
 1

A NEW FAST AND EFFICIENT CONFORMAL MAPPING BASED TECHNIQUE FOR REMOTE

SENSING DATA COMPRESSION AND TRANSMITTAL

Dalila Megherbi, member IEEE, and Joseph. Lucente, student member, IEEE

University of Denver

Denver, Colorado

Abstract- In this paper we deal with a new technique for large data compression. Contour mapping of two

dimensional objects is of fundamental importance in remote sensing and computer vision applications. We present

extensive algorithms applied to polygonized, simply-connected contours and reproduce desired shapes using an

innovative data compression technique based on conformal mapping. In a previous work3,4, through a conformal

mapping process, we demonstrated the ability to 1) recognize shapes, and 2) concisely represent shape boundaries

using a set of polynomial coefficients derived in the mapping process. In this work we illustrate how these previous

results can be applied to data compression. In particular, in the approach outlined herein, a syntactic representation is

formed for polygon shapes whose representation we desire to extract and reproduce compactly. Additionally, we

present a problem of concavity in shape boundaries and a proposed solution in which polygons are divided into convex

subsets and reconstructed accordingly.

Index Terms- Remote Sensing, Contour matching, Data Compression, Shape recognition, polygon decomposition

1. Introduction

The ability to efficiently process large datasets in a

computational environment is a challenging task. In remote

sensing applications, such as Earth sensing systems or

computer vision systems, an abundance of data in the form of

images is likely to exist. It is the desire of those who manage

and use the data from these systems to realize efficiency in

data transmission, manipulation and processing.1 There exists

a need to efficiently reconstruct images from data that has

been transmitted on a network from remote sensing systems.

The amount of information that is the result of a data

compression technique plays a key role in the speed and

efficiency in the process of reconstruction of remotely-sensed

images. In order to quickly and efficiently reconstruct images

from their compressed data, we propose a method in which

the coefficients derived from mapping the boundary of an

image to the unit circle3,4 comprise the compressed data that is

needed to reconstruct the original image. In this process,

image objects are represented as polygons. We develop

algorithms whose inputs are the vertices of polygons that

represent the boundaries of image objects whose data we wish

to compress. These algorithms divide the polygons into

subsets of purely convex polygons. The convex subsets are

then mapped to the unit circle using a conformal mapping

process3,4. In this mapping process, a set of coefficients is

derived and used in the proposed reverse mapping process to

reconstruct the original image. It is these coefficients that are

used to realize the data compression.

 In this paper, we focus on an approach that uses

polygonized, simply connected regions. We limit ourselves to

the two-dimensional shape of the region, and do not concern

ourselves with other region attributes such as motion, texture

and color.2 We describe in detail our data compression

algorithm, and provide results of its application to some real

images. But more specifically, we provide detail into our

proposed approach of data compression that is realized in the

algorithms described herein.

 Finally, we present a problem of concavity in the

forward and inverse mapping of simply-connected regions,

and our proposed approach to overcome this problem. For

polygons with concavities on the boundaries, we have

developed an approach that recursively identifies such

concavities by returning convex subsets of vertices of the

original polygonized region whose data we wish to compress.

We provide results of the reverse mapping process of original

shapes having such concave regions, and discuss the quality

of these results.

2. Data Compression Using Conformal Mapping Processes:

A Proposed Technique

In this section, we present a set of algorithms developed to

extract specific attributes of the shape of an object whose data

we wish to transmit in a compressed format. We start with a

known set of vertices in a coordinate system. We

demonstrate two different methods of data population to

construct the data points representing the sides of the polygon.

We identify convexity or concavity at the vertices, and divide

the polygon into convex subsets, each of which is mapped to

the unit circle3,4. We extract the set of coefficients that are

derived in the mapping process for later use in the shape

reconstruction phase. Through observation of vertices of

convex subsets between which there exist data which may or

may not belong to sides in the original shape, we seek a data

structure which holds indices to vertices belonging to the

 2

original polygon. In this data structure, there is a clear

discernment between what we will show as native vertex links

(i.e., data that belongs to the original shape), and artificial

links (i.e., data that belongs to sides of convex polygon

subsets, but is not part of the original polygon). We will

demonstrate that this discernment is key to the successful

reconstruction of the original polygon shape. Object rotation,

translation, scaling and vertex convexity/concavity are shown

to be invariant in these processes.

2.1. Preliminaries

In the algorithms developed for our proposed data

compression techniques, a convention for the spatial ordering

of vertices in all polygon subsets has been chosen to be a

counterclockwise ordering in the Cartesian coordinate system.

We describe an important spatial relationship

between vertices in our proposed algorithms as vertex

adjacency. Two vertices are said to be adjacent to one

another if no other vertices exist between them. In the

discussion herein of spatial relationships of vertices, we

present a symbolic convention for describing such adjacency

between two vertices va and vb as

va ↔ vb

to indicate that va is immediately adjacent to vb in some

polygon P, in that no polygon vertices exist spatially between

va and vb. As will be seen, it is possible that two vertices va

and vb may be immediately adjacent in P, but may not

necessarily be immediately adjacent in Q, where Q may be a

convex subset of P. The usage of this symbolic convention is

evident in the details of the proposed algorithms.

2.2 Compression Algorithms

The vertices of the object are first extracted from the image,

and a syntactic representation is formed, the primitive

elements of which are linear segments (the sides of the

polygon). The attributes of the primitive elements are length,

and orientation with respect to the coordinate system.2 Our

approach requires an identification of vertex concavity or

convexity, as it is based on the mapping and subsequent

reconstruction of the native links from the purely convex

subsets of the original polygon. The algorithm for vertex

labeling is outlined in section 2.3. We then proceed to the

population of a data structure that holds the vertices of the

convex subsets of the shape whose data we wish to represent

in a compressed format. In the design of this algorithm, it is

realized that complex polygonal shapes may contain regions

of concavity in which their exist sub-regions of either

additional concavity, or convexity. The division of such

polygons into convex subsets demands a recursive process for

the extraction of vertex subsets consisting of purely convex

polygons, while preserving the spatial relationship between

the vertices of each convex subset. Additionally, the chosen

convention of counterclockwise ordering of the vertices in

each convex subset is maintained within this process. Section

2.4 provides the details of this algorithm.

2.3 Labeling of Vertex Convexity and Concavity

The chosen approach for labeling vertices as convex or

concave is inspired by the overall approach of dividing the

polygonized object boundary into convex subsets. With the

information as to which vertices are convex and which are

concave, the foundation for the subsequent algorithm in

which convex subset divisions are returned can be laid. A

greedy labeling algorithm is proposed to minimize the number

of convex subsets in P, while accounting for all vertices in the

object boundary. The algorithm identifies a vertex vm to be

labeled as convex or concave by determining the angle β

formed between adjacent vertices vl and vn, such that

vl ↔ vm↔ vn

in P. The label is applied to vm according to the following

convention.

If β < π , vm ⇐ concave

If β > π , vm ⇐ convex.

If β = π, vm ⇐ neither convex nor concave.

The algorithm is designed to begin at a vertex vi of assumed

concavity. The convention for identification of this vertex is

to determine the vertex in P that holds the maximum

Euclidean distance from c, the centroid of P. The algorithm

proceeds in a counterclockwise direction from vi until all

vertices in P have been labeled. The pseudocode is provided

as Algorithm 1.

2.4 Division of Object into Convex Subsets

A recursive process has been chosen for the extraction of sets

of vertices in P comprising convex subsets. The resulting

data structure is referred to in subsequent algorithms

explained in sections 2.5 through 2.6. In Algorithm 2, the

vertices of P have been labeled according to Algorithm 1.

The process of vertex subset identification Find_subsets (S)

begins with a null subset convex_subsets to which the set

union of itself and the convex hull of P have been assigned.

In the convex hull returned by the algorithm, vertices between

which there exist any concavity form the starting and ending

vertices of a set of cyclically-adjacent vertices in S, as a

 3

subset Si of the convex_hull of P. Subset Si is conditioned by

reversing the convexity/concavity label at all vertices except

the starting and ending vertices (which are convex in S),

resulting in S’i. Subset S’i forms the recursive input as

Find_subsets(S’i), the returned entity of which is the set of

vertices comprising the convex hull of S’i. Recursion proceeds

until there are no pairs of vertices in P between which there

exist concavity.

 Algorithm 2. Division of Object into

Convex Subsets

Algorithm 1. Labeling of Vertex Convexity

Let vertices be a cyclically-ordered set of (x, y)

coordinates of the N vertices of a simply-

connected polygonized region P, where N ≥ 3.

Let c be the centroid of P.

Let v0 be a vertex in P whose Euclidean distance

from c in P is maximum. By definition, v0 is a

convex vertex in P.

Let vi be a vertex in P for which a label of

convexity or concavity is to be determined.

For each vertex vi in vertices, where i = 0, 1, 2, . .

., N-1

Let verticeslmn be a set of three cyclically-

ordered vertices in P, such that verticeslmn =

{ vl, vm, vn } where verticeslmn ⊂ V and

vl ↔ vm ↔ vn. Let vm = vi.

Let β be an exterior angle in P whose vertex

is at vm, and whose CW and CCW adjacent

vertices are vl and vn, respectively.

If β < π

Label vm as concave

Else If β > π

Label vm as convex.

Else If β = π

Label vm as neither convex nor concave.

End if

End for

Let SS be a cyclically-ordered set of (x, y)

coordinates of the N vertices of a simply-

connected polygonized region P, where N ≥ 3.

At each vertex vi (where i = 0, 1, 2, . . . , N-1) in

SS, let there be a label L of convexity or

concavity, where L vi = concave or L vi = convex.

Let convex_subsets = { NULL }.

Find_subsets (SS, convex_subsets)

Let lengthSS = N.

Let convex_hull_SS be the cyclically-ordered

set of vertices in SS comprising the convex

hull of SS.

Let lSS be the number of vertices in

convex_hull_SS.

At each vertex vp (where p = 0, 1, 2, . . . ,

lSS -1) in SS, let convex_hull_SS contain

a label of convexity or concavity.

 If lSS = = lengthSS

convex_subsets ⇐ convex_hull_SS

return convex_hull_SS

Else For each pair of vertices pf = (va ,

vb) in convex_hull_SS, such that va ↔

vb in convex_hull_SS let Si be the

complete set of k cyclically adjacent

vertices in SS such that Si = { vv1, vv2,

vv3, . . ., vvk }, and vv1 ↔ vv2 ↔ vv3 ↔ . .

.↔ vvk in SS, and va ↔ { Si } ↔ vb in

SS. Let Sj be the set { va ,{ Si }, vb }.

 If Si = = { NULL }

 Skip pf

Else

For each vertex vvr in Si

If Lvvr is concave in SS

Lvvr ⇐ convex in Si

Else

If Lvvr = = convex in SS

Lvvr ⇐ concave in Si.

End if

End For

Find_subsets (Sj)

End If

End For

End If

2.5 Mapping of Convex Subsets

In this section, we describe the steps we use to obtain a set of

unique coefficients3,4 for the geometric components of our

original object, in the form of convex subsets. There are three

parts to our research goal: 1) we wish to derive a set of

coefficients to be used in the unique identification of the

object irrespective of its translation, rotation, or scaling3,4 2)

we wish to use the set of coefficients as a unique and concise

representation of the object, and 3) we must be able to apply

only the information used to represent the object to the

reconstruction of the original object. This section describes

the implementation of our first and second goals, where

section 2.6 describes the proposed reconstruction algorithm.

 In our proposed method, we divide our original

object into convex subsets. We show our approach to the

process of preserving the knowledge of which side polygonal

segments are part of the original object, and which are not.

We show how such preservation is made in the form of an

interesting data structure, and how we use this data structure

in the reconstruction phase.

 Our approach to the derivation of convex subsets

begins with vertex subsets which require a population of

spatial points between each vertex. We propose two related

methods to fill in data points, and, later in our results, we

demonstrate the outcome of both methods.

 We make reference to previous research in the

application of conformal mapping techniques3,4 in order to

introduce our approach for deriving a unique set of

coefficients for each convex subset. In later sections we

apply this information to the reconstruction of the original

object.

2.5.1 Division of Polygon into Convex Subsets

Convex subsets of our original shape boundary are

represented as sets of polygonal vertices in an (x,y) coordinate

system. Figure 1 shows an example of the division of a

polygon exhibiting both concavity and convexity, into convex

subsets. Notice the concave region consisting of vertices a, b,

and c. In this region, Algorithm 2 returns a syntactical

representation of this region in the form of

a ↔ b ↔ c ↔ a

In comparison, notice the region consisting of vertices e, f, g,

h, and i. Here, we see an example where Algorithm 2 will

return recursively two convex subsets whose syntactical

representation is

e ↔ f ↔ h ↔ i ↔ e

and

f ↔ g ↔ h ↔ i

With our original polygon having been divided into convex

subsets according to Algorithm 2, we propose Algorithm 3 to

prepare the convex subsets of P for subsequent mapping by

creating data points between the vertices of the subsets

returned by Algorithm 2. In Algorithm 3, data

Figure 1. (a) through (f) Convex Subsets of P where (a)

shows original shape, (b) shows the convex hull of P,

and (c) through (f) show the convex subsets of P. Native

segments are shown as solid line segments, and non-

native segments are shown as dashed line segments.

points are placed between each vertex in a give subset,

according to a user-defined spatial resolution step. Algorithm

3 returns a data structure shape containing the vertices of the

set of convex subsets returned by Algorithm 2, with data

points, the Euclidean distance between which is step, placed

between each pair of cyclically adjacent vertices. This

algorithm simply calculates the Euclidean distance between

each pair of cyclically adjacent vertices va and vb, and divides

a
b

c
d

e

f

g h

j
i

(a)

c

b

a

(d)

a

b

c
d

e

g
h

j
i

f

(b)

d

a

c

e

j
i

(c)

e
f

h

i

(e)

f

g
h

(f)

 5

the distance by step to obtain the number of spatial data points

that are needed between va and vb to maintain a spatial

resolution defined by step. Data points whose x and y

coordinates are recorded in shape are then places between va

and vb. This process is repeated for all N cyclically adjacent

vertex pairs.

 Algorithm 3 populates cyclically adjacent vertex pairs

with spatial data points in preparation for mapping of the

convex subsets. Each subset Si in P is represented

syntactically by a set of cyclically-adjacent (x,y) coordinates

in CCW order. For each pair of cyclically adjacent vertices

(vsa, vsb) in Si , start and end are assigned the (x,y) coordinates

if vsa and vsb, respectively. The Euclidean distance between

vsa and vsb is determined, and divided by step to establish the

incremental spatial location of each data point between vsa

and vsb. Upon completion, Algorithm 3 returns shape,

consisting of all convex subsets of P, with data points

between each pair of cyclically adjacent vertices. Each data

point in shape is assigned an index. As indices are assigned

to spatial points coincident with the vertices of the convex

subsets, these indices are recorded in a separate data structure

links which relates the vertices of the convex subsets with

their shape indices. This step is important, as not all vertex

pairs that are cyclically adjacent in a subset of P form native

segments in the original polygon, as shown by the dashed

lines in Figure 1.

 We propose a slight variation of Algorithm 3 by altering

the method by which the spatial location of data points is

chosen. Unlike in Algorithm 3, where spatial location is

chosen based on the Euclidean distance equal to step, in a

direction along an imaginary line segment whose endpoint is

the next cyclically adjacent vertex, the location of points

chosen in Algorithm 4 is influenced not only by step, but also

by proximity to the nearest vertex, and the magnitude of the

interior angle at the nearest vertex. In Algorithm 4, datapoints

are packed tightly near vertices, and more sparsely near

midpoints between vertices. In no case, however, is the

Euclidean distance between any two spatially adjacent data

points any greater that step. A choice between Algorithm 3

and Algorithm 4 has consequences in the inverse mapping

process, as will be demonstrated in our results. We present

details of Algorithms 3 and 4 in Section 2.5.4.

 Figure 2 shows, by contrast, a polygonal vertex at

which data points are spaced equidistantly, as in Figure 2(a),

and the same vertex with adaptive spacing of points. The

equation for adaptive spacing of data points as shown

by example in Figure 2(b) is

next_step = step * (1/(1 + distance)) * (βm/π) (Eq.1)

Fig. 2(a) Fig 2(b)

Figure 2(a) Equidistant spacing of data points in a

typical polygonal vertex. Figure 2(b) Adaptive

spacing of data points in a typical polygonal

vertex

2.5.2 Maintaining Relationships Between Native Links and

Artificial Links

In keeping with our goal to utilize a derive set of coefficients

for both object representation and object reconstruction, we

again stress the importance of maintaining a history of the

specific data points which belong to native links and which

belong to non-native links. We construct polygon subsets

from our original concave polygon, and are forced to deal

with links that do not belong to our original object. As stated

earlier, we have shown such examples in Figure 1.

As we place data points between the vertices of

each convex subset, we form a vector of (x,y) coordinates in

an ordered fashion, such that the order of the data points

follows the spatial ordering of the points in the convex subset.

We label each vertex (x,y) coordinate with an index. Prior to

data point population, whether by Algorithm 3 or 4, our shape

vector contains only the original vertices from our convex

subset, and their associated indices. As data points are

inserted between vertices, the indices in shape associated with

the original vertices will change. It is these changes in indices

that we must understand.

We seek a data structure from which we may discern the

nativity of vertex segments in the original object from the

non-nativity of segments. We will ultimately use this

discernment in the reconstruction of the original concave

object in an inverse mapping process (see section 3.X) by

acknowledging native segments and discarding artificial

segments. Table 1 shows the map data structure for the

polygon example in Figure 1, in tabular form. An important

observation with respect to Figure 1 is that the table itself,

implemented in the form of a data structure, does not maintain

a history of vertex indices in the shape data structure. Rather,

it tells us whether the data points between original vertex

indices prior to datapoint population are (or are not) part of

the original object. Once data points are placed between the

vertices, we realize that indices for the original vertices will

change. We maintain these changes in a separate data

structure links, to which we relate the map data structure

represented in Table 1. In the inverse mapping process, we

will show how information is obtained from the map and links

data structures to create a mask that is used to apply to the

plotting of the data points for the reconstructed object.

 6

Algorithm 4. Adaptive spacing of data points

between vertices in polygon subsets

2.5.3.1 Data Structure for Convex Subsets

Specifically, from Table 1 we may obtain the following

information:

1. The number of convex subsets returned by

Algorithm 2.

2. The specific vertices in each convex subset.

3. The cyclical adjacency of vertices in each convex

subset.

4. The links between vertices in each convex subset

that are native to the original polygon, and those

that are not.

 a b c d e f g h i j

1 √ x √ √ √ x x x √ √

2 √ √ √ x x x x x x x

3 x x x x √ √ x √ √ x

4 x x x x x √ √ √ x x

Table 1. Map of the Vertices of the Four Convex

Subsets of the Polygon in Figure 1. A √ indicates

the vertex identifier in the corresponding column

heading is a member of the set of vertices in the

convex subset whose identifier is a row number.

An x indicates non-membership in the subset of

vertices in a given row. In any row, √’d vertex

pairs between which there exist at least one x

indicate non-native segments in P. Conversely,

√’d vertex pairs between which there exist no x ‘s

indicate native segments in P.

We may use the example of the polygon P shown in Figure 1,

to validate the information in Table 1. We first observe four

convex subsets from Figure 1 (c) through (f). Table 1

contains a row of vertices for each subset in P. In row

number 1, we see the formation of a convex subset consisting

of vertices a, c, d, e, i and j. Additionally, we see cyclical

adjacency in this particular subset. As described in Table 1,

we see the vertex pairs between which there exist at least one

x, indicating non-native links in the original polygon.

Information in the remaining three rows allows us to obtain

similar information for the remaining convex subsets. This

syntactic representation conveys the necessary information to

reconstruct the relationship between the links in the polygon

subsets and the links in the original polygon.

2.5.4.1 Details of Data Point Filling

In this section we present in detail our process for filling in

spatial datapoints between the vertices of convex subsets.

Recall that Algorithm 2 returns convex subsets in the form of

a set of vertices Si that are cyclically adjacent in Si. We

present the details of two methods for data point filling, and

refer the reader to section 3.X for a comparison of some

results of using these two approaches.

2.5.4.2 Equidistant Point Filling

Let R be a convex polygon with N vertices, where N

>= 3.

Let DISTANCES = { NULL }.

Let step be some maximum defined member in

DISTANCES.

Let l, m, n be the indices of three vertices in R such

that vl ↔ vm ↔ vn .

For k = 1:N

Let βm be the interior angle of R at vm .

Let midpointk be one half of the Euclidean

distance between vm and vn .

Let distance = midpointk

While distance > 0

next_step = step * (1/(1 +

distance)) * (βm/π)

DISTANCES = DISTANCES ∪

next_step

distance = distance - next_step

End While

distance = 0

DISTANCE = DISTANCES ∪ distance

Let r be an index in R such that vn ↔ vr .

Let l = m, m = n, and n = r.

Let βm be the interior angle of R at vm .

While distance < midpointk

next_step = step * (1/(1 +

distance)) * (βm/π)

DISTANCES = DISTANCES ∪

next_step

distance = distance + next_step

End While

distance = vm

DISTANCE = DISTANCES ∪ distance

End For

 7

 Algorithm 3 populates cyclically adjacent vertex pairs

with equidistantly spaced data points in preparation for

mapping of the convex subsets. Each subset Si in P is

represented syntactically by a set of cyclically-adjacent (x,y)

coordinates in CCW order. For each pair of cyclically

adjacent vertices (vsa, vsb) in Si, start and end are assigned the

(x,y) coordinates of vsa and vsb, respectively. The Euclidean

distance between vsa and vsb is determined, and divided by

step to establish nstep, the number of data points between vsa

and vsb. We recall that vsb follows vsa in a cyclically adjacent

fashion, and forms a line segment as a side of Si. As such, we

form a vector Vab whose endpoints are vsa and vsb. Using the

direction Vab derived from the x and y coordinates of start and

end, and step expressed as a magnitude, we then obtain the dx

and dy components of our desired data point k to create a (dxk,

dyk) coordinate. We place this kth coordinate into our shape

data structure so that we maintain cyclical adjacency in shape,

and repeat for all nstep points between vsa and vsb. Upon

completion, Algorithm 3 returns shape, consisting of all

convex subsets of P, with data points between each pair of

cyclically adjacent vertices. Each data point in shape is

assigned an index. As indices are assigned to spatial points

coincident with the vertices of the convex subsets, these

indices are recorded in a separate data structure links which

relates the vertices of the convex subsets with their shape

indices. This step is important, as not all vertex pairs that are

cyclically adjacent in a subset of P form native segments in

the original polygon, as shown by the dashed lines in Figure

1. Figure 2(a) shows an example of a cyclically adjacent set

of equidistantly-spaced data points in close proximity to a

vertex.

2.5.4.2 Adaptive Point Filling

Algorithm 4 populates cyclically adjacent vertex pairs with

adaptively-spaced data points. In preparation for mapping of

the convex subsets. We select the descriptive term adaptive

due to the fact that a selection of any data point in this

algorithm is influenced by some geometric characteristics of

the polygon subset. We say that data point spacing adapts to

the subset geometry.

 Each subset Si in P is represented syntactically by a set

of cyclically-adjacent (x,y) coordinates in CCW order. As in

Algorithm 3, we initialize step with a user-defined increment

of resolution. For each of the N vertices in Si we then select

three vertices vl, vm and vn in Si such that

vl ↔ vm ↔ vn

and

1 ≤ m ≤ N

We calculate βm, the magnitude of the interior angle of Si at

vm. We let midpointk be the spatial location that is one half of

the Euclidean distance between vm and vn. We let distancek be

the Euclidean distance to midpointk , where

1 ≤ k ≤ N

We then calculate a Euclidean distance next_step from vm

according to Equation 1. We subtract from distancek the

newly-calculated next_step from vm. As this last step is

repeated, distancek decreases with each addition of next_step.

Our stopping condition for this segment of Algorithm 4 is

when distancek is equal to zero. When this condition is true,

we know that we have placed data points between vm and

midpointk.

We must now complete the adaptive placement of

data points from midpointk to vn. In this last segment of

Algorithm 4, we maintain knowledge of midpointk, but we

select the next cyclically adjacent vertex r from vl such that

vn ↔ vr and r ≠ m

We let l = m, m = n, and n = r. Thus we are selecting a set of

three cyclically adjacent vertices in Si that are “offset” in a

CCW direction by one vertex from our most recent set of

three vertices vl , vm and vn. We calculate βm, the magnitude of

the interior angle of Si at (new) vm. We then calculate a

Euclidean distance next_step from vm according to Equation

1. We add to distancek the newly-calculated next_step from

vm. As this last step is repeated, distancek increases with each

addition of next_step. Our stopping condition for this

segment of Algorithm 4 is when the summed distance is

greater than distancek. When this condition is true, we know

that we have placed data points between midpointk and the

(new) vm.

We observe from Equation 1 that the distance

next_step is a product of three multiplicands

1) step

2) 1/(1 + distancek)

3) βm/π

As the summed distances distancek approach the distance

between the nearest vertex and the midpoint of the line

segment to which data points are being created, 2) becomes

maximally influential to next_step. Conversely, as this

summed distance approaches zero, 2) becomes minimally

influential to next_step. In a similar fashion, 3) influences

next_step as a ratio of the magnitude of the interior angle at

the nearest vertex, to pi.

 We structure the multiplicands in Equation 1 so as

to effect a more compact placement of data points at

vertices exhibiting relatively smaller magnitudes of

interior angles. We place additional influence on

Algorithm 4. Inverse Mapping Algorithm (Part 1 of 2)

 8

next_step by making it sensitive to proximity to midpoints.

Spatial points are placed sparsely nearer to midpoints, and

more densely nearer vertices.

2.6 Reverse Mapping of Convex Subsets

As described in the algorithms in section 2.3 through 2.5, a

unique set of coefficients of convex subsets of polygon P is

derived. We have included considerable effort to maintain a

separation between the segments of each convex polygon

subset, in order to ascertain the difference between native

segments to P, and non-native segments. With this

knowledge, and with a unique set of coefficients in z

representing an object with N original data points that we

wish to reconstruct, we posses the ability perform an inverse

mapping to obtain the original image. Our motivation for

selecting a mapping to the unit circle3,4, as opposed to some

other geometric object, are apparent in our goal to design a

technology in which objects may not only be uniquely

represented, but whose N data points may be

Algorithm 4. Inverse Mapping Algorithm (Part 2 of 2)

represented in a compact manner. This section describes how

we make use of the set of unique coefficients to reconstruct

the original object.

 We choose the unit circle in the η plane due to its

ease in construction as a preliminary step in the inverse

mapping process. With a knowledge of N data points in the

original object, we may construct a circle of radius r, where r

= 1, with N data points on its boundary, each point of which

may be represented as a complex number in the form of Eq. 2.

We then propose a method by which we apply the set of n

complex coefficients that we derived in the conformal

mapping process. Our method is a straightforward approach

which involves finding the roots of the polynomial at each

point zi in shape. As we know, a polynomial of degree p will

produce a maximum of p roots. Thus we are forced with a

choice of which of the p roots we wish to use in the inverse

mapping process for each point zi . We refer to3,4 in a

determination of this choice, and select the root with the

minimum magnitude for each point zi .

We propose Algorithm 5 as a solution to the inverse

mapping problem. Complicated only by our attention to a

record of discernment between indices indicating native

segments in our original object, and indices indicating non-

native segments, Algorithm 5 finds the minimum magnitude

of all roots at each point on our construction of a unit circle in

the η plane, and plots only those whose index points to

segments whose spatial coordinates are represented between

For i = 1:count

 Let Ni be the number of data points in

convex subseti .

 Let delta_thetai = Ni/2π.

Create a set of data points circlei in the η plane,

consisting of Ni complex points spaced equally

according to delta_thetai , forming a circle of

radius r = 1.

For j = 1: Ni

Let index i be the index of the root of the ith

complex point in circle

ηj = z
0
 + cj1z

1
 + cj2z

2
 + . . . + cjnz

n
 = zj

ηj = z
0
 + cj1z

1
 + cj2z

2
 + . . . + cjnz

n
 - zj = 0

ROOTS_minimumi = minimum magnitude

root of polynomial represented by ηj.

If index i ∈ native_links

inverse_map = inverse_map ∪

ROOTS_minimumi

 End If

End For

End For

Let count be the number of convex subsets in

P.

Let n be the degree of a polynomial in z.

Let subset_coefficients be a set of coefficients

consisting of complex numbers in the η plane

for a convex subset in P, given as

subset_coefficients = { c0 , c1 , c2 , . . . , cn }

Let coefficients be the set of count sets of

coefficients subset_coefficients, where the kth

subset is given as

subset_coefficientsk = { ck0 , ck1 , ck2 , . . . , ckn

} where k = 1:count, and

coefficients = { subset_coefficients1,
subset_coefficients2, . . . ,
subset_coefficientscount}

Let native_links consist of the set of indices

of the data points in P between which there

exist points on native segments in P.

Let inverse_map = { NULL }.

 9

indices of native links in our original object. Data points

derived from non-native links are rejected in the plotting

phase of the reverse mapping process.

 The reader may observe that previously

discussed Algorithm 3 begins with a population of data points

on convex subsets of the original object, spaced equidistantly.

Algorithm 5 begins with the construction of points on a unit

circle in the η plane. The choice of spacing of the points in η

relies on a choice of delta_theta, so that the N data points on

the original convex subset are equally spaced on the unit

circle in η. In section 5, we discuss the consequences of such

choices, and propose variations to Algorithms 3 and 5, with

their results. For now, we concentrate on the results of

Algorithm 5 when applied to polygons whose original data

points are spaces equidistantly, and whose inverse mapping is

derived from a unit circle consisting of equally spaced points

in η.

3.0 Forward And Inverse Mapping Results

The next step in our approach involves feeding a set of

vertices to our collection of proposed algorithms, and

observing the results. We present results in two major

categories: 1) forward mapping results, and 2) inverse

mapping results. We wish to show results of forward and

inverse mapping from an application of the approaches

outlined in our explanation of Algorithms 3 and 4.

We include an example of the application of our

proposed technique to a convex polygon, as shown in Figure

3(a) through (d). Figure 3(a) shows the original convex shape

whose data we wish to compress. We decompose the original

shape into concave subsets. For this example, the convex

subsets consist of only the original convex shape itself, shown

in Figure 4(b). For each concave subset, we obtain a set of

coefficients using the techniques described in3,4, the results of

which are shown in Figure 4(c). We use these coefficients to

represent the original dataset for the convex subset by feeding

the coefficients into Algorithm 5 to produce the inverse

mapping seen in Figure 3(d).

Figures 4(a) – (d) show the sequence of output images

when we apply Algorithms 1, 2, 3 and 5 to produce an inverse

mapping of on original polygon containing one concave

region. The original 16 vertices are fed into Algorithm 1,

resulting in a labeling of each vertex as convex or concave.

The linear segments formed by vertex pairs are then

populated with data points that are spaced equidistantly, by a

chosen spatial resolution of 0.01 units. Figure 4(a) shows a

plot of the data points produced by Algorithm 1. We then

proceed to Algorithm 2, in which the simply-connected region

in Figure 4(a) is divided into convex subsets. Figure 4(b)

shows such a division. The two convex subsets are then feed

into the algorithm discussed in3,4; this step results in a

mapping to circles as shown in Figure 4(c). We have, at this

point, a set of coefficients for each convex subset that has

been derived in the mapping process. For the mappings

shown in Figure 4(c), we have chosen a polynomial in z of

degree 20, thus, we have a maximum of 20 coefficients per

convex subset. We feed these sets of unique coefficients into

Algorithm 5 to produce the inverse mapping seen in Figure

4(d).

4.0 Conclusions and Future Work

Current data compression schemes such as JPEG are capable

of producing compression ratios between 10:1 and 20:1 for

images without visible loss. JPEG compression ratios in the

range of 30:1 to 50:1 are possible for images with small

noticeable defects. For low-quality images (those which

contain obvious noticeable defects) compression ratios as

high as 100:1 are obtainable. 19 In our proposed technique,

we demonstrate compression ratios of 101:1 and 123:1 with

little to no visible defect, as shown in figures 3 and 4. These

results demonstrate the power of the proposed technique over

existing data compression methods. Future work in this area

will include applications to non-polygonized, simply-

connected regions.

5.0 Acknowledgements

Funding for this research is provided by the Rocky Mountain

NASA Space Grant Consortium Fellowship. The authors

would like to thank Dr. Jon Arvik for his comments and

insight during this work.

 10

Figure 3

Figure 4

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

Figure 3(a) Convex polygon consisting of 2023 data points

Figure 3(b) Original shape decomposed into convex subsets (in this case, just one)

Figure 3(c) Original shape mapped to the unit circle

Figure 3(d) Reconstruction of the original shape through inverse mapping process, using

20 derived coefficients, resulting in a compression ratio of 101:1.

Figure 4(a) Concave polygon consisting of 3697 data points

Figure 4(b) Original shape decomposed into convex subsets

Figure 4(c) Convex subsets mapped to circles

Figure 4(d) Reconstruction of the original shape through inverse

mapping process, using 20 derived coefficients, resulting in a

compression ratio of 123:1.

 11

References

[1] Raphael C. Gonzales and Richard E. Woods, Digital

Image Processing, pp 307-394, Addison Wesley, MA.

[2] Yoram Gdalyahu and Daphna Weinshall, “Flexible

Syntactic Matching of Curves and Its Application to

Automatic Hierarchial Classification of Silhouettes,”

IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 21, pp. 1312-1328, 1999.

[3] Dalila Megherbi, “A New Fast, Robust and Invariant

Technique for 2-D Polygonal and Non-Polygonal

Object Representation and Recognition based on

Complex Variables and Conformal Mapping

Methodologies” , Submitted to the IEEE journal

Transaction on Pattern Recognition and Machine

Intelligence.

[4] Dalila Megherbi, “How to map Arbitrary Shapes into

Circles for Object Representation and Recognition,

IMSE Technical Report #1, September 1998.

[5] Esther M. Arkin, et al, “An Efficient Computable

Method for Comparing Polygonal Shapes,” IEEE

Trans. Pattern Analysis and Machine Intelligence,

vol.13, pp. 209-216, 1991.

[6] Michael Shneier and Mohamed Abdel-Mottaleb,

“Exploring the JPEG Compression Scheme for Image

Retrieval,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 18, pp. 849-853, 1996.

[7] R.W. Picard and A.P. Pentland, “Introduction to the

Special Section on Digital Libraries,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 18,

pp. 769-770, 1996.

[8] Nalini K. Ratha, Kalle Karu, Shaoyun Chen and Anil

K. Jain, “An Invariant Representation of an Object for

Large Fingerprint Databases,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 18, pp. 779,

Van Nostrand Reinhold, 1996.

[9] Ian H. Witten, Alistar Moffat and Timothy C. Bell,

“Managing Gigabytes, Compressing and Indexing

Documents and Images,” Van Nostradn Reinhold,

1993.

[10] William B. Pennebaker and Joan L. Mitchell, “JPEG

Still Image Compression Standard,” Van Nostrand

Reinhold, New York, 1993.

[11] Enrico Piazza, “Remote Sensed Multispectral Image

Compression”, part of the SPIE Conference on

Mathematics of Data/Image Coding, Compression,

and Encryption, San Diego, CA, July 1998. SPIE Vol.

3456.

[12] Michael F. Barnsley, “Fractal-Based Compression”

AK Peters, Ltd., Wellesly, MA, 1993.

[13] Sadayasu Ono, Naohisa Ohta and Tomonori
Aoyama “Super-High-Definition Images-
Beyond HDTV”, Artech House, Norwood,
MA, 1995.

[14] Majid Rabbani and Paul W. Jones, “Digital Image

Compression Techniques”, SPIE Optical Engineering

Press, Bellingham, WA, 1991.

[15] B. G. Lee, “A New Algorithm to Compute the

Discrete Cosine Transform,” IEEE Traans. Acous.,

Speech, Signal Proc., ASSP-32(6), 1243-1245 (1984).

[16] M. Vetterli and H. Nussbaumer, “Simple FFT and

DCT Algorithms with Reduced Number of

Operations,” Signal Processing, 6, 267-278 (1984).

[17] Michal Etizion and Ari Rappoport, “On Compatible

Star Decompositions of Simple Polygons,” IEEE

Transactions on Visualization and Computer Graphics,

Jan – Mar 1997, Vol. 3, #1.

 [18] M. Keil, “Decomposing a Polygon into Simpler

Components,” SIAM J. Computing, Vol 14, pp. 799-

817, 1985.

 [19] http://www.faqs/jpeg “How well does JPEG Compress

Images?”

