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Abstract

This paper discusses algorithms for creating
enhanced-resolution images from satellite earth re-
mote sensing data. The well-known ART and
MART algorithms are discussed, as well as a new
class of algorithms——column-normalized algorithms.
The SART algorithm is studied as an example of
a column-normalized algorithm and is compared
structurally to the SIR algorithm to help explain
SIR’s success at remote sensing image reconstruc-
tion. Several reconstruction algorithms are then
compared using both simulated and real satellite ra-
diometer data sets.

Introduction

With humankind’s recent interest in global clima-
tology and the impact that we have made on our
environment, there is a pressing need for fast, accu-
rate measurements of key global parameters such as
ocean wind speed, ocean height, and land and ice
characteristics. Some of the land and ice character-
istics that are of interest include snow-cover classi-
fication, plant and soil moisture content, vegetation
classification, and polar ice-extent mapping.

Microwave satellite instruments, such as radiome-
ters and scatterometers, play an important role in
helping determine these key global parameters. The
advantage of microwave instruments is that they
can take measurements of the earth’s surface day or
night and are not affected by cloud cover. Another
advantage of these instruments is their rapid repeat
coverage, with the recent QuickScat scatterometer
being able to cover almost the entire earth in one
day.

The tradeoff for the fast coverage of radiometers
and scatterometers is their low spatial resolution.
Radiometer and scatterometer measurements over
the ocean have been used successfully for generating
numerical weather-prediction model data and deter-
mining ocean wind speed, but low resolution has lim-
ited their use in land and ice studies. However, by

applying resolution enhancement algorithms to the
data, images with sufficient resolution for land and
ice studies can be obtained.

Problem Description

Figure 1 illustrates the remote sensing imaging prob-
lem. First, the observed image is discretized into
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Figure 1: Geometry of image reconstruction in re-
mote sensing

pixels. Each measurement is the received microwave
signal from the area on the ground multiplied by
the antenna aperture function at each pixel. In the
case of a radiometer, this observation is the weighted
average of the radiometric brightness temperature
of the pixels in the aperture multiplied by the an-
tenna response at that pixel. For a scatterometer,
a weighted average over the illuminated region is
observed as the microwave backscatter. The value
of the ¢’th measurement, y;, then, is y; = (&, El)
where (-, -) denotes the standard inner product, Z is
the row-scanned image, and h; contains information
about the value and location of the antenna foot-
print, such that h;; represents the contribution of
the j’th pixel to the ¢’th measurement.
The measurements are stacked up to yield

j=MHi (1)
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where y : R™ is the measurement vector, and H :
R™*™ is the point spread matrix, or transfer ma-
trix. The remote sensing imaging problem is to find
an estimate & given § and . In general, direct in-
version of  to solve for & is not possible because the
matrix H is often too large to fit in its entirety in
computer memory, and also because 4 may be un-
derdetermined and have no unique inverse. While
the least-squares pseudo-inverse exists for inverting
an underdetermined matrix, the least-squares solu-
tion may not be the most desirable solution. These
issues suggest using an iterative algorithm to invert
H.

For the rest of this report I will drop the vector
symbol notation, with the understanding that vari-
ables without subscripts are understood to be vec-
tors with the exception of h;, which is the i’th row
of H.

Algebraic Reconstruction Techniques

Reconstructing an image from a set of measure-
ments, as is done in the remote sensing imag-
ing problem, is called ¢mage reconstruction projec-
tions. Algorithms for reconstructing images from
projections have been used in the medical imaging
community since the early 1970s for reconstructing
Computerized Tomography (CT) and electron mi-
croscopy images [1],[2]. One class of algorithms used
in medical imaging is algebraic reconstruction tech-
niques, which iteratively invert the matrix H to find
Z. Two common reconstruction methods in this
class of algorithms are the Algebraic Reconstruc-
tion Technique (ART) and the Multiplicative ART
(MART) algorithms.

The ART algorithm has been proved to converge
to a least-squares solution [3], satisfying the con-
strained minimization problem

min || « ||3 such that y = Ha. (2)
T

The algorithm update is as follows:

Initialization: z° =0

Iterative step:
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where 2% is the jth element of the vector z at the

kth iteration, h; is the 7th row of H, and h;; is the

(7,j)th element of H. Only one row of H—h;,—is

needed for each iteration, such that only one row of

‘H needs to be stored in the computer’s memory at a

time, making it practical for reconstructing systems

where H is large.

MART, another popular algorithm, is a Maximum
Entropy (ME) algorithm, satisfying the constrained
optimization

min Z zlnz such that Hz =y, 4)
T
T
where ) xlnz is the negative of the information
theoretic entropy. The algorithm update is as fol-
lows:

Initialization: z° = exp(—1)
Iterative step:
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Column-normalized Algorithms

For the past several years the Brigham Young Uni-
versity Microwave Earth Remote Sensing (BYU
MERS) Lab has been using image reconstruction
algorithms to create enhanced-resolution images of
the earth’s surface. ART and MART were found to
suffer from sampling artifacts and noise amplifica-
tion, limiting their use for remote sensing image re-
construction. In response, the MERS lab developed
the Scatterometer Image Reconstruction Technique
(SIR) for image reconstruction. The SIR update is
shown in the following lines:

Initialization: x° = arbitrary.

Iterative step
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in matrix form, where H; is the jth column of # and
1 is a vector of ones. The nonlinear update term w;;

is given by
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where d¥ is the fidelity term

4= <<hf;k>>

and fF is the forward projection (h;, z*).
SIR performs very well for image reconstruction,
suppressing sampling artifacts and noise. However,
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at the time of SIR’s development the reasons for its
success were not well understood.

Another algorithm that has shown promise for re-
mote sensing image reconstruction is the Simultane-
ous ART (SART) algorithm, who’s update is given
in matrix form in the following lines:

Initialization: x° = 0.
Iterative step

HEd
k+1 _  k
J
where
df =Yi— (hi,iL'k>. (10)

SART was proposed by Andersen and Kak as a
method for CT image reconstruction with effective
artifact suppression characteristics [4],[5]. In my
thesis, I prove that SART converges to a weighted
least-squares solution, satisfying the constrained op-
timization problem

Hlln E

This weighting of the j’th pixel by the sum of the
elements in the jth column of H, which contains
the sampling information (number of times sampled
and the weighting at each sample) for that pixel,
appears to reduce sampling artifacts and noise in
the reconstructed image. The weighting in Eq. (11)
is a result of the normalization of the SART update
in Eq. (9) by H] 1 = 3 hij, the sum of the columns
of H.

Since the SIR update has the same normaliza-
tion, we suspect that its success at artifact and noise
suppression is also due the normalization. We have
named this class of algorithms, which normalize the
update by the columns of H, column-normalized al-
gorithms. Column-normalized algorithms appears
to be an appropriate class of algorithms for remote
sensing image reconstruction.

2HT1

such that y — Hz. (11)

Reconstruction Results

In this section, six algorithms are compared when
reconstructing simulated and real data—ART, ART
with modified median filter (ARTF), SART, SART
with modified median filter (SARTF), SIR, and SIR
with modified median filter (SIRF). The modified
median filter, which selects the median intensity
when there is a wide range of pixel values in the
window and computes an average when there is a
narrow range of values, was developed in conjunc-
tion with SIR and was found to control the noise
level in the reconstructed images.

The synthetic truth image used for simulation is
shown in Figure 2. For realistic simulations, a sam-
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Figure 2: The original synthetic “truth image” used
for simulations

pling grid matched to the SSM/I satellite radiome-
ter sampling grid over an Amazon region is used (see
Figure 4). The measurements are taken from Julian
day 190 to 194 in 1999, during which time there were
2604 measurements taken of the earth’s surface. Fig-
ure 3 shows the instrument sampling over the region
of interest for the specified day range. The noisy
measurements were created by adding o = .0036
i.i.d., white, Gaussian noise the the noise-free mea-
surements, resulting in a signal-to-noise ratio (SNR)
of 45.0 dB.

Figures 5, 6, and 7 show the results for the noise
free simulation, the noisy simulation, and the real
data respectively. All of the algorithms reconstruct
the simulated data well, but ART has the worst ar-
tifact and noise suppression. The SIR and SART re-
constructions are very similar, which similarity may
be a result of the column normalization in their it-
erative update.

The results of the reconstructions from real data
are more interesting. While SIR and SART do com-
parable jobs of reconstructing the image, the ART
reconstruction is quite poor. ART may not recon-
struct the image well for several possible reasons:

e There may be discrepancies between the ac-
tual antenna footprint and the footprint model
used for reconstruction, causing inconsistencies
in the system.

e Noise in the system corrupts the image.



e Because the measurements are taken over a
range of days, the ground image is not station-
ary, which will result in more inconsistencies.

The above scenarios would worsen the performance
of all of the algorithms, but as Figures 5 and 6 indi-
cate, ART inherently suffers more from artifacts and
noise than do the column-normalized algorithms.

Conclusion

This paper discussed different algorithms which can
be used for remote sensing image reconstruction to
create enhanced resolution images of the earth’s
surface. A class of algorithms, called column-
normalized algorithms, was discussed, and recon-
struction results from both simulated and real data
indicate that column-normalized algorithms may be
more appropriate than ART or MART for remote
sensing image reconstruction.
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Figure 3: SSM/I sampling geometry—The dots in the left figure indicate the center of each footprint
right figure shows a view of some representative footprints (both figures are on the same scale).
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Figure 4: The area in the black rectangle represents the region in the Amazon basin from which the
measurement geometries are taken (the area is magnified at the bottom right hand corner of the image).
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Figure 5: Noiseless reconstructions for SSM/I sampling geometry using (a) ART (b) ART with filter (ARTF)
(c) SART (d) SART with filter (SARTF) (e) SIR (f) SIR with filter (SIRF)
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Figure 6: 45.0 dB SNR SSM/I geometry reconstruction using (a) ART—20 iterations (b) ART with filter
(ARTF)—12 iterations (c) SART—1058 iterations (d) SART with filter (SARTF)—50 iterations (e) SIR—
694 iterations (f) SIR with filter (SIRF)—27 iterations
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Figure 7: Reconstruction of real SSM/I data using (a) ART—?5 iterations (b) ARTF—15 iterations (c)
SART—30 iterations (d) SARTF—30 iterations (e¢) SIR—10 iterations (f) SIRF—10 iterations



