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Abstract

This paper develops control strategies for moving
multiple-agents in formation, using a virtual struc-
ture. The controls are specifically applied to robots.
By introducing feedback from the followers to the co-
ordinating mechanism, the robots are shown to bet-
ter coordinate their motion. Hardware results are
presented.

1 Background for Formation
Maneuvers

Moving a group of agents in formation has received a
fair amount of attention in the control literature. Co-
ordinated formations can be used to accomplish vari-
ous tasks. For example, spacecraft formation maneu-
vers can be used to synthesize a space based interfer-
ometer [3]. As another example, planetary rovers can
be used to navigate and explore asteroids or planets.
Current schemes for coordinating formation maneu-
vers can be categorized under either leader-follower,
virtual structure, or emergent behavior.

In order to understand the issues involved with co-
ordinating multiple agents, we will look at coordi-
nating motion on multiple robots. Robots were cho-
sen as agents since they are cheaper to build than
spacecraft, easy to maintain, and illustrate many of
the control problems associated with coordinating a
group of agents.

The categories used for coordinating group forma-
tions have been applied to mobile robots, i.e., leader-

follower [9], virtual structure [8], and emergent be-
havior control [1]. Leader-follower designates one
robot as the leader and the other robots follow the
leader. Virtual structure generates a trajectory which
the robots (agents) follow. For virtual structure, we
shall extend the ideas used in [2] in which a virtual
structure moves along a trajectory with the follow-
ing spacecraft tracking a corresponding position on
the structure. Most of the emergent behavior con-
trols have not been analyzed from a dynamical sys-
tems perspective. A rigorous treatment from a dy-
namic systems perspective of a particular behavioral
approach for robots is presented in [6].

The purpose of the work presented in this paper
is to focus on ways to improve coordinating robot
formation maneuvers through virtual structure. The
coordination problem could be greatly simplified if all
of the robots could be turned on at exactly the same
time, with exactly the same gains. Using a control
law where each robot regulates to a desired goal, the
robots would move in a coordinated fashion. This
would be like a race where all the runners start at
the same time and run at exactly the same speed.
However, this approach lacks robustness since it does
not account for communication latency, differences in
timing, and manufacturer variability on each robot.
To overcome such problems, there needs to be some
kind of coordinating mechanism.

With this is mind, the formation control problem
can be cast into the general architecture shown in
Figure 1. The equations governing the blocks R;,
K9 F® and G shall be defined throughout this pa-
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Figure 1: Multi-agent control architecture.

per. The block R; contains the dynamics for each of

the robots. The block ICZ(J) corresponds to the 5 lo-
cal control on the i* robot. F*) represents the k"
formation control block or the coordinating mecha-
nism for the local control, ICZ(»j ), By exploring the use
of feedback to the formation control block, F*)| we
will be able to add robustness to the formation con-
trol. The output of the formation control block, y,
depend on variables in the formation control block to
coordinate the formation maneuvers. We will here-
after refer to these variables as the coordination vari-
ables. Using feedback to the coordination variables
distinguishes the controls presented here from pre-
vious work on leader-follower such as [9]. To show
improved coordination using feedback to the coordi-
nation variables, we will look at hardware results and

show the feedback reduces formation error!.

I Formation error will be explicitly defined in section 4.

In order to demonstrate these concepts, the pa-
per has been organized as follows. Section 2 intro-
duces the robot model. Section 3 introduces the type
of formation maneuvers to be considered. Section 4
presents the virtual structure control schemes. Sec-
tion 5 presents hardware results for the virtual struc-
ture schemes both with and without feedback from
the followers to the coordination variables and dis-
cusses these results in the context of coordinating
multiple robots. Section 6 contains conclusions and
discussions.

2 Robot Dynamics

The equations of motion for differentially driven mo-
bile robots are given below:

& = v cos(h), (1)
g = vsin(6), (2)

0 =w, (3)
mo (4)
(5)

= F — F,sign(v),
Jw =1 — rFgsign(w),

where m is the mass, J the inertia, F' is force, 7 the
torque, %Fs is the coefficient of friction on each wheel,
and 7 is the radius of the robot. The mapping sign(v)
is defined by:

1 ifv>0
-1 ifv<O
a ifv=0,

sign(v) = (6)

where a € [-1,1]. To focus attention on the for-
mation control problem, we simplify the dynamics
by feedback linearizing about a point off the wheel

axis of the i*" robot which will be denoted as z; =
(xhi,yni)T, where the underline will denote vectors in
R? and all other vectors will be in bold. The disad-
vantage of feedback linearizing a point off the center
is that angular information about the robot is lost.
The idea of controlling a point off the center of the
robot is not new. It has been done for the robot
regulation problem [7] and for open-loop formation



maneuvers [4]. Consider the feedback linearization
of a point off the wheel axis of the robot whose po-
sition and orientation is given by the triple (z,y,6).
The components of the i*" off-center point z; may be
stated as:

Lo (TR x; + L cos(6;)
=7 \yni )~ \yi+ Lsin(9;) )’

where Z; is given by:

. F; —F,sign(v) _ 2
5= (") = R(g,) |, _ M L
£ Gini TLi—r Jsvmgn(w) + vw;

(7)

(8)

Setting F;, and 7; to:

Iy Liw? 4+ Legign(v Uy
(%Zz> = (—v-w-l— %Si ( ) +R(_9i) ( > )
7, i M gn(w) Uy

i

Equation (8) reduces to:

3 = Ilu _ Ugi )
Yhi Uy;
This may be stated in terms of z; as:

gi = uzi7

(11)
where u,; = (ugi,uyi)’. 2; = u,; are classical double
integrator dynamics?. Placing the dynamics in the
context of Figure 1, the output of block F*) is given
by yr = (giT,g'iT)T, and we have the state space form

for R; given by:

s [0 B], (0
2= 1o o0|* in,

where I, is the 2 x 2 identity matrix. The other out-
put of R; is Z; = z; — 2;4, Where z;, is the desired i
position for the i'* robot. Z; will be used in measur-
ing formation error.

2For single agent control, double integrator dynamics are
well understood. See for example, Feedback Control of Dy-
namic Systems [5].
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Figure 2: Translations.
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Figure 3: Expansions.

3 Elementary Formation Ma-
neuvers

The ideas for elementary formation maneuvers stem
from those used in spacecraft [6]. With just a few
simple maneuvers, almost any desired form of group
maneuvers which preserve formation shape can be
achieved.

For a virtual structure, one way to visualize the
maneuvers is to think of the structure as a center with
rigid arms attached to it. The end of each arm is the
desired it" robot location. Thus, the coordinates of
the end of each arm describes an equation for z;,, the
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Figure 4: Rotations.



desired position for z;. The virtual structure at a spe-
cific time can be described by a center and orientation
(z(t),yc(t),0:(t)), D(t) = (D1(t),... ,Dn(t)) a vec-
tor which contains the length of each arm, and 6y (t) a
vector which contains the angle of the arm relative to
the center position. Therefore the parameters which
describe a virtual structure can be stacked up into a
vector of parameters given by ¢ = (z¢, ¥, 0:,D,0p).
For example, increasing the values in D expands
the structure, changing 6.(t) rotates the structure,
and changing the center, (z.(t),y.(t)), translates the
structure. Using these parameters, the components
of z;; may be expressed mathematically as:

2 = (:cC(t) + Di(t) (S;io;(gc(t) n 90i>> |

ye(t) + Dy () sin(8.(t) + ) (12)

Using Equation (12) and by continuously varying the
parameters of the virtual structure, ¢, we can ob-
tain equations for translations, rotations and expan-
sions. For translations, the only parameters which
change in ((t) are z.(t) and y.(t). We let z.(t) be pa-
rameterized by the coordination variable &, (t) with
&:(0) = z.(0) and with &,(t) = &gy as t = oo, where
&4z 1s the final x desired position for the translation.
Similarly we let y.(t) be parameterized by the coor-
dination variable &,(t) with &,(0) = y.(0) and with
&y(t) — &ay as t — oo, where gy is the final y desired
position for the translation. Using these parameteri-
zations, the virtual structure for a translation can be
described by:

C(t) = (£$ (t)a fy(t), 06(0)7 D(0)7 00 (0))

For expansions/contractions, the only parameters
which change in ((t) are D(t). We let D;(t) be pa-
rameterized by the coordination variable &p;(t) with
¢pi(0) = D;(0) and with &p;(t) — Epiy as t — oo,
where {p;y is the final amount the " arm of the
virtual structure must expand/contract. Using these
parameterizations, the virtual structure for an expan-
sion can be described by:

¢(t) = (2(0),9c(0),0:(0),&n(t), 60(0)).-

For rotations, the only parameter which changes in
C(t) is 0.(t). We let 0.(t) be parameterized by the

(13)

(14)

coordination variable &(t) with &(0) = 6.(0) and
with & (t) = &y as t — oo, where &y is the final
amount virtual structure must rotate. Using these
parameterizations, the virtual structure for a rotation
is described by:

(1) = (2c(0),yc(0),&(2), D(0),60(0)).  (15)

4 Virtual Structure

Of the three categories for coordinated control, a
virtual structure scheme was chosen for several rea-
sons. First, the parameters of a virtual structure
are not restricted to double integrator dynamics as
are the leader’s in leader-follower. Second, a vir-
tual structure accurately knows its position whereas
in leader-follower and emergent behavior, the coor-
dinating mechanism depends on positions which are
corrupted by noisy sensors. In addition, the virtual
structure parameters do not have to evolve according
to the feedback linearized dynamics.

Hardware considerations are a good reason for
choosing different dynamics for a virtual structure.
For robots which are driven by DC motors, the volt-
age input saturates. This in turn implies that the
robot’s velocity saturates. For a virtual structure,
we need to put velocity saturation explicitly into the
evolution of the virtual structure’s parameters. This
motivates having the virtual structure’s parameters
be given by first order systems. In a first order sys-
tem, velocity saturation can be put in explicitly by
using saturation functions for the velocity. Another
problem with a virtual structure is that the follow-
ers may not be able to track their desired position
very well. One solution is to have the followers use
PD tracking with the poles placed at ten times those
of the virtual structure’s evolving parameters. How-
ever, this may cause the virtual structure to perform
the desired maneuver very slowly. An alternative so-
lution is to use feedback from the followers to the
formation control block as in Figure 1. Such feed-
back should reduce the formation error and allow the
maneuver to be achieved at a faster rate.

A first order system, £ = (&, ... ,&m), which takes



into account velocity saturation is:

1
é=-nkan (pe-6). (o)
where &4 is a constant vector, and where tanh(-) is
applied element by element to the vector ({—&4). We
will also need ¢ to exist. £, & and £ must exist for the

Lyapunov function candidate to be valid. f is given
by:

£=—m<wm(%@—@ﬁ2§, (17)

where the function sech (%(f — fd))zé is applied el-
ement by element to the vector (£ — &;). We have
seen that by changing parameters of the virtual struc-
ture, &, the virtual structure can translate, rotate, or
expand. These parameters will be used in the for-
mation control as a vector of coordination variables.
This makes the formation control only a function of
the coordination vector, . For the elementary for-
mation maneuvers with virtual structure, the local
control block ICZ(-J ) will need to compute z;; which is
a function of the coordination variable, £. This may
be stated as:

Thid(§)
Z. =
Zi(6) (%id(ﬁ)) ’
where z,,(€), the it" desired location of each robot,
depends on the vector of coordination variables &.
One way to have each robot track its desired posi-
tion is to use PD control on the tracking error. Thus,

stacking up the control laws in the control block ICEZ)) ,
into a vector we have:

(18)

u, =% — A7 — B, (19)
where z = (zf — 2T,,...,2% — ggN)T, 7 =
(z{_zgla"'az%_sz) ’ z = (11;,1%) ’
A = diag(kpa,kpy, ... s kpa,kpy), and B =

diag(kvz, kvy, . , kow, kuy). Using the control laws
in Equations (16) and (19), it can be shown that
a virtual structure scheme asymptotically achieves

formation maneuvers [10]. Under ideal conditions,
the proposed control law can be used to obtain tight
bounds on formation error. One way to define forma-
tion error is by considering the normed square of the
vector difference between (Z; — Z;,,). This measure
for formation error is proposed in [6]. The error may
be stated mathematically as:

N

FE(z(t),£(t) = Z(Zz - Zz’-ﬁ-l)T(Zi —Zi1), (20)

i=1

where FE(t) is the formation error and where the
indices are defined modulo N, i.e., N+ 1= 1. Using
a measure for formation error leads to a natural def-
inition of formation stability. Let FE(t) denote the
formation error and £(t) the vector of coordination
variables, then we have two definitions for formation
stability.

e Definition - A control scheme is formation
stable if Ve > 0, 30 > 0 such that FFE(0) < ¢ im-
plies that FE(t) < € V¢t > 0 and both FE(t) — 0
and £(t) — 0 as t — 0.

e Definition - A control scheme is strictly
formation stable if Ve > 0, 30 > 0 such that
if FE0) = 4, then FE(t) < 0 V¢t and both
FE(t) — 0 and &(t) — 0 as t — oo.

With these definitions it can be shown that given
the proposed control laws and initial conditions, then
the control schemes is either formation stable or
strictly formation stable.

This result states that if the following robots are
turned on at exactly the same time, with exactly
the same gains, they will track the leader in exactly
the same manner — maintaining formation. How-
ever, from hardware considerations, this is difficult
to achieve. Another difficulty is that the control can
saturate, which means that the formation error is
not necessarily decaying exponentially. To overcome
these problems, the control needs to be made robust
with respect to synchronization issues, saturation and
manufacturer variability. Increasing feedback to the
formation block is one way to help overcome some of
these difficulties. Such feedback should slow down the
coordination variable if the robots are lagging behind



their desired position. Consequently, the robots can
put more control effort into tracking a slower moving
coordination variable, thus reducing formation error.
One way to slow down the coordination variable is
to make the gain a function of 1/(tracking error+1).
This has the affect of making the coordination vari-
able slow down to zero as the tracking error increases.
It also allows the coordination variable’s dynamics to
evolve at the rate € if the followers are keeping up.
One such gain which has this property is:

- 1
10 - 20) = (@) (%T - k_) e
The constant K in v determines how much the
virtual leader slows down if the following robots lag
behind their desired targets. A larger Kp will slow
down the coordination variable due to tracking er-
ror. If the robots lag infinitely behind their desired
position, ¢ will go to zero and & converges to a con-
stant. At the other extreme, if the robots are per-
fectly tracking their desired positions, the coordina-
tion variable moves to its final goal with maximum
rate k1 as desired. The average tracking error was
chosen to make the corresponding Lyapunov func-
tion candidate continuously differentiable. If forma-
tion control could be dependent on the robot which
is maximally out of formation, then a guarantee on
maximum formation error might be possible. How-
ever, such a control would not be continuously dif-
ferentiable. With this in mind, we can modify the
dynamics of the coordination variable as follows:
i= @ (ge-6). @)
where £y is again a constant vector and tanh is ap-
plied element by element to the vector (§ — &4). The
acceleration, &, is given by:

. 1 ~\2.
= —~(z h{ =
£= (@) ( (%) e) -
1 kp (o2 1 =
?W (Z Z) Ktanh (E(f)> 5
which can be shown to be continuous. As before, con-
sider the problem of tracking a position on a virtual

(23)

(24)

structure. The formation control will now include
feedback. In the formation control block, FE, we
have that £ = g(z,&), i.e., the coordination variable
& uses feedback from the followers to the formation
control. The expressions for z;; are the same as be-
fore with the only difference being that f depends on

z:
Thid(§)
z; = :
Zia(¢) (%id(f))
As before, using the control laws in Equations (22)
and (19), it can be shown that a virtual structure
scheme asymptotically achieves formation maneu-

vers [10]. However, this scheme has feedback from
the followers to the virtual structure.

(25)

5 Hardware Results

As mentioned, the hardware results show a couple
of interesting features about the control. First, they
show that virtual structure is able to perform elemen-
tary formation maneuvers asymptotically. Second,
the hardware results show how feedback from the
followers to the virtual structure can reduce forma-
tion error. The measure for formation error was de-
fined in Equation (20). For rotations, the supervisor
block, G, outputs y% = (€4z, Eay, 0(0), D(0)6,(0)) 7.
For translations the supervisor block, G, outputs
Y = (Eas€ay,0:(0),D(0),60(0)".  For expan-
sions/contractions the supervisor block, G, outputs
YE = (2(0),9c(0),6:(0), Epy, 60(0)) "

Both control schemes were implemented on a robot
testbed. Both schemes were able to asymptotically
perform translation maneuvers. The results are sum-
marized in Table 1, which show that for a given gain
k1, increasing the weighting of the feedback to the
coordination variables by increasing kr, reduces for-
mation error.

Expansion maneuvers were also run on the testbed
with various values for k; and kr. Both control
schemes asymptotically performed expansion maneu-
vers. Additionally, from the data on expansions, for
a given ki, increasing kp lead to reduced formation
error. The results are summarized in Table 2.



Table 1: Table of translation results.
kr | Maximum Formation Error(m)

20 0.01

B
<

1

1 5 0.02
1 1 0.02
1 0 0.05
3| 20 0.05
3 5 0.1

3 1 0.101
310 0.45

Table 2: Table of expansion results.

k1 | kr | Maximum Formation Error(m)
1|20 0.05

1 5 0.12

1 1 15

1 0 .19

3120 .30

3 5 0.42

3 1 > 0.7

310 > 0.7

Rotation maneuvers were run on the hardware
testbed. The results are summarized in Table 3.,
which shows that for a given gain k;, increasing kp,
which is the weighting on the feedback from the fol-
lowers to the coordination variables, reduces forma-
tion error.

Table 3: Table of rotation results.

k1 | kp | Maximum Formation Error(m)
1|20 0.1

1 ) 0.12

1 1 2

1 0 .19

3120 3

315 0.45

311 > 0.7

310 > 0.7

The hardware results discussed thus far have shown
that feedback from the robots to the virtual structure
reduces formation error. Of course, decreasing the

gain on k; can have a similar affect. However, this is
not the only added advantage of using feedback from
the followers to the formation control block. We ran
both controls with an initial error formation error of
0.2 m. With no feedback to the coordination vari-
ables, the formation error initially got worse — reach-
ing a maximum of 0.3m. The coordination variables
“assume” their is no initial formation error. The vir-
tual structure does not take this into account, mov-
ing towards its goal without regards for the following
robots. In contrast, when using the same initial con-
ditions and feedback from the followers to the coor-
dination variables, the formation error only slightly
increased — reaching a maximum of .22m. The feed-
back allows the virtual structure to “consider” the
initial formation error and slows down so the follow-
ers can get back in formation. Follower to coordi-
nation variable feedback allows the virtual structure
to take into account un-modeled and un-predictable
problems like initial formation error, saturation, and
poor tracking performance. Thus, follower to coor-
dination variable feedback adds to the robustness of
formation keeping by closing a feedback loop. The
price paid is the time to convergence is slower.

6 Conclusions and Discussion

This paper has shown how to perform certain coordi-
nation formation maneuvers using a virtual structure.
By increasing feedback from the followers to the co-
ordination variables, we have shown it is possible to
reduce formation error, but the controls take longer
to converge. It also adds more robustness to forma-
tion keeping than does not having follower to coor-
dination variable feedback. Without such feedback
the virtual structure does not compensate for diffi-
culties that cannot be easily modeled or predicted.
Introducing feedback from the followers to the vir-
tual structure is an important step in obtaining a
formation control which is able to practically obtain
coordinated maneuvers for multiple agent.
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