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Abstract- In this paper we deal with a new technique for large data compression.  Contour mapping of two 

dimensional objects is of fundamental importance in remote sensing and computer vision applications.  We present 

extensive algorithms applied to polygonized, simply-connected contours and reproduce desired shapes using an 

innovative data compression technique based on conformal mapping. In a previous work3,4, through a conformal 

mapping process, we demonstrated the ability to 1) recognize shapes, and 2) concisely represent shape boundaries 

using a set of polynomial coefficients derived in the mapping process.   In this work we illustrate how these previous 

results can be applied to data compression. In particular, in the approach outlined herein, a syntactic representation is 

formed for polygon shapes whose representation we desire to extract and reproduce compactly. Additionally, we 

present a problem of concavity in shape boundaries and a proposed solution in which polygons are divided into convex 

subsets and reconstructed accordingly.  
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1. Introduction 

 

 

The ability to efficiently process large datasets in a 

computational environment is a challenging task.  In remote 

sensing applications, such as Earth sensing systems or 

computer vision systems, an abundance of data in the form of 

images is likely to exist.  It is the desire of those who manage 

and use the data from these systems to realize efficiency in 

data transmission, manipulation and processing.1  There exists 

a need to efficiently reconstruct images from data that has 

been transmitted on a network from remote sensing systems.  

The amount of information that is the result of a data 

compression technique plays a key role in the speed and 

efficiency in the process of reconstruction of remotely-sensed 

images. In order to quickly and efficiently reconstruct images 

from their compressed data, we propose a method in which 

the coefficients derived from mapping the boundary of an 

image to the unit circle3,4 comprise the compressed data that is 

needed to reconstruct the original image.  In this process, 

image objects are represented as polygons.  We develop 

algorithms whose inputs are the vertices of polygons that 

represent the boundaries of image objects whose data we wish 

to compress.  These algorithms divide the polygons into 

subsets of purely convex polygons.  The convex subsets are 

then mapped to the unit circle using a conformal mapping 

process3,4.  In this mapping process, a set of coefficients is 

derived and used in the proposed reverse mapping process to 

reconstruct the original image.  It is these coefficients that are 

used to realize the data compression. 

 In this paper, we focus on an approach that uses 

polygonized, simply connected regions. We limit ourselves to 

the two-dimensional shape of the region, and do not concern 

ourselves with other region attributes such as motion, texture 

and color.2  We describe in detail our data compression 

algorithm, and provide results of its application to some real 

images.  But more specifically, we provide detail into our 

proposed approach of data compression that is realized in the 

algorithms described herein. 

 Finally, we present a problem of concavity in the 

forward and inverse mapping of simply-connected regions, 

and our proposed approach to overcome this problem.  For 

polygons with concavities on the boundaries, we have 

developed an approach that recursively identifies such 

concavities by returning convex subsets of vertices of the 

original polygonized region whose data we wish to compress.  

We provide results of the reverse mapping process of original 

shapes having such concave regions, and discuss the quality 

of these results. 

 

2. Data Compression Using Conformal Mapping Processes: 

A Proposed Technique 

 

In this section, we present a set of algorithms developed to 

extract specific attributes of the shape of an object whose data 

we wish to transmit in a compressed format.  We start with a 

known set of vertices in a coordinate system.  We 

demonstrate two different methods of data population to 

construct the data points representing the sides of the polygon. 

We identify convexity or concavity at the vertices, and divide 

the polygon into convex subsets, each of which is mapped to 

the unit circle3,4.  We extract the set of coefficients that are 

derived in the mapping process for later use in the shape 

reconstruction phase.  Through observation of vertices of 

convex subsets between which there exist data which may or 

may not belong to sides in the original shape, we seek a data 

structure which holds indices to vertices belonging to the 
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original polygon. In this data structure, there is a clear 

discernment between what we will show as native vertex links 

(i.e., data that belongs to the original shape), and artificial 

links (i.e., data that belongs to sides of convex polygon 

subsets, but is not part of the original polygon).  We will 

demonstrate that this discernment is key to the successful 

reconstruction of the original polygon shape. Object rotation, 

translation, scaling and vertex convexity/concavity are shown 

to be invariant in these processes.  

  

2.1. Preliminaries 

 

In the algorithms developed for our proposed data 

compression techniques, a convention for the spatial ordering 

of vertices in all polygon subsets has been chosen to be a 

counterclockwise ordering in the Cartesian coordinate system.   

We describe an important spatial relationship 

between vertices in our proposed algorithms as vertex 

adjacency.  Two vertices are said to be adjacent to one 

another if no other vertices exist between them.  In the 

discussion herein of spatial relationships of vertices, we 

present a symbolic convention for describing such adjacency 

between two vertices va and vb as 

 

va  ↔ vb 

 

to indicate that va is immediately adjacent to vb in some 

polygon P, in that no polygon vertices exist spatially between 

va and vb.  As will be seen, it is possible that two vertices va 

and vb may be immediately adjacent in P, but may not 

necessarily be immediately adjacent in Q, where Q may be a 

convex subset of P.  The usage of this symbolic convention is 

evident in the details of the proposed algorithms. 

 

2.2 Compression Algorithms 

 

The vertices of the object are first extracted from the image, 

and a syntactic representation is formed, the primitive 

elements of which are linear segments (the sides of the 

polygon).  The attributes of the primitive elements are length, 

and orientation with respect to the coordinate system.2  Our 

approach requires an identification of vertex concavity or 

convexity, as it is based on the mapping and subsequent 

reconstruction of the native links from the purely convex 

subsets of the original polygon.  The algorithm for vertex 

labeling is outlined in section 2.3.  We then proceed to the 

population of a data structure that holds the vertices of the 

convex subsets of the shape whose data we wish to represent 

in a compressed format.  In the design of this algorithm, it is 

realized that complex polygonal shapes may contain regions 

of concavity in which their exist sub-regions of either 

additional concavity, or convexity.  The division of such 

polygons into convex subsets demands a recursive process for 

the extraction of vertex subsets consisting of purely convex 

polygons, while preserving the spatial relationship between 

the vertices of each convex subset.  Additionally, the chosen 

convention of counterclockwise ordering of the vertices in 

each convex subset is maintained within this process.  Section 

2.4 provides the details of this algorithm. 

 

2.3 Labeling of Vertex Convexity and Concavity  

 

The chosen approach for labeling vertices as convex or 

concave is inspired by the overall approach of dividing the 

polygonized object boundary into convex subsets. With the 

information as to which vertices are convex and which are 

concave, the foundation for the subsequent algorithm in 

which convex subset divisions are returned can be laid.  A 

greedy labeling algorithm is proposed to minimize the number 

of convex subsets in P, while accounting for all vertices in the 

object boundary.  The algorithm identifies a vertex vm to be 

labeled as convex or concave by determining the angle β 

formed between adjacent vertices vl and vn, such that 

 

vl ↔ vm↔ vn 

 

in P.  The label is applied to vm according to the following 

convention. 

 

If  β < π , vm ⇐ concave 

 

If  β > π , vm ⇐ convex. 

 

If β  = π,  vm ⇐ neither convex nor concave. 

 

The algorithm is designed to begin at a vertex vi of assumed 

concavity.  The convention for identification of this vertex is 

to determine the vertex in P that holds the maximum 

Euclidean distance from c, the centroid of P. The algorithm 

proceeds in a counterclockwise direction from vi until all 

vertices in P have been labeled.  The pseudocode is provided 

as Algorithm 1. 

 

 

 

2.4 Division of Object into Convex Subsets  

 

A recursive process has been chosen for the extraction of sets 

of vertices in P comprising convex subsets.  The resulting 

data structure is referred to in subsequent algorithms 

explained in sections 2.5 through 2.6.  In  Algorithm 2, the 

vertices of P have been labeled according to Algorithm 1.  

The process of vertex subset identification Find_subsets (S) 

begins with a null subset convex_subsets to which the set 

union of itself and the convex hull of P have been assigned.  

In the convex hull returned by the algorithm, vertices between 

which there exist any concavity form the starting and ending 

vertices of a set of cyclically-adjacent vertices in S, as a 
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subset Si of the convex_hull of P.  Subset Si is conditioned by 

reversing the convexity/concavity label at all vertices except 

the starting and ending vertices (which are convex in S), 

resulting in S’i.  Subset S’i forms the recursive input as 

Find_subsets(S’i), the returned entity of which is the set of 

vertices comprising the convex hull of S’i. Recursion proceeds 

until there are no pairs of vertices in P between which there 

exist concavity. 

 

 

  

  

 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Algorithm 2.  Division of Object into 

Convex    Subsets 

 

Algorithm 1.  Labeling of Vertex Convexity 

Let vertices be a cyclically-ordered set of (x, y) 

coordinates of the N vertices of a simply-

connected polygonized region P, where N ≥ 3. 

 

Let c be the centroid of P.  

 

Let v0 be a vertex in P whose Euclidean distance 

from c in P is maximum.  By definition, v0 is a 

convex vertex in P. 

 

Let vi be a vertex in P for which a label of 

convexity or concavity is to be determined. 

 

For each vertex vi  in vertices, where i  = 0, 1, 2, . . 

., N-1 

 

Let verticeslmn be a set of three cyclically-

ordered vertices in P, such that verticeslmn =  

{ vl, vm, vn } where verticeslmn ⊂ V  and   

vl ↔ vm ↔ vn.  Let vm = vi. 

 

Let β be an exterior angle in P whose vertex 

is at vm, and whose CW and CCW adjacent 

vertices are vl and vn, respectively.   

 

If         β < π  

Label vm as concave 

Else If β > π  

Label vm as convex.   

Else If β = π  

Label vm as neither convex nor concave. 

End if 

End for 

Let SS be a cyclically-ordered set of (x, y) 

coordinates of the N vertices of a simply-

connected polygonized region P, where N ≥ 3. 

 

At each vertex vi  (where i = 0, 1, 2, . . . , N-1)  in 

SS, let there be a label L of convexity or 

concavity, where L vi = concave or L vi = convex. 

 

Let convex_subsets = { NULL }. 

 

Find_subsets (SS, convex_subsets) 

Let lengthSS = N. 

 

Let convex_hull_SS be the cyclically-ordered 

set of vertices in SS comprising the convex 

hull of SS. 

 

Let lSS be the number of vertices in 

convex_hull_SS. 

 

At each vertex vp  (where p = 0, 1, 2, . . . , 

lSS -1)  in SS, let convex_hull_SS contain 

a label of convexity or concavity. 

 

 If lSS = = lengthSS 

convex_subsets ⇐ convex_hull_SS 

return  convex_hull_SS 

 

Else For each pair of vertices pf = ( va , 

vb ) in convex_hull_SS, such that va ↔  

vb in convex_hull_SS let Si  be the 

complete set of k cyclically adjacent 

vertices in SS such that Si = { vv1, vv2, 

vv3, . . ., vvk }, and vv1 ↔ vv2 ↔ vv3 ↔ . . 

.↔ vvk in SS, and va ↔ { Si  } ↔  vb in 

SS.  Let Sj be the set { va ,{ Si  },  vb }. 

 

  If Si = = { NULL } 

 Skip pf 

Else 

For each vertex vvr in Si  

If Lvvr is concave in SS 

Lvvr ⇐ convex in Si 

Else  

If Lvvr = = convex in SS 

Lvvr ⇐ concave in Si. 

End if 

End For 

Find_subsets (Sj) 

End If 

End For 

End If 

 



2.5 Mapping of Convex Subsets 

 

In this section, we describe the steps we use to obtain a set of 

unique coefficients3,4 for the geometric components of our 

original object, in the form of convex subsets.  There are three 

parts to our research goal:  1) we wish to derive a set of 

coefficients to be used in the unique identification of the 

object irrespective of its translation, rotation, or scaling3,4 2) 

we wish to use the set of coefficients as a unique and concise 

representation of the object, and 3) we must be able to apply 

only the information used to represent the object to the 

reconstruction of the original object.  This section describes 

the implementation of our first and second goals, where 

section 2.6 describes the proposed reconstruction algorithm. 

 In our proposed method, we divide our original 

object into convex subsets.  We show our approach to the 

process of preserving the knowledge of which side polygonal 

segments are part of the original object, and which are not.  

We show how such preservation is made in the form of an 

interesting data structure, and how we use this data structure 

in the reconstruction phase. 

 Our approach to the derivation of convex subsets 

begins with vertex subsets which require a population of 

spatial points between each vertex.  We propose two related 

methods to fill in data points, and, later in our results, we 

demonstrate the outcome of both methods. 

 We make reference to previous research in the 

application of conformal mapping techniques3,4 in order to 

introduce our approach for deriving a unique set of 

coefficients for each convex subset.  In later sections we 

apply this information to the reconstruction of the original 

object. 

 

2.5.1 Division of Polygon into Convex Subsets 

 

Convex subsets of our original shape boundary are 

represented as sets of polygonal vertices in an (x,y) coordinate 

system. Figure 1 shows an example of the division of a 

polygon exhibiting both concavity and convexity, into convex 

subsets.  Notice the concave region consisting of vertices a, b, 

and c.  In this region, Algorithm 2 returns a syntactical 

representation of this region in the form of  

 

a ↔ b ↔ c ↔ a 

 

In comparison, notice the region consisting of vertices e, f, g, 

h, and i.  Here, we see an example where Algorithm 2 will 

return recursively two convex subsets whose syntactical 

representation is 

 

e ↔ f ↔ h ↔ i ↔ e 

 

and 

 

f ↔ g ↔ h ↔ i 

 

With our original polygon having been divided into convex 

subsets according to Algorithm 2, we propose Algorithm 3 to 

prepare the convex subsets of P for subsequent mapping by 

creating data points between the vertices of the subsets 

returned by Algorithm 2.  In Algorithm 3, data  

 

 

 

Figure 1. (a) through (f) Convex Subsets of  P where (a) 

shows original shape, (b) shows the convex hull of P, 

and (c) through (f) show the convex subsets of P.  Native 

segments are shown as solid line segments, and non-

native segments are shown as dashed line segments. 

 

points are placed between each vertex in a give subset, 

according to a user-defined spatial resolution step.  Algorithm 

3 returns a data structure shape containing the vertices of the 

set of convex subsets returned by Algorithm 2, with data 

points, the Euclidean distance between which is step, placed 

between each pair of cyclically adjacent vertices.  This 

algorithm simply calculates the Euclidean distance between 

each pair of cyclically adjacent vertices va and vb, and divides 
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the distance by step to obtain the number of spatial data points 

that are needed between va and vb to maintain a spatial 

resolution defined by step.  Data points whose x and y 

coordinates are recorded in shape are then places between va 

and vb.  This process is repeated for all N cyclically adjacent 

vertex pairs. 

 Algorithm 3 populates cyclically adjacent vertex pairs 

with spatial data points in preparation for mapping of the 

convex subsets.  Each subset Si in P is represented 

syntactically by a set of cyclically-adjacent (x,y) coordinates 

in CCW order.  For each pair of cyclically adjacent vertices 

(vsa, vsb) in Si , start and end are assigned the (x,y) coordinates 

if vsa and vsb, respectively. The Euclidean distance between 

vsa and vsb is determined, and divided by step to establish the 

incremental spatial location of each data point between vsa 

and vsb.  Upon completion, Algorithm 3 returns shape, 

consisting of all convex subsets of P, with data points 

between each pair of cyclically adjacent vertices.  Each data 

point in shape is assigned an index.  As indices are assigned 

to spatial points coincident with the vertices of the convex 

subsets, these indices are recorded in a separate data structure 

links which relates the vertices of the convex subsets with 

their shape indices.  This step is important, as not all vertex 

pairs that are cyclically adjacent in a subset of P form native 

segments in the original polygon, as shown by the dashed 

lines in Figure 1. 

 We propose a slight variation of Algorithm 3 by altering 

the method by which the spatial location of data points is 

chosen.  Unlike in Algorithm 3, where spatial location is 

chosen based on the Euclidean distance equal to step, in a 

direction along an imaginary line segment whose endpoint is 

the next cyclically adjacent vertex, the location of points 

chosen in Algorithm 4 is influenced not only by step, but also 

by proximity to the nearest vertex, and the magnitude of the 

interior angle at the nearest vertex.  In Algorithm 4, datapoints 

are packed tightly near vertices, and more sparsely near 

midpoints between vertices.  In no case, however, is the 

Euclidean distance between any two spatially adjacent data 

points any greater that step.  A choice between Algorithm 3 

and Algorithm 4 has consequences in the inverse mapping 

process, as will be demonstrated in our results. We present 

details of Algorithms 3 and 4 in Section 2.5.4. 

 Figure 2 shows, by contrast, a polygonal vertex at 

which data points are spaced equidistantly, as in Figure 2(a), 

and the same vertex with adaptive spacing of points. The 

equation for adaptive spacing of data points as shown 

by example in Figure 2(b) is  

 

next_step  =  step * ( 1/(1 + distance) ) * ( βm/π )  (Eq.1) 

 

 

Fig. 2(a)     Fig 2(b) 

 

Figure 2(a) Equidistant spacing of data points in a 

typical polygonal vertex.  Figure 2(b) Adaptive 

spacing of data points in a typical polygonal 

vertex  

 

2.5.2 Maintaining Relationships Between Native Links and 

Artificial Links 

In keeping with our goal to utilize a derive set of coefficients 

for both object representation and object reconstruction, we 

again stress the importance of maintaining a history of the 

specific data points which belong to native links and which 

belong to non-native links.  We construct polygon subsets 

from our original concave polygon, and are forced to deal 

with links that do not belong to our original object.  As stated 

earlier, we have shown such examples in Figure 1. 

As we place data points between the vertices of 

each convex subset, we form a vector of (x,y) coordinates in 

an ordered fashion, such that the order of the data points 

follows the spatial ordering of the points in the convex subset.  

We label each vertex (x,y) coordinate with an index.  Prior to 

data point population, whether by Algorithm 3 or 4, our shape 

vector contains only the original vertices from our convex 

subset, and their associated indices.  As data points are 

inserted between vertices, the indices in shape associated with 

the original vertices will change.  It is these changes in indices 

that we must understand. 

We seek a data structure from which we may discern the 

nativity of vertex segments in the original object from the 

non-nativity of segments.  We will ultimately use this 

discernment in the reconstruction of the original concave 

object in an inverse mapping process (see section 3.X) by 

acknowledging native segments and discarding artificial 

segments.  Table 1 shows the map data structure for the 

polygon example in Figure 1, in tabular form.  An important 

observation with respect to Figure 1 is that the table itself, 

implemented in the form of a data structure, does not maintain 

a history of vertex indices in the shape data structure.  Rather, 

it tells us whether the data points between original vertex 

indices prior to datapoint population are (or are not) part of 

the original object.  Once data points are placed between the 

vertices, we realize that indices for the original vertices will 

change.  We maintain these changes in a separate data 

structure links, to which we relate the map data structure 

represented in Table 1.  In the inverse mapping process, we 

will show how information is obtained from the map and links 

data structures to create a mask that is used to apply to the 

plotting of the data points for the reconstructed object.   
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Algorithm 4.  Adaptive spacing of data points 

between vertices in polygon subsets 

 

 

 
2.5.3.1 Data Structure for Convex Subsets 

 

Specifically, from Table 1 we may obtain the following 

information: 

 

1. The number of convex subsets returned by 

Algorithm 2. 

2. The specific vertices in each convex subset. 

3. The cyclical adjacency of vertices in each convex 

subset. 

4. The links between vertices in each convex subset 

that are native to the original polygon, and those 

that are not. 

 

 a b c d e f g h i j 

1 √ x √ √ √ x x x √ √ 

2 √ √ √ x x x x x x x 

3 x x x x √ √ x √ √ x 

4 x x x x x √ √ √  x x 

 

Table 1.  Map of the Vertices of the Four Convex 

Subsets of the Polygon in Figure 1.  A √ indicates 

the vertex identifier in the corresponding column 

heading is a member of the set of vertices in the 

convex subset whose identifier is a row number.  

An x indicates non-membership in the subset of 

vertices in a given row.  In any row, √’d vertex 

pairs between which there exist at least one x 

indicate non-native segments in P. Conversely, 

√’d vertex pairs between which there exist no x ‘s 

indicate native segments in P.   

 

We may use the example of the polygon P  shown in Figure 1, 

to validate the information in Table 1.  We first observe four 

convex subsets from Figure 1 (c) through (f).  Table 1 

contains a row of vertices for each subset in P.  In row 

number 1, we see the formation of a convex subset consisting 

of vertices a, c, d, e, i and j. Additionally, we see cyclical 

adjacency in this particular subset.  As described in Table 1, 

we see the vertex pairs between which there exist at least one 

x, indicating non-native links in the original polygon.  

Information in the remaining three rows allows us to obtain 

similar information for the remaining convex subsets.  This 

syntactic representation conveys the necessary information to 

reconstruct the relationship between the links in the polygon 

subsets and the links in the original polygon. 

 

2.5.4.1 Details of Data Point Filling 

 

In this section we present in detail our process for filling in 

spatial datapoints between the vertices of convex subsets.  

Recall that Algorithm 2 returns convex subsets in the form of 

a set of vertices Si that are cyclically adjacent in Si.  We 

present the details of two methods for data point filling, and 

refer the reader to section 3.X for a comparison of some 

results of using these two approaches. 

 

2.5.4.2 Equidistant Point Filling 

 

Let R be a convex polygon with N vertices, where N 

>= 3. 

 

Let DISTANCES = { NULL }. 

 

Let step be some maximum defined member in 

DISTANCES. 

 

Let l, m, n be the indices of three vertices in R such 

that  vl ↔ vm ↔ vn . 

 

For k = 1:N 

 

Let βm  be the interior angle of R at vm . 

 

Let midpointk be one half of the Euclidean 

distance between vm and vn . 

 

Let distance = midpointk 

 

While distance > 0 

next_step  =  step * ( 1/(1 + 

distance) ) * ( βm/π ) 

 

DISTANCES = DISTANCES ∪ 

next_step 

 

distance = distance - next_step 

End While 

 

distance = 0 

DISTANCE = DISTANCES ∪ distance 

 

Let r be an index in R such that  vn ↔ vr . 

 

Let l = m,  m = n, and  n = r. 

 

Let βm  be the interior angle of R at vm . 

 

While distance < midpointk 

next_step  =  step * ( 1/(1 + 

distance) ) * ( βm/π ) 

 

DISTANCES = DISTANCES ∪ 

next_step 

 

distance = distance + next_step 

End While 

 

distance = vm 

DISTANCE = DISTANCES ∪ distance 

End For 
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 Algorithm 3 populates cyclically adjacent vertex pairs 

with equidistantly spaced data points in preparation for 

mapping of the convex subsets.  Each subset Si in P is 

represented syntactically by a set of cyclically-adjacent (x,y) 

coordinates in CCW order.  For each pair of cyclically 

adjacent vertices (vsa, vsb) in Si, start and end are assigned the 

(x,y) coordinates of vsa and vsb, respectively. The Euclidean 

distance between vsa and vsb is determined, and divided by 

step to establish nstep, the number of data points between vsa 

and vsb.  We recall that vsb follows vsa in a cyclically adjacent 

fashion, and forms a line segment as a side of Si.  As such, we 

form a vector Vab whose endpoints are vsa and vsb.  Using the 

direction Vab derived from the x and y coordinates of start and 

end, and step expressed as a magnitude, we then obtain the dx 

and dy components of our desired data point k to create a (dxk, 

dyk) coordinate.  We place this kth coordinate into our shape 

data structure so that we maintain cyclical adjacency in shape, 

and repeat for all nstep points between vsa and vsb. Upon 

completion, Algorithm 3 returns shape, consisting of all 

convex subsets of P, with data points between each pair of 

cyclically adjacent vertices.  Each data point in shape is 

assigned an index.  As indices are assigned to spatial points 

coincident with the vertices of the convex subsets, these 

indices are recorded in a separate data structure links which 

relates the vertices of the convex subsets with their shape 

indices.  This step is important, as not all vertex pairs that are 

cyclically adjacent in a subset of P form native segments in 

the original polygon, as shown by the dashed lines in Figure 

1.  Figure 2(a) shows an example of a cyclically adjacent set 

of equidistantly-spaced data points in close proximity to a 

vertex. 

 

2.5.4.2 Adaptive Point Filling 

Algorithm 4 populates cyclically adjacent vertex pairs with 

adaptively-spaced data points. In preparation for mapping of 

the convex subsets.  We select the descriptive term adaptive 

due to the fact that a selection of any data point in this 

algorithm is influenced by some geometric characteristics of 

the polygon subset.  We say that data point spacing adapts to 

the subset geometry.  

 Each subset Si in P is represented syntactically by a set 

of cyclically-adjacent (x,y) coordinates in CCW order.  As in 

Algorithm 3, we initialize step with a user-defined increment 

of resolution.  For each of the N vertices in Si we then select 

three vertices vl, vm and vn in Si such that 

 

vl ↔ vm ↔ vn 

and  

 

1 ≤ m ≤  N 

 

We calculate βm, the magnitude of the interior angle of Si at 

vm.  We let midpointk be the spatial location that is one half of 

the Euclidean distance between vm and vn. We let distancek be 

the Euclidean distance to midpointk , where 

 

1 ≤ k ≤  N 

 

We then calculate a Euclidean distance next_step from vm 

according to Equation 1.  We subtract from distancek the 

newly-calculated next_step from vm.  As this last step is 

repeated, distancek decreases with each addition of next_step.  

Our stopping condition for this segment of Algorithm 4 is 

when distancek is equal to zero.  When this condition is true, 

we know that we have placed data points between vm and 

midpointk.   

We must now complete the adaptive placement of 

data points from midpointk to vn.  In this last segment of 

Algorithm 4, we maintain knowledge of midpointk, but we 

select the next cyclically adjacent vertex r from vl such that 

 

vn ↔ vr  and r ≠ m 

 

We let l = m,  m = n, and  n = r.  Thus we are selecting a set of 

three cyclically adjacent vertices in Si that are “offset” in a 

CCW direction by one vertex from our most recent set of 

three vertices vl , vm and vn. We calculate βm, the magnitude of 

the interior angle of Si at (new) vm. We then calculate a 

Euclidean distance next_step from vm according to Equation 

1. We add to distancek the newly-calculated next_step from 

vm.  As this last step is repeated, distancek increases with each 

addition of next_step.  Our stopping condition for this 

segment of Algorithm 4 is when the summed distance is 

greater than distancek.  When this condition is true, we know 

that we have placed data points between midpointk and the 

(new) vm.   

We observe from Equation 1 that the distance 

next_step is a product of three multiplicands 

 

1) step 

2) 1/(1 + distancek) 

3) βm/π 

 

As the summed distances distancek approach the distance 

between the nearest vertex and the midpoint of the line 

segment to which data points are being created, 2) becomes 

maximally influential to next_step.  Conversely, as this 

summed distance approaches zero, 2) becomes minimally 

influential to next_step.   In a similar fashion, 3) influences 

next_step as a ratio of the magnitude of the interior angle at 

the nearest vertex, to pi.   

 We structure the multiplicands in Equation 1 so as 

to effect a more compact placement of data points at 

vertices exhibiting relatively smaller magnitudes of 

interior angles.  We place additional influence on 

Algorithm 4.  Inverse Mapping Algorithm (Part 1 of 2) 
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next_step by making it sensitive to proximity to midpoints.  

Spatial points are placed sparsely nearer to midpoints, and 

more densely nearer vertices.  

 

2.6 Reverse Mapping of Convex Subsets 

 

As described in the algorithms in section 2.3 through 2.5,  a 

unique set of coefficients of convex subsets of polygon P is 

derived.  We have included considerable effort to maintain a 

separation between the segments of each convex polygon 

subset, in order to ascertain the difference between native 

segments to P, and non-native segments.  With this 

knowledge, and with a unique set of coefficients in z 

representing an object with N original data points that we 

wish to reconstruct, we posses the ability perform an inverse 

mapping to obtain the original image.  Our motivation for 

selecting a mapping to the unit circle3,4, as opposed to some 

other geometric object, are apparent in our goal to design a 

technology in which objects may not only be uniquely 

represented, but whose N data points may be  

Algorithm 4.  Inverse Mapping Algorithm (Part 2 of 2) 

 

 

represented in a compact manner.  This section describes how 

we make use of the set of unique coefficients to reconstruct 

the original object. 

 We choose the unit circle in the η plane due to its 

ease in construction as a preliminary step in the inverse 

mapping process.  With a knowledge of N data points in the 

original object, we may construct a circle of radius r, where r 

= 1, with N data points on its boundary, each point of which 

may be represented as a complex number in the form of Eq. 2.  

We then propose a method by which we apply the set of n 

complex coefficients that we derived in the conformal 

mapping process.  Our method is a straightforward approach 

which involves finding the roots of the polynomial at each 

point zi in shape.  As we know, a polynomial of degree p will 

produce a maximum of p roots.  Thus we are forced with a 

choice of which of the p roots we wish to use in the inverse 

mapping process for each point zi .  We refer to3,4 in a 

determination of this choice, and select the root with the 

minimum magnitude for each point zi . 

We propose Algorithm 5 as a solution to the inverse 

mapping problem.  Complicated only by our attention to a 

record of discernment between indices indicating native 

segments in our original object, and indices indicating non-

native segments, Algorithm 5 finds the minimum magnitude 

of all roots at each point on our construction of a unit circle in 

the η plane, and plots only those whose index points to 

segments whose spatial coordinates are represented between 

For i = 1:count 

  

 Let Ni be the number of data points in 

convex subseti . 

 

 Let delta_thetai = Ni/2π. 

 

Create a set of data points circlei in the η plane, 

consisting of Ni complex points spaced equally 

according to delta_thetai , forming a circle of 

radius r = 1. 

 

For j = 1: Ni   

 

Let index i  be the index of the root of the ith 

complex point in circle 

 

ηj = z
0
 + cj1z

1
 + cj2z

2
 + . . . + cjnz

n
 = zj 

 

ηj =  z
0
 + cj1z

1
 + cj2z

2
 + . . . + cjnz

n
 - zj = 0 

 

ROOTS_minimumi  = minimum magnitude 

root of polynomial represented by ηj. 

 

If index i  ∈ native_links 

 

inverse_map = inverse_map ∪ 

ROOTS_minimumi   

 

 End If 

 

End For 

 

End For 

 

Let count be the number of convex subsets in 

P. 

 

Let n be the degree of a polynomial in z. 

 

Let subset_coefficients be a set of coefficients 

consisting of complex numbers in the η plane 

for a convex subset in P, given as  

 

subset_coefficients = { c0 , c1 , c2 , . . . , cn } 

 

Let coefficients be the set of count sets of 

coefficients subset_coefficients, where the kth 

subset is given as 

 

subset_coefficientsk = { ck0 , ck1 , ck2 , . . . , ckn 

} where k = 1:count, and 

 

coefficients = { subset_coefficients1,  
subset_coefficients2,  .  .  .  , 
subset_coefficientscount} 

 

Let native_links consist of the set of indices 

of the data points in P between which there 

exist points on native segments in P. 

 

Let inverse_map = { NULL }. 
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indices of native links in our original object.  Data points 

derived from non-native links are rejected in the plotting 

phase of the reverse mapping process. 

 The reader may observe that  previously 

discussed Algorithm 3 begins with a population of data points 

on convex subsets of the original object, spaced equidistantly. 

Algorithm 5 begins with the construction of points on a unit 

circle in the η plane.  The choice of spacing of the points in η 

relies on a choice of delta_theta, so that the N data points on 

the original convex subset are equally spaced on the unit 

circle in η.  In section 5, we discuss the consequences of such 

choices, and propose variations to Algorithms 3 and 5, with 

their results.  For now, we concentrate on the results of 

Algorithm 5 when applied to polygons whose original data 

points are spaces equidistantly, and whose inverse mapping is 

derived from a unit circle consisting of equally spaced points 

in η. 

 

3.0 Forward And Inverse Mapping Results 

 

The next step in our approach involves feeding a set of 

vertices to our collection of proposed algorithms, and 

observing the results.  We present results in two major 

categories: 1) forward mapping results, and 2) inverse 

mapping results.  We wish to show results of forward and 

inverse mapping from an application of the approaches 

outlined in our explanation of Algorithms 3 and 4. 

We include an example of the application of our 

proposed technique to a convex polygon, as shown in Figure 

3(a) through (d).  Figure 3(a) shows the original convex shape 

whose data we wish to compress.  We decompose the original 

shape into concave subsets.  For this example, the convex 

subsets consist of only the original convex shape itself, shown 

in Figure 4(b).  For each concave subset, we obtain a set of 

coefficients using the techniques described in3,4, the results of 

which are shown in Figure 4(c).  We use these coefficients to 

represent the original dataset for the convex subset by feeding 

the coefficients into Algorithm 5 to produce the inverse 

mapping seen in Figure 3(d). 

Figures 4(a) – (d) show the sequence of output images 

when we apply Algorithms 1, 2, 3 and 5 to produce an inverse 

mapping of on original polygon containing one concave 

region.  The original 16 vertices are fed into Algorithm 1, 

resulting in a labeling of each vertex as convex or concave.  

The linear segments formed by vertex pairs are then 

populated with data points that are spaced equidistantly, by a 

chosen spatial resolution of 0.01 units.  Figure 4(a) shows a 

plot of the data points produced by Algorithm 1.  We then 

proceed to Algorithm 2, in which the simply-connected region 

in Figure 4(a) is divided into convex subsets.  Figure 4(b) 

shows such a division.  The two convex subsets are then feed 

into the algorithm discussed in3,4; this step results in a 

mapping to circles as shown in Figure 4(c).  We have, at this 

point, a set of coefficients for each convex subset that has 

been derived in the mapping process.  For the mappings 

shown in Figure 4(c), we have chosen a polynomial in z of 

degree 20, thus, we have a maximum of 20 coefficients per 

convex subset.  We feed these sets of unique coefficients into 

Algorithm 5 to produce the inverse mapping seen in Figure 

4(d). 

  

4.0 Conclusions and Future Work 

 

Current data compression schemes such as JPEG are capable 

of producing compression ratios between 10:1 and 20:1 for 

images without visible loss.  JPEG compression ratios in the 

range of 30:1 to 50:1 are possible for images with small 

noticeable defects.  For low-quality images (those which 

contain obvious noticeable defects) compression ratios as 

high as 100:1 are obtainable. 19  In our proposed technique, 

we demonstrate compression ratios of 101:1 and 123:1 with 

little to no visible defect, as shown in figures 3 and 4.  These 

results demonstrate the power of the proposed technique over 

existing data compression methods.  Future work in this area 

will include applications to non-polygonized, simply-

connected regions. 
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Figure 3 

Figure 4 

(a) 

(c) 

(b) 

(d) 

(a) 

(c) 

(b) 

(d) 

Figure 3(a) Convex polygon consisting of 2023 data points 

Figure 3(b) Original shape decomposed into convex subsets (in this case, just one) 

Figure 3(c) Original shape mapped to the unit circle 

Figure 3(d) Reconstruction of the original shape through inverse mapping process, using 

20 derived coefficients, resulting in a compression ratio of 101:1. 

Figure 4(a) Concave polygon consisting of 3697 data points 

Figure 4(b) Original shape decomposed into convex subsets 

Figure 4(c) Convex subsets mapped to circles 

Figure 4(d) Reconstruction of the original shape through inverse 

mapping process, using 20 derived coefficients, resulting in a 

compression ratio of 123:1. 
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