflows)

as likely stressors.

C) Hocking River. Located in southeastern Ohio, the

biological impairment in the upper Hocking River has

been primarily associated with the irregularities of

wastewater treatment in the town of Lancaster (Ohio

EPA 1997). Throughout the entire mainstem, siltation,

habitat alterations, organic enrichment, nutrients, met-

als, and pH have been associated with the greatest

number of impaired reaches (USEPA 1998). Down-

FIG. 7. Effect and probable cause (EPC) pie charts for 695 sites in Ohio (USA). The size of each pie is proportional to impact
(i.e., large pie¼ large impact). The size of the slice is relative to probable cause. Stressors are grouped in four main types (see color
key) for ease of interpretation. See Table 3 for type and descriptions of stressors. (A)–(D) identify locations of four selected Ohio
rivers for which more detailed pie charts are shown: (A) Black River, (B) Cuyahoga River, (C) Hocking River, and (D) Flatrock
Creek. WTP indicates a waste water treatment plant.
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stream of Lancaster to the Ohio River, increased levels

of metals and silt have been attributed to mining and

streambank modifications. Although our analyses at-

tributed ;50% of impairment to unknown factors, our

results generally agreed with Ohio EPA reports and

indicated that effluent was a key factor in the upper

Hocking River and that the ecotoxicity of metals was

more important downstream. Our results were also

consistent with Ohio EPA’s conclusion regarding the

importance of streambank modifications in the lower

Hocking.

D) Flatrock Creek. A small tributary to the Auglaize

River, Flatrock Creek is located in northwestern Ohio.

According to Ohio EPA, biological impairment in

Flatrock Creek, upstream of Paulding, was attributed

to organic enrichment and flow alterations (USEPA

1998). Our analyses also indicated that much of the

impairment was associated with alterations in water

chemistry and habitat modifications. Our methods also

identified the toxicity of mixtures in these reaches, of

which household-product ingredients were the primary

mixture components.

Ohio-wide overview.—Aggregation of all results over

all sampling sites showed that, for the state of Ohio as a

whole, 40% of fish species were missing from standard

samples relative to reference-site expectations (Fig. 8). A

large proportion (50%) of biological effects was asso-

ciated with unknown factors and model error. The

remaining 50% of effects was associated with variation

in stressors, most of which was related to alteration in

water chemistry and habitat (28% and 16%, respec-

tively). The combined toxicity of metals, ammonia, and

household-product chemicals, as well as the cumulative

input of treated sewage effluents, were associated with

3% of the biological degradation. The high proportion

of unexplained effects is understandable because other

stressors known to affect aquatic ecosystems, such as

alteration in stream flow, pesticides, industrial dis-

charges, input of cooling water, and fishing activities,

were not included in our analyses.

Conclusions

We have shown how integration of different assess-

ment tools can be applied to identify both the magnitude

and likely causes of biological impairment, given the

variability in species composition and species abundanc-

es that occurs naturally. Our proposed method combines

ecological, ecotoxicological, and exposure modeling to

provide both a measure of impact and statistical

estimates of the probable effects of different potential

stressors on stream fish assemblages. Although a set of

statistical analyses was required, a fair proportion of

variance was accounted for, and the end product could

be presented as simple effect and probable-cause pie

charts, facilitating both interpretation and communica-

tion of results and decision-making. Constraints im-

posed by statistical power limited our ability to address

interactions among variables, implying that attribution

of effects to likely causes is conservative.

The most innovative aspect of this study involved

linking different types of models, all of which have been

individually applied in the past for many purposes.

Applying these models in concert yielded results that

generally matched the interpretation of experts who

assess and manage Ohio surface waters. Since our

analyses were blind to both previous assessments of

impairment and inferences regarding the probable

causes of impairment at specific sites, the match of our

results with other data demonstrates that this approach

may provide a robust means of assessing the likely

causes of biological impairment in freshwater ecosys-

tems.

Further testing of the approach should include

expanding the data set and methods to other stress

factors (e.g., pesticides and biological stressors), further

discrimination of human-induced and natural variation

for composite parameters, addressing the issue of

stressor interactions, and inclusion of other biological

endpoints (e.g., alteration of invertebrate or algal

assemblages). A primary focus of future work should

be on reducing the unexplained variance and model

error in the approach. Because of the many degrees of

FIG. 8. Average loss of fish species in 695 river sites in Ohio (USA) is 40%. This figure shows the likely causes.
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freedom (many predictors) relative to the number of

sites in this study, it was not possible to apply a scheme

of external validation, something that must be con-

ducted in future work. We also need to evaluate how

well the approach can be applied to other data sets.

Further testing should also determine if the predicted

responses to particular types of perturbation are

consistent with known autecological data for different

species, such as the quantitative pollution-tolerance

values that are being developed by various researchers

(e.g., Yuan and Norton 2003). In summary, the results

of this study were encouraging and provide a foundation

on which future refinement of both the general approach

as well as specific methods used can be built.

ACKNOWLEDGMENTS

We thank Greg Carr, Christian Mulder, Tom Aldenberg,
Lester Yuan, Susan Norton and Dik van de Meent for assisting
in several brainstorming and method-refinement sessions. The
manuscript was greatly improved by suggestions of two
anonymous reviewers. The RIVPACS modeling conducted by
C. P. Hawkins was supported by U.S. Environmental
Protection Agency cooperative agreement CX-826814-01, and
U.S. Environmental Protection Agency Science to Achieve
Results (STAR) grants R-82863701 and R-83059401. The work
at RIVM was conducted within the strategic research project
S860703 on ‘‘Quantitative Risk Assessment’’ funded by the
Director of RIVM and supported by the RIVM Scientific
Advisory Committee.

LITERATURE CITED

Baird, D., and G. A. Burton, Jr., editors. 2001. Ecosystem
variability: separating natural from anthropogenic causes of
ecosystem impairment. Pellston Workshop Series. SETAC
Press, Pensacola, Florida, USA.

Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling.
1999. Rapid bioassessment protocols for use in streams and
wadeable rivers: periphyton, benthic macroinvertebrates and
fish. Second edition. EPA 841-B-99-002. U. S. Environmental
Protection Agency, Office of Water, Washington, D.C.,
USA.

Bellman, R. E. 1961. Adaptive control processes: a guided tour.
Princeton University Press, Princeton, New Jersey, USA.

Bro-Rasmussen, F., and H. Løkke. 1984. Ecoepidemiology — a
casuistic discipline describing ecological disturbances and
damages in relation to their specific causes; exemplified by
chlorinated phenols and chlorophenoxy acids. Regulatory
Toxicology and Pharmacology 4:391–399.

Davies, S. P., and S. K. Jackson. 2006. The biological condition
gradient: a descriptive model for interpreting change in
aquatic ecosystems. Ecological Applications 16:1251–1266.

de Zwart, D. 2002. Observed regularities in SSDs for aquatic
species. Pages 133–154 in L. Posthuma, G. W. Suter, II, and
T. P. Traas, editors. Species sensitivity distributions in
ecotoxicology. Lewis Publishers, Boca Raton, Florida, USA.

de Zwart, D., and L. Posthuma. 2005. Complex mixture toxicity
for single and multiple species: proposed methodologies.
Environmental Toxicology and Chemistry 24:2665–2676.

Dyer, S. D., and R. J. Caprara. 1997. A method for evaluating
consumer product ingredient contributions to surface and
drinking water: boron as a test case. Environmental
Toxicology and Chemistry 16:2070–2081.

Dyer, S. D., and X. Wang. 2002. A comparison of stream
biological responses to discharge from wastewater treatment
plants in high and low population density areas. Environ-
mental Toxicology and Chemistry 21:1065–1075.

Dyer, S. D., C. D. White-Hull, G. J. Carr, E. P. Smith, and X.
Wang. 2000. Bottom-up and top-down approaches to assess
multiple stressors over large geographic areas. Environ-
mental Toxicology and Chemistry 19:1066–1075.

Hall, L. W., M. C. Scott, and W. D. Killen. 1996. Development
of biological indicators based on fish assemblages in Mary-
land coastal plain streams. CBWP-MANTA-EA-96-1. Mary-
land Department of Natural Resources, Chesapeake Bay and
Watershed Programs, Annapolis, Maryland, USA.

Halliwell, D. B., R. W. Langdon, R. A. Daniels, J. P.
Kurtenbach, and R. A. Jacobson. 1999. Classification of
freshwater fish species of the northeastern United States for
use in the development of IBIs. Pages 301–337 in T. P. Simon,
editor. Assessing the sustainability and biological integrity of
water resources using fish communities. CRC Press, Boca
Raton, Florida, USA.

Hawkins, C. P. 2006. Quantifying biological integrity by
taxonomic completeness: its utility in regional and global
assessments. Ecological Applications 16:1277–1294.

Hawkins, C. P., and D. M. Carlisle. 2001. Use of predictive
models for assessing the biological integrity of wetlands and
other aquatic habitats. Pages 59–83 in R. Rader, D. P.
Batzer, and S. A. Wissinger, editors. Bioassessment and
management of North American freshwater wetlands. John
Wiley and Sons, New York, New York, USA.

Karr, J. R. 1981. Assessment of biotic integrity using fish
communities. Fisheries 6(6):21–27.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I.
J. Schlosser. 1986. Assessing biological integrity in running
waters: a method and its rationale. Special Publication 5.
Illinois Natural History Survey, Champaign, Illinois, USA.

Lyons, J. 1992. Using the index of biotic integrity (IBI) to
measure environmental quality in warmwater streams of
Wisconsin. General Technical Report, NC-149. USDA
Forest Service, Saint Paul, Minnesota, USA.

McAvoy, D. C., S. D. Dyer, N. J. Fendinger, W. S. Eckhoff, D.
L. Lawrence, and W. M. Begley. 1998. Removal of alcohol
ethoxylates, alkyl ethoxylate sulfates and linear alkylbenzene
sulfonates in wastewater treatment. Environmental Toxicol-
ogy and Chemistry 17:1705–1711.

McAvoy, D. C., B. Schatowitz, M. Jacob, A. Hauk, and W. S.
Eckhoff. 2002. Measurement of triclosan in wastewater
treatment systems. Environmental Toxicology and Chemistry
21:1323–1329.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear
models. Second edition. Chapman and Hall, London, UK.

Moss, D., M. T. Furse, J. F. Wright, and P. D. Armitage. 1987.
The prediction of the macro-invertebrate fauna of unpolluted
running-water sites in Great Britain using environmental
data. Freshwater Biology 17:41–52.

Ohio EPA. 1987. Biological criteria for the protection of
aquatic life. Volumes I–III. Ohio Environmental Protection
Agency, Columbus, Ohio, USA.

Ohio EPA. 1994a. Biological and water quality study of the
Black River Basin (with selected tributaries) and Beaver
Creek, Lorain, Medina, Ashland, Huron, Cuyahoga coun-
ties, Ohio. EAS/1993-12-8. Ohio Environmental Protection
Agency, Division of Surface Water, Columbus, Ohio, USA.

Ohio EPA. 1994b. Biological and water quality study of the
Cuyahoga River, Geauga, Portage, Summit, and Cuyahoga
counties, Ohio. Volume 1. EAS/1992-12-11, Ohio Environ-
mental Protection Agency, Division of Surface Water,
Columbus, Ohio, USA.

Ohio EPA. 1996. Dissolved metals criteria. Ohio EPA Great
Lakes Initiative Issue Paper, July 1996. Ohio Environmental
Pollution Agency, Columbus, Ohio, USA.

Ohio EPA. 1997. Biological and water quality study of the
Upper Hocking River and selected tributaries, Fairfield and
Hocking counties, Ohio. MAS-6-12-10. Ohio Environmental
Protection Agency, Division of Surface Water, Columbus,
Ohio, USA.

August 2006 1309FRESHWATER BIOASSESSMENT



Ohio EPA. 2000. Appendices to the Year 2000 Ohio water
resource inventory. Ohio Environmental Protection Agency,
Division of Surface Water, Columbus, Ohio, USA.

Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R.
M. Hughes. 1989. Rapid bioassessment protocols for use in
streams and rivers: benthic macroinvertebrates and fish. EPA
440-4-89-001. U.S. Environmental Protection Agency, Office
of Water Regulations and Standards, Washington, D.C.,
USA.

Posthuma, L., G. W. Suter, II, and T. P. Traas, editors. 2002.
Species Sensitivity Distributions in Ecotoxicology. Lewis
Publishers, Boca Raton, Florida, USA.

Rankin, E. T. 1989. The qualitative habitat evaluation index
(QHEI): rationale, methods and application. Ohio Environ-
mental Protection Agency, Division of Water Quality
Planning and Assessments, Columbus, Ohio, USA.

Schwarz, G. 1978. Estimating the dimension of a model. Annals
of Statistics 6:461–464.

Simon, T. P. 1991. Development of ecoregion expectations for
the index of biotic integrity (IBI) Central Corn Belt Plain.
EPA 905/9-91/025, U.S. Environmental Protection Agency,
Region V, Chicago, Illinois, USA.

Sorensen, E. M. B. 1991. Metal poisoning in fish. CRC Press,
Boca Raton, Florida, USA.

SRI Internationl. 2002. International chemical economics
handbook. Surfactants, household detergents and their raw
materials. 583.8001. Stanford Research Institute Interna-
tional, Menlo Park, California, USA.

Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson,
and R. N. Norris. 2006. Setting expectations for the
ecological condition of streams: the concept of reference
condition. Ecological Applications 16:1267–1276.

Trautman, M. B. 1981. The fishes of Ohio. Second edition. The
Ohio State University Press, Columbus, Ohio, USA.

USEPA. 1989. 1988 Needs Survey: report to Congress—
assessment of needed publicly owned wastewater treatment
facilities in the United States, February, 1989. EPA 430/9-89-
001. United States Environmental Protection Agency,
Washington, D.C., USA.

USEPA. 1992a. Environmental and program information
systems compendium. 800-B92-001. United States Environ-

mental Protection Agency, Office of Water, Washington,
D.C., USA.

USEPA. 1992b. Permit Compliance System user documentation
master index. PCS-MA93-1.01. United States Environmental
Protection Agency, Washington, D.C., USA.

USEPA. 1995. STORET/BIOS/ODES/WQAS tool inventory.
United States Environmental Protection Agency, Washing-
ton, D.C., USA.

USEPA. 1998. Section 303(d) list water information for Black-
Rocky, Flatrock Creek (Maumee River basin), Hocking and
Cuyahoga Rivers. hhttp://oaspub.epa.gov/waters/state_rept.
control?p_state¼OHi

USEPA. 1999. 1999 update of ambient water quality criteria for
ammonia, December 1999. EPA-822-R-99-014. United States
Environmental Protection Agency, Office of Water, Wash-
ington, D.C., USA.

USEPA. 2002. ECOTOXicology database system. hhttp://www.
epa.gov/ecotox/i

Van de Plassche, E. J., J. H. M. de Bruijn, R. R. Stephenson, S.
J. Marschall, T. C. J. Feijtel, and S. E. Belanger. 1999.
Predicted no-effect concentrations and risk characterization
of four surfactants, linear alkyl benzene sulfonate, alcohol
ethoxylates, alcohol ethoxylated sulfates, and soap. Environ-
mental Toxicology and Chemistry 18:2653–2663.

Vaughan, I. P., and S. J. Ormerod. 2003. Improving the quality
of distribution models for conservation by addressing short-
comings in the field collection of training data. Conservation
Biology 17:1601–1611.

Wang, X., M. D. Homer, S. D. Dyer, C. E. White-Hull, and C.
Du. 2005. A river water quality model integrated with a web-
based geographic information system. Journal of Environ-
mental Management 75:219–228.

Wang, X., C. E. White-Hull, S. D. Dyer, and Y. Yang. 2000.
GIS-ROUT: a river model for watershed planning. Environ-
ment and Planning, B. Planning and Design 27:231–246.

Wright, J. F., D. W. Sutcliffe, and M. T. Furse, editors. 2000.
RIVPACS and other techniques. The Freshwater Biological
Association, Ambleside, Cumbria, UK.

Yuan, L. L., and S. B. Norton. 2003. Comparing responses of
macroinvertebrate metrics to increasing stress. Journal of the
North American Benthological Society 22:308–322.

APPENDIX A

Scatterplot and correlation matrix of the abiotic input data, comprising the 18 different predictors for the RIVPACS and GLM
models (Ecological Archives A016-043-A1).

APPENDIX B

Table comparing the ecological sensitivities (tolerant, intolerant and neutral) of individual fish species estimated from the
RIVPACS model assessments with literature sensitivity values summarized in Barbour et al. (1999) (Ecological Archives A016-043-
A2).
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