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Abstract

In this paper we present a generalized coupled
dynamics approach to formation flying. The ap-
proach is completely passivity-based. It requires
no velocity information. It is decentralized in that
very little communication among spacecraft is re-
quired.

1 Introduction

Travel to neighboring galaxies would require
space voyages lasting thousands of years. As a
result further space exploration can only be prac-
tically achieved by indirect observation of astro-
nomical objects. Much can be determined about a
space object from the emitted light. To make such
delicate observations, space-based interferometers
with baselines on the order of one to ten kilometers
would be needed.

Large monolithic space-based interferometers
are not physically feasible. In [Decou, 1991a]
and [Decou, 1991b] a free-flying multiple space-
craft interferometer is proposed. A proposed free-
flying multiple spacecraft interferometer would
consist of three spacecraft. Two spacecraft would
move within an observation plane to sample light
from an astronomical body. The light is then re-
flected to the third spacecraft which observes the
interference pattern from the two different light
paths (see Figure 1).

In [Joshi, 1998] the van Cittert-Zernike result
is described which is the basis of interferometric
imaging. Define the v —n plane as the observation
plane. The location of the two collector spacecraft
are (v1,m1) and (va,72) respectively. The star is
located at (z,y) a distance z away from the obser-

vation plane. We can define new coordinates

m —1n2

zZA
vy — V2
o
where )\ is the wave length of the observed light.
These new coordinates define the U — V' plane.

Observation of the interference pattern for dif-
ferent values of (u,v) allows for measurement of
the complex mutual coherence function p(u,v).
The van Cittert-Zernike result is that the inverse
Fourier transform of u(x,y) gives the desired irra-
diance pattern I(z,y) of the celestial body.

To adequately sample the U-V plane the space-
craft formation must make many measurements
from different formation orientations and relative
spacings. Formation reorientations and expan-
sions fit into the class of motion that we define
as elementary formation maneuvers. Elementary
formation maneuvers (EFMs) are formation trans-
lations, reorientations and resizing. The focus of
this work is the development of controls to imple-
ment EFMs.

In order to perform this series of measurements
sensor lock must be initialized among pairs of
spacecraft to monitor the relative distance and
orientation to neighboring spacecraft. Once this
sensor lock is established a series of measurements
can be made to sample the U-V plane. While each
measurement is made the spacecraft must main-
tain relative formation to within centimeters. On
board machinery would then reduce these relative
formation errors down to the order of nanome-
ters as required for interferometry applications.
While moving the formation to the next obser-
vation the relative position and alignment errors
must be kept small enough to maintain sensor lock
among spacecraft. If sensor lock is lost, the costly
process (in terms of fuel and time) of formation
initialization must be repeated.

In the literature there exists three approaches
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Figure 1: A Three Spacecraft Free-Flying Inter-
ferometer In The U-V plane

to formation flying that may be implemented
in the EFM problem. These approaches have
application to the coordination of spacecraft,
multiple robots, and aircraft. They are the
leader-following [Wang and Hadaegh, 1996,
Wang and Hadaegh, 1998], behav-
ioral [Balch and Arkin, 1998], and virtual
structure [Beard et al., tted] approaches.

The coupled dynamics control is a new forma-
tion flying control that fits into the class of be-
havior based controls. This control can be rigor-
ously analyzed in terms of absolute convergence
and formation keeping. Absolute convergence is
guaranteed as is a bound on formation keeping
errors. This work is an extension of our previ-
ous work in this area. In [Lawton et al., 1998] we
used a virtual structure control to move a group
of spacecraft through a rotation while maintaining
formation. Unfortunately, virtual structure based
approaches require a great deal of communication.
In an effort to reduce the amount of communica-
tion we develop a decentralized approach to forma-
tion flying [Lawton et al., 1999]. This approach
was passivity-based. However, it did not provide
damping on the relative spacecraft distance and
was only implemented for spacecraft translations.
This paper presents several improvements over the
results of the previous work. The coupled dy-
namics control is extended to include formation
resizing and reorientation. Additionally terms are
included in the control to damp out the relative
spacecraft motion.

We have developed similar results for attitude
formation control [Lawton and Beard, 2000] and
robot formation control [Jonathan Lawton, 2000].

Soon we will publish results that integrate the po-
sition and attitude control problems.

The paper is organized as follows. In Section 2
we develop a modified definition of an elementary
formation maneuver. This definition is amenable
to nonlinear formation control. We present the
passivity based coupled dynamics control in Sec-
tion 3. Section 4 gives some simulations. We sum-
marize our results in Section 5.

2 Elementary Formation
Maneuvers

Knowledge of the formation task can be used
to simplify the spacecraft coordination problem.
For interferometry problems the group of space-
craft must move in unison performing a series
of reorienting, resizing and repointing maneuvers.
This allows the group of spacecraft to sample the
UV plane. It is natural to restrict our atten-
tion to the following Elementary Formation Ma-
neuvers(EFMs): formation resizing, reorientations
and translations (see Figure 2).

EFMs allow for a nice division between the cen-
tralized and decentralized formation tasks. Selec-
tion of the EFM to be implemented would be done
by a formation supervisor. Control gains would be
selected for each spacecraft based on the satura-
tion limits of each vehicle and the desired distance
to travel. This would be initiated upon completion
of a previous EFM and any necessary measure-
ments. The execution of the EFM itself can be
implemented with a decentralized control.

b) Rigid Body Rotation

IR

a) Initial Formation

¢) Formation Resize

T

d) Formation Translation

N

Figure 2: Elementary Formation Maneuvers.



The simplest EFM is the formation translation.
Section 2.1 presents the necessary mathematical
tools to study formation translations. Similarly
formation resizing and reorientations are discussed
in Section 2.2.

2.1 Formation Translations

For formation translations there exists a trade-off
between maintaining formation and arriving at a
final goal. Consider the example shown in Figure
3. The left triangle represents the desired forma-
tion for the group of spacecraft at the initial time
t;. Fach vertex being a desired spacecraft posi-
tion. The right triangle represents the desired for-
mation of the spacecraft at time ¢;. The initial
location of each spacecraft is shown in the figure.
In this example a group of three spacecraft are to
move in formation to the right. However, one of
the spacecraft begins the maneuver out of forma-
tion. In order to correct this problem it has two
conflicting objectives:

e move right to arrive at the final goal,
e move left to regain formation.

If it moves left it will likely overshoot the forma-
tion, which is moving right, and if it moves right it
will take longer to regain formation as the others
“catch up”.

Formation Translation

Initial Desired Formation % Final Desired Formation

Figure 3: Bottom right member of the formation
is initially too far to the right

Consider a group of N spacecraft with indices
comprising the set 7 = {1,2,..., N}. Each space-
craft has double integrator dynamics

mif; = ug, (1)
where m; is the spacecraft mass r;,u; € IR3. Note

that no requirement is made that these vehicles
be real vehicles. In fact by choosing a formation

leader to be a virtual vehicle, all of the results of
this paper extend to virtual structure control.

Let eg,er : IR — IR be positive definite, sym-
metric continuously differentiable functions. Ad-
ditionally we will require that er be monotonically
increasing and invertible on the domain [0, c0).
Furthermore let

kg (z) = degéw)
kF(.Z') = di};—z(.x)

We wish to create an error function that in-
corporates both absolute convergence and forma-
tion keeping. First we develop an error func-
tion Eg that expresses absolute convergence. Let
L # {0} CT and let

3
Eg =YY ec(z;),

el j=1

where r; = (Til,Ti2,Ti3)T, Tid = (Hld,rnd,ﬁa‘d)T
and z; = r; — 14 (see Figure 3).

Next, we define the the function Er as the
spacecraft formation keeping error. Let P CZTx 7T
were P is the edge set for a connected graph G
with vertices V(G) = Z (see [Gould, 1988]). The
formation error is defined by

EF= Z ZeF(zik —ij).

(i.)€P k=1

By maintaining the quantity Er small during the
entire maneuver, the spacecraft will equalize the
distance that they need to go to reach the final
goal. Note that Er = 0 if and only if z; = z; for
all (4,j) € P. This is equivalent to saying that
r; —Tj = rig — Tjq- Since G is a connected graph
this will only be true if all spacecraft are in the
same relative formation that they will have at the
end of the maneuver. Therefore when Er = 0, the
spacecraft will be keeping formation, but they will
not necessarily be at their final desired positions.

If Eg = Er = 0 then the spacecraft in the set
L will converge to their final desired positions and
since all spacecraft will be keeping formation, the
remaining spacecraft will converge as well.

We can now define a total error for the forma-
tion problem as a weighted sum of Eg and Ep

E =kpEp + kgEg, (2)

where kr and kg weight the relative importance
of formation keeping versus absolute convergence.



The control objective is to cause E — 0 asymp-
totically given the spacecraft equations of motion

).

2.2 Formation Resizing and
Reorientations

A formation resize or reorientation can be formu-
lated as a formation translation in cylindrical co-
ordinates with translations along the radial axis
corresponding to resizing, and translations along
the polar axis corresponding to reorientations. A
polar plane translation in an arbitrary direction
would be a spiral.

First we define the r;3-axis of the coordinate
system as the axis of reorientation or resize, and
express the spacecraft position in terms of cylin-
drical coordinates (p;, ¢ ri3). The cylindrical co-
ordinates relate to the Cartesian coordinates via

rit = picos(¢s)
Ti2 = pisin(;) 3)
Ti3 = 13-

Differentiating r; we get

7'“,'1 1 0O Pi
7 = [fi2| = R(¢:) [0 p O | ¢i],
7'“,'3 0 0 1 Ti3
where R(¢;) is the rotation matrix
cos(¢;) —sin(¢;) O
R(¢:) = |sin(¢;) cos(¢i) 0
0 0 1

Define the formation goal error by

3
EG = Z Zeg(zi)

1€L i=1

and the formation keeping error by

3
Ep= Y Y er(zic — )

(i,j)eP k=1

where
Pi = pi — Pid
¢i = ¢i — dia

Ti3 = i3 — Ti3d
2i = [ﬁt: ¢i7 f3]

Again let E = kpEp + kgEg. For example, if we
pick p;q = p; and choose ¢;q = ¢; + 7/4, forcing

E — 0 will result in a formation rotation of 7 radi-
ans. Alternatively letting p;q = p;+5 and ¢;q = ¢;
will result in a formation expansion by five units.
Similarly if we vary both ¢; and p; simultaneously,
then the rotation will spiral outward.

The formation resize/reorient control problem
can be stated as driving the function £ — 0 given
the double integrator dynamics of equation (1).

3 Coupled Dynamics Control

Given the general error function presented in
the previous section we can develop a whole class
of formation controls. Specifically we wish to de-
velop a Passivity-Based control that requires no
velocity information. Lemma 3.1 will show the
evolution of the the trajectory of E over time.
This will be used in the proof of Theorem 3.1.
Lemma 3.1 [Open Loop FError Kinematics] If
we define the sets L = T and P =
{(1,2),(2,3),...(N —1,N),(N,1)}. The deriva-
tive of E is given by

N
B=3 )
i=1
ka(za) + kr(zin — zig11) + kr(zi — 2zi—1,1)
ka(zi2) + kr(zia — zit12) + kr(zi2 — 2i—1,2)
kg (zi3) + kr(zis — 2ig1,3) + kr(2is — 2i—1,3)

N
= Z 7 FT (&) K (2i, zig1, Zio1),
i=1

(4)
where
Fe) = I3 Cartesian coordinates
"\ diag(1,1/p,1)R(—¢) for cylindrical coordinates.
()

Proof: Since E = Eg + Eg, E = EG + Ep. To
calculate F we can consider Eg and EF separately.
First

N 3

Ep =Y kr(zij — 2i1,) (355 — %it1,5)
i=1 j=1
N 3

=Y > zij(kr(zij = zir1g) + kr(zij — zio1,5))-

o ©)



Similarly for Eg we get

Eg = Z Z zijka (zij). (7)

i=1 j=1
Summing Equation (6) and Equation (7) we get
E=FEr + Eg

N 3
=2 (ke (2i — 2ig15) + kr(zi; — 2im1,5)

i=1 j=1
+ ka(zij)
N
_NCT
= Z % K (24, 2i41, 2i-1)

i=1

N
= Z f?FT(f)K(Ziy Zit1, Zi-1)
i=1

|
Theorem 3.1 will get around the problem of
needing to explicitly know the velocities of neigh-
boring spacecraft. This passivity-based control
is to damp out not only the absolute motion of
each spacecraft, but also the relative motion be-
tween spacecraft. This result is motivated by
[Lizarralde and Wen, 1996].

Theorem 3.1 [Passivity-Based Coupled Dynam-
ics Control] Given that

ui = —FT(&) " {K(2i, 2401, zi-1) + 9.} (8)
The passivity based term comes from the filter
&; = Ax; + B{dG,i’i + dF(Z.f,' - 2i+1) + dF(Z?,' - Z.z’_l)}
yi = BT P,
9)

where B is a full rank matriz, A is Hurwitz, Q =
QT > 0 and P = PT > 0 is the solution to the
Lyapunov equation ATP + PA = —Q.

If z;(0) = 0, 2(0) = 0 Erp(0) = 0 and
K(zi,ziy1,%2i—1) = 0 implies that z; = 0 then

1. z; = 0 asymptotically

2. er(2i1 — Ziy1,1) Fer(2in — 2ip1,1) +er(2in —
zi-11) < Eg(0).

Observe that Filter (9) can be implemented as
&; = Ax; + B{dgzi + dF(Zi - zi+1) + dF(zi - Zz’—l)}
y;i = BT PAx;

+ BTPB{dgz; + dr(2; — 2i11) + dr (2 — 2_1)}-
(10)

Thus no velocity measurement is required for the
passivity based control.

Proof:

1. Let D = dgly + dpCTC, where the i, jth

component of C' is defined by

1 forj=i
—1 forj=i+1.
0 otherwise

Cij =

Observe that D is positive definite and sym-
metric. Likewise D' will also be positive
definite and symmetric. Define z,y, z respec-
tively as the vectors z;,y;, 2; stacked end on
end. The series of state space equations (9)
can be written as a single state space equation

&= (Iy® A)z + (D ® B)z

y = (Iy & BT P)a, ()

where ® is the Kronecker product operator.

Consider the Lyapunov function candidate
1, 1
V=3E+3 > milii+2"(D7' ® P)a.
i=1
Differentiating gives that

N
V= Zf?{ui + FT(&)K (21, zi41, 2i-1) }

i=1

- %azT(D*1 ®Q)z+ 2" (In ® PB)z

N
= ZfiT{ui + FT(&)K (2, 2i41,2i-1) }
=1
1 N
— 52" (DT @Q)z+ ) 4Ty

i=1

N
= Zi’z‘T{Ui + FT(&)K (21, zig1, 2i1) + yi}

i=1

Thus we see that V' is a Lyapunov function.
To show convergence let Q = {z;,7;|V = 0}



and let Q C Q be the largest invariant set
of Q. On the set Q, () = 0. In light of
Equation (11) y(t) = 0, &(t) = 0 and 2(t) = 0.
Since F'(&;) is full rank we further have 7;(t) =
0 which implies that w;(t) = 0. Therefore we
arrive at the condition that

FT(&)K (2i, 2ig1,2i-1) = 0.

Due to the fact that F(£) is full rank and
the assumptions of the theorem we have that
z; = 0 on the set . By LaSalle’s invariance
principle z; — 0 asymptotically.

2. Since V(t) is a Lyapunov function we have
that Eg(0) = V(0) > V(t) > Ep(t) >
er(zi1 — ziy1,1) +er(zin — zig11) +er(zin —
Zi—1,1)-

4 Simulations

For the linear control problem we take eg(z) =
%k@ﬂf2 and ep(z) = %kpl'2 then

K(2iy 2zi41,2i—1) = kgzi + kr(2i — 2it1)
+ kF(Zz — Z,'_1).

This can be written in matrix form as
{kgIsn + kr(CTC ® I3))}2 = 0.

The coefficient of z is positive definite and sym-
metric since it is the sum of a positive definite sym-
metric matrix and a positive semi-definite sym-
metric matrix. Therefore since the coefficient ma-
trix is full rank, z = 0. Therefore for a linear
formation control law Theorem 3.1 is valid.

Now we will run a few simulations to observe
different features of the linear control. We assume
that we have a constellation of three spacecraft.
The mass of each spacecraft are given by 500K g,
300K g and 300K g respectively. The spacecraft
begin the maneuver in a triangular formation. The
formation is then rotated by m/6 radians a shown
in Figure 4.

In the first simulation we start in perfect forma-
tion. The first spacecraft starts moving at time
t = 0 and the second spacecraft start moving at
t = 1 sec and the third starts at ¢ = oco. This il-
lustrates the ability of the control law to maintain
formation even when one or more of the spacecraft
do not start moving at the same time. The fail-
ure could be due to poor synchronization (i.e the

200 meters

a)lnitial Configuration b) Final Configuration

Figure 4: Spacecraft Rotation Example.

two spacecraft starting one second apart) or due
to spacecraft failure (the third spacecraft starting
at t = 0o0). Figure 5 plots the formation error be-
tween the second spacecraft and each of its two
neighbors.
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Figure 5: Formation Rejection of Poor Synchro-
nization.

In the second simulation we start the maneuver
with some formation error in the direction of the
polar angle. This could be due to finishing the
previous maneuver with some formation error, or
due to poor synchronization. This simulation il-
lustrates the ability of the formation to recover
from some initial error and complete the maneu-
ver. Figure 6 shows the convergence of each space-
craft to its final desired position. Figure 7 shows
the converges of the relative position of the sec-
ond spacecraft with respect to the first and third



spacecraft.

x10°

I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Time (SEC)

I I
5 6 7
Time (SEC)
1 T T T T T

5
Time (SEC)

Figure 6: Rejection of Absolute Position Error.
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Figure 7: Rejection of Formation Error.

5 Summary

We have developed a velocity-free formation
control. This control only requires position in-
formation of neighboring spacecraft. Simulations
demonstrate the ability of the formation to with-
stand poor synchronization, spacecraft failure and
initial formation error. Future work will integrate
the position and attitude formation problems.
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