
AN ANALYSIS OF ITERATIVE ALGORITHMS FOR IMAGE RECONSTRUCTIONFROM SATELLITE EARTH REMOTE SENSING DATAMatthew H WillisBrigham Young University, MERS Laboratory459 CB, Provo, UT 84602801-378-4884, FAX: 801-378-6586, willism@et.byu.eduAbstractThis paper discusses algorithms for creatingenhanced-resolution images from satellite earth re-mote sensing data. The well-known ART andMART algorithms are discussed, as well as a newclass of algorithms|column-normalized algorithms.The SART algorithm is studied as an example ofa column-normalized algorithm and is comparedstructurally to the SIR algorithm to help explainSIR's success at remote sensing image reconstruc-tion. Several reconstruction algorithms are thencompared using both simulated and real satellite ra-diometer data sets. IntroductionWith humankind's recent interest in global clima-tology and the impact that we have made on ourenvironment, there is a pressing need for fast, accu-rate measurements of key global parameters such asocean wind speed, ocean height, and land and icecharacteristics. Some of the land and ice character-istics that are of interest include snow-cover classi-�cation, plant and soil moisture content, vegetationclassi�cation, and polar ice-extent mapping.Microwave satellite instruments, such as radiome-ters and scatterometers, play an important role inhelping determine these key global parameters. Theadvantage of microwave instruments is that theycan take measurements of the earth's surface day ornight and are not a�ected by cloud cover. Anotheradvantage of these instruments is their rapid repeatcoverage, with the recent QuickScat scatterometerbeing able to cover almost the entire earth in oneday.The tradeo� for the fast coverage of radiometersand scatterometers is their low spatial resolution.Radiometer and scatterometer measurements overthe ocean have been used successfully for generatingnumerical weather-prediction model data and deter-mining ocean wind speed, but low resolution has lim-ited their use in land and ice studies. However, by

applying resolution enhancement algorithms to thedata, images with su�cient resolution for land andice studies can be obtained.Problem DescriptionFigure 1 illustrates the remote sensing imaging prob-lem. First, the observed image is discretized into
yi = ~hTi ~x = h~hi; ~xi

Figure 1: Geometry of image reconstruction in re-mote sensingpixels. Each measurement is the received microwavesignal from the area on the ground multiplied bythe antenna aperture function at each pixel. In thecase of a radiometer, this observation is the weightedaverage of the radiometric brightness temperatureof the pixels in the aperture multiplied by the an-tenna response at that pixel. For a scatterometer,a weighted average over the illuminated region isobserved as the microwave backscatter. The valueof the i'th measurement, yi, then, is yi = h~x;~hiiwhere h�; �i denotes the standard inner product, ~x isthe row-scanned image, and ~hi contains informationabout the value and location of the antenna foot-print, such that hij represents the contribution ofthe j'th pixel to the i'th measurement.The measurements are stacked up to yield~y = H~x (1)1
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where y : Rm is the measurement vector, and H :Rm�n is the point spread matrix, or transfer ma-trix. The remote sensing imaging problem is to �ndan estimate x̂ given ~y and H. In general, direct in-version ofH to solve for x̂ is not possible because thematrix H is often too large to �t in its entirety incomputer memory, and also because H may be un-derdetermined and have no unique inverse. Whilethe least-squares pseudo-inverse exists for invertingan underdetermined matrix, the least-squares solu-tion may not be the most desirable solution. Theseissues suggest using an iterative algorithm to invertH.For the rest of this report I will drop the vectorsymbol notation, with the understanding that vari-ables without subscripts are understood to be vec-tors with the exception of hi, which is the i'th rowof H. Algebraic Reconstruction TechniquesReconstructing an image from a set of measure-ments, as is done in the remote sensing imag-ing problem, is called image reconstruction projec-tions. Algorithms for reconstructing images fromprojections have been used in the medical imagingcommunity since the early 1970s for reconstructingComputerized Tomography (CT) and electron mi-croscopy images [1],[2]. One class of algorithms usedin medical imaging is algebraic reconstruction tech-niques, which iteratively invert the matrix H to �ndx̂. Two common reconstruction methods in thisclass of algorithms are the Algebraic Reconstruc-tion Technique (ART) and the Multiplicative ART(MART) algorithms.The ART algorithm has been proved to convergeto a least-squares solution [3], satisfying the con-strained minimization problemminx k x k22 such that y = Hx: (2)The algorithm update is as follows:Initialization: x� = 0Iterative step:xk+1j = xkj + yi � hhi; xkik hi k hij (3)where xkj is the jth element of the vector x at thekth iteration, hi is the ith row of H, and hij is the(i,j)th element of H. Only one row of H|hi|isneeded for each iteration, such that only one row ofH needs to be stored in the computer's memory at atime, making it practical for reconstructing systemswhere H is large.

MART, another popular algorithm, is a MaximumEntropy (ME) algorithm, satisfying the constrainedoptimizationminx Xx x lnx such that Hx = y; (4)where Px x lnx is the negative of the informationtheoretic entropy. The algorithm update is as fol-lows:Initialization: x� = exp(�1)Iterative step:xk+1j = xkj � yihhi; xki��1hij : (5)Column-normalized AlgorithmsFor the past several years the Brigham Young Uni-versity Microwave Earth Remote Sensing (BYUMERS) Lab has been using image reconstructionalgorithms to create enhanced-resolution images ofthe earth's surface. ART and MART were found tosu�er from sampling artifacts and noise ampli�ca-tion, limiting their use for remote sensing image re-construction. In response, the MERS lab developedthe Scatterometer Image Reconstruction Technique(SIR) for image reconstruction. The SIR update isshown in the following lines:Initialization: x� = arbitrary.Iterative step xk+1j = MXi=1 ukijhijMXi=1 hij ; (6)or xk+1j = HTj uijHTj 1 (7)in matrix form, whereHj is the jth column ofH and1 is a vector of ones. The nonlinear update term uijis given byukij = ( h 12fki �1� 1dkk�+ 1xkj dki i�1 dki � 1�12fki (1� dki ) + xkj dki � dki < 1: (8)where dki is the �delity termdki = � yihhi; xki�and fki is the forward projection hhi; xki.SIR performs very well for image reconstruction,suppressing sampling artifacts and noise. However,2



at the time of SIR's development the reasons for itssuccess were not well understood.Another algorithm that has shown promise for re-mote sensing image reconstruction is the Simultane-ous ART (SART) algorithm, who's update is givenin matrix form in the following lines:Initialization: x� = 0.Iterative step xk+1j = xkj + HTj dkHTj 1 ; (9)where dki = yi � hhi; xki: (10)SART was proposed by Andersen and Kak as amethod for CT image reconstruction with e�ectiveartifact suppression characteristics [4],[5]. In mythesis, I prove that SART converges to a weightedleast-squares solution, satisfying the constrained op-timization problemminx Xj x2jHTj 12 such that y �Hx: (11)This weighting of the j'th pixel by the sum of theelements in the jth column of H, which containsthe sampling information (number of times sampledand the weighting at each sample) for that pixel,appears to reduce sampling artifacts and noise inthe reconstructed image. The weighting in Eq. (11)is a result of the normalization of the SART updatein Eq. (9) by HTj 1 =Pj hij , the sum of the columnsof H.Since the SIR update has the same normaliza-tion, we suspect that its success at artifact and noisesuppression is also due the normalization. We havenamed this class of algorithms, which normalize theupdate by the columns of H, column-normalized al-gorithms. Column-normalized algorithms appearsto be an appropriate class of algorithms for remotesensing image reconstruction.Reconstruction ResultsIn this section, six algorithms are compared whenreconstructing simulated and real data|ART, ARTwith modi�ed median �lter (ARTF), SART, SARTwith modi�ed median �lter (SARTF), SIR, and SIRwith modi�ed median �lter (SIRF). The modi�edmedian �lter, which selects the median intensitywhen there is a wide range of pixel values in thewindow and computes an average when there is anarrow range of values, was developed in conjunc-tion with SIR and was found to control the noiselevel in the reconstructed images.

The synthetic truth image used for simulation isshown in Figure 2. For realistic simulations, a sam-
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Figure 2: The original synthetic \truth image" usedfor simulationspling grid matched to the SSM/I satellite radiome-ter sampling grid over an Amazon region is used (seeFigure 4). The measurements are taken from Julianday 190 to 194 in 1999, during which time there were2604 measurements taken of the earth's surface. Fig-ure 3 shows the instrument sampling over the regionof interest for the speci�ed day range. The noisymeasurements were created by adding � = :0036i.i.d., white, Gaussian noise the the noise-free mea-surements, resulting in a signal-to-noise ratio (SNR)of 45.0 dB.Figures 5, 6, and 7 show the results for the noisefree simulation, the noisy simulation, and the realdata respectively. All of the algorithms reconstructthe simulated data well, but ART has the worst ar-tifact and noise suppression. The SIR and SART re-constructions are very similar, which similarity maybe a result of the column normalization in their it-erative update.The results of the reconstructions from real dataare more interesting. While SIR and SART do com-parable jobs of reconstructing the image, the ARTreconstruction is quite poor. ART may not recon-struct the image well for several possible reasons:� There may be discrepancies between the ac-tual antenna footprint and the footprint modelused for reconstruction, causing inconsistenciesin the system.� Noise in the system corrupts the image.3



� Because the measurements are taken over arange of days, the ground image is not station-ary, which will result in more inconsistencies.The above scenarios would worsen the performanceof all of the algorithms, but as Figures 5 and 6 indi-cate, ART inherently su�ers more from artifacts andnoise than do the column-normalized algorithms.ConclusionThis paper discussed di�erent algorithms which canbe used for remote sensing image reconstruction tocreate enhanced resolution images of the earth'ssurface. A class of algorithms, called column-normalized algorithms, was discussed, and recon-struction results from both simulated and real dataindicate that column-normalized algorithms may bemore appropriate than ART or MART for remotesensing image reconstruction.References[1] R. Gordon, R. Bender, and G.T. Herman, \Alge-braic reconstruction technique (ART) for three-dimensional electron microscopy and x-ray pho-tography", J. Theoret. Biol, vol. 29, pp. 471{481,1970.[2] P. Gilbert, \Iterative methods for the three-dimensional reconstruction of an object fromprojections", J. Theoret. Biol, vol. 36, pp. 105{117, 1972.[3] G.T. Herman and A. Lent, \ART, mathematicsand applications", J. Theo. Biol., vol. 42, pp.24{32, 1973.[4] A.H. Andersen and A.C. Kak, \Simultaneous al-gebraic reconstruction technique (SART): A su-perior implementation of the ART algorithm",Ultrasonic Imaging, 1984.[5] A.H. Andersen, \Algebraic reconstruction in CTfrom limited views", IEEE Trans. on Med. Img.,vol. 8, no. 1, pp. 50{55, March 1989.
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Figure 3: SSM/I sampling geometry|The dots in the left �gure indicate the center of each footprint. Theright �gure shows a view of some representative footprints (both �gures are on the same scale).

Figure 4: The area in the black rectangle represents the region in the Amazon basin from which themeasurement geometries are taken (the area is magni�ed at the bottom right hand corner of the image).5
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(e) (f)Figure 5: Noiseless reconstructions for SSM/I sampling geometry using (a) ART (b) ART with �lter (ARTF)(c) SART (d) SART with �lter (SARTF) (e) SIR (f) SIR with �lter (SIRF)6
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(e) (f)Figure 6: 45.0 dB SNR SSM/I geometry reconstruction using (a) ART|20 iterations (b) ART with �lter(ARTF)|12 iterations (c) SART|1058 iterations (d) SART with �lter (SARTF)|50 iterations (e) SIR|694 iterations (f) SIR with �lter (SIRF)|27 iterations7
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(e) (f)Figure 7: Reconstruction of real SSM/I data using (a) ART|5 iterations (b) ARTF|15 iterations (c)SART|30 iterations (d) SARTF|30 iterations (e) SIR|10 iterations (f) SIRF|10 iterations8


