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This presentation focuses on the luminescence of SiO2 induced by bombardment of energetic electrons and outlines a qualitative model describing the effect of temperature on the luminescence.
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We were studying SiO2 because it is used in optical instrumentation in space telescopes.  SiO2 charging tests, as Greg Wilson will explain in his talk entitled, “Electron Energy Dependent charging effects of multilayered dielectric materials,” were being conducted when we found that the surface of the SiO2 was luminesceing when hit with an electron beam.
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These tests were conducted under high vacuum and at temperatures of ~298 and ~130 K.  This is a sketch of our instrumentation.  Now, let’s focus on the optical instrumentation providing the data that will be presented here.  A UV/Vis spectrometer was used to collect spectra of the glow and a still SLR camera and NIR video camera were used to collect images that show the sample luminescing.



UV/VIS  & NIR 
Spectrometers 

SLR RGB 
Camera 

NIR Video 
Camera 

Sample 

Electron 
Gun 

Experimental Set-Up 
   Introduction     Theory         Results          Model            Results          Model Conclusion 

e- 

Presenter
Presentation Notes
These tests were conducted under high vacuum and at temperatures of ~298 and ~130 K.  This is a sketch of our instrumentation.  Now, let’s focus on the optical instrumentation providing the data that will be presented here.  A UV/Vis spectrometer was used to collect spectra of the glow and a still SLR camera and NIR video camera were used to collect images that show the sample luminescing.
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First we need look at the model for band theory.  The horizontal axis is energy and the vertical is the density of states.  Using the Kronig Penney model, portrayed above the energy plot, for a perfect crystalline structure, there are well defined bands of allowed energy states.  The valence band (highest filled) and conduction band (lowest empty) are separated by an energy defined as the band gap.  The Fermi energy is halfway through the band gap.If the crystalline structure has defects, which can include doping/substitution and structural defects, localized trapped states are formed within the band gap and the band edges of the perfect structure are now no longer well defined and are mobility edges.  If we look at the figure, notice that there is now some probability of finding electrons in the band gap.
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As individual atoms are brought closer together, their individual energy levels split 
and mix with those of their surrounding atoms.  The number of energy levels is equal 
to the number of atoms. 
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FIG. 2.1.From single atoms to the density of states.Depicts the evolution of bands in a periodic arrangement of atoms (crystals) as atoms are brought together spatially.  Here a is the atomic spacing, ε is the energy of a state. is the lowest unoccupied molecular orbital, is the highest occupied molecular orbital,εCB is the conduction band (energy upper-bound), εVB  is the valence  band (energy lower-bound), N(ε) is the density of states and εf is the Fermi-level.
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So here’s a slice of NIR video footage of the luminescent behavior.  Notice the moment the electron beam hits the sample.
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So here’s a slice of NIR video footage of the luminescent behavior.  Notice the moment the electron beam hits the sample.
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This is exactly what happened, as this plot shows.  The relative intensity was normalized to the same baseline and the higher energy beam caused a noticeably greater intensity than the lower energy beam.



Multi-Photon Luminescence 
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The other two optical instruments introduce another phenomenon of the electron induced luminescence-it has a color.  This picture and spectrum, taken at RT, show a definite blue color, peak at ~550, and some slight red, peak @ ~620 nm.



Though relative intensities differ, the peaks occur at the same 
wavelength bands. 
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Using a UV/Vis spectrometer, we were able to collect spectra of the cathodoluminescence of our SiO2 coated mirror samples.  Our spectra was in good agreement with that found in literature (Figs. 6 & 7).  From the spectra, the chromophores in the SiO2 structure were inferred.
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Stepping back to the model, it is apparent that if there are varying defects, their corresponding defect state will have different energies.  This means that as electrons relax to two different states, two energetically different photons will be emitted.  In our case, SiO2 has varying defects that correspond to emitted photons of red and blue light.



Trapped States and Chromophores 
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•Trapped states  occur with 
the presence of defects 
 

•Defects can manifest 
themselves as chromophores, 
the light emitting part of a 
molecular structure 
 

•Cathodoluminescence can 
identify these defects 
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In order to get an idea of what is happening, look back at the band model.  The SiO2 samples are crystalline structures with defects and therefore have trapped states.  When energetic electrons with enough energy hit the sample, VB electrons are excited into the conduction band, which can then relax into one of the defect states, emitting a photon of energy equal to the difference in energy between the CB and defect state.The greater the energy of the incident electron, the more VB electrons it can excite to the conduction band.  Thus we would expect a higher energy beam to cause a luminescence of greater intensity. 
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Stepping back to the model, it is apparent that if there are varying defects, their corresponding defect state will have different energies.  This means that as electrons relax to two different states, two energetically different photons will be emitted.  In our case, SiO2 has varying defects that correspond to emitted photons of red and blue light.
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Using a UV/Vis spectrometer, we were able to collect spectra of the cathodoluminescence of our SiO2 coated mirror samples.  Our spectra was in good agreement with that found in literature (Figs. 6 & 7).  From the spectra, the chromophores in the SiO2 structure were inferred.



Temperature Dependent Luminescence 
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So now we look at one more parameter: temperature.  As temperature decreased, the glow from the SiO2 samples became less blue and more red.



SLR Spectral Radiance vs Temperature 
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This plot is the processed SLR images showing the intensity of the red, green and blue as a function of temperature.  As seen with our eyes and the images, we see the blue increases with increasing temperature while red decreases.



Temperature Dependent UV-Vis Spectra 

   Introduction     Theory         Results          Model            Results          Model Conclusion 

Presenter
Presentation Notes
Again, the same results show in the spectra.  The most noticeable difference is in the red peak that jumps dramatically between -4 and -80 C.
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One last time, step back to the model.  At T=0, all electrons occupy energy levels below the Fermi energy.  As electrons are added, we have an effective fermi level above that of the fermi energy and the probability spreads out, becoming more and more linear with increasing T.Now suppose there are two defect states that cause photons of red and blue to be emitted, as in our case.  The blue state will be below the red since a blue photon has greater energy than a red.  If that state is below the Fermi energy, then at T=0, that state will be full and any excited electrons will be unable to relax into that state.  Therefore, the el-induced luminescence will appear red.  As T increases, electrons with sufficient thermal energy can leave the blue state and begin to fill the red state.  Thus, excited electrons can now relax into both the red and blue states, giving the higher T samples a more blue glow. 
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One last time, step back to the model.  At T=0, all electrons occupy energy levels below the Fermi energy.  As T increases, we have an effective fermi level above that of the fermi energy and the probability spreads out, becoming more and more linear with increasing T.Now suppose there are two defect states that cause photons of red and blue to be emitted, as in our case.  The blue state will be below the red since a blue photon has greater energy than a red.  If that state is below the Fermi energy, then at T=0, that state will be full and any excited electrons will be unable to relax into that state.  Therefore, the el-induced luminescence will appear red.  As T increases, electrons with sufficient thermal energy can leave the blue state and begin to fill the red state.  Thus, excited electrons can now relax into both the red and blue states, giving the higher T samples a more blue glow. 
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One last time, step back to the model.  At T=0, all electrons occupy energy levels below the Fermi energy.  As T increases, we have an effective fermi level above that of the fermi energy and the probability spreads out, becoming more and more linear with increasing T.Now suppose there are two defect states that cause photons of red and blue to be emitted, as in our case.  The blue state will be below the red since a blue photon has greater energy than a red.  If that state is below the Fermi energy, then at T=0, that state will be full and any excited electrons will be unable to relax into that state.  Therefore, the el-induced luminescence will appear red.  As T increases, electrons with sufficient thermal energy can leave the blue state and begin to fill the red state.  Thus, excited electrons can now relax into both the red and blue states, giving the higher T samples a more blue glow. 



Conclusions 
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•Our model, thus far, is qualitatively consistent with 
experimental results 
 

•Future work:  
•Cool sample to 
40 K 
•Extend model 
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Continued work is underway as we prepare our vacuum chamber for 30 K glow tests.
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Chromophores 

An oxygen vacancy in the structure on the left is a precursor for 
the chromophore on the right, a twofold-coordinated silicon 
defect.  
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A nonbridging oxygen hole center (NBOHC) and oxygen 
deficiency center (ODC) can be transformed into a Si trimer or 
ring through annealing and/or electron beam irradiation.  

Chromophores 
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