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Abstract. Many important features of a field theory, e.g., conserved currents, sym-
plectic structures, energy-momentum tensors, etc., arise as tensors locally constructed
from the fields and their derivatives. Such tensors are naturally defined as geometric
objects on the jet space of solutions to the field equations. Modern results from the
calculus on jet bundles can be combined with a powerful spinor parametrization of
the jet space of Einstein metrics to unravel basic features of the Einstein equations.
These techniques have been applied to computation of generalized symmetries and
“characteristic cohomology” of the Einstein equations, and lead to results such as a
proof of non-existence of “local observables” for vacuum spacetimes and a uniqueness
theorem for the gravitational symplectic structure.

1 Introduction

This is a survey of results of work performed largely in collaboration with Ian
Anderson (Dept. of Mathematics, Utah State University). The presentation will be
somewhat informal; rigorous statements and proofs of our results will be presented
elsewhere [Torre and Anderson (1993)], [Anderson and Torre (1994)], [Anderson
and Torre (1995)]. In the very broadest terms, our efforts are intended to help
answer the question: “In what ways are the Einstein equations special?” There are
of course a plethora of special features of the Einstein equations which have been
uncovered since the advent of general relativity. Here are some examples. The vac-
uum equations in 4 dimensions are, up to specification of the cosmological constant,
the only second order partial differential equations one can write down for a metric
which are “generally covariant” and can be derived from a variational principle.
Despite the complexity of the field equations, a large number of exact solutions are
known. Indeed, certain reductions of the equations (self-dual equations, stationary-
axisymmetric vacuum and electrovac equations) admit transitive symmetry groups
and are in some sense “integrable”. Special features that are of particular relevance
to the physical viability of the Einstein equations include theorems guaranteeing
that the Cauchy problem is well posed, existence and uniqueness (up to diffeomor-
phisms) of solutions, existence and positivity of conserved energy-momentum in the
asymptotically flat context, etc. Finally, a feature of the Einstein equations which
is especially relevant for attempts at quantization is that the equations constitute
a constrained Hamiltonian system.
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2 C. G. TORRE

The modern geometric theory of differential equations provides systematic means
through which one can characterize certain important structural features of any set
of field equations. These structural features arise as geometric objects on the jet

space of solutions to the field equations [Saunders (1989)], [Olver (1993)] and are
neatly analyzed in terms of the variational bicomplex [Anderson (1992)], [Olver
(1993)]. Such jet space techniques have been used in the analysis of a number of
differential equations of applied mathematics and mathematical physics. It is now
possible to apply these techniques to study special features of the vacuum Einstein
equations; the results of such investigations are the subject of this paper. In par-
ticular, I will report on a systematic classification of generalized symmetries and
generalized conservation laws for the vacuum equations. Roughly speaking, gen-
eralized symmetries are infinitesimal transformations constructed locally from the
metric and its derivatives mapping solutions to solutions. Generalized conservation
laws are closed but not exact differential forms constructed locally from solutions
to the field equations and/or solutions to the linearized equations. The generalized
conservation laws correspond to conserved volume, surface, or line integrals asso-
ciated to solutions to the Einstein equations. In the mathematical literature, the
generalized conservation laws go by the name “characteristic cohomology” of the
field equations [Bryant and Griffiths (1993)] (for a BRST approach to characteristic
cohomology see [Barnich et al (1994)]).

To begin our survey of generalized symmetries and conservation laws for the
Einstein equations, we should first improve our understanding of the jet space of
solutions to the vacuum equations.

2 Jet Space

The jet space of solutions to the Einstein equations can be viewed as the be-
ginning of an answer to the question “What data are freely specifiable at a point

of a vacuum spacetime?” This question is similar in spirit to the kind of question
one asks when investigating the Cauchy problem, where one seeks the data which
can be freely specified on a Cauchy surface. Of course the two questions are quite
different mathematically but, to carry the analogy a little further, one can think
of the jet space of solutions as something of an analog of Cauchy data for analytic
solutions. Indeed, to construct an analytic solution to the Einstein equations, one
can pick coordinates xi about some point xi = 0 and write down a power series
expansion:

(1) gij(x) = gij(0) + gij,k(0)xk +
1

2!
gij,kl(0)xkxl + · · · .

Evidently, formal power series expansions of a metric about a point xi are deter-
mined by the data

(2) (xi, gij , gij,k, gij,kl, . . . ).

Such data define a point in the jet space of metrics J . Of course, to define a metric
via power series about some point, one should enforce some convergence criterion on
the metric and its derivatives at the given point; the jet space is, however, defined
without such convergence criteria. A more precise way to introduce the jet space of
metrics is to view it as a bundle whose base space is spacetime and whose typical
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fiber is the space of values of the metric and its derivatives at a point. A metric
defines a cross section of this bundle. Moreover, Borel’s theorem (see, e.g., [Kahn
(1980)]) implies that given a point (xi, gij , gij,k, gij,kl, . . . ) ∈ J , there is always a
smooth metric which has that data.

Let us remark that while we have defined J using coordinates and coordinate
derivatives of the metric, the jet space is in fact a coordinate-independent ob-
ject. It is possible to give a coordinate-free definition of J as a fiber bundle over
spacetime along the lines mentioned above. In particular, it is possible to replace
coordinates and coordinate derivatives with globally defined derivative operators
(see, e.g., [Wald (1990)]), but for simplicity we shall stick with an informal local
treatment.

Having defined the jet space of metrics we would now like to see what points
in jet space are allowed by the Einstein equations. To do this, we need a slightly
better parametrization of J . To this end, given coordinates xi, define variables
Γ(k) and Q(k), where

(3) Γ(k) −→ Γi
j0j1j2···jk

:= Γi
(j0j1,j2···jk), k = 1, 2, . . .

and

(4) Q(k)
−→ Qab,c1c2···ck

:= gamgbn∇(c3
· · · ∇ck

Rm n
c1 c2)

k = 2, 3, . . . ,

where ∇ is the torsion-free derivative operator compatible with gab and Rabcd is the
Riemann tensor. It can be shown that Γ(k) and Q(k) are algebraically independent
at any given point of spacetime. The variables Γ(k) carry the coordinate-dependent
information in the kth partial derivatives of the metric. In particular, all of the
variables Γ(k) vanish at the origin of a geodesic coordinate chart. The variables
Q(k) contain all spacetime-geometric information in the kth partial derivatives of the
metric. In particular, the curvature tensor and all of its covariant derivatives can be
uniquely expressed in terms of the variables Q(k). The tensors Q(k) were apparently
introduced by Penrose [Penrose (1960)] and are closely related to Thomas’s “normal
metric tensors” [Thomas (1934)].

Our first result is that the variables

(5) (xi, gij , Γ
(1), Γ(2), . . . , Q(2), Q(3), . . . )

uniquely parameterize points in the jet bundle. In other words, given the data (5)
one can reconstruct the metric and all of its derivatives at the point labeled xi.
The data (5) are freely specifiable at a point of a (pseudo-) Riemannian manifold.

The Einstein tensor can be viewed as a collection of functions on J , and the
Einstein equations can be viewed as defining a subspace (actually a submanifold)
E →֒ J . Because the Einstein equations are geometrically defined, they introduce
relations only among the variables Q(k). In fact, the vacuum equations uniquely
fix the traces of these tensor in terms of their trace-free parts [Anderson and Torre
(1994)]. Thus a point in the jet space of Einstein metrics is defined by the variables

(6) (xi, gij , Γ
(1), Γ(2), . . . , Q̃(2), Q̃(3), . . . ),

where Q̃(k) denotes the completely trace-free part of tensors (4) with respect to the
metric gij . The data (6) are freely specifiable at a point of a Ricci-flat spacetime.
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These coordinates on E can be interpreted in terms of a power series expansion
of an Einstein metric as follows. If we are trying to build an Einstein metric by
Taylor series we (i) specify the spacetime point xi around which the series is being
developed, (ii) specify the metric components gij at xi, (iii) specify the variables

Γ(k); this fixes the coordinate system in which the metric is being built, (iv) specify

the variables Q̃(k), which supplies the geometric content of the Einstein metric. Of
course, this procedure leaves open the question of convergence of the series.

The parametrization (6) of E turns out to be somewhat unwieldy in applications,
primarily because of the need to remove so many traces. A much more useful
parametrization, which only exists in four dimensions, uses a spinor representation

of the variables Q̃(k). Let ΨABCD and ΨA
′
B

′
C

′
D

′ denote the Weyl spinors [Penrose
(1960)]. Fix a soldering form σAA

′

a such that, for a given gij ,

(7) gij = σAA
′

i σjAA
′ .

It can be shown that the variables Q̃(k) are uniquely parametrized by the soldering
form, the spinor variables

(8) Ψ(k)
←→ Ψ

J
′

1
···J

′

k−2
J1···Jk+2

= ∇
(J′

1
(J1
· · · ∇

J
′

k−2
)

Jk−2
ΨJk−1JkJk+1Jk+2),

and their complex conjugates Ψ
(k)

. Thus we obtain a spinor parametrization of E
in terms of

(9) (xi, gij , Γ
(1), Γ(2), . . . , Ψ(2), Ψ(2), Ψ(3), Ψ(3), . . . ).

The spinor aficionado will recognize that our spinor parametrization of E is closely
related to Penrose’s notion of an “exact set of fields” [Penrose (1960)].

The parametrization (9) of the jet space of solutions to the Einstein equations is
an important technical tool needed to classify symmetries and conservation laws.
More generally, these variables allow us to address problems of the following type.
Suppose we are interested in finding a tensor field T = T (x, g, ∂g, . . . ), locally
constructed from the metric and its derivatives to some order, which satisfies some
local differential relations,

(10) DT = 0,

when the Einstein equations hold. As an example, suppose we wanted to find a
conserved current for the Einstein equations. This would be a vector field ja =
ja(x, g, ∂g, . . . ) such that

(11) ∇aja = 0 when Gab = 0.

The tensors T and DT can be viewed as a collection of functions on J and the
differential relation (10) says that the function DT vanishes on E . If we express
the relation (10) in the coordinates (9), then (10) must hold identically. The power
of spinor analysis can now be brought to bear on classifying all such solutions T

to this identity up to terms which vanish on E . As we shall see, classifications of
generalized symmetries and generalized conservation laws are precisely problems of
this type.
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To be honest, it is a bit of an over-simplification to say that these problems can
be solved in a straightforward manner given the coordinates (9). The results to be
given below are in fact intricately related through a mathematical structure on J
(or E) called “the variational bicomplex” [Anderson (1992)]. Because my goal here
is to emphasize results rather than techniques, I will not be able to say more about
the variational bicomplex in this paper. Suffice it to say that the bicomplex is an
indispensable tool in the analysis of any set of field equations, and this mathematical
structure is playing a vital role “behind the scenes” in all that follows.

3 Generalized Symmetries

A generalized symmetry is an infinitesimal transformation constructed locally
from the relevant fields and their derivatives to some order which maps solutions
of the field equations to other solutions. Generalized symmetries are of interest
because they provide methods of generating new solutions from known solutions,
their existence is necessary for the existence of local conservation laws, and because
of their role in complete integrability of a variety of partial differential equations
[Olver (1993)]. Before giving results from our classification of generalized symme-
tries of the Einstein equations, let us first have a look at an elementary example of
a dynamical system that admits a generalized symmetry.

Consider the Kepler problem, which can be described by the non-linear system
of ordinary differential equations:

(12) r′′ = −k
r

r3
,

where r is the relative position of two masses in space, k is a constant, and a prime
denotes a time derivative. A point in the jet space J for this problem is defined by
the variables (t, r, r′, r′′, . . . ). The equations (12) and their time derivatives define
the jet space E →֒ J of solutions. Coordinates on E are (t, r, r′); these variables
parametrize the extended velocity phase space for the Kepler problem. There are
a couple of obvious symmetries of the equations (12), namely, rotational symme-
try and time translation symmetry. These symmetries are usually called “point
symmetries” or “Lie symmetries”. The point symmetries are distinguished by the
fact that they can be defined as groups of transformations of the underlying space
of independent and dependent variables (t, r) only, without involving derivatives
of r. By contrast, the following infinitesimal transformation necessarily involves
derivatives of r:

(13) δr = 2(λ · r)r′ − (λ · r′)r − (r · r′)λ.

Here λ is a fixed, time-independent vector. It is straightforward to check that if
r(t) satisfies (12) then, to first order in λ, r(t) + δr(t) also satisfies (12). The
transformation (13) represents a first-order generalized symmetry of the equations
(12)1. I think you will agree that it is somewhat remarkable that the relatively
simple system of equations (12) admits such a complicated “hidden symmetry”.
The three-parameter family of symmetries given in (13) are responsible for the

1Note that all generalized symmetries of (12) can be expressed as first-order symmetries if
we use the equations of motion. This property of generalized symmetries does not generalize to
partial differential equations
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existence of a conserved vector, known as the Laplace-Runge-Lenz vector A (see,
for example, [Goldstein(1990)]):

(14) A = r′ × (r× r′)− k
r

r
.

Conservation of the Laplace-Runge-Lenz vector reflects a special feature of the
Kepler problem: all its bound orbits are closed. The only other central force that
has this special property is that of an isotropic oscillator, and in this case there is
again a generalized symmetry and (tensor) conservation law which is responsible.

It is natural to wonder if the Einstein equations will admit any hidden generalized
symmetries as do many simpler systems of non-linear differential equations. To find
such symmetries we must look for an infinitesimal transformation

(15) δgab = hab(x, g, ∂g, . . . )

mapping solutions to solutions. This means that hab must satisfy the linearized
equations,

(16) −∇c∇chab −∇a∇b(g
cdhcd) + 2∇c∇(ahb)c = 0,

when the metric gab, out of which hab is built, satisfies the Einstein equations
Gab = 0. Because we are only interested in transformations between solutions, any
two symmetries that are equal when the field equations hold can be considered
equivalent. So, for example, the Einstein tensor defines a generalized symmetry,
hab = Gab but the transformation it generates is trivial, i.e., we identify this sym-
metry with hab = 0. As described earlier, the classification of on-shell generalized
symmetries is exactly the kind of problem that can be fruitfully attacked using the
spinor parametrization of E . In detail, the symmetry transformation hab is viewed
as a function on J (we are actually only interested in the restriction of hab to E).
We view (16) as requiring that certain functions on J built from hab vanish when
restricted to E . That is, as a function on E , hab should satisfy the identity (16).
As an identity on E , (16) must hold for all values of the coordinates (9); analysis
of this requirement leads to the following result.

Let hab = hab(x, g, ∂g, . . . ) be a generalized symmetry of the vacuum Einstein
equations in four spacetime dimensions. Then there is a constant c and a covector
Va = Va(x, g, ∂g, . . . ) such that, modulo terms that vanish when Gab = 0, the
symmetry must take the following form:

(17) hab = c gab +∇aVb +∇bVa.

This form of hab represents a combination of two types of symmetry transforma-
tions. The term c gab corresponds to a scale symmetry admitted by the vacuum
equations. If we allowed for a cosmological constant, this symmetry would be ab-
sent. The terms ∇aVb +∇bVa correspond to the infinitesimal change in the metric
arising from the pull-back by a 1-parameter family of (local) spacetime diffeomor-
phisms generated by V a. Thus the most general symmetry is a combination of a
constant scaling and a “gauge transformation”. Of course, both of these symme-
tries are well-known and we conclude that the vacuum Einstein equations admit no
“hidden local symmetries”.
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4 Generalized Conservation Laws

The symmetries we have found do not have any non-trivial conservation laws
associated with them. Noether’s theorem then suggests that, aside from possi-
ble topological conservation laws, there are no conserved currents for the Einstein
equations built locally from the metric and its derivatives. This is in fact true,
but it does not follow directly from our symmetry classification because it is a pri-

ori possible to have symmetries that are on-shell trivial and nevertheless generate
non-trivial conservation laws. For completely non-degenerate systems of PDE’s it
is known that every non-trivial conserved current follows from a non-trivial gen-
eralized symmetry [Olver (1993)], but the Einstein equations do not qualify as a
completely non-degenerate system owing to their general covariance. The problem
of rigorously classifying conserved currents for the vacuum Einstein equations can
be solved using the variational bicomplex and our spinor techniques. In fact, it is
possible to generalize the analysis and classify all closed forms locally built from
vacuum metrics as well as a large class of closed forms locally built from vacuum
metrics and solutions of the linearized equations. We begin with closed forms built
locally from vacuum metrics (see [Wald (1990)] for a general discussion of identically
closed forms locally built from fields).

Let ω = ω(x, g, ∂g, . . . ) be a p-form locally built from the metric and its deriva-
tives to some order. We assume p < 4. If dω = 0 when the vacuum Einstein
equations hold, we say that ω represents a generalized conservation law for the
vacuum equations. The importance of a generalized conservation law stems from
the fact that its integral over a closed2 p-dimensional submanifold Σ is independent
of the choice of Σ (up to homology) when the metric satisfies the field equations.
Thus the integral

(18) Q[g] =

∫

Σ

ω(x, g, ∂g, . . . )

is a conserved charge characterizing vacuum spacetimes. As we are only interested
in the values of the conserved charges for solutions of the field equations, we will
identify any generalized conservation laws which are equal when the field equations
hold. In other words, viewing the generalized conservation laws as functions on J ,
we are only interested in their restriction to E .

Of course, if (on E) there exists a (p− 1)-form η = η(x, g, ∂g, . . . ) such that

(19) ω = dη,

then ω is identically closed and Q[g] = 0 for any metric g. We will call such exact
forms trivial conservation laws.

If ω is a closed 3-form, then its Hodge dual is a conserved current; the conserved
charge is then a volume integral of a local density. In field theory this is the
way in which conserved charges typically arise. However, interesting conserved
quantities do sometimes arise not as volume integrals but instead as surface—or
even line—integrals. For example, if we restrict our attention to vacuum (regions
of) spacetimes admitting a Killing vector field ka, then the Komar 2-form,

(20) κab = ǫab
cd∇ckd,

2With suitable boundary conditions, the submanifold can be open or have boundaries.
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defines a generalized conservation law, as does the twist 1-form

(21) τa = kbκab.

Is there a field-theoretic explanation for the existence of these generalized conser-
vation laws? Are there any generalized conservation laws admitted by the vacuum
Einstein equations which can be defined without assuming the existence of a Killing
vector? We shall answer the latter question now and return to the first question
toward the end of this article.

We wish to classify closed forms locally built from Ricci-flat metrics. Once again
we are looking for some functions on J satisfying a certain differential relation on
E . Using spinor techniques and basic properties of the variational bicomplex we
obtain the following results. If ω = ω(x, g, ∂g, . . . ) is a p-form locally constructed
from the metric, and ω is closed when the Einstein equations hold then, modulo
terms which vanish when the field equations are satisfied, there exists a (p−1)-form
η = η(x, g, ∂g, . . . ) and a constant c such that

(22)

ω = const., p = 0;

ω = dη, p = 1, 2;

ω = c σ + dη, p = 3.

In (22) σ is an identically closed 3-form locally built from the metric and its first
derivatives. This 3-form is a representative of the non-trivial cohomology class at
degree 3 which exists on the bundle of Lorentzian metrics over spacetime [Torre
(1995)]. The corresponding conserved charge is the “kink-number” of the spacetime,
which was discussed by Finkelstein and Misner quite some time ago [Finkelstein and
Misner (1959)]. Roughly speaking, the kink number counts the number of times
light cones tumble as one traverses a hypersurface. Because σ is identically closed,
this conservation law exists for any gravitational theory in which one employs a
Lorentzian metric. Aside from this single topological conservation law, the vacuum
Einstein equations admit no non-trivial generalized conservation laws.

There is an immediate corollary of this result which is relevant for the Hamil-
tonian formulation of general relativity on closed universes [Torre(1993)]. Recall
that the Einstein equations can be viewed as defining a constrained Hamiltonian
system. The constraints limit the possible range of canonical data and gener-
ate canonical transformations which are Hamiltonian expressions of the action of
spacetime diffeomorphisms on the Cauchy data. It is of interest, especially in at-
tempts to canonically quantize the theory, to find functions on the gravitational
phase space which are invariant under these canonical transformations, i.e., which
have vanishing Poisson brackets with the constraint functions. These “gauge invari-
ant” functions on phase space are commonly called the observables of the theory.
Because, for closed universes, the Hamiltonian of general relativity is a linear combi-
nation of the constraint functions, the observables are constants of the motion. But
we have, in effect, just classified a large set of constants of motion for the Einstein
equations, and so we have a classification of a particular type of observables.

Let us define a local observable O as an observable on the gravitational phase
space which is constructed as an integral over a compact p-dimensional manifold Σ
of a differential p-form ω, where ω is locally built from the canonical coordinates and
momenta and their derivatives to any finite order. Because the canonical variables
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are related by local formulas to the spacetime metric it follows that, on solutions (in
which Σ is embedded in spacetime), O is a conserved charge of the type (18). But
there are no such conserved charges except the kink number, which must always
vanish in spacetimes that admit a foliation by spacelike hypersurfaces [Finkelstein
and Misner (1959)]. We conclude that there are no local observables for vacuum
spacetimes with compact Cauchy surfaces. This is not to say that there are no
observables, but only that the simplest class of observables that one naturally tries
to construct for general relativity are simply not there.

Let us now turn to generalized conservation laws built from solutions γab to
the linearized Einstein equations. An important example is provided by the pre-
symplectic current for the vacuum equations. Here we present it as a 3-form:

(23) Ωabc =
(
γ m
[a ∇

nγ̂
p
b − γ̂m

[a∇
nγ

p
b

)
ǫc]mnp.

The pre-symplectic current is locally built from the metric, a pair of metric per-
turbations γ and γ̂, and their first derivatives. Ω is closed when the metric and
perturbations satisfy the Einstein equations and linearized equations respectively.
Thus its integral over a compact hypersurface,

(24) Ξ(γ, γ̂) =

∫

Σ

Ω,

is independent of the choice of Σ up to homology2. Up to a normalization, Ξ(γ, γ̂)
is the value of the pre-symplectic form on the space of solutions to the vacuum
Einstein equations when acting on a pair of tangent vectors (γ, γ̂) (see, for example,
[Ashtekar (1990)], and references therein).

Integrable systems of PDE’s often admit inequivalent symplectic structures [Olver
(1993)]. In addition, it is known that the existence of generalized conservation laws
depending on three or more solutions to the linearized equations is closely related
to applicability of Darboux’s method of integration [Anderson (1992)]. Thus this
sort of conservation law—depending on one or more solutions to the linearized
equations— can expose important features of a set of field equations, and it is nat-
ural to ask if the Einstein equations admit any other generalized conservation laws
of this type.

To present our classification of generalized conservation laws depending on so-
lutions to the linearized equations we must introduce some notation. Let ω(p,q)

denote a spacetime p-form locally constructed from the metric and its derivatives
as well as from q solutions of the linearized equations and their derivatives. The
linearized solutions must appear in a skew q-multilinear fashion. For example, the
pre-symplectic current Ωabc would be denoted ω(3,2) in this notation, and the forms
classified in (22) would be denoted ω(p,0). We now look for such forms that are closed
when the Einstein equations and their linearization are satisfied by the metric and
perturbations. To find such forms, we must generalize our spinor parametrization
of E to include the jet space of solutions to the linearized equations, but this is rel-
atively straightforward. Using techniques from the variational bicomplex we obtain
the following results.

Let ω(p,q), q > 0 and p < 4, be a generalized conservation law for the vacuum
Einstein equations in four spacetime dimensions. Then there exist constants b

and c and forms η(p−1,q) locally constructed from the metric and perturbations
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such that, modulo terms which vanish when the Einstein and linearized Einstein
equations hold, we have:

(25)

ω(0,q) = 0;

ω(p,q) = dη(p−1,q), p = 1, 2;

ω(3,q) = dη(2,q), q > 2;

ω(3,2) = b Ω + dη(2,2);

ω(3,1) = c Θ + dη(2,1).

In this last equation we have denoted by Θ a 3-form Θabc, which is defined as

(26) Θabc = ǫabc
d∇e (γde − gdeg

mnγmn) .

Θ is closed when gab and γab satisfy the Einstein equations and their linearization
respectively. The integral of Θ over a hypersurface is again independent of the
choice of hypersurface and defines the canonical 1-form, or pre-symplectic potential,
on the space of solutions to the Einstein equations. This means that, viewing the
conserved charge defined by Θ as a 1-form on the infinite-dimensional space of
solutions acting on a tangent vector γ, the exterior derivative of the charge is the
symplectic 2-form on the space of solutions. Aside from the symplectic current
and its associated potential, there are no other non-trivial generalized conservation
laws built from solutions of the linearized equations as described above. Note that
this result establishes a uniqueness theorem for the gravitational pre-symplectic
structure in the sense that any such structure which can be constructed as the
spatial integral of a closed, locally constructed 3-form is a multiple of (24).

5 Discussion

We have classified the generalized symmetries and generalized conservation laws
of the vacuum Einstein equations in four dimensions. Our results indicate that,
from the vantage point of geometric structures on the jet space of solutions, one
can see only a handful of “special features” of the vacuum equations. Still, let us
summarize our results and what they tell us about the vacuum equations.

The generalized symmetries include a constant scale symmetry and a diffeomor-
phism symmetry. The scale symmetry simply indicates that there are no length
scales set by the vacuum equations; this symmetry is absent if one modifies the
equations using dimensionful constants, e.g., if one includes a cosmological term
in the equations. The diffeomorphism symmetry reflects the general covariance of
the Einstein equations. We expect this symmetry to be present in any generally
covariant system of field equations. Aside from these well-known transformations,
the Einstein equations are devoid of symmetry.

The only closed–not–exact form locally constructed from Ricci-flat metrics corre-
sponds to a topological conservation law—the conservation of “kink number”. This
conservation law reflects the non-trivial topology of the bundle of Lorentzian met-
rics over spacetime and will arise in any system of field equations for a Lorentzian
metric. If the metric is Riemannian, this conservation law is absent. The absence of
any other conserved 3-forms can be traced back to the absence of suitable general-
ized symmetries. But this does not explain the dearth of lower-degree conservation
laws.
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Remarkably, it is possible to give a rather simple theory of lower-degree conser-
vation laws in a general field theory [Anderson and Torre (1995)], which can be
thought of as somewhat analogous to Noether’s theory of conserved currents [Olver
(1993)]. With some mild technical assumptions it is possible to show that in order
for a set of Lagrangian field equations to admit lower-degree conservation laws two
conditions must be met. First, the theory must be a “gauge theory”, that is, it
must admit some form of gauge transformation, where we define a gauge trans-
formation as a generalized symmetry built from arbitrary functions of spacetime.
Second, the solutions to the field equations must be such that they always allow for
gauge symmetries, that is, there always exists a gauge transformation that leaves
each solution invariant3. Thus, the gauge transformation of the Einstein equations
is the diffeomorphism symmetry ((17) with c = 0), and a gauge symmetry of a so-
lution gab to the field equations would be a diffeomorphism which does not change
that solution. The infinitesimal gauge symmetry is then generated by a generalized

Killing vector field, that is, a vector field locally constructed from the metric and
its derivatives to some order which satisfies the Killing equations when the metric
is Ricci-flat. The generic solution to the vacuum equations admits no Killing vector
fields. More precisely, it is possible to show that there are no generalized Killing
vector fields, and so we can say that the absence of lower-degree conservation laws
for the Einstein equations reflects the absence of isometries of generic solutions. If
we consider reductions of the Einstein equations obtained by demanding the solu-
tions always admit a Killing vector, then the general theory leads to lower-degree
conservation laws such as shown in (20) and (21).

Finally, we have classified generalized conservation laws built locally from so-
lutions to the linearized equations and found only the symplectic current and its
“potential”. These conservation laws reflect the variational properties of the Ein-
stein equations. As is well-known [Ashtekar (1990)], a conserved symplectic current
arises for any field equations derivable from a Lagrangian. Thus the conserved 3-
form (23) reflects the fact that the Einstein equations can be derived from the
Einstein-Hilbert Lagrangian. The essential uniqueness of the pre-symplectic cur-
rent leads to a uniqueness result for variational principles for the vacuum Einstein
equations, which will be presented elsewhere. Normally, the current defining the
symplectic potential for a system of Lagrangian field equations is not conserved.
However, it is not hard to show that the current defining the symplectic potential
is conserved provided the Lagrangian can be chosen to vanish when the field equa-
tions hold. Thus the closed 3-form (26) reflects the fact that the Einstein-Hilbert
Lagrangian vanishes on Ricci-flat metrics.

In this article I have discussed structural features of the vacuum Einstein equa-
tions which can be uncovered using spinor–jet space techniques. The techniques
that were used can be generalized to analyze related systems of equations, specifi-
cally (i) reductions of the Einstein equations such as obtained by restricting atten-
tion to solutions with one or more Killing vector fields; and (ii) the Einstein equa-
tions with matter couplings, e.g., the Einstein-Maxwell equations. As mentioned
above, we expect non-trivial lower-degree conservation laws to arise when one ana-
lyzes the Einstein-Killing equations, and a classification of such conservation laws
is currently in progress. Matter couplings can also induce lower degree conservation
laws; for example, the Einstein-Maxwell equations admit a 2-form conservation law.

3The gauge symmetry of a solution will in general vary with the choice of solution.
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More intriguing, if perhaps on somewhat less firm physical ground, are matter cou-
plings dictated by Kaluza-Klein reductions of higher-dimensional vacuum relativity.
For example, the classical reduction from five to four dimensions corresponds to an
Einstein-Maxwell-scalar field theory. This reduction is dictated by the assumption
that the five-dimensional vacuum theory admits a Killing vector field, which, on
general grounds, indicates the existence of “characteristic cohomology”. The details
of such investigations will be presented elsewhere.
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