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ABSTRACT 

Assessing Vehicle-Related Mortality of Mule Deer in Utah 

by 

Daniel D. Olson, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. John A. Bissonette 
Department: Wildland Resources 

 In Utah, considerable amounts of mule deer habitat are now bisected by roads with 

increasing traffic volumes. Mule deer are commonly involved in vehicle collisions, and there is 

concern that roads may be impacting populations. The focus of my research was to: 1) estimate 

the number of vehicle collisions involving deer, 2) examine the demographic effects of deer-

vehicle collisions, 3) determine how movements and survival were impacted by roads, and 4) 

create an electronic, smartphone-based system for reporting vehicle collisions. Great uncertainty 

exists with most deer-vehicle collision estimates. In chapter 2, I estimated the number of deer-

vehicle collisions using carcass surveys, while accounting for several sources of bias to improve 

accuracy. I estimated that 2-5 % of the statewide deer population was killed in vehicle collisions 

annually. The effect that vehicle collisions have on deer abundance depended not only the 

number of deer killed but also on the demographic groups removed. In chapter 3, I found that 65 

% of deer killed in vehicle collisions were female and 40 % were adult females. Because female 

deer, especially adults, are drivers of population growth, these data suggest vehicle collisions 

could significantly affect population abundance. However I was unable to detect a decreasing 

trend in deer abundance. Deer have distinct movement patterns that affect their distribution in 

relationship to roads. In chapter 4, I analyzed deer movements during two consecutive winters to 
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determine what effect climate had on deer movements and vehicle collision rates. I observed that 

as snow depth decreased, the distance that deer occurred from roads increased. As a result road 

crossing rates declined, as did the number of vehicle collisions. My data suggest a causal 

mechanism by which winter conditions affect deer-vehicle collision rates. Currently there is a 

need for efficient wildlife-vehicle collision data collection. In chapter 5, I discussed the 

development and testing of a smartphone-based system for reporting wildlife-vehicle collision 

data. The WVC Reporter system consisted of a mobile web application for data collection, a 

database for centralized storage of data, and a desktop application for viewing data. The system 

improved data accuracy and increased efficiency. 

(176 pages) 
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PUBLIC ABSTRACT 

Assessing Vehicle-Related Mortality of Mule Deer in Utah 

 Roads are essential in modern societies, but as populations grow and traffic volumes rise, 

roads will continue to be built and expanded. As a result, the effects that roads have on wildlife 

will likely intensify, making it imperative that managers understand those effects so mitigation 

can be directed accordingly. In Utah, considerable areas of mule deer (Odocoileus hemionus) 

habitat have been bisected by roads. Mule deer are commonly involved in vehicle collisions and 

there is concern that roads and vehicle traffic are impacting populations. This project was 

conducted to determine the number and demographic effects of deer-vehicle collisions, to 

examine how movements and survival of deer were impacted by roads, and to develop a 

smartphone-based reporting system for wildlife-vehicle collisions. Accurate estimates of DVCs 

are needed to effectively mitigate the effects of roads, but great uncertainty exists with most deer-

vehicle collision estimates. I estimated the number of deer-vehicle collisions using carcass 

surveys, while accounting for several sources of bias to improve accuracy. I estimated that 2-5 % 

of the statewide deer population was killed in vehicle collisions annually. The effect that vehicle 

collisions have on deer abundance depended not only on the number of deer killed but also on the 

demographic groups removed. I found that 65 % of deer killed in vehicle collisions were female 

and 40 % were adult females. As female deer are the primary drivers of population growth, my 

data suggest vehicle collisions could significantly affect population abundance. However I was 

unable to detect a decreasing trend in deer abundance. Deer have distinct movement patterns that 

affect their distribution in relationship to roads. I analyzed deer movements during two 

consecutive winters (2010-11 & 2011-12) to determine what effect climate had on deer 

movements and vehicle collision rates. I observed that as snow depth decreased, the distance that 

deer occurred from roads increased. As a result road crossing rates declined, as did the number of 
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vehicle collisions. This suggests a causal mechanism by which winter conditions influence 

vehicle collision rates. Currently there is a need for an efficient wildlife-vehicle collision data 

collection. I envisioned and, working with colleagues, helped develop a smartphone-based system 

for reporting wildlife-vehicle collision data. The WVC Reporter system consisted of a mobile 

web application for data collection, a database for centralized storage of data, and a desktop 

application for viewing data. The system greatly improved accuracy and increased efficiency of 

data collection efforts, which will likely result in improved mitigation and ultimately increased 

safety for motorists and deer. 

Daniel D. Olson 
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CHAPTER 1 

INTRODUCTION 

Roads are a fundamental component of modern societies (Larsson et al. 2010). They 

facilitate the movement of people and goods, encourage economic development, and enrich social 

interactions (Forman et al. 2003). Each day in the United States, as many as13 million km are 

driven and 31 million metric tons of freight are moved on the Nation’s 6.5 million km of roads 

(U.S. DOT 2010). The road network in the United States has expanded ~0.3 % annually, resulting 

in nearly 20,000 km of new roads each year; traffic volumes have also increased ~2.0 % annually 

(U.S. DOT 2010), which is congruent with the long term trend of capacity on roads increasing 

more rapidly than construction of new roads (Forman et al. 2003).   

While growth and expansion of roads provides many benefits for people, roads can have 

mixed effects on wildlife populations (Forman and Alexander 1998, Trombulak and Frissell 

2000). Roads apparently benefit some species, because vegetation is often modified adjacent to 

roads. For example, Adams and Geis (1983) observed small mammal densities were higher in 

road right-of-ways than in other habitats. Although roads do benefit certain species, the direct and 

indirect ecological effects of roads appear to be mostly negative for wildlife (Putman 1997, 

Forman and Alexander 1998, Trombulak and Frissell 2000, Taylor and Goldingay 2010). 

The negative direct effects of roads include habitat loss due to the construction of new 

roads and the expansion of existing roads (Forman 2000), and increased mortality rates due to 

vehicle collisions (Fahrig and Rytwinski 2009). Forman et al. (1995) estimated that greater than 1 

%  of the land area in the United States has been converted to road corridors. More than 1 million 

vertebrates are killed in vehicle collisions daily (Forman and Alexander 1998). 

The indirect effects of roads are often subtle and more difficult to demonstrate than direct 

effects (Forman et al. 2003), because indirect effects can result from multi-causal pathways and 
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may have significant time lags (Bissonette and Storch 2002, Didham et al. 2012). Indirect effects 

of roads include habitat degradation and fragmentation. Degradation is the process by which 

habitat decreases in quality over time, and if not reversed can result in habitat loss (Lindenmayer 

and Fischer 2006). Wildlife habitat adjacent to roads can be degraded by light, sound, and 

chemical pollution from vehicle traffic, as well as by changed vegetation (Forman and Alexander 

1998, Rheindt 2003, Longcore and Rich 2004).  Roads may also facilitate the spread of exotic 

and invasive species that change the quality of wildlife habitat (Mortensen et al. 2009). 

Furthermore, human activities such as hunting, poaching, camping, and off-road vehicle use are 

often higher near roads, which may cause some species to avoid areas adjacent to roads 

(Trombulak and Frissell 2000, Rowland et al. 2005). As a result, the influence of roads extends 

beyond the road surface; indeed Forman (2000) estimated that 20 % of the land area in United 

States has been influenced by roads. 

Habitat fragmentation may also negatively impact wildlife populations (Lindenmayer and 

Fischer 2006). The term habitat fragmentation has been parsed into habitat loss and habitat 

arrangement by some authors (Fahrig 2003, 2013), but I am using the term to refer to the 

collective effects on habitats. Habitat fragmentation can occur when roads bisect otherwise 

continuous habitat, creating semipermeable or impermeable barriers to wildlife movements 

(Sawyer et al. 2013). When roads become barriers to wildlife movement, the ability of species to 

disperse, migrate, forage, and find mates is often diminished (Baur and Baur 1990, Ball and 

Dahlgren 2002, Rondinini and Doncaster 2002). The disruption of these processes can decrease 

individual fitness and ultimately population abundance, as well as create discontinuous, more 

isolated subpopulations with reduced genetic diversity (Keller and Largiadèr 2003, Epps et al. 

2005, Roedenbeck and Voser 2008). Species that are most affected by habitat fragmentation 
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caused by roads are those that avoid roads or that transverse expansive areas to acquire adequate 

resources (Forman et al. 2003, Jaeger et al. 2005, Fahrig and Rytwinski 2009).  

 Deer (Cervidae) are broadly distributed throughout North America (Geist 1998), and in 

temperate climates may require large areas for optimal fitness (Sawyer et al. 2009). 

Consequently, many deer populations have been affected by the influence of roads. Vehicle 

collisions are one the most conspicuous road-related effects and often generate great public 

interest because they affect humans directly (Conover et al. 1995, Forman et al. 2003). In the 

United States, there are an estimated 1-2 million vehicle collisions with large animals each year, 

most of which involve deer (Conover 2001, Huijser et al. 2008). Economic costs associated with 

these collisions exceed $8 billion (USD) annually (Huijser et al. 2008). Given the large number of 

deer-vehicle collisions (DVCs) that occur each year, there is considerable concern for public 

safety, because injuries to drivers and passengers occur in ~5 % of reported deer-vehicle 

collisions (Bissonette et al. 2008). Additionally, human fatalities have risen to ~200 annually in 

the United States (Langley et al. 2006).  

 Currently, there is a critical need to improve DVC data collection and estimates 

(Bissonette and Cramer 2008, Gunson et al. 2009), because DVC data are the underpinning of 

mitigation projects that protect both drivers and wildlife (Ford et al. 2009).  Gathering DVC data, 

however, is challenging because DVCs occur over broad areas, during all seasons of the year, and 

sometimes in large numbers. Additionally, many animals injured by vehicle collisions 

subsequently leave the immediate road area and die (Myers 1969).  

 DVC data from accident reports, insurance claims, and carcass surveys have been used to 

estimate the number of DVCs (Knapp et al. 2007, West 2008, State Farm 2012), but there is 

considerable uncertainty of how well these data sources reflect the actual number of DVCs that 

are occurring (Huijser et al. 2007). All of the commonly used DVC data sources have intrinsic 
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biases that generally result in uncorrected totals being only a fraction of the actual number of 

DVCs (Knapp et al. 2007, Donaldson and Lafon 2010). Accurate DVC estimates are needed to 

inform DVC mitigation, and estimates can be improved considerably by accounting for biases in 

data collection and reporting (Huijser et al. 2007).  Currently, many management agencies still 

collect DVC data on paper forms (Huijser et al. 2007), which is inefficient and typically results in 

avoidable inaccuracies. Given the recent advances that have taken place in mobile 

communications and electronics, it seems promising that the collection of vehicle collision data 

for deer and other wildlife can be substantially enhanced by incorporating  modern advances such 

as smartphones. 

The majority (92 %) of deer involved in vehicle collisions are killed as result of injuries 

sustained (Allen and McCullough 1976), but vehicle-related mortality does not necessarily cause 

deer populations to decline. Deer have relatively high reproductive rates and generally can sustain 

some mortality from anthropogenic causes without altering long-term abundance trends 

(Carpenter 2000, Erickson et al. 2003). For example, white-tailed deer are commonly involved in 

vehicle collisions throughout North America (Bashore et al. 1985, DeNicola and Williams 2008, 

McShea et al. 2008), and despite these losses, the species has generally increased in abundance 

and expanded its distribution (McCabe and McCabe 1997, McClure et al. 1997).  However one 

subspecies of white-tailed deer, the endangered Key deer (Odocoileus virginianus clavium), has 

experienced vehicle-related mortality rates of 50-74 % which threatened population persistence 

(Lopez et al. 2003). Additionally in Utah, Peterson and Messmer (2011) reported that vehicle-

related mortality was the leading cause of death (34% of morality) for female deer in their study 

area, but they did not attempt to demonstrate a population-level effect (Peterson and Messmer 

2011). While few studies have documented that vehicle-related mortality causes population 
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declines in deer, it remains a potentially important factor to consider because if affects deer 

populations and human safety directly.  

 Roads can also affect the daily and seasonal movements of deer, but species may vary in 

their in response (Wisdom et al. 2004).  For example, it was commonly believed that both mule 

deer and elk (Cervus elaphus) avoided roads based on early research conducted using pellet 

counts to describe use (Rost and Bailey 1979). However, more recent studies using modern 

methods found that elk generally avoided roads, but mule deer actually selected areas near roads 

(Wisdom et al. 2004, Tull and Krausman 2007, Stewart et al. 2010). The reasons why mule deer 

and elk differ in their response to roads are unclear. One suggestion is that socially dominant elk 

exclude mule deer from using habitats that are farther from roads (Wisdom et al. 2004, Stewart et 

al. 2010).   

In temperate climates, many deer are migratory (Gruell and Papez 1963, Kucera 1992, 

Sawyer et al. 2009) and have distinct seasonal movement patterns that affect their spatial 

distribution in relationship to roads (Stewart et al. 2010). For example in summer, mule deer 

typically use high elevation ranges with abundant resources (Boeker et al. 1972). Summer ranges 

are often more remote, higher in elevation, and farther from roads (Stewart et al. 2010). In early 

to late fall, mule deer generally move from high elevation ranges, largely in response to 

seasonally declining resource quality, as well as snow accumulations that inhibit movement and 

decrease forage availability (Parker et al. 1984). Mule deer winter ranges are usually lower in 

elevation and occur on south aspects that have lower snow accumulations (Gilbert et al. 1970, 

Garrott et al. 1987). Many roads are located on or near deer winter ranges, and as a result deer are 

often closer to roads with high traffic volumes during winter (Reed 1981). Movements may vary 

annually as well (Russell 1932). Mule deer typically exhibit a high degree of fidelity to summer 

ranges (Thomas and Irby 1990, Kucera 1992), but the use of winter ranges may vary between 
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years depending on winter conditions (Garrott et al. 1987, Brown 1992). Changes in deer 

distributions and movements patterns can affect the number of DVCs that occur (Biggs et al. 

2004, Mysterud 2004). 

 Utah, which is inhabited by several cervid species including mule deer, is located in the 

heart of the southwestern United States on the western edge of the Rocky Mountains in the 

Intermountain Basin. Currently the majority of the state is rural, but Utah is the 3rd fastest 

growing state in the United States and is rapidly becoming urbanized (Leydsman McGinty 2009, 

U. S. Census Bureau 2010, Iowa State University 2013). The growing human population has 

increased demand for transportation, and traffic volumes have double in the past 30 years (UDOT 

2010). In 2010, it was estimated that 42.8 billion km were driven on 73,413 km of roads in the 

state (UDOT 2010, Pope and McEwan 2012). Deer-vehicle collisions are common in Utah and 

result in significant economic costs (Romin and Bissonette 1996). For example, the overall cost 

for 13,020 collisions over 6 years (1996-2001) was $45,175,454, resulting in an estimated 

average cost per year of $7,529,242 and a mean cost per collision of $3,470 (Bissonette et al. 

2008). Given changes in the consumer price index, costs in 2013 would be ~48.8 % higher or 

$11,203,512 per year (Bureau of Labor Statistics 2013). Most DVCs in Utah involve mule deer 

(West 2008). 

In Utah, mule deer are the most abundant deer species (~300,000 individuals) and are 

broadly distributed. Consequently, much of the distribution of mule deer in Utah is bisected with 

roads (Fig. 1.1). Because mule deer are commonly involved in vehicle collisions and traffic 

volumes are increasing on roads in Utah, there was genuine concern that roads may be impacting 

deer populations in the state. In 2009, the USGS Utah Cooperative Fish and Wildlife Research 

Unit at Utah State University and the Utah Division of Wildlife Resources began this study to 

address knowledge gaps on the effects of roads on mule deer. The primary objectives were to 1) 
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estimate more accurately the number of DVCs involving mule deer, 2) examine the demographic 

effects of DVCs on mule deer, 3) determine how movements and survival of mule deer were 

impacted by roads, and 4) create an electronic, smartphone-based system for reporting DVCs.  

In chapter 2, I estimated the number of DVCs involving mule deer in Utah using carcass 

surveys conducted with automobiles and all-terrain vehicles. I accounted for carcass detection, 

retention, and persistence to improve the accuracy of DVC estimates. I also compared carcass 

survey estimates to other commonly used DVC data sources (i.e., accident reports and insurance 

claims) to determine the bias associated with them. 

In chapter 3, I examined the demographic effects of vehicle-related mortality on mule 

deer in Utah. Using carcass survey data, I estimated the proportion of deer in each demographic 

group that was involved in vehicle collisions. I compared surveys of live deer to carcass surveys 

to determine if deer demographic groups were being killed in vehicle collisions according to their 

availability. I also compared vehicle collision rates for mule deer, elk, and moose (Alces alces), to 

determine if deer were more vulnerable to vehicle collisions than other cervid species in the state. 

Finally, I examined abundance estimates of mule deer to determine if increasing traffic volumes 

were potentially affecting the statewide deer population. 

In chapter 4, I described the effect that winter climate has on deer movements and 

survival in relationship to roads and vehicles in central Utah. I used meteorological data from 

local weather stations to describe temperature, precipitation, and snow depth within the study 

area. I monitored deer movements with GPS telemetry to document distance of deer to roads, 

elevation use, and road crossing rates. I also described changes in deer abundance and traffic 

volumes that occurred during the study, which were potentially confounding variables. 

In chapter 5, I discussed the development and testing of a smartphone-based system for 

reporting wildlife-vehicle collision data that was called the WVC Reporter. The WVC Reporter 
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system consists of a mobile web application for data collection, a database for centralized storage 

of data, and a desktop web application for viewing data. I tested the spatial accuracy of 

smartphones that were used for data collection. I also described data entry times and errors, and 

compared smartphone-based data collection with traditional methods. Finally, I discussed the 

costs and benefits of using the WVC Reporter for data collection. 

My dissertation is written in multiple-chapter format. Chapters 1, 2, 3, 6 were written 

according to current guidelines in use by the Journal of Wildlife Management. Chapter 4 was 

written for Ecology and Society. Chapter 5 was written for PlosOne. All chapters follow the 

guidelines for the appropriate journals 
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Figure 1.1. The road network in Utah overlaid on mule deer habitat. 
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CHAPTER 2 

HOW MANY DEER ARE REALLY BEING KILLED IN VEHICLE COLLISIONS?  

ABSTRACT  

Deer-vehicle collisions (DVCs) are a substantial problem throughout much of the 

developed world. Accurate estimates of DVCs are needed to effectively mitigate the effects of 

roads and to properly manage deer populations. However, there is great uncertainty associated 

with most DVC estimates because commonly used DVC data sources are inherently biased and 

the bias is rarely accounted for in estimates. In this study, I used carcass surveys to estimate the 

numbers of vehicle collisions involving mule deer (Odocoileus hemionus) in Utah. Carcass 

surveys were conducted using both automobiles and all-terrain vehicles (ATVs), and carcass 

detection was estimated and accounted for in DVC estimates. I estimated that automobile surveys 

detected 41 % of mule deer carcasses that were on or near roads. On average there were 24 DVCs 

a day during the study. The highest DVC rates occurred in winter (37 DVCs/day) and the lowest 

rates occurred during summer (18 DVCs/day). I estimated that 2-5 % of the mule deer population 

in Utah was being killed annually in vehicle collisions, which was less than what was being 

harvested by hunters (7-9 %). Hunting harvest, however, was strongly biased toward male deer, 

while the majority of deer involved in vehicle collisions were female. Consequently, DVCs that 

remove a smaller proportion of animals than hunting likely had a stronger influence on population 

growth. Additionally, I compared DVC data sources (accident reports, insurance claims, and 

carcass surveys) to provide agencies with insight into the biases associated with using each of 

these data sources.  I found that carcass survey totals were 526 % higher than accident report 

totals and 196 % higher than insurance claim estimates, which suggests that commonly used 

DVC data substantially underestimates the problem. Additionally, while I estimated that 

thousands of deer were being killed annually in DVCs, I observed no change in the long term 
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trajectory of the mule deer population in Utah, suggesting that DVCs had little effect on mule 

deer dynamics at that scale. 

INTRODUCTION 

Deer (Cervidae), which occur throughout much of the world (Geist 1998), appear to be 

especially vulnerable to vehicle collisions (Mysterud 2004, Huijser et al. 2008, Pérez-Espona et 

al. 2009). For example, high numbers of deer-vehicle collisions (DVCs) have been reported in 

Japan, Canada, the United States, and throughout Europe (Bruinderink and Hazebroek 1996, Ng 

et al. 2008, Noro 2010). In the United States alone, there are ~1-2  million vehicle collisions with 

large animals each year, most of which involve deer (Conover 2001, Huijser et al. 2008). Reports 

from Europe indicate that DVCs may exceed 500,000 (Bruinderink and Hazebroek 1996).  There 

is, however, great uncertainty surrounding most DVC estimates, because commonly used DVC 

data types generally underrepresent the actual number of deer being killed, and the magnitude of 

the underestimate is usually unknown (Huijser et al. 2007).   

While deer species throughout the world range widely in size (11-771 kg) (Scott 1987, 

Bowyer et al. 2003) , many are large enough to cause substantial vehicle damage, human injuries, 

and human fatalities (Langley et al. 2006). For example, mean damage estimates from DVCs 

ranged from $8,388 to $30,773 (Huijser et al. 2008), and are dependent on the size of the species 

involved in the accident and value of the automobile. In the United States costs associated with 

vehicle collisions with large animals, most of which were deer, exceeded $8 billion annually 

(Huijser et al. 2008).  Human injuries occurred in  < 5% of DVCs (Seiler 2004, Bissonette et al. 

2008). In the United States human fatalities related to wildlife-vehicle collisions have risen to 

~200 each year (Langley et al. 2006), and the loss of each human life has been valued at $3.3-

$9.1 million (Huijser et al. 2008, Sinha and Braun 2010, Lefler et al. 2011). Consequently, DVCs 

are a key safety concern for many countries that have large populations of deer. 
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Deer-vehicle collisions also have the potential to impact deer populations, because the 

majority of deer (> 90 %) involved in vehicle collisions die as a result of the injuries (Allen and 

McCullough 1976). For example in Florida, vehicle-related mortality was the leading cause of 

death for the endangered Key deer (Odocoileus virginianus clavium), representing > 50 % of the 

total mortality (Lopez et al. 2003). High vehicle-related mortality rates, however, do not occur in 

all deer populations; for instance, Pierce et al. (2012) reported that < 10 % mortality was 

attributed to vehicle collisions for mule deer (Odocoileus hemionus) in California. Because deer 

typically have high reproductive rates, populations can sustain significant annual mortality 

(McCullough 1997); consequently, few studies have demonstrated deer population declines as a 

result of vehicle collisions. As a result, DVCs have been considered more of a public safety issue 

rather than a threat to the population persistence of most deer populations.  

Due to the public safety concerns and economic costs associated with DVCs, 

transportations agencies sometimes employ mitigation measures to reduce the number of DVCs 

(Romin and Bissonette 1996a, Sullivan and Messmer 2003) . Mitigation measures include 

warning signs (Found and Boyce 2011),  warning reflectors (Reeve and Anderson 1993), 

electronic animal detection systems (Huijser and McGowen 2003), exclusionary fencing to 

prevent wildlife from accessing the road (Clevenger et al. 2001), wildlife crossings (Cramer and 

Bissonette 2006), and other measures (DeNicola and Williams 2008, Rutberg and Naugle 2008). 

Though mitigation measures have varying levels of effectiveness (Mastro et al. 2008) , 

exclusionary fencing combined with wildlife crossings appears to be one the most effective 

methods for reducing DVCs (McCollister and Van Manen 2010, Sawyer et al. 2012). However, 

fencing and wildlife crossings are also among the most costly mitigation options. For example, 

exclusionary fencing  costs ~$100,000 per mile to install (Huijser et al. 2009) and wildlife 

crossings can cost $200,000-$1,800,000 to construct (P. Basting, Personal Communication 2013). 
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Since DVC mitigation is expensive, transportation agencies are often reluctant to allocate 

funds to mitigation unless it is perceived to be a substantial problem (Sullivan and Messmer 

2003). The perception of the problem is determined in part by the type of DVC data available 

(e.g., accident reports, insurance claims, or carcass surveys). In the past, accident reports have 

been used to evaluate the number and locations of DVCs (Sullivan and Messmer 2003, Huijser et 

al. 2007). Typically, accident reports are filed by public safety officers for vehicle collisions 

resulting in > $1,000 in damages (Joyce and Mahoney 2001) or if an injury or death results 

(Bissonette et al. 2008). Deer-vehicle collision totals from accidents reports are always 

underestimates, because not all DVCs result in injury, death, or > $1,000 in damages, and not all 

are reported by the drivers. The degree to which accident reports underestimate the actual number 

of DVCs is generally unknown. 

In the past decade, some insurance companies began publishing DVC estimates based on 

claims filed by their customers (State Farm 2012). Insurance claims also underrepresent the 

problem, because claims are only filed if: 1) there is enough vehicle damage to warrant a claim, 

and 2) the motorist has comprehensive insurance coverage and is willing to report the accident . 

The degree to which insurance claims underestimate the total number of DVCs is also largely 

unknown, but limited evidence suggests that DVC estimates from insurance claims are generally 

higher than estimates from accident report data (Donaldson and Lafon 2010). 

Carcass surveys, which involve observers physically counting deer carcasses on or near 

roads, are an effective but less commonly used method for estimating DVCs (Huijser et al. 2007). 

Like other forms of DVC data, carcass surveys are underestimates (Huso 2011), because 1) 

observers may not locate all carcasses on roadsides during the survey (search efficiency),  2) 

carcasses may be removed by scavengers prior to the survey (carcass persistence),  or 3) injured 

animals may leave the survey area prior to death (retention). While these factors may be 
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accounted for in carcass surveys for smaller species (Smallwood and Thelander 2008, Korner-

Nievergelt et al. 2011), they have been acknowledged but not accounted for in most estimates of 

DVCs (Knapp et al. 2007, Donaldson and Lafon 2008, Lao et al. 2012).  Because deer carcasses 

are large and often readily apparent on roads, it is has likely been assumed that detection is high 

and does not substantially bias survey estimates. This assumption, however, has not been verified 

and needs to be examined.  Carcass survey totals (uncorrected for bias) are generally higher than 

accident report and insurance claim totals (Donaldson and Lafon 2010).  

Transportation agencies that invest substantial resources in mitigation need accurate DVC 

estimates as a foundation for the mitigation process. Additionally, wildlife management agencies 

need accurate estimates of DVCs to more effectively manage deer populations.  Accurate DVC 

estimates require some estimate of the magnitude of the biases associated with commonly used 

DVC data (Huijser et al. 2007).  The objective of this paper was to provide an unbiased estimate 

of the number of DVCs in Utah, a state with an abundant mule deer population and a high 

number of DVCs. To estimate DVCs, I used a combination of carcass survey techniques. To 

increase the accuracy of my survey estimates, I accounted for search efficiency, carcass 

persistence, and other factors that influenced DVC estimates. Additionally, I compared carcass 

survey estimates to accident report and insurance claim estimates across the state, to provide 

agencies with insight into the biases associated with using each of these data sources.   

STUDY AREA 

Utah (219,807 km2) is located in the heart of southwestern United States (Fig. 2.1), and is 

an ecologically diverse region. The topography of the landscape is highly variable (663-4,123 m), 

and is typified by numerous mountain ranges, valleys, and river canyons (Leydsman McGinty 

and McGinty 2009).  Much of the state is considered semi-arid, receiving 127 to 381 mm of 

precipitation annually; however, high elevations may receive up to 1473 mm (Gillies and Ramsey 
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2009).  The climate in most of Utah is characterized by hot, dry summers and cold winters, but 

milder winters generally occur in the southern portions of the state. Utah lies at the intersection of 

three ecoregions that comprise the majority of the state: Colorado Plateau, Wasatch and Uinta 

Mountains, and Central Basin and Range (Griffith and Omernik 2009). As a result, Utah is home 

to wide variety of plant and animal species that are adapted to a diversity of habitats that range 

from salt desert to alpine tundra. Utah is also inhabited by several deer species that include mule 

deer, white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus), and moose (Alces alces). 

Mule deer were the most abundant and widely distributed cervid in Utah during the study; 

according to Utah Department of Wildlife Resources (UDWR) estimates, there were 293,700 

mule deer in 2010 and 286,100 in 2011 (Bernales et al. 2011).  Because mule deer were abundant 

and widely distributed, they were frequently involved in vehicle collisions (Romin and Bissonette 

1996b). Utah Department of  Transportation (UDOT) accident reports and insurance claims 

indicated that several thousand deer were being killed in vehicle collisions each year in the state; 

consequently, deer-vehicle collisions are considerable public safety concern in Utah (West 2008).  

For example, vehicle-collisions with large vertebrates in Utah, most of which were mule deer, 

resulted in economic losses (e.g., fatalities, injuries, property damage) of $7.5 million annually 

(Bissonette et al. 2008). 

In recent years, Utah has experienced high rates of urbanization and human population 

growth (Leydsman McGinty 2009). According to the latest United States census  (U.S. Census 

Bureau 2010),  Utah was the third fastest growing state. The increasing human population 

concomitantly has increased demand for transportation in the state. As a result, traffic volumes 

have doubled over the last 30 years (UDOT 2010). Utah’s road network consisted of 9,428 km 

(~5,858 mi) of state routes and ~ 63,985 km (~39,759 mi) of city, county, and other roads (Pope 

and McEwan 2012).  For roads where traffic volumes were measured in Utah, Average Annual 
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Daily Traffic (AADT) varied between 10 and 252,000 vehicles (median = 5,715) (UDOT 2010).  

The structure of road sides also varied widely in Utah, with some roadsides being narrow and flat 

with low vegetation and others being wide and steep with tall vegetation.  Additionally, many 

roads had some form of right-of-way fencing that was designed for livestock (1.2 m), but there 

were some highways with sections of exclusionary deer fencing (2.4 m). Occasionally roadsides 

had no fencing.   

METHODS 

Carcass Surveys 

I used a combination of automobile and All-Terrain Vehicle (ATV) carcass surveys to 

count mule deer carcasses that occurred on and near roads. In Utah, automobile surveys have 

been conducted systematically since at least 1998 (Bissonette and Rosa 2012). Automobile 

surveys were done by UDOT contractors who were obligated to drive assigned routes (Fig. 2.1) 2 

times per week throughout the year. UDOT contractor routes were selected because they had high 

numbers of wildlife-vehicle collisions, most of which involved mule deer.  Automobile surveys 

were generally performed by a single person, who acted as driver and observer. Survey 

automobiles were driven at the posted speed limit. Posted speed limits on contractor routes varied 

between 16 and 128 kmph (10-80 mph), but on most routes the speed limit was between 88 and 

104 kmph (55-65 mph). If the road had multiple traffic lanes, the survey automobile was driven in 

the slow lane, nearest to the shoulder of the road. Undivided roads were surveyed in only one 

direction, while divided roads with a median were surveyed in both directions. During surveys, 

UDOT contractors were required to remove all carcasses that were detected on the road surface, 

the median, and the road shoulder out to the reflective highway markers. They kept detailed 

records of the species removed and their locations. Location data were recorded as both the 



25 
 

 

highway number and nearest mile marker, and as GPS coordinates recorded with a Garmin eTrex 

Lengend H unit (Garmin, Olathe, Kansas, USA).  

Automobile surveys generally do not detect all carcasses (Slater 2002), so technicians 

also surveyed sections of UDOT contractor routes using ATVs to identify undetected carcasses. 

Although ATVs are commonly used in wildlife research (Lesage et al. 2000, Mooring et al. 

2004), using ATVs for carcass surveys is apparently a novel technique, as I found no references 

to their use in detecting carcasses. Surveys were conducted using ATVs because they were more 

efficient than walking surveys and allowed technicians to sample more and longer transects, 

while at the same time enabling them to carefully search roadsides and detect carcass by both 

sight and smell.  ATV survey transects were delineated by dividing all UDOT contractor routes 

into 4.8 km (3 mi) segments using ArcGIS 10.1 (ESRI, Redlands, CA). I then overlaid survey 

transects on carcass locations that were reported by UDOT contractors in 2009 to get the number 

of reported deer carcasses for each transect.  Because DVCs in Utah have a clustered distribution 

along roads (Kassar and Bissonette 2005), I used a proportional sampling design to select survey 

transects. Using proportional sampling, segments with higher numbers of reported carcasses had a 

higher probability of being included in the sample. To account for seasonal changes in deer 

distributions and movement patterns, I also stratified my sample by season (spring = April 1-May 

30, summer = June 1–September 30, fall = October 1-December 15, winter = December 16-

March 31).  Transects were surveyed once every 14 days during each season. 

All ATV surveys were conducted by trained technicians employed by Utah State 

University (USU). During an ATV survey, the technician functioned as both driver and observer. 

ATVs were driven at 8- 16 kmph (5-10 mph) on both shoulders of the road transect and in the 

median of divided roads. Technicians recorded carcass locations using a Garmin eTrex Legend H 

GPS unit. All carcasses detected during ATV surveys were marked with an orange, serially 
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numbered marker (11” cable tie, item number = 11-50-3-SN, American Sales and Distributing, 

Santa Rosa, CA, USA) that was placed around the hind leg of the carcass. Carcasses were marked 

to help insure that they were not double counted by either USU technicians or UDOT contractors. 

Additionally, deer carcasses from vehicle-collisions that occurred prior to the season of interest 

were marked and excluded from the analysis. Any use of trade names is for descriptive purposes 

only and does not imply endorsement by the U.S. Government. 

To account for the biases inherent in ATV surveys, I estimated search efficiency, carcass 

persistence, and retention. Search efficiency, the ability of an observer to detect a carcass given it 

is present in the survey area (Huso 2011), was estimated directly by placing deer decoys in 

known locations within randomly selected transects.  Decoys commonly have been used to 

estimate detection of wildlife (Smith et al. 1995, Ward et al. 2006, Cooley et al. 2008). Within 

transects, decoys were placed at random locations in the median or on roadsides of transects. Due 

to safety concerns, decoys were never placed in the traffic lanes.  The number of decoys placed in 

each transect was a random number from 5-10, so the designated observer could not anticipate the 

number of decoys available to be detected. Search efficiency surveys were also stratified by 

season, but no surveys were conducted during winter. Decoys were not placed in winter because 

most roadsides were snow covered for much of the season and decoys could not be positioned 

without leaving obvious visual cues as to their locations (i.e., foot tracks). 

Two types of decoys were used to estimate search efficiency: one to represent adult deer 

and one to represent juvenile deer. For adult deer, I used the Flambeau grazing doe decoy (model 

number = 5967GD, Flambeau, Inc., Middlefield, Ohio, USA). Because these decoys were 

modeled after white-tailed deer, I modified decoy coloring to better represent the coloration of 

mule deer in my study area. I also cut decoys in half along the sagittal plane. This modification 

was done so decoys would more accurately represent the deflated nature of most deer carcasses 
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(Fig. 2.2). The dimensions of the modified adult decoys were 125 cm from nose to tail, 93 cm 

from feet to the top of back, and 17 cm deep. For juvenile deer, I used Edge fawn predator decoys 

(model number = 21-51208-1, Edge by Expedite, Hudson, Wisconsin, USA). I also modified the 

coloration of these decoys. The dimensions of juvenile decoys were 73 cm nose to tail, 31 cm 

from feet to top of back, and 13 cm deep. 

To estimate search efficiency, I fit generalized linear models in R 2.14.2 (R Development 

Core Team 2012), where the response was binary (1= decoy detected, 0 = decoy undetected).  To 

test the assumption that detection was similar across seasons, observers, and stage class (adult or 

juvenile), I fit models with those covariates and compared them to the null model using AIC 

(Akaike 1973), with a correction for small sample sizes (Burnham and Anderson 2002).   

I estimated carcass persistence by placing fresh mule deer carcasses (<2 days old) at 

random locations along contractor routes. Carcass persistence was also stratified by season and 

measured for all seasons except winter. Deer carcasses were placed in clusters of 3. In each 

cluster, carcasses were placed 5, 10, and 30 m from the surface of the road to determine if 

distance affected carcass persistence. Carcasses were marked with orange and white marks to 

indicate to UDOT contractors that the carcasses should not be removed from roadsides during the 

study. Deer carcasses were visually inspected each week to determine the fate of the carcasses. A 

carcass was considered present on the roadside if it was identifiable as a deer carcass, even if it 

had been moved a short distance by scavengers. A carcass was considered absent if it was 

missing and could not be located within 100 m of its original location. Carcass persistence was 

estimated using known-fate models in program Mark 6.1 (White and Burnham 1999). To test the 

assumption that carcass persistence was similar across seasons, distances from the road, and stage 

classes, I fit models with those covariates and compared them using the same methods that were 

used for search efficiency.   



28 
 

 

Not all deer that die from vehicle-collision injuries remain within the carcass survey area, 

and because no standard term exists for this phenomenon, I referred to it as retention. I 

specifically defined retention as the proportion of mortally injured animals that remain in the 

survey area. Retention of deer carcasses is likely influenced by right-of-way fencing, with the 

highest retention rates occurring in areas with exclusionary fencing and the lowest rates occurring 

in areas with no fencing. Even right-of-way fencing designed for livestock may prevent injured 

deer from leaving the right-of-way in some instances.  Retention, however, can be difficult to 

estimate; consequently there is almost no information available on this factor. Nevertheless, it can 

be an important source of bias for carcass surveys  (Huso 2011).  

To estimate retention, I used cause-specific mortality data that were collected for a mule 

deer population in northern Utah from 2002 to 2006 (Peterson and Messmer 2011). I used this 

dataset because it was a relatively large sample of individuals and the population experienced 

high levels of vehicle related mortality, which allowed us to detect the somewhat rare event of a 

deer being involved in vehicle collision but dying a considerable distance from the road. The 

dataset consisted of adult female mule deer that were captured using clover traps and 

instrumented with VHF tracking collars with mortality sensors. Deer survival status was 

monitored 2-3 times per week.  When mortalities were detected, carcasses were located and 

examined within 48 hours to assign a cause of death.  Additionally, the distance of carcasses to 

the nearest major road was recorded. I estimated retention as the proportion of vehicle collision 

mortalities that were located within 75 m of major roads. I used the 75 m cut off because in this 

area there was no right-of-way fencing in much of the study area and > 95 % of carcasses 

detected with ATV surveys were within 75 m from the road, indicating that carcasses located 

greater than that distance would have a low probability of being detected by my survey 

techniques.  
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Coverage 

The intended target population for this study was all DVCs that occurred throughout 

Utah. Because UDOT contractor routes constituted only a fraction of the roads in the state, totals 

from contractor routes underestimated the total number of DVCs that occurred in the state. To 

account for some of this coverage bias and expand my inference to the all UDOT administered 

roads within the state, I examined accident report data that were compiled by Kassar and 

Bissonette (2005). From these data, I calculated the proportion of accident reports that occurred 

on roads that were surveyed by UDOT contractors. This gave us an estimate of the UDOT 

contractor coverage of DVCs on UDOT administered routes, and provided a meaningful 

adjustment for my estimates.  However, I had no way to account for DVCs that occurred on city 

streets and other roads that were not administered by UDOT, so my estimate is still biased low. 

DVC Estimate 

I estimated the total number of DVCs in my study area by combining automobile and 

ATV carcass survey estimates. The automobile survey estimate I used was the number of mule 

deer carcasses reported by UDOT contractors with an adjustment for retention.  The ATV survey 

total that I used was generated with the wildlife fatality estimator (Equation 1) developed by 

Huso (2011). Using this model, the estimated number of carcasses 𝐹� is essentially a function of 

the number of carcasses observed 𝑐, carcass persistence �̂�, search efficiency �̂�, and the effective 

search interval 𝑣�. The effective search interval 𝑣� is a derived parameter that helps account for bias 

created by circumstances where carcasses persistence is short relative to the survey intervals. A 

description of all model parameters is provided in Table 2.1. The model also includes a parameter 

𝐾 that allows groupings of carcasses to have different detection probabilities. I assumed all 

carcasses had similar detection rates and did not use this parameter. The parameter 𝜋 is the 
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probability that a transect was included in the sample and it allowed me to incorporate the 

proportional sampling design which had unequal selection probabilities. The 𝜋 parameter was 

also multiplied by the retention estimate to account for injured deer that left the survey area.  I 

generated 95% confidence intervals for the estimate using the bootstrap function in the boot 

package in R.  

Equation 1:   

𝐹� = �
1
𝜋𝑖

𝑛

𝑖=1

�  
𝑆𝑖

𝑗=1
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�̂�𝑖𝑗𝑘  �̂�𝑖𝑗𝑘  𝑣�𝑖𝑗𝑘

 

Comparison of DVC Data Types 

I compared carcass survey estimates with accident report and insurance claim totals. 

Accident report data were collected and maintained by UDOT (West 2008). In recent years, 

UDOT has restricted access to this information, and consequently I did not have accident report 

data for the years of the study. Accident report data in Utah, however, varied little from year to 

year, so I used a previously published report to obtain accident report totals for 1992 to 2005 

(West 2008). From this information, I calculated a mean value and used that for my comparison. 

Accident report totals included accidents involving deer, elk, and moose. Insurance claims totals 

were obtained from estimates published by State Farm Insurance (State Farm 2012). The 

published insurance claim estimates were derived from the number of claims filed that involved 

deer, elk, and moose. Because State Farm services only a fraction of the insurance customers in 

Utah, estimates of DVCs from insurance claims were adjusted for the company’s market share.  

 Accident report and insurance claim estimates included not only mule deer but elk and 

moose, so I included all reported mule deer, elk, and moose carcasses in my survey estimate for 
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this comparison. Additionally, I adjusted carcass totals by the detection rate determined for mule 

deer carcasses.  

RESULTS 

Carcass Surveys 

From 1 July 2010 to 15 December 2011, UDOT contractors conducted ~148 driving 

surveys and drove ~422,400 km. During that time, they reported 5,002 mule deer carcasses 

(Table 2.2). Driving survey totals varied by season (χ2 = 283, p < 0.01) with the highest total 

reported in winter 2010 (1,428 carcasses) and the lowest reported in spring 2011 (473 carcasses).  

Mule deer represented 92 % of all wildlife carcasses that were reported by UDOT contractors.  

During the same period, a total of 1,350 ATV surveys were conducted on 225 road 

transects. The mean number of transects surveyed per season was 38 (SD = 2.9). In total, 577 

mule deer carcasses were detected during ATV surveys. Of those carcasses, 62 % were also 

removed and reported by UDOT contractors.  Using the wildlife fatality estimator, I estimated 

that 5,527 carcasses were unreported by UDOT contractors during the study (Table 2.2), meaning 

that automobile surveys detected 41 % of mule deer that were killed in vehicle collisions. ATV 

survey estimates also varied seasonally (χ2 = 443, p < 0.01), with the highest total in winter 2010 

(1,685 carcasses) and the lowest in fall 2011 (503 carcasses).  

Search efficiency surveys for deer decoys were performed from 1 April 2012 to 15 

December 2012, which encompassed 3 seasons (spring, summer, and fall). Technicians surveyed 

10 transects per season and mean number of decoys placed per season was 75. Overall search 

efficiency for deer decoys was 0.77 (SE = 0.03, 95 % CI = 0.72-0.83). When I compared 

competing models of search efficiency, I found little support for models that contained covariates 

for observer, season, or stage class (Table 2.3). 
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Carcass persistence monitoring was conducted during the same period. Seventy-eight 

deer carcasses were monitored during the study period.  The mean number of carcasses monitored 

per season was 26. Overall weekly carcass persistence was 0.99 (SE < 0.01, 95 % CI = 0.99-

1.00). When I modeled carcass persistence for covariate effects, I did not detect any seasonal, 

distance, or stage class effects (Table 2.4).  

Retention was estimated by monitoring the survival of 100 mule deer does in northern 

Utah. During the study, 20 % (n = 20) of the research animals were determined to have died from 

injuries that resulted from vehicle collisions. Of the 20 deer that were killed in vehicle collisions, 

15 were found < 75 m from the nearest major road. From these data, I estimated that retention 

was 0.75 (SE = 0.10, 95 % CI = 0.56-0.94).  

Coverage 

To expand my inference from UDOT contractor’s routes to all highways throughout the 

state, I estimated UDOT contractor coverage of DVCs from accident report data. From 1992 to 

2002, Kassar and Bissonette (2005) reported that there were 18,639 vehicle accident reports on 

UDOT administered roads that involved mule deer. Of those reported accidents involving mule 

deer, 17,039 occurred on routes that were patrolled by UDOT contractors. From this information, 

I estimated contractor coverage of DVCs on UDOT administered roads to be 91 %.  

DVC Estimate 

By combining automobile and ATV survey estimates and adjusting for coverage bias, I 

estimated that there were 13,344 mule deer killed in vehicle collisions during the study, and that 

9,579 mule deer were killed during the first year (1 July 2010 - 30 June 2011) (Table 2.2). I also 

used DVC estimates to derive vehicle collision rates. On average, there were 24 (n = 6, SD = 7.2) 

DVCs each day. Vehicle collision rates varied seasonally (χ2 = 774, p  < 0.01), with the highest 
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vehicle collisions rates occurring in winter (37 DVCs/day), intermediate rates occurring in spring 

(23 DVCs/day) and fall (24 DVCs/day), and the lowest rates occurring during summer (18 

DVCs/day). 

Comparison of DVC Data Types 

From 1992 to 2005, the mean number of accidents reported per year involving mule deer, 

elk, and moose was 2,178 (SD = 150, range = 2,035-2,625). From 2008 to 2012, the mean 

number of estimated insurance claims per year involving the same species was 5,841 (SD = 361, 

range = 5,384-6,190). The mean number of estimated carcasses for those species was 11,458 (SD 

= 3,836, range = 7,373-15,371) during 2008 to 2012. Annual estimates of DVCs from carcass 

surveys were 526 % higher than accident report totals and 196 % higher than insurance claim 

estimates. Additionally, annual variability of carcass surveys, as measured by the standard 

deviation, was 2,557 % higher than accident reports and 1060 % higher than insurance claims. 

Using the assumption that 92 % of DVCs involve mule deer, I estimated from carcass surveys 

that 2 to 5 % (8,354-13,987 mule deer) of the mule deer population was killed annually in vehicle 

collisions from 2008-2012 on UDOT administered roads.  

DISCUSSION  

 My purpose for conducting this study was to provide agencies with an accurate DVC 

estimates so mitigation can be effectively implemented to benefit both drivers and deer. My 

estimate of DVCs was generated from both automobile and ATV carcass surveys. Automobile 

surveys were an efficient method for searching large areas and > 5,000 deer carcasses were 

reported during the study; but without accounting for detection, automobile surveys would have 

underestimated the number of DVCs by at least one half. The significance of detection has long 

been recognized by researchers investigating wildlife mortality associated with wind turbines 



34 
 

 

(Osborn et al. 2000), because when detection is not accounted for, estimates can be substantially 

biased (Huso 2011). My results indicate that carcass detection plays a major role in DVC 

estimates. 

The detection rate I report for automobile surveys was low, but this may not necessarily 

be the case for every study that uses automobile surveys to detect deer carcasses. For instance in 

my study, driving surveys were performed by contractors who were attempting to cover large 

areas rapidly, and they were not necessarily concerned with finding every deer carcass possible. 

The contractors’ primary objective was to clear the roadway of carcasses. Detection rates 

certainly could have been improved by having contractors drive slower and by having a second 

observer in the vehicle. This, however, would have not resulted in a detection rate that 

approached 100 %, because many of the highways in Utah have wide roadsides with tall brush 

and trees, which can make detecting some carcasses difficult to nearly impossible. One 

conceivable circumstance where detection would be high would be on narrow roadsides (< 10 m) 

that were flat and devoid of vegetation. This situation did occur in my study area, but was 

relatively uncommon.  

Detection rates of deer carcasses are a function of search efficiency, carcass persistence, 

and retention. Search efficiency for ATV surveys during my study was high (72 %), but not high 

enough to be inconsequential. When I began the study, I anticipated that search efficiency for 

ATV surveys would likely be > 90 %, but factors such as topography and vegetation limited the 

effectiveness of ATVs. For instance, it was difficult to search steep roadsides with tall brush and 

trees, because those factors limited ATV mobility and also the distance observers could see. ATV 

surveys, however, did have advantages over driving surveys, because 1) the observer could search 

more of the roadside, 2) the vehicle moved slower allowing the observer to see more of the 

surrounding area, and 3) carcasses could be detected by smell. Additionally, I found that search 
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efficiency was relatively constant between seasons and observers, suggesting the technique 

produced repeatable results. However, I did not estimate search efficiency during winter, which 

could have been different than the other seasons that were relatively free of snow.  

 My estimate of carcass persistence indicated that this factor played a minor role in 

detection of deer carcasses. Most carcasses remained undisturbed or had only small amounts 

removed by scavengers. However, carcasses were only monitored during the warmer seasons of 

the year when carcasses tended to become rancid quickly. This fact may have made carcasses less 

attractive to scavengers such as coyotes and cougars that are capable of removing whole 

carcasses. During winter when cold temperatures preserve carcasses and food sources are scarce 

for most scavengers, it is possible that carcass persistence rates may be lower.  

 It is also important to note that my estimate of carcass persistence referred only to 

carcasses on roadsides. I was not able to estimate persistence of deer carcasses that remained in 

the traffic lanes. In Utah, deer carcasses that are blocking traffic lanes are usually moved to the 

shoulder of the road relatively quickly by public safety officers, maintenance crews, or other 

drivers. However, occasionally carcasses remain in the traffic lanes and on some high volume 

roads they are quickly destroyed by vehicles driving over them. I could not estimate the 

persistence of deer carcass in traffic lanes experimentally because of safety concerns. 

Nevertheless, a percentage of deer carcasses are destroyed by vehicle traffic before they can be 

reported which suggests that actual carcass persistence can be lower than the estimate I reported 

for roadside persistence. 

 Retention was an important factor influencing detection of deer carcasses in my study, 

and my estimate indicated that up to a quarter of deer that are involved in vehicle collision were 

able to move considerable distances from the road before they died. This result, however, was 

obtained from an area that had few fences to restrict the movements of injured deer, but roadside 
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fencing was common on many of the roads I surveyed throughout the state. If I had been able to 

quantify retention across the state, I likely would have found on average it was higher than 75 % 

rate I observed in northern Utah because of the presence of roadside fencing. The only 

comparable estimate of retention I could find was from Colorado, where Myers (1969) estimated 

that 15 % mule deer carcasses were far enough from the road that they could not be found during 

surveys, but he did not indicate how this estimate was generated. This is an area that still needs 

considerable research. 

In my study, carcass survey estimates were higher than both accident report totals and 

insurance claim estimates.  This result agrees with previously published studies on the subject 

(Knapp et al. 2007, Donaldson and Lafon 2010, Lao et al. 2012). The degree to which carcass 

survey estimates differed from accident report totals was similar between studies. In my study, I 

found that carcass survey estimates were 5.3 times higher than accident report totals. In Iowa, 

Knapp et al. (2007) reported that carcass surveys estimates were 3.8 to 8.6 times greater accident 

report totals. Additionally, in Virginia Donaldson and Lafon (2010) found that carcass surveys 

were 8.6 to 9.3 times higher accident report totals. Lao et al. (2012) reported an analogous finding 

where carcass surveys totals were up to ~8 times higher than accident report totals for highways 

in the state of Washington. These studies strongly suggest that accident report data severely 

underestimates DVCs, resulting in discrepancy between how agencies perceive the DVC problem 

and the reality of the problem.  

Accident reports and insurance claims showed little annual variability, but carcass survey 

estimates were highly variable. There are ecological reasons as to why DVCs should be variable 

among years. Mule deer population dynamics, especially in temperate climates, can be highly 

variable (Mckinney 2003). For instance in Utah, a severe winter in 1984 reduced many mule deer 

populations 50-70 % (Austin 2010). Fewer mule deer concomitantly leads to fewer DVCs 
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(Lehnert et al. 1998), which has been also demonstrated experimentally for white-tailed deer 

(DeNicola and Williams 2008). Additionally, exposure of deer to roads also varies annually. 

During winters with warm temperatures and light snowfalls, deer have more available habitat and 

consequently are not restricted to areas close to roads. Conversely, cold winters with high snow 

accumulations may force deer into habitats near high volume roads, increasing DVC rates.  These 

factors should cause DVC estimates to be variable between years, but interestingly only carcass 

surveys produced highly variable estimates. 

Variability in carcass survey estimates is not exclusively due to ecological factors. 

Survey effort could have played an important role. For instance, It is possible that contractors 

increased survey effort during the study, because they aware that their performance was being 

evaluated by researchers. Whether this actually occurred was unknown, but seems likely and 

certainly could have contributed to some of the annual variation that was observed in carcass 

survey estimates.  

I observed strong seasonal patterns in DVCs rates. Seasonality is a common finding for 

DVCs, and the pattern that is typically observed, at least for white-tailed deer, is high DVC rates 

in spring and fall, and lower rates in summer and winter (Puglisi et al. 1974, Allen and 

McCullough 1976). During my study, I observed that DVC rates were elevated in spring and fall 

over summer levels, but the highest DVC rates occurred in winter. This pattern can likely be 

attributed to seasonal movement patterns of deer in Utah. In my study area, many deer 

populations occupy high elevation summer ranges that are generally farther from high volume 

roads that are more dangerous for deer. However, DVC rates likely increased in fall and spring 

because during that time deer were transitioning between summer and winter ranges, and they 

crossed roads that intersected their migratory paths. During winter deer typically occupied low 
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elevation ranges that were bisected or adjacent to high volume roads, which possibly contributed 

to the higher DVCs rates that were observed. 

I estimated from carcass surveys that DVCs removed a small percentage (2-5 %) of the 

mule deer population in Utah, which was about half of what was being harvested by hunters each 

year (7-9 %).  Hunter harvest, however, was strongly biased towards male deer during my study, 

with only 6-12 % of deer harvested being female (Bernales et al. 2011).  Because males generally 

play a small role in the population dynamics of deer (Gaillard et al. 2000), hunter harvest has 

limited impact on population growth.  Deer-vehicle collisions in Utah, however, involve a high 

percentage of female deer (> 50 %), which are very important to deer population growth (Romin 

and Bissonette 1996b). This suggests that while more deer are killed by hunters than in vehicle 

collisions, collisions are likely a more important factor in determining population growth because 

of the high percentage of females that are removed.  

While there is potential for DVCs to impact mule deer populations at the statewide scale 

extent, the mule deer population in Utah has been relatively stable for the past 20 years (Bernales 

et al. 2011), indicating that vehicle-collisions are not substantially impacting the long-term 

population dynamics. However deer herds within the state experience different levels of vehicle-

related mortality and localized populations may be significantly impacted by vehicle collisions.  

For instance, Lehnert et al. (1998) found that vehicle-related mortality was 50 % additive for one 

deer herd in central Utah. Additionally, Peterson and Messmer (2011) observed lower than 

average survival rates for female mule deer in northern Utah in a population with high vehicle-

related mortality rates. These considerations suggest that defining DVCs by management unit 

would be valuable. 

It also interesting to note that the percentage of deer killed in vehicle collisions was 

comparable to the percentage of deer that are killed by predators. For instance in southeastern 
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Idaho, Laundre et al. (2006) estimated that cougars (Puma concolor) killed 2-6 % of the mule 

deer population annually. Additional studies have reported cougars removing 3-20 % of a mule 

deer population each year (Shaw 1980, Anderson et al. 1992, Murphy 1998). Cougar predation 

and DVCs also have similar effects on mule deer demographic groups. For instance in Central 

Utah, Mitchell (2013) reported that 45-63 % of mule deer killed by cougars were female. Given 

the similarities between DVCs and cougar predation, it may beneficial, at least in Utah, to view 

DVC effects as equivalent to another predator in the ecosystem. 

My estimate of DVCs in Utah represents one of the first attempts to account for detection 

probabilities in deer carcass surveys. The results of the study underscore how important detection 

can be in carcass surveys, even for large animals such as deer. Detection has rarely been 

accounted for in deer carcass surveys suggesting that search efficiency, carcass persistence (both 

on roads and roadsides), and retention need considerable attention in future research. 

MANAGEMENT IMPLICATIONS  

Deer-vehicle collisions are a major public safety concern. To address the problem 

effectively, accurate DVC estimates are needed. However, DVC source data vary considerably in 

their accuracy. I recommend using carcass surveys whenever possible to estimate DVCs, but 

accident reports and insurance claim estimates may be the only reasonable option for large scales. 

If carcass surveys are used, accounting for detection probabilities in DVC estimates is important.  

If agencies use accident report data for mitigation, I recommend that accident report totals be 

increased by at least 300 %, which will still provide a very conservative estimate of DVCs.  

Additionally, while I estimated that thousands of deer were being killed annually in DVCs, I 

observed little change in the long term trajectory of the mule deer population in Utah. However at 

smaller spatial extents (e.g., hunt management units), deer populations may still be negatively 

impacted by DVCs. 



40 
 

 

LITERATURE CITED 

Akaike, H. 1973. Maximum likelihood identification of Gaussian autoregressive moving average 

models. Biometrika 60:255–265. 

Allen, R. E., and D. R. McCullough. 1976. Deer-car accidents in southern Michigan. Journal of 

Wildlife Management 40:317–325. 

Anderson, A. E., D. C. Bowden, and D. M. Kattner. 1992. The puma on Uncompahgre Plateau, 

Colorado. Colorado Division of Wildlife, Fort Collins, Colorado, USA 

Austin, D. D. 2010. Mule deer: a handbook for Utah hunters and landowners. Utah State 

University Press, Logan, Utah, USA. 

Bernales, H. H., K. R. Hersey, and A. Aoude. 2011. Utah big game annual report 2011. Utah 

Division of Wildlife Resources, Salt Lake City, Utah, USA. 

Bissonette, J. A., C. A. Kassar, and J. C. Cook. 2008. Assessment of costs associated with deer-

vehicle collisions: human death and injury, vehicle damage, and deer loss. Human-

Wildlife Conflicts 2:17–27. 

Bissonette, J. A., and S. Rosa. 2012. An evaluation of a mitigation strategy for deer-vehicle 

collisions. Wildlife Biology 18:414–423. 

Bowyer, R., V. Van Ballenberghe, and J. Kie. 2003. Moose: Alces alces. Pages 931–964 in G. 

Feldhamer, B. Thompson, and J. Chapman, editors. Wild mammals of North America: 

biology, management and conservation. John Hopkins University Press, Baltimore, 

Maryland, USA. 

Bruinderink, G. W. T. A., and E. Hazebroek. 1996. Ungulate traffic collisions in Europe. 

Conservation Biology 10:1059–1067. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multi-model inference: a 

practical information-theoretic approach. Springer, New York, New York, USA. 



41 
 

 

Clevenger, A. P., B. Chruszcz, and K. E. Gunson. 2001. Highway mitigation fencing reduces 

wildlife-vehicle collisions. Wildlife Society Bulletin 29:646–653. 

Conover, M. R. 2001. Resolving human-wildlife conflicts: the science of wildlife damage 

management. CRC Press, Boca Raton, Florida, USA. 

Cooley, H. S., H. S. Robinson, R. B. Wielgus, and C. S. Lambert. 2008. Cougar prey selection in 

a white-tailed deer and mule deer community. Journal of Wildlife Management 72:99–

106. 

Cramer, P., and J. Bissonette. 2006. Wildlife crossings in North America. Transportation 

Research Board. <http://digitalcommons.usu.edu/wild_facpub/1206>. Accessed 15 Apr 

2013. 

DeNicola, A. J., and S. C. Williams. 2008. Sharpshooting suburban white-tailed deer reduces 

deer-vehicle collisions. Human-Wildlife Interactions 2:28–33. 

Donaldson, B. M., and N. W. Lafon. 2008. Testing an integrated PDA-GPS system to collect 

standardized animal carcass removal data. Virginia Transportation Research Council, 

Charlottesville, Virginia. <http://trid.trb.org/view.aspx?id=850379>. Accessed 29 Apr 

2013. 

Donaldson, B., and N. Lafon. 2010. Personal digital assistants to collect data on animal carcass 

removal from roadways. Transportation Research Record: Journal of the Transportation 

Research Board 2147:18–24. 

Found, R., and M. S. Boyce. 2011. Warning signs mitigate deer–vehicle collisions in an urban 

area. Wildlife Society Bulletin 35:291–295. 

Gaillard, J.-M., M. Festa-Bianchet, N. G. Yoccoz, A. Loison, and C. Toigo. 2000. Temporal 

variation in fitness components and population dynamics of large herbivores. Annual 

Review of Ecology and Systematics 31:367–393. 



42 
 

 

Geist, V. 1998. Deer of the world: their evolution, behaviour and ecology. stackpole books, 

Mechanicsburg, Pennsylvania, USA. 

Gillies, R. R., and R. D. Ramsey. 2009. Climate of Utah. Pages 39–45 in R. E. Banner, B. D. 

Baldwin, and E. I. Leydsman McGinty, editors. Rangelands resources of Utah. Utah State 

University Cooperative Extension Service, Logan, Utah, USA. 

Griffith, G. E., and J. M. Omernik. 2009. Ecoregions of Utah (EPA). Encyclopedia of Earth. 

Environmental Information Coalition, Washington, D.C., USA. 

<http://www.eoearth.org/article/Ecoregions_of_Utah_(EPA)>. Accessed 11 May 2013. 

Huijser, M. P., and P. T. McGowen. 2003. Overview of animal detection and animal warning 

systems in North America and Europe. Pages 368–382 in C. L. Irwin, P. Garrett, and K. 

P. McDermott, editors. Proceedings of the International Conference on Ecology and 

Transportation. Center for Transportation and the Environment, Raleigh, North Carolina, 

USA. 

Huijser, M. P., M. E. Wagner, A. Hardy, A. P. Clevenger, and J. A. Fuller. 2007. Animal-vehicle 

collision data collection throughout the United States and Canada. Transportation 

Research Board, Washington, D.C., USA. 

Huijser, M. P., P. T. McGowen, J. Fuller, A. Hardy, and A. Kociolek. 2008. Wildlife-vehicle 

collision reduction study: report to Congress. Western Transportation Institute, Bozeman, 

Montana, USA. 

Huijser, M. P., J. W. Duffield, A. P. Clevenger, R. J. Ament, and P. T. McGowen. 2009. Cost–

benefit analyses of mitigation measures aimed at reducing collisions with large ungulates 

in the United States and Canada: a decision support tool. Ecology and Society 14:15. 

Huso, M. M. P. 2011. An estimator of wildlife fatality from observed carcasses. Environmetrics 

22:318–329. 



43 
 

 

Joyce, T. L., and S. P. Mahoney. 2001. Spatial and temporal distributions of moose-vehicle 

collisions in Newfoundland. Wildlife Society Bulletin 29:281–291. 

Kassar, C. A., and J. A. Bissonette. 2005. Deer-vehicle crash hotspots in Utah: data for effective 

mitigation. Utah State University, Logan, Utah, USA. 

Knapp, K., C. Lyon, A. Witte, and C. Kienert. 2007. Crash or carcass data: critical definition and 

evaluation choice. Transportation Research Record: Journal of the Transportation 

Research Board 2019:189–196. 

Korner-Nievergelt, F., P. Korner-Nievergelt, O. Behr, I. Niermann, R. Brinkmann, and B. 

Hellriegel. 2011. A new method to determine bird and bat fatality at wind energy turbines 

from carcass searches. Wildlife Biology 17:350–363. 

Langley, R. L., S. A. Higgins, and K. B. Herrin. 2006. Risk factors associated with fatal animal-

vehicle collisions in the United States, 1995–2004. Wilderness & Environmental 

Medicine 17:229–239. 

Lao, Y., Y. Wu, Y. Wang, and K. McAllister. 2012. Fuzzy logic–based mapping algorithm for 

improving animal-vehicle collision data. Journal of Transportation Engineering 138:520–

526. 

Laundré, J. W., L. Hernández, and S. G. Clark. 2006. Impact of puma predation on the decline 

and recovery of a mule deer population in southeastern Idaho. Canadian Journal of 

Zoology 84:1555–1565. 

Lefler, N., R. Fiedler, H. McGee, R. Pollack, and J. Miller. 2011. Market analysis of collecting 

fundamental roadway data elements to support the highway improvement program. 

United States Department of Transportation, Federal Highway Administration, 

Washington, D.C., USA. 



44 
 

 

Lehnert, M. E., J. A. Bissonette, and J. W. Haefner. 1998. Deer (Cervidae) highway mortality: 

using models to tailor mitigative efforts. Gibier Faune Sauvage, Game Wildlife 15:835–

841. 

Lesage, L., M. Crête, J. Huot, A. Dumont, and J.-P. Ouellet. 2000. Seasonal home range size and 

philopatry in two northern white-tailed deer populations. Canadian Journal of Zoology 

78:1930–1940. 

Leydsman McGinty, E. I., and C. M. McGinty. 2009. Physiography of Utah. Pages 24–28 in R. E. 

Banner, B. D. Baldwin, and E. I. Leydsman McGinty, editors. Rangelands resources of 

Utah. Utah State University Cooperative Extension Service, Logan, Utah, USA. 

Leydsman McGinty, E. I. 2009. Urbanization in Utah. Pages 153–156 in R. E. Banner, B. D. 

Baldwin, and E. I. Leydsman McGinty, editors. Rangelands resources of Utah. Utah State 

University Cooperative Extension Service, Logan, Utah, USA. 

Lopez, R. R., M. E. P. Vieira, N. J. Silvy, P. A. Frank, S. W. Whisenant, and D. A. Jones. 2003. 

Survival, mortality, and life expectancy of Florida key deer. Journal of Wildlife 

Management 67:34–45. 

Mastro, L., M. Conover, and S. N. Frey. 2008. Deer–vehicle collision prevention techniques. 

Human–Wildlife Interactions 2:80–92. 

McCollister, M. F., and F. T. Van Manen. 2010. Effectiveness of wildlife underpasses and 

fencing to reduce wildlife-vehicle collisions. Journal of Wildlife Management 74:1722–

1731. 

McCullough, D. R. 1997. Irruptive behavior in ungulates. Pages 69–98 in W. J. McShea, H. B. 

Underwood, and J. H. Rappole, editors. The science of overabundance: deer ecology and 

population management. The Smithsonian Institution Press, Washington, D.C., USA. 



45 
 

 

Mckinney, T. 2003. Precipitation, weather, and mule deer. Pages 219–238 in J. C. deVos, M. R. 

Conover, and N. E. Headrick, editors. Mule deer conservation: issues and management. 

Jack H. Berryman Institute Press, Logan, Utah, USA. 

Mitchell, D. 2013. Cougar predation behavior in north-central Utah. Utah State University, 

Logan, Utah. <http://digitalcommons.usu.edu/etd/1539>. Accessed 25 Jun 2013. 

Mooring, M. S., T. A. Fitzpatrick, T. T. Nishihira, and D. D. Reisig. 2004. Vigilance, predation 

risk, and the Allee effect in desert bighorn sheep. Journal of Wildlife Management 

68:519–532. 

Murphy, K. M. 1998. The ecology of the cougar (Puma concolor) in the Northern Yellowstone 

ecosystem: interactions with prey, bears, and humans. Dissertation, University of Idaho, 

Moscow, Idaho, USA. 

Myers, G. T. 1969. Deer-auto accidents: serious business. Colorado Outdoors 18:38–40. 

Mysterud, A. 2004. Temporal variation in the number of car-killed red deer Cervus elaphus in 

Norway. Wildlife Biology 10:203–211. 

Ng, J. W., C. Nielsen, and C. C. St. Clair. 2008. Landscape and traffic factors influencing deer-

vehicle collisions in an urban environment. Human-Wildlife Conflicts 2:34–47. 

Noro, M. 2010. Analysis of deer ecology and landscape features as factors contributing to deer-

vehicle collisions in Hokkaido, Japan. Transportation Research Board, Washington, D.C., 

USA. 

Osborn, R. G., K. F. Higgins, R. E. Usgard, C. D. Dieter, and R. D. Neiger. 2000. Bird mortality 

associated with wind turbines at the Buffalo Ridge Wind Resource Area, Minnesota. The 

American Midland Naturalist 143:41–52. 



46 
 

 

Pérez-Espona, S., J. M. Pemberton, and R. Putman. 2009. Red and Sika deer in the British Isles, 

current management issues and management policy. Mammalian Biology - Zeitschrift für 

Säugetierkunde 74:247–262. 

Peterson, C., and T. A. Messmer. 2011. Biological consequences of winter-feeding of mule deer 

in developed landscapes in northern Utah. Wildlife Society Bulletin 35:252–260. 

Pierce, B. M., V. C. Bleich, K. L. Monteith, and R. T. Bowyer. 2012. Top-down versus bottom-

up forcing: evidence from mountain lions and mule deer. Journal of Mammalogy 93:977–

988. 

Pope, C., and A. McEwan. 2012. 2012 UDOT annual statistical summary. Utah Department of 

Transportation, Salt Lake City, Utah, USA. 

Puglisi, M. J., J. S. Lindzey, and E. D. Bellis. 1974. Factors associated with highway mortality of 

white-tailed deer. Journal of Wildlife Management 38:799–807. 

R Development Core Team. 2012. R: A language and environment for statistical computing, 

reference index version 2.14.12. R Foundation for Statistical Computing, Vienna, 

Austria. <http://www.R-project.org>. Accessed 15 May 2012. 

Reeve, A. F., and S. H. Anderson. 1993. Ineffectiveness of swareflex reflectors at reducing deer-

vehicle collisions. Wildlife Society Bulletin 21:127–132. 

Romin, L. A., and J. A. Bissonette. 1996a. Deer-vehicle collisions: status of state monitoring 

activities and mitigation efforts. Wildlife Society Bulletin 24:276–283. 

Romin, L. A., and J. A. Bissonette. 1996b. Temporal and spatial distribution of highway 

mortality of mule deer on newly constructed roads at Jordanelle Reservoir, Utah. Western 

North American Naturalist 56:1–11. 



47 
 

 

Rutberg, A., and R. Naugle. 2008. Deer–vehicle collision trends at a suburban 

immunocontraception site. Human–Wildlife Interactions. 

<http://digitalcommons.unl.edu/hwi/80>. Accessed 15 May 2013. 

Sawyer, H., C. Lebeau, and T. Hart. 2012. Mitigating roadway impacts to migratory mule deer—

A case study with underpasses and continuous fencing. Wildlife Society Bulletin 36:492–

498. 

Scott, K. M. 1987. Allometry and habitat-related adaptations in the postcranial skeleton of 

Cervidae. Pages 65–80 in C. M. Wemmer, editor. Biology and management of the 

cervidae. Smithsonian Institution Press, Washington, D.C., USA. 

Seiler, A. 2004. Trends and spatial patterns in ungulate-vehicle collisions in Sweden. Wildlife 

Biology 10:301–313. 

Shaw, H. G. 1980. Ecology of the mountain lion in Arizona. Arizona Game and Fish, Pheonix, 

Arizona, USA. 

Sinha, P., and F. Braun. 2010. Regulatory impact analysis (RIA) for existing stationary 

compression ignition engines NESHAP. United States Environmental Protection Agency, 

Research Triangle Park, North Carolina, USA. 

Slater, F. M. 2002. An assessment of wildlife road casualties – the potential discrepancy between 

numbers counted and numbers killed. Web Ecology 3:33–42. 

Smallwood, K. S., and C. Thelander. 2008. Bird mortality in the Altamont Pass Wind Resource 

Area, California. The Journal of Wildlife Management 72:215–223. 

Smith, D. R., K. J. Reinecke, M. J. Conroy, M. W. Brown, and J. R. Nassar. 1995. Factors 

affecting visibility rate of waterfowl surveys in the mississippi alluvial valley. Journal of 

Wildlife Management 59:515–527. 



48 
 

 

State Farm. 2012. Deer collisions increase, WV #1 again, Arkansas #9 nationally. State Farm 

Insurance Company. <http://www.statefarm.com/aboutus/_pressreleases/2012/deer-

crash-rankings-ar.>. Accessed 29 Apr 2013. 

Sullivan, T. L., and T. A. Messmer. 2003. Perceptions of deer-vehicle collision management by 

state wildlife agency and department of transportation administrators. Wildlife Society 

Bulletin 31:163–173. 

U. S. Census Bureau. 2010. Resident population data. 

<http://www.census.gov/2010census/data/>. Accessed 25 Apr 2013. 

UDOT. 2010. Vehicle miles of travel. Utah Department of Transportation. 

<http://www.udot.utah.gov/>. Accessed 25 Apr 2013. 

Ward, M. R., D. E. Stallknecht, J. Willis, M. J. Conroy, and W. R. Davidson. 2006. Wild bird 

mortality and West Nile virus surveillance: biases associated with detection, reporting, 

and carcass persistence. Journal of Wildlife Diseases 42:92–106. 

West, P. W. 2008. UDOT wildlife and domestic animal accident toolkit. Utah Department of 

Transportation, Salt Lake City, Utah, USA. 

White, G. C., and K. P. Burnham. 1999. Program mark: survival estimation from populations of 

marked animals. Bird Study 46 Supplement 120–138. 

 

 

 

 

 

 



49 
 

 

Table 2.1. Definitions of parameters in the wildlife fatality estimator that was used to estimate 

the number of mule deer carcasses from ATV surveys.  

Parameter Definition 

  𝐹� Estimated number of carcasses  
c Number of carcasses observed during surveys 
r̂ Carcass persistence 
p̂ Search efficiency 
v̂ Effective search interval 
n Number of survey transects 
s Number of survey intervals 
K Allows carcass detection to vary by group 
π Probability of a survey transect being included in the sample 
i Individual survey transects 
j Individual survey intervals 
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Table 2.2. Estimated number of deer-vehicle collisions per season for mule deer on UDOT administered roads in Utah.  

  Seasons       

DVC Estimate 
Components 

Summer 
2010 

Fall 
2010 

Winter 
2010 

Spring 
2011 

Summer 
2011 

Fall 
2011   Total  95 % CI 

Automobile Surveys 830 883 1,428 473 674 714   5,002 NA 

Carcass Retention for 
Automobile Surveys 277 294 476 158 225 238   1,667 324-3,914 

ATV Survey 
Estimates 917 691 1,685 643 1,088 503   5,527 2,821-8,936 

Coverage  190 176 338 120 187 137   1,148 NA 

         DVC Estimate 2,214 2,044 3,927 1,394 2,174 1,592   13,344 NA 
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Table 2.3. AIC table of search efficiency models for deer decoy detection. 

Model  Parameters AICc ΔAICc AICc Weight 
Null  1 244.51 0.00 0.512 
Stage Class 2 246.39 1.88 0.200 
Observer 2 246.42 1.91 0.197 
Season 3 247.96 3.45 0.091 
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Table 2.4. AIC table of carcass persistence models. 

Model  Parameters AICc ΔAICc AICc Weight 
Null 1 53.21 0.00 0.390 
Stage Class 2 53.32 0.12 0.368 
Distance 2 54.83 1.62 0.173 
Season 3 56.72 3.51 0.067 
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Figure 2.1. Locations of driving surveys and ATV surveys conducted to detect deer carcasses in 

Utah. 
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Figure 2.2. Example of an adult deer decoy that was used to estimate carcass detection. 
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Figure 2.3. Daily vehicle collision rates estimated from carcass surveys for mule deer on UDOT 

administered routes in Utah. 
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Figure 2.4. Estimates of the number of mule deer, elk, and moose vehicle collisions on UDOT 

administered routes in Utah (2008-2012) generated from carcass surveys, insurance claims, and 

accident reports.  
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CHAPTER 3 

WHAT ARE THE DEMOGRAPHIC CONSEQUENCES OF VEHICLE-RELATED 

MORTALITY IN MULE DEER? 

 
ABSTRACT 

As roads continue to be built and expanded and traffic volumes increase, it is important 

that managers understand the effects that vehicle-related mortality can have on the population 

dynamics of deer. Population effects depend not only the number of deer killed but also on the 

demographic groups involved, because demographic groups have distinct fecundity and survival 

rates. My objective was to describe the frequency in which mule deer demographic groups were 

involved in vehicle collisions and to determine if deer were being killed in proportion to their 

abundance. Additionally, I estimated the age of adult mule deer killed in vehicle collisions to 

describe the percentage of prime-age individuals. I also compared vehicle collision rates of mule 

deer, elk, and moose to determine the relative vulnerability of mule deer to vehicle collisions. 

Finally, I examined trends in mule deer abundance and traffic volumes to determine if roads were 

affecting abundance. I found that 65 % of mule deer involved in vehicle collisions were female 

and 40 % were adult females (≥ 2 yrs). Additionally, 98 % of adult females killed in vehicle 

collisions were prime-aged animals (2-7 yrs old). When we compared the proportion of bucks, 

does, and fawns killed in vehicle collisions to those in classification surveys of live deer in the 

fall, we found they differed (P < 0.01) with bucks being killed at rate of 2.1-3.0 times their 

availability. Additionally when we compared vehicle collision rates among deer species for 2010 

and 2011, we found that mule deer were 7.4-8.7 times more likely to be involved in vehicle 

collisions than elk and 1.2-2.0 times more likely than moose. We were unable to detect a negative 

correlation (P = 0.55) between mule deer abundance and increasing traffic volume at the 

statewide scale extent. 
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INTRODUCTION 

Roads are being built and expanded throughout the developed world to accommodate the 

increasing human population and demand for transportation of people, goods, and materials 

(Forman et al. 2003, Larsson et al. 2010, U.S. DOT 2010). As a result, it is becoming increasingly 

important to understand the effects roads have on wildlife, because the effects of roads appear to 

be overwhelming negative for most species (Forman and Alexander 1998, Trombulak and Frissell 

2000, Roedenbeck et al. 2007, Fahrig and Rytwinski 2009). Species with large movement ranges, 

low reproductive rates, and naturally low densities are predicted to be affected strongly by roads, 

because their movement patterns frequently bring them into contact with roads and their 

populations recover slowly from losses due to vehicle-related mortality (Jaeger et al. 2005, Fahrig 

and Rytwinski 2009). Compared to small mammals, deer (Cervidae) have lower reproductive 

rates and population densities, and in temperate climates, deer have seasonal ranges that may be 

separated up to 160 km (Sawyer et al. 2009). Deer are commonly involved in vehicle collisions in 

Europe, North America, and Japan (Groot Bruinderink and Hazebroek 1996, Ng et al. 2008, Noro 

2010). In the United States alone it has been estimated that there are 1-2 million vehicle collisions 

with large animals annually, most of which involve deer, that result in > 8 (US $) billion in 

damages and ~200 human fatalities (Conover 2001, Langley et al. 2006, Huijser et al. 2008). 

Additionally, vehicle collisions are nearly always fatal for deer (Allen and McCullough 1976). 

Mule deer (Odocoileus hemionus), which occur throughout western North America, are 

regularly involved in vehicle collisions (Reed 1981, Romin and Bissonette 1996, Bissonette and 

Rosa 2012). The effects that vehicle-related mortality have on population dynamics of mule deer 

depend not only on the number of individuals killed but also on the demographic groups 

involved.  Deer populations are commonly classified into demographic groups based on sex and 

life stage characteristics (e.g., fawns, yearlings, and adults) with distinct fecundity and survival 
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rates (Gaillard et al. 2000). In mule deer populations, adult females are the most important 

demographic group to population growth (Gaillard et al. 1998), because they have high survival 

rates and nurse fawns until the termination of parental care (Unsworth et al. 1999, Kie and Czech 

2000). Male demographic groups are relatively less important to population growth, because mule 

deer are polygynous and males do not contribute to the parental care of fawns (Kie and Czech 

2000, White et al. 2001). This point has long been recognized and exploited by deer managers 

when setting harvest quotas. Males are often harvested liberally, while females are harvested 

conservatively or not at all when population growth is desired (Carpenter 2000, Erickson et al. 

2003).  

The age of adult deer can also affect their contribution to population dynamics (Robinette 

et al. 1977), because survival and reproductive rates are highest for prime age individuals (2-7 

yrs). As individuals age, survival and reproductive rates may decline (Dixon 1934, Robinette and 

Gashwiler 1950, Robinette et al. 1977, Gaillard et al. 2007). Factors such as tooth wear can 

contribute to senescence in deer (Robinette et al. 1957). Overall, mortality factors that remove 

prime-aged females potentially exert a stronger influence on population dynamics of deer than 

those that primarily remove senescent females. 

Vehicle collision rates may vary between ungulate species due to differences in behavior 

and habitat use (Ciuti et al. 2012). For instance, several studies have shown that elk (Cervus 

elaphus) avoid roads (Rost and Bailey 1979, Wisdom et al. 2004, Stewart et al. 2010, 

Montgomery et al. 2013), which may in turn decrease their vulnerability to vehicle collisions. 

Alternatively a few recent studies have reported that mule deer actually select habitats near roads 

(Wisdom et al. 2004, Tull and Krausman 2007, Stewart et al. 2010), which could predispose them 

to vehicle collisions. Vehicle collisions rates of deer species with overlapping distributions have 

rarely been compared (Groot Bruinderink and Hazebroek 1996), but if differences exist, it would 
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be beneficial to examine the causes of those differences and tailor mitigation to individual 

species.   

Deer vehicle-collisions (DVCs) have negatively impacted some deer populations. In 

Florida, 50-74% of mortality for the endangered Key deer (Odocoileus virginianus clavium) was 

due to vehicle collisions (Lopez et al. 2003). Additionally, vehicle collisions were also the 

leading cause of death (34 % of mortality) for female mule deer in northern Utah, and lower than 

average survival rates were reported (Peterson and Messmer 2011). However for most deer 

populations, DVCs appear to play a minor role in population dynamics. For example, white-tailed 

deer (Odocoileus virginianus) are commonly involved in vehicle collisions (Bashore et al. 1985, 

DeNicola and Williams 2008, McShea et al. 2008), nevertheless the species has continued to 

increase in abundance and expand its distribution in North America (McCabe and McCabe 1997, 

McClure et al. 1997) 

In Utah, mule deer are frequently killed in vehicle collisions and deer carcasses are 

regularly observed on roads (West 2008), and as a result there is concern from management 

agencies, environmental/sportsman organizations, and the public that DVCs may be negatively 

impacting populations. My objective was to describe the frequency in which mule deer 

demographic groups were involved in vehicle collisions and determine if deer were being killed 

in proportion to their abundance. Additionally, I estimated the age of adult mule deer killed in 

vehicle collisions to describe the percentage of prime-age individuals being removed. I also 

compared vehicle collision rates of mule deer, elk, and moose (Alces alces) in Utah to determine 

the relative vulnerability of mule deer to vehicle collisions. Finally, I examined trends in mule 

deer abundance and traffic volumes to determine if roads were affecting abundance at the 

statewide scale extent. 
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STUDY AREA 

The study was conducted in the state of Utah (219,807 km2), which is located in the 

southwestern United States on the western edge of the Rocky Mountains (Fig. 3.1). Much of the 

state is semi-arid (127-381 mm precipitation) (Gillies and Ramsey 2009). Utah is the second 

driest state in the United States (Fisher 2013). Topography, however, is highly variable (663-

4,413 m) and precipitation increases with elevation (Leydsman McGinty and McGinty 2009); as a 

result some high elevation areas may receive in excess of  >1,473 mm of precipitation (Gillies 

and Ramsey 2009). The majority of Utah is comprised of three ecoregions: the Colorado Plateau, 

the Wasatch and Uinta Mountains, and the Central Basin and Range (Griffith and Omernik 2009). 

The landscape is ecologically diverse with vegetation cover types that vary from salt desert shrub 

to alpine tundra (Welsh et al. 1993). Utah is inhabited by a suite of ungulates that include mule 

deer, elk, moose, and white-tailed deer (McClure et al. 1997). Of those species, mule deer were 

the most abundant (~300,000 individuals) and widely distributed (Bernales et al. 2011), and their 

range coincided with or was adjacent to nearly all mountainous areas and major human 

population centers in the state. Elk were less abundant (~75,000 individuals) than mule deer, but 

elk abundance has consistently grown over the past decade (Bernales et al. 2011). The 

distribution of elk closely resembled that of mule deer but was more restricted in some locations. 

Moose were far less abundant (~2,700 individuals) than both mule deer and elk, and their range 

was generally limited to the central and northern portions of the state (Bernales et al. 2011) but 

the distribution of moose generally overlapped mule deer and elk distributions. White-tailed deer 

existed in very limited numbers in the extreme northern portion of Utah (McClure et al. 1997), 

and no estimates of abundance are available because populations were not monitored by the Utah 

Division of Wildlife Resources (UDWR). All deer species are harvested in Utah, with harvest 

being strongly biased towards males (Bernales et al. 2011). 
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In Utah, 75% of the land area is federally or state owned, and as a result much of the state 

is rural (Leydsman McGinty 2009a). Utah, however, is the 3rd fastest growing state in the United 

States and is rapidly becoming urbanized (Leydsman McGinty 2009b, U.S. Census Bureau 2010). 

The growing human population has increased demand for transportation, and traffic volumes 

have doubled in the past 30 years (UDOT 2010). In 2010, 42.8 billion km were driven on 73,413 

km of roads (UDOT 2010, Pope and McEwan 2012). Deer-vehicle collisions in Utah are a 

considerable public safety concern in Utah that has resulted in >7 (US $) million in damages each 

year (Bissonette et al. 2008). In the past, most reported DVCs in Utah have involved mule deer 

(West 2008). 

METHODS 

Demographics 

To quantify the demographics of mule deer that were killed in vehicle collisions, I 

conducted carcass surveys throughout northern, central, and southeastern Utah. Carcass survey 

transects (4.8 km) were selected using a proportional sampling design (Thompson 1992). 

Transects were surveyed every 14 days by trained technicians employed by Utah State University 

using All-Terrain Vehicles (ATVs). During a carcass survey the technician functioned as both 

driver and observer. ATVs were driven at 8- 16 kmph on the shoulder and the median of roads 

within transects. Technicians recorded carcass locations using a Garmin GPS unit (Model eTrex 

Legend H, Garmin International, Inc., Olathe, Kansas, USA). They also documented the sex and 

stage class of carcasses (juvenile, yearling, and adult) observed. All carcasses detected during 

surveys were marked with an orange, serial numbered tag that was placed around the hind leg to 

insure that carcasses were not double counted during future surveys. Technicians also examined 

and marked all deer carcasses that were opportunistically observed while driving to and from 
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survey transects. Carcasses for which the stage class and sex could not be determined were 

excluded from the analysis. I tested for differences in the proportion of deer that were in each 

demographic using Chi square tests. All statistical analyses for this study were performed in R (R 

Development Core Team 2012). 

To determine if mule deer were being killed in vehicle collisions in proportion to their 

availability, I compared carcass survey data to classification surveys of live deer. Classification 

surveys were conducted by Utah Division of Wildlife Resources (UDWR) biologists during early 

winter (November-December) when deer were congregated on winter ranges. Deer were 

classified as bucks (males ≥1.5 yrs old), does (females ≥1.5 yrs old), and fawns (males and 

females ≤0.5 yrs old). To make carcass survey data comparable to UDWR classification surveys, 

I combined adult and yearling groups for both males and females into buck and doe groups. 

Additionally, I counted male and female fawn groups as one group. Classification data used for 

comparison was obtained from deer management units that coincided with carcass survey 

locations. I tested for differences between carcass survey data and live classifications using Chi 

square tests. 

To estimate the age of adult deer, I extracted lower incisors from carcasses and sent them 

to Dr. R. Larsen’s lab at Brigham Young University (Provo, Utah, USA) for cementum annuli 

analysis. Teeth were cross sectioned, stained, and age estimates were generated using standard 

techniques (Erickson and Seliger 1969). The accuracy of age estimates using this method is 

typically >90 % for mule deer (Hamlin et al. 2000). Age estimates were reported as the base year, 

and June 15th was used as transition date from one year to the next because that was the peak 

fawning date in Utah (Robinette and Gashwiler 1950). Because age distributions were skewed for 

both males and females, I reported medians instead of means, and I tested for differences using a 

nonparametric Wilcoxon rank-sum test. 
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Vehicle Collision Rates 

To quantify vehicle collision rates for mule deer, elk, and moose, I used carcass survey 

data collected by Utah Department of Transportation (UDOT) contractors using automobiles. 

Automobile surveys have been conducted in Utah since at least 1998 (Bissonette and Rosa 2012). 

UDOT contractors drove ~1,750 km of roads 2 times per week throughout the year. Surveys were 

generally performed by a single person, who acted as driver and observer. Survey vehicles were 

driven at the posted speed limit. If the road had multiple traffic lanes, the survey automobile was 

driven in the slow lane, nearest to the shoulder of the road. Undivided roads were surveyed in 

only one direction, while divided roads with a median were surveyed in both directions. During 

surveys, UDOT contractors removed all carcasses that were detected on the road surface, the 

median, and on the road shoulder out to the reflective highway markers. They kept detailed 

records of the species removed and their locations. Driving surveys were minimum estimates of 

vehicle collision rates, because they do not account carcass detection probabilities (Olson, 

Bissonette, and Coster, Utah State University, unpublished data).  

I also quantified the overlap of mule deer, elk, and moose habitat using ArcGIS 10.1 and 

distribution layers that were generated by the UDWR for each species (Utah AGRC 2012). 

Mule Deer Abundance and Traffic Volumes 

Mule deer abundance was estimated annually by the UDWR using a combination of 

ground and aerial counts for deer management units throughout the state; however, no measures 

of uncertainty were reported for abundance estimates (Bernales et al. 2011). Traffic volume data 

were obtained from the Utah Department of Transportation for the study area (UDOT 2012). 

Traffic volumes were reported by UDOT as average annual daily traffic (AADT) during each 

calendar year. Any use of trade names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 
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RESULTS 

Demographics 

From July 2010 to December 2011, I examined 1,257 mule deer carcasses.  Female deer 

represented 65 % of all deer carcasses. When I compared the proportion of deer in each of the 6 

demographic groups, I found that they differed (χ2 [2, n = 1,257] = 41.9, P < 0.01).  Adult females 

were the largest group at 40 %, and all other demographic groups had similar and ranged between 

10 % and 14 % (Fig. 3.2). This indicated that adult females were reported in carcass surveys at 

rate that was 2.8-3.9 times more than any other demographic group. 

I obtained age estimates for 524 adult mule deer that were killed in vehicle collisions. 

Ages of female and male deer differed (W = 29118, P < 0.01), and the median age for females 

was 4 yrs and for males it was 3 yrs (Fig. 3.3). Nearly all adult females (98 %) and males (98 %) 

were 2-7 yrs old and would be considered prime-age individuals. The oldest observed female was 

13 yrs old and the oldest male was 9 yrs old. 

When I compared the proportion of bucks, does, and fawns in carcass surveys to those in 

classification surveys of live deer, I found they differed for both fall 2010 (X2 [2, n = 18,221] = 

40.9, P < 0.01) and fall 2011 (χ2 [2, n = 16,426] = 38.4, P = < 0.01). During both years, there 

were fewer fawns and does in carcass surveys than in live surveys, but 95 % confidence intervals 

for those groups overlapped indicating the results were not statistically significant (Fig. 3.4). The 

proportion of bucks did differ significantly and was 205-296 % higher in carcass surveys than 

live surveys.  

Vehicle Collision Rates 

The distribution of mule deer, elk, and moose in Utah was highly congruent, with 96 % 

of elk habitat and 99 % of moose habitat corresponding with the distribution of mule deer (Fig. 
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3.1). However, vehicle collisions rates varied widely among species (Fig. 3.5). Mule deer 

experienced the highest vehicle collision rates during both 2009-2010 (18.3 per 1,000 deer) and 

2010-2011 (18.3 per 1,000 deer), which were 739-869 % higher than those experience by elk 

(2.1-2.5 per 1,000 elk) and 119-197 % than those experienced by moose (9.3-15.3 per 1,000 

moose).   

Mule deer Abundance and Traffic Volumes 

From 1992 to 2011, mean mule deer abundance in Utah was 291,044 individuals (n = 20, 

SD = 26,359) (Bernales et al. 2011). Abundance peaked in 1992, but declined to its lowest point 

in 1993 due to severe winter weather (Fig. 3.6). Although mule deer abundance was highly 

variable over the 20 year period, there was no linear trend in abundance (F1,18 = 0.28, P = 0.60, R2 

= 0.02). During the same time period, mean traffic volume for the state was 37.3 billion km/year 

(n = 20, SD = 4.0). The lowest traffic volumes occurred in 1992 and the highest in 2007 (Fig. 

3.6). There was a positive linear trend in traffic volume (F1,18 = 178.8, P = < 0.01, R2 = 0.91), and 

traffic volumes increased 2 % annually over the 20 year period. There was no evidence that mule 

deer abundance and traffic volumes were correlated at the statewide scale extent (F1,18 = 0.38, P = 

0.55, R2 = 0.02). 

DISCUSSION  

Deer demographic groups vary in their contribution to population growth (Gaillard et al. 

1998). As a result the effect that DVCs have on population growth is determined not only by the 

number of deer that are killed but also the demographic groups that are differentially impacted. In 

polygynous species, individual females are more vital to population growth than males. In deer, 

adult female deer are generally considered the most important demographic group (Gaillard et al. 

1998). In Utah, I found that nearly two-thirds of mule deer killed in vehicle collisions were 
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female and 40 % were adult females. My data suggest that vehicle collisions could have a strong 

negative influence on deer abundance, because a high percentage of females and adult females 

were being removed. 

It appears common that most vehicle collisions involve female deer. Romin and 

Bissonette (1996) reported almost identical findings to ours for a mule deer population in central 

Utah, with 68 % of vehicle collisions involving females. Additionally, they found that 52 % were 

does. The doe designation represented a combination of the yearling female and adult female 

demographic groups. When I combined my estimates for yearling females and adult females, I 

found that 50 % of deer involved in vehicle collisions belonged to these groups. For white-tailed 

(WT) deer in Michigan, Allen and McCullough also observed that two-thirds of deer killed in 

vehicle collisions were female (Allen and McCullough 1976). Bellis and Graves (1971) observed 

a similar but slightly lower percentage of female (WT) deer (58 %) in Pennsylvania.  

Does are more frequently involved in vehicle collisions because most hunted deer 

populations are strongly skewed towards females (Kie and Czech 2000). If I assumed a fawn sex 

ratio of 1:1 (Robinette and Gashwiler 1950), then classification surveys of live deer indicate 71-

73 % of the population consisted of females, which was only slightly higher than what I observed 

in carcass surveys (66 %). The female biased population structure in Utah is largely the result of 

the male biased harvest strategy. During my study, 7.6-11.6 times more males were harvested 

than females, while males represented only 27-29 % of the population (2011). In central Utah, 

Lehnert et al. (1998) observed that does were killed in proportion to their availability. In 

Wyoming, Goodwin and Ward (1976) reported the demographic composition DVCs for mule 

deer was similar to herd composition. Additionally, DeNicola and Williams (2008) showed 

experimentally that reducing white-tailed deer populations resulted in a proportional decrease in 

DVCs, indicating that DVCs are a reflection of the  deer population in general.  
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While the composition of DVCs generally resembles population structure, there may be 

times when certain demographic groups are more vulnerable. For example in Wisconsin, Jahn 

(1959) reported that the number of DVCs involving male (WT) deer increased sharply during fall 

(October-November), presumably in response to bucks increasing their movement rates to search 

for females during the breeding season. My data also support this pattern. During fall, the 

proportion of mule deer bucks killed in vehicle collisions was 2-3 times their proportional 

availability in the fall population. Lehnert et al. (1998) also reported that mule deer bucks were 

killed at a rate that was 2 times their availability not only in the fall but throughout the year. 

Because male mule deer are already heavily harvested, managers may wish to considered vehicle 

collision losses when setting harvest quotas. Additionally, mitigation could potentially increase 

the number of male deer available for harvest, which would result in in more opportunity for 

sportsmen. 

In addition to high percentage of adult females killed by vehicle collisions in my study 

area, nearly all (98 %) adults were prime-aged individuals. This result was consistent with the 

limited research that exists; Romin and Bissonette (1996) reported that all adult deer involved in 

vehicle collisions in their study in central Utah were prime-aged individuals. The implications are 

subtle but important, because prime-aged females typically have the highest survival and 

reproductive rates. For example in Utah, Robinette et al. (1977) reported 18 % higher pregnancy 

rates and 30 % higher fecundity rates for primed-aged female mule deer. Additionally, data from 

southeast Idaho indicate that survival rates decrease ~4 % annually for senescing female mule 

deer (Hurley and Zager 2007). The effect that vehicle collisions have on population abundance is 

likely strengthened because most adult females killed were prime-aged. 

 Mule deer also appeared to be more vulnerable to vehicle collisions than other ungulate 

species. In my study area the distribution of elk and moose largely coincided with that of mule 
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deer, but vehicle collision rates for mule deer were 7.4-8.7 times higher than elk and 1.2-2.0 

higher than moose. Additionally, the vehicle collisions rates that I reported were not corrected for 

carcass detection. If these estimates would have been corrected for detection bias, the disparity in 

vehicle collision rates would have likely increased, because mule deer (~45-113 kg) are smaller 

than elk (~265-320 kg) and moose (up to 771 kg) (Wisdom and Cook 2000, Bowyer et al. 2003, 

UDWR 2011). As a result, mule deer likely have the lowest detection rate of three deer species, 

and vehicle collisions rates were potentially underestimated the greatest for them. However, I did 

not measure detection rates and was unable to document whether this actually occurred. 

I know of no other peer reviewed studies that have compared vehicle collision rates for 

mule deer, elk, and moose with overlapping distributions. The only comparable study that I am 

aware of was conducted by Groot Bruinderink and Hazebroek (Groot Bruinderink and Hazebroek 

1996) in Norway, where they reported that vehicle collision rates for roe deer (Capreolus 

capreolus) were 3.2 times higher than those for red deer (Cervus elaphus) and 1.5 times higher 

than those for moose, suggesting a pattern similar to what I observed in Utah. Roe deer are 

smaller than mule deer, but fill a comparable ecological niche in Europe (Danilkin 1995). 

It is unclear why mule deer would be so much more vulnerable to vehicle collisions than 

elk, given that the two species have similar distributions and seasonal movement patterns. Some 

of the dissimilarity no doubt is related to differing behavioral response to roads. For example, 

Fahrig and Rytwinski (Fahrig and Rytwinski 2009) predicted that species that show no avoidance 

of roads will be impacted more than those that avoid roads. Available reports indicate that elk 

generally avoid roads (Rost and Bailey 1979, Wisdom and Cook 2000, Rowland et al. 2005). 

Early evidence for mule deer indicated similar road avoidance (Rost and Bailey 1979). However, 

several studies using modern techniques have indicated that mule deer actually select areas near 

roads (Wisdom et al. 2004, Tull and Krausman 2007, Stewart et al. 2010). This could explain a 
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great deal of the difference in vehicle collision rates between the species. The reasons why mule 

deer are selecting habitat near roads are uncertain. Stewart et al (Stewart et al. 2010) and Wisdom 

et al. (Wisdom et al. 2004) both suggested that elk, which are socially dominate and increasing in 

abundance, may be displacing deer from habitats that are farther from roads. However, this 

hypothesis still needs to be tested experimentally. Additionally there is evidence that during 

winter, snow accumulation may force mule deer into habitats that are near roads with high traffic 

volumes, thus increasing vehicle collision rates (Olson and Bissonette, Utah State University, 

unpublished data).  

Although it is uncommon for vehicle collisions to cause deer abundance to decline, some 

populations have been significantly affected by vehicle-related mortality (Lehnert et al. 1998, 

Lopez et al. 2003, Peterson and Messmer 2011). In my study area, I was able to establish that 

vehicle collisions removed a high percentage of adult females and that mule deer were more 

vulnerable to vehicle collisions than other deer species, but I was unable to demonstrate that 

vehicle collisions were causing a decrease in mule deer abundance. Over the past 20 years in 

Utah, traffic volumes have increased 42 % but the long-term trend for mule deer abundance has 

remained stable. Given that deer populations can sustain significant annual mortality 

(McCullough 1999), it is probable that vehicle-related mortality levels for mule deer are not yet 

high enough across the state to cause population declines, even though I estimated that 2-5 % of 

the population was killed in vehicle collisions each year (Olson, Bissonette, and Coster, Utah 

State University, unpublished data). Additionally, mitigation measures such as wildlife crossings 

and exclusionary fencing have been used in Utah since the 1970’s to improve motorist safety and 

reduce deer mortality (Cramer and Bissonette 2006, West 2008, Cramer 2012). It is likely that 

mitigation has partially offset some of the effects of increasing traffic volumes and vehicle-

related mortality on mule deer. As the road network is expanded and traffic volumes continue to 
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increase, mitigation will likely become more crucial in reducing the negative effects of roads on 

deer.  
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Figure 3.1. Mule deer, elk, and moose habitat in Utah, as well as the roads that were surveyed for 

carcasses of those species.  
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Figure 3.2. The proportion of carcasses in each mule deer demographic group that was involved 

in vehicle collisions in Utah.  
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Figure 3.3. Age estimates of adult female and adult male mule deer that were killed in vehicle 

collisions in Utah.  
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Figure 3.4. A comparison bucks, does, and fawns in carcass surveys to those in classification 

surveys of live deer for fall 2010 and fall 2011 in Utah.  
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Figure 3.5. Vehicle collision rates (per 1,000 individuals) for mule deer, elk, and moose in Utah 

for 2009-2010 and 2010-2011.  
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Figure 3.6. Mule deer abundance and traffic volume (vehicle miles traveled) estimates in Utah 

for 1992-2011. 
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CHAPTER 4 

THE EFFECT OF WINTER CLIMATE ON VEHICLE COLLISION RATES OF MULE 

DEER  

ABSTRACT 

Understanding how deer move in relationship to roads is critical, because deer appear to 

be especially prone to vehicle collisions, and collisions cause vehicle damage, deer death, as well 

as human injuries and fatalities. In temperate climates, mule deer (Odocoileus hemionus) have 

distinct movement patterns that affect their spatial distribution in relationship to roads. In this 

paper, I analyzed mule deer movements during two consecutive winter seasons to determine what 

effect climate had on deer-vehicle collision rates. I used meteorological data from local weather 

stations to describe temperature, precipitation, and snow depth. I monitored deer movements with 

GPS telemetry to document distance of deer to roads, elevation use, and road crossing rates. I also 

documented changes in deer abundance and traffic volumes, which were potentially confounding 

variables. I found that precipitation and snow depth differed considerably between winters, with 

precipitation decreasing 50 % and snow depth decreasing 48 % during the second winter. In 

response, deer used habitats that were 16 % higher in elevations and 55 % farther from roads. 

Daily crossing rates also decreased as much as 96 % on roads with high traffic volumes during 

the second winter. Reduced crossing rates were likely responsible for much of the 75 % decrease 

in deer-vehicle collisions occurred during the second winter. Deer survival was negatively 

correlated with crossing rates on the highest traffic volume road in the study area. It is unlikely 

that changes in deer abundance and traffic volumes were major drivers of variation in deer-

vehicle collisions, because traffic volumes did not change between years and deer abundance only 

decreased 7 % the second winter. My data suggests a causal mechanism by which variation in 

winter conditions can contribute to differences in deer-vehicle collision rates between years.  
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INTRODUCTION 

Understanding how deer (Cervidae) move in relationship to roads is critical for wildlife 

and transportation management, because deer are frequently involved in vehicle collisions 

throughout much of the developed world (Bruinderink and Hazebroek 1996, Conover 2001, Noro 

2010). In the United States alone it has been estimated that 1-2 million vehicle collisions with 

large animals occur each year resulting in more than 8 billion dollars in economic costs; the 

majority of these accidents involve deer (Huijser et al. 2008). Deer-vehicle collisions (DVCs) not 

only can cause vehicle damage (Bissonette et al. 2008), but occasionally vehicle occupants are 

injured and in rare cases killed (Conover et al. 1995, Langley et al. 2006). Vehicle collisions are 

nearly always fatal for the deer (Allen and McCullough 1976).  

Mule deer (Odocoileus hemionus) occur throughout much of western North America and 

are commonly involved in vehicle collisions (Reed 1981, Peterson and Messmer 2011, Bissonette 

and Rosa 2012). In temperate climates, most mule deer populations are migratory (Gruell and 

Papez 1963, Kucera 1992, Sawyer et al. 2009) and have distinct seasonal movement patterns that 

can affect their spatial distribution in relationship to roads (Stewart et al. 2010). For example in 

summer, deer typically use high elevation ranges with abundant resources (Boeker et al. 1972). 

Summer ranges are often farther from roads (Stewart et al. 2010). In early to late fall, mule deer 

generally move from high elevation ranges, largely in response to seasonally declining resource 

quality, as well as snow accumulations that inhibit movement and decrease forage availability 

(Parker et al. 1984). Mule deer winter ranges are usually lower in elevation and occur on south 

aspects that have lower snow accumulations (Gilbert et al. 1970, Garrott et al. 1987). Many roads 

are located on or near deer winter ranges, and as result deer are often closer to roads with high 

traffic volumes during winter (Reed 1981).  
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Mule deer movements may vary annually as well (Russell 1932). Mule deer typically 

exhibit a high degree of fidelity to summer ranges (Thomas and Irby 1990, Kucera 1992), but the 

use of winter ranges may vary between years depending on winter conditions (Garrott et al. 1987, 

Brown 1992). For example, in southern Idaho during a mild winter 52% of deer returned to the 

same winter range they used the previous year (Brown 1992). The use of different wintering areas 

between years may cause variation in the exposure of deer to roads with high traffic volumes. 

Variation in movement patterns of deer can also produce marked changes in DVCs 

(Mysterud 2004, Sullivan 2011). A common pattern that has been observed for both mule deer 

and white-tailed deer (Odocoileus virginianus) is a rise in DVCs during spring and fall when deer 

transition between summer and winter ranges (Case 1978, Biggs et al. 2004, Grovenburg et al. 

2008). Additionally, Reed and Woodard (1981) observed that DVC rates for mule deer appeared 

to vary between years in response to changes in winter conditions.  

Deer-vehicle collision rates are not only affected by movement patterns of deer but also 

by deer abundance and traffic volumes on roads (Jahn 1959, Sullivan 2011). For example, 

collision rates have been shown to be associated with abundance for both elk (Cervus elaphus) 

and mule deer (Romin and Bissonette 1996, Mysterud 2004). For white-tailed deer, DeNicola and 

Williams (2008) observed a proportional decrease in DVCs by experimentally reducing deer 

abundance. DVC rates are also affected by traffic volume on roads (Ng et al. 2008). Collision 

models have indicated that traffic volume is one of the most important predictors of DVCs 

(Litvaitis and Tash 2008), and high DVC rates have been reported on roads with high traffic 

volumes (Romin and Bissonette 1996). Alternatively, roads with low traffic volumes appear to 

have a limited effect on deer survival, even if deer frequently cross these roads (Hansen et al. 

2012). Consequently, it is important to consider the type of road and its traffic volume when 
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examining effects on deer movements and collision rates (Neumann et al. 2012, Sawyer et al. 

2013) . 

An understanding of how deer move in response to annual changes in weather is key to 

understanding variation in DVC rates in temperate climates. In this paper, I analyzed mule deer 

movements during two consecutive winter seasons to determine what effect climate had on DVC 

rates. I monitored deer movements to document road crossing rates, distance of deer to roads, and 

elevation use during both winters. I used meteorological data from local weather stations to 

describe temperature, precipitation, and snow depth in the study area. I also documented changes 

in deer abundance and traffic volumes, which were potentially confounding variables.  

METHODS 

Study area 

The study area (8,278 km2) was located on the western edge of the Rocky Mountains in 

central Utah (Fig. 4.1). Topography in this area was mountainous and highly variable (1,463-

3,415 m). The climate was temperate; typically summer temperatures were > 22° C and winter 

temperatures were < 0° C (UCCW 2013). Precipitation occurred during all months of the year, 

but during most years peaks in precipitation occurred during spring and fall. Total precipitation 

(203-406 mm) was variable between years (UCCW 2009, 2013). The majority of the study area 

consisted of the Wasatch Mountains ecoregion, but the eastern edge of the study area 

encompassed a small portion of the Colorado Plateau (Griffith and Omernik 2009). A variety of 

land cover types (> 40) existed within the study area, but aspen (Populus tremuloidies), Gambel 

oak (Quercus gambelii), and sagebrush (Artemisia spp.) cover types were relatively common 

(Lowry et al. 2005).  Mule deer, elk (Cervus elaphus) and a limited number of moose (Alces 

alces) occurred within the study area (Bernales et al. 2011).  
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Roads were common throughout the study area (Fig. 4.1), but the majority of the area 

was rural with low (< 500 vehicles/day) traffic volumes. However, there were a number of roads 

that had higher traffic volumes. For example US 6, a major east-west route in Utah, bisected the 

center of the study area (Fig. 4.1). Traffic volumes on US 6 within the study area were generally 

> 6,000 vehicles/day and speed limits varied between 72-105 kph. In 2005, US 6 was 

documented to be the sixth most dangerous highway in the state for DVCs (Kassar and Bissonette 

2005). To improve safety for motorists and deer, 4 wildlife crossing structures and 26 km of 

intermittent, exclusionary fencing (2.4 m high) have been installed on US 6 within the study area. 

Most mitigation was in place prior to this study. However, one wildlife crossing structure (MP 

204) and ~6 km of wildlife fencing were installed during the study. Prior to installation, 6-7 % of 

deer carcasses reported during winter occurred within the section of highway (MP 202-205). 

Consequently, the project may have had a minor impact on the results reported in this paper. 

Winter conditions 

 To document winter conditions, I obtained temperature, precipitation, and snow depth 

data from 12 weather stations that were located throughout the study area (Fig. 4.1). Temperature 

and precipitation data were provided by the National Climatic Data Center (NCDC 2013), and 

snow depth data were provided by the National Water and Climate Center (NWCC 2013). I 

defined the winter season as 1 December-31 March. Temperature data were reported as the mean 

monthly temperature and precipitation data were reported as total precipitation for the winter 

season. Snow depth data represented the mean daily snow depth for the winter season.  

I compared temperature, precipitation, and snow depth between winters using paired t-

tests (α = 0.05). When data did not meet the assumptions of the parametric t-test, I used the 

nonparametric Wilcoxon rank-sum test (α = 0.05). I used the same approach for all comparisons 

in the paper, except for DVC data. When I compared differences in DVC data between winters, I 
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used Chi-square tests (α = 0.05). All statistical tests for this for this study were performed in R 

2.14 (R Development Core Team 2012). I purposely kept the statistics simple as per Guthery 

(2008). 

Traffic volumes and deer abundance 

Traffic volume data were obtained from the Utah Department of Transportation for the 

study area (UDOT 2012). Traffic volumes were reported by UDOT as average annual daily 

traffic (AADT) during each calendar year. I categorized roads as US 6, major roads, and minor 

roads. Major roads were defined as having traffic volumes ≥ 500 vehicles/day and minor road had 

< 500 vehicles/day or were unmonitored for traffic volume. I considered US 6 separately from 

other major roads because it had the highest traffic volumes of roads within the study area, and it 

has been the focus of DVC mitigation for several years. 

Mule deer abundance was estimated annually by the UDWR using a combination of 

ground and aerial counts for deer management units throughout the state; however, no measures 

of uncertainty were reported for abundance estimates (Bernales et al. 2011). I used management 

unit totals to estimate the number of mule deer within my study area by weighting totals by the 

proportion of the management unit area that occurred within the boundaries of my study area. 

Deer movements and survival 

To document the movements and survival of deer in relationship to roads, 32 adult (> 2 

yrs) female mule deer were captured on winter ranges in the US 6 corridor near Diamond Fork, 

Sheep Creek, Colton, and Gordon Creek (Fig. 4.1).  Contractors employed by the Utah Division 

of Wildlife Resources captured deer using a standard helicopter and net gun technique (Krausman 

and Hervert 1985), but one additional study animal was captured by UDWR biologists using 

chemical immobilization (Eberhardt et al. 1984). All deer were captured and handled in 
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accordance with guidelines for the use of mammals in research (Sikes and Gannon 2011), under 

permits that were held by the UDWR. Captured deer were instrumented with store-on-board GPS 

tracking collars with remote-download capability (Model 4400s, Lotek Wireless inc., Newmarket, 

Ontario, Canada). I programed collars to record one location every 8 hours and to drop-off after 

1.5 years when GPS battery life had been exhausted. Each tracking collar was also equipped with 

a VHF transmitter and mortality sensor. I monitored survival of deer weekly and examined 

carcasses of deceased animals to determine cause-specific mortality (Peterson and Messmer 

2011)  

All GPS locations for deer were screened for accuracy and improbable movement 

locations were removed (Villepique et al. 2008). I estimated Daily Road Crossing (DRC) rates for 

each study animal by overlaying the animal’s movement path on the road network in the study 

area. A current roads layer for the study area was obtained from the Utah Automated Geographic 

Research Center (Utah AGRC 2012). The DCR analysis was performed in ArcGIS 10.1 (ESRI, 

Redlands, California, USA) using the intersect tool. The reported DCR estimates are conservative 

and represent the minimum number of road crossings because the interval between fixes was long 

enough that deer could have moved back and forth across roads without being detected.  

I also documented deer elevation use and distance from roads using GPS locations. The 

elevation for each location was recorded by the GPS collar. To describe the distance that deer 

occurred from roads, I used ArcGIS to estimate the Euclidean distance between deer locations 

and roads. When comparing differences between winters, I considered the individual animal as 

the experimental unit (Sawyer et al. 2006, 2009). 

I estimated survival rates for deer using a known-fate analysis in Program Mark 6.1 

(White and Burnham 1999). I fit models with DRC rates, distance to roads, and year, and 

compared them to an intercept only model using AIC (Akaike 1973) with a correction for small 
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sample sizes (Burnham and Anderson 2002).  When nested models were separated by < 2 AICc 

points and differed by only one parameter, I considered the model with an additional parameter as 

noncompeting (Arnold 2010). 

Deer-vehicle collisions 

To estimate the number of DVCs within my study area, I used carcass survey data that 

were collected by UDOT contractors. Carcass surveys have been conducted on a number of roads 

throughout Utah since at least 1998 (Bissonette and Rosa 2012). Carcass surveys were performed 

using automobiles that were driven at posted speed limits by a single observer. If the road had 

multiple traffic lanes, the survey automobile was driven in the slow lane, nearest to the shoulder 

of the road. Undivided roads were surveyed in only one direction, while divided roads with a 

median were surveyed in both directions. During surveys, observers were required to remove all 

carcasses that were detected on the road surface, the median, and the road shoulder out to the 

reflective highway markers. Observers kept detailed records of the species removed and their 

locations. Location data were recorded as both the highway and nearest mile marker, and as GPS 

coordinates recorded with a Garmin eTrex Lengend H unit (Garmin, Olathe, Kansas, USA). 

Within my study area, carcass surveys were conducted on US 6 and all major roads. DVC 

estimates from carcass surveys represent minimum estimates, because carcass survey totals have 

not been corrected for bias (Olson et al. 2013a, in preparation). Any use of trade names is for 

descriptive purposes only and does not imply endorsement by the U.S. Government. 

RESULTS 

Winter conditions 

 Climate data on winter conditions were collected from 12 weather stations throughout the 

study area (Fig. 4.1). Mean elevation of weather stations was 2,484 m (n = 12, SD = 293). The 
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long-term (1981-2012) mean winter temperature for the study area was -4.9° C (n = 384, SD = 

8.4). For total precipitation (1981-2012) and daily snow depth (2003-2012), the long-term means 

were 226 mm (n = 384, SD = 52) and 891 mm (n = 50, SD = 359) respectively. Winter 2010-11 

was 18 % warmer than average and winter 2011-12 was 41 % warmer (Fig. 4.2). Mean monthly 

temperature differed between winters (t[10] = -11.89, p = < 0.01), and winter 2011-12 was 28% 

warmer. Precipitation also differed between winters (t[7] = 3.16, p = 0.02) with 50 % less 

precipitation occurring in winter 2011-12. Precipitation during winter 2010-11 was 20% above 

average and winter 2011-12 was 41 % below average.  Mean snow depth was also significantly 

different between the two winters (t[5] = 9.76, p = < 0.01), and depths were 48 % less in winter 

2011-12. Snow depth during winter 2010-11 was 31 % above average and winter 2011-12 was 32 

% below average (Fig. 4.2). 

Traffic volumes and deer abundance 

Traffic volumes on US 6 (t[12] = 0.11, p = 0.92) and major roads (t[61] = -0.32, p = 0.75) 

did not differ significantly between years (Fig. 4.3). Mean traffic volume for US 6 was 9,216 

vehicles/day (n = 27, SD = 1,965) and for major roads it was 3,625 vehicles/day (n = 124, SD = 

3,214).  

The long-term (2007-2012) mean abundance of mule deer in the study area was 30,262 

individuals (n = 6, SD = 3,045) and for the state of Utah (1992-2012) it was 292,353 individuals 

(n = 21, SD = 26,383). Deer abundance in the study area was 3 % above average during winter 

2010-11 and 4 % below average during 2011-12 (Fig. 4.4). According to population estimates, 

deer abundance decreased 7 % between winter 2010-11 and winter 2011-12. In Utah, deer 

abundance was 1 % above average in 2010-11 and 2 % below average in 2011-12. The statewide 

deer population decreased 3 % between years. Abundance data, however, should be interpreted 
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with caution because sampling variance was not estimated and counts of wildlife generally have 

considerable uncertainty. 

Deer movements and survival 

To document movements and survival of mule deer, 31 adult female deer were captured 

in December 2010 and one additional deer was captured in January 2011 (Fig. 4.1). The mean 

distance of deer capture locations to US 6 was 3.5 km (n = 32, SD = 3.9 km). GPS collar 

performance during the study was adequate with a fix rate of 89 %. The percentage of 3D 

locations was 87 %, indicating horizontal location error was generally < 20 m (Di Orio et al. 

2003, Sawyer et al. 2009)  

From GPS telemetry data, I estimated that deer crossed roads a minimum of 1,829 times 

during winter 2010-11 and 1,600 times during winter 2011-12. Most road crossings (95 %) were 

on minor roads and only 3 % were on major roads and 2 % were on US 6. Daily crossing rate on 

all roads decreased 59 % percent between winters. However, the difference between winters by 

road type was only significant for US 6 (W = 663, p < 0.01), but not for major roads (W = 464, p 

= 0.56) or minor roads (W = 462.5, p = 0.81). The decrease in DCR on US 6 was 96 % (Fig. 4.5).  

In addition to differences in crossing rates, there were also differences in habitat use. 

Elevation use differed between winters (t[12] = 0.11, p < 0.01) with deer occurring at elevations 

that were 16 % higher during winter 2011-12 (Fig. 4.6). Deer also occurred 55 % farther from all 

roads during the second winter, but distance varied by road type. Deer were 213 % farther from 

US 6, 21 % farther from major roads, 42 % farther from minor roads during winter 2011-12 (Fig. 

4.7). The distance that deer occurred from US 6 (W = 112.0, p < 0.01) and major roads (W = 

301.5, p < 0.01) differed significantly between winters, but I did not detect a difference for minor 

roads (W = 415.0, p = 0.36).  
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During the first winter (2010-11), 2 study animals died. One deer was killed as result of a 

vehicle collision on US 6. The cause of death for the second animal was unclear because the 

animal’s remains were not located until ~14 days after it had died due to a dysfunctional VHF 

transmitter. When the carcass was finally recovered, it was located 75 m from US 6 and had been 

cached by a cougar (Puma concolor). I do not know if this animal was killed by a cougar or if the 

animal was killed in a vehicle collision, and the remains were scavenged by a cougar (Bauer et al. 

2005). No study animals died during the second winter (2011-12).  

When I modeled deer survival for covariate and year effects, I found that daily crossing 

rate on US 6 was the top predictor of deer survival (Table 4.1). According to model predictions, 

crossing rates > 0.2 began to substantially reduce deer survival (Fig. 4.8); although there was 

considerable uncertainty in survival estimates due to small sample size and the fact that few deer 

died. Crossing rates of minor roads also had significant support (Table 4.1), but it is unlikely that 

crossing minor roads is an actual driver of deer survival because minor roads have low traffic 

volumes and few DVCs occur on these roads.  

Deer-vehicle collisions 

The number of DVCs within our study area decreased 75 % on monitored roads between 

2010-11 and 2011-12. The number of DVCs on US 6 (χ2 [1, n = 202] = 139.7, p = < 0.01) and 

major roads (χ2 [1, n = 185] = 23.7, p = < 0.01) differed significantly between winters. Deer-

vehicle collisions decreased 91 % on US 6 and 52 % on major roads during winter 2011-12 (Fig. 

4.9). Additionally, DVCs in Utah (χ2 [1, n = 2,278] = 760.3, p = < 0.01) differed between winters 

with 73 % fewer DVCs occurring in winter 2011-12.  

 

 



97 
 

 

DISCUSSION   

Deer-vehicle collisions are a significant management and conservation challenge in 

landscapes that have been altered by humans (Neumann et al. 2012). The rate at which DVCs 

occur is spatially and temporally variable (Biggs et al. 2004, Kassar and Bissonette 2005), and 

understanding the source of this variation is the key to effective mitigation that will enhance 

driver safety and reduce deer mortality. My purpose in conducting this study was to examine how 

natural variation in climate during winter influenced deer distribution, movement patterns, and 

DVC rates.   

The study encompassed two consecutive winters in which climatic conditions differed 

considerably. During the first winter, the study area was slightly warmer than average but had 

above average precipitation and snow depths. Alternatively during the second winter, 

precipitation and snow depth were below average, and temperatures were even warmer.  This 

created a stark contrast in the amount of snow cover on the landscape, because on average snow 

depths were 567 mm lower during the second winter. Mule deer movements are impeded by snow 

depths greater than 250 mm, while depths greater than 500 mm essentially exclude mule deer use 

(Gilbert et al. 1970, Kie and Czech 2000). Given that snow depth is often patchy, especially on 

south facing slopes, it is conceivable that more resources were available for mule deer use during 

the second winter. 

Movement allows deer to adjust to environmental variation in snow depth (Garrott et al. 

1987, Brown 1992). In my study, deer wintered at higher elevations during the second winter 

possibly due to relatively lower snow accumulations in those areas. As a result, the spatial 

distribution of deer in relationship to roads was affected, with deer occurring twice as far from 

US 6 and somewhat farther from major roads. Consequently, deer crossed roads with high traffic 
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volumes less frequently (52-96 % decrease) because fewer deer wintered adjacent to roads with 

high traffic volumes.  

In my study area, deer that crossed US 6 less often had higher survival than deer that 

crossed more frequently. Additionally, relatively low road crossing rates (1.4 crossings/week) 

were enough to cause declines in survival; however, there was considerable uncertainty around 

survival estimates. These results suggest that roads with high traffic volumes pose a significant 

risk to deer safety and provide support that the reduction in DVCs I observed during the second 

winter was the result of deer crossing high volume roads less frequently. Additionally, the 

reduction in road crossings on US 6 between winters was essentially proportional to the reduction 

in DVCs, providing further support that changes in movement patterns of deer due to climatic 

variation were driving the observed changes.  

While there was considerable support that variation in climate caused much of the 

difference in DVCs I observed between winters, DVC rates may have also been affected by 

changes in traffic volumes (Romin and Bissonette 1996). It is possible that traffic volume 

decreases could have contributed to a decrease in DVC rates, because as traffic volume declines, 

roads become safer for deer to cross (Litvaitis and Tash 2008). According to UDOT estimates, 

however, traffic volumes were essentially unchanged between years; as a result, it is unlikely that 

variation in traffic volume contributed substantially to the pattern in DVCs I observed.  

Variation in deer abundance also can produce marked changes in DVC rates (Jahn 1959, 

DeNicola and Williams 2008). Mule deer populations are highly variable in Utah (Austin 2010, 

Bernales et al. 2011) and not surprisingly, deer abundance differed between winters during the 

study. Deer abundance was higher during the first winter when DVC rates were high and lower 

during the second winter when DVC rates decreased. A reduction in deer abundance likely 

contributed some of the variation in DVC rates that was observed between winters. According to 
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UDWR population estimates, however, mule deer abundance only decreased 7 % between 

winters, which is less than the 52 % decrease in DVCs I observed on major roads and the 91 % 

decrease I observed on US 6. Based on experimental evidence conducted on white-tailed deer 

(DeNicola and Williams 2008), I would expect DVCs to decrease proportionally to changes in 

deer abundance, which did not occur in my study. Additionally, some of the variability in 

abundance estimates between winters may have been the result of deer being more difficult to 

detect during surveys because snow cover was sparse and deer were more dispersed during the 

second winter (Habib et al. 2012). Due to these factors, I suggest that changes in deer abundance 

may have had a marginal effect on DVC rates but was not the major driver of the pattern that was 

observed.  

Snow conditions, which can vary considerably between years, are a major factor 

influencing the movement patterns of mule deer in temperature climates (Garrott et al. 1987). 

More than 30 years ago, Reed and Woodard (1981) suggested winter conditions were likely an 

important driver of DVC rates. The evidence from this study provides a causal mechanism by 

which variation in winter conditions contribute to variation in DVC rates between years. Deer in 

the study area occurred farther from roads and crossed high traffic volume roads less when snow 

depths were lower, which resulted in lower DVC rates.  

The response of mule deer to snow conditions may result in an ecological trap for deer 

during severe winters in landscapes that have roads with high traffic volumes (Schlaepfer et al. 

2002). As deer move from areas with high snow accumulations to areas with low snow 

accumulations, movement and foraging become relatively more efficient, but if deer select 

habitats near roads with high traffic volumes, then survival and fitness may actually be reduced 

due the increased probability of a vehicle collision. This problem can be mitigated with 

exclusionary fencing (> 2 m) that prevents deer from accessing road ways (McCollister and Van 
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Manen 2010). Exclusionary fencing can reduce DVCs 80-90 % (Huijser et al. 2008), but fencing 

can be expensive and wildlife crossings, which are also relatively expensive, should be built at 

frequent intervals (~1.6 km) to retain landscape permeability for deer (Bissonette and Adair 

2008).  Researchers also have tried manipulating the spatial distribution of deer in relation to 

roads with winter feeding stations to decrease DVCs (Wood and Wolfe 1988). By placing feeding 

stations away from roads, DVC rates were reduced nearly 50 %. However, winter feeding has 

significant economic costs, implications for pathogen transmission, and may degrade vegetation 

and alter migration patterns of deer (Peterson and Messmer 2007). 

Another aspect of DVC mitigation is warning drivers of potentially dangerous situations 

(Mastro et al. 2008), but the dynamic nature of DVCs can make this a challenge. Permanent 

warning signs are often placed in areas with high DVCs (Jahn 1959); however, their effectiveness 

can diminish as drivers become accustomed to them (Putman 1997). Temporary signs, however, 

appear to be more effective (Sullivan et al. 2004). Following this logic, it would seem that the 

most effective DVC warning systems would be as dynamic as the phenomena they represent. 

Recent advances in DVC reporting systems have used smartphones to collect and transfer 

information, which have made current and accurate DVC data readily available for mitigation 

(Olson et al. 2013b, in preparation). Current DVC information from these databases could be 

used to create to a smartphone-based warning system that would indicate to drivers when they 

were entering a section of highway that was currently experiencing high rates of DVCs. 

Fundamentally, a warning system such as this could accurately represent the spatial and temporal 

variation that occurs in DVC patterns, which could improving driver safety and reduce the 

number of deer that are killed. 
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Table 4.1. Models examining effects of various road-related covariates on mule deer survival in 

central Utah.  

Model  Parameters AICc ΔAICc AICc Weight 

DCR US 6 2 23.72 0.00 0.275 
DCR US 6 + Year 3 25.02 1.30 0.144 
DCR Minor Roads 2 25.27 1.55 0.127 
DCR US 6 + Dist. US 6 3 25.37 1.65 0.121 
DCR US 6 + DCR Minor Roads 3 25.37 1.66 0.120 
Distance Major Roads 2 26.89 3.17 0.056 
DCR US 6 + Distance US 6 + Year 4 26.99 3.28 0.054 
Distance Minor Roads 2 27.44 3.72 0.043 
Distance US 6 2 28.58 4.86 0.024 
Year 2 29.13 5.41 0.018 
Intercept  1 29.88 6.16 0.013 
DCR Major Roads 2 31.69 7.97 0.005 
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Fig. 4.1. Weather stations and mule deer capture locations in relationship to US 6 and other roads 

in central Utah.  



111 
 

 

 

Fig. 4.2. Winter climate data collected from weather stations in central Utah.  
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Fig. 4.3. Average Annual Daily Traffic (AADT) for US 6 and major roads in central Utah.  
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Fig. 4.4. Mule deer population estimates for the study area in central Utah and for the state of 

Utah.  
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Fig. 4.5. Daily crossing rates of deer on US 6, major roads, and minor roads during winter 2010-

11 and 2011-12. 
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Fig. 4.6. Elevation use by deer during winter 2010-11 and 2011-12. 
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Fig. 4.7. Distance that deer occurred from US 6, major roads, and minor roads during winter 

2010-11 and 2011-12. 
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Fig. 4.8. The effect of US 6 crossing rate on survival estimates of mule deer.  
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Figure 4.9. Deer-vehicle collision estimates for Utah, US 6, and major roads within the study 

area in central Utah.  
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CHAPTER 5 

MONITORING WILDLIFE-VEHICLE COLLISIONS IN THE INFORMATION AGE: 

HOW SMARTPHONES CAN IMPROVE DATA COLLECTION1 

 
Abstract 

Background: Currently there is a critical need for accurate and standardized wildlife-vehicle 

collision data, because it is the underpinning of mitigation projects that protect both drivers and 

wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad 

areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude 

requires an efficient data collection system. Presently there is no widely adopted system that is 

both efficient and accurate. 

Methodology/Principal Findings: My objective was to develop and test a smartphone-based 

system for reporting wildlife-vehicle collision data. The WVC Reporter system I developed 

consisted of a mobile web application for data collection, a database for centralized storage of 

data, and a desktop web application for viewing data. The smartphones that I tested for use with 

the application produced accurate locations (median error = 4.6-5.2 m), and reduced location 

error 99 % versus reporting only the highway/marker. Additionally, mean times for data entry 

using the mobile web application (22.0-26.5 s) were substantially shorter than using the pen/paper 

method (~60-90 s). I also found the pen/paper method had a data entry error rate of 10 % and 

those errors were virtually eliminated using the mobile web application. During the first year of 

use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application
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improved accesses to WVC data and allowed users to visualizing wildlife-vehicle collision 

patterns at both broad and fine scale extents.  

Conclusions/Significance: The WVC Reporter integrated several modern technologies into a 

seamless method for collecting, managing, and using WVC data. As a result, the system vastly 

increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The 

development costs for the system were minor when viewed in context of the potential benefits of 

having spatially accurate and temporally current wildlife-vehicle collision data.  

Introduction 

Wildlife-Vehicle Collisions (WVCs) are a global problem that impact both wildlife and 

motorists [1–5]. The sheer number of animals that are killed in vehicle-collisions is alarming; in 

the United States alone it has been estimated that ~1 million vertebrates are killed every day [6]. 

Wildlife-vehicle collisions involving large species, such as ungulates, can cause substantial 

vehicle damage and human injuries, and consequently they are a key public safety concern [7]. In 

the United States, there are 1-2 million vehicle collisions with large animals each year that result 

in 8.4 billion (USD) in damages [8]. Additionally, ~5 % of WVCs result in human injuries [7,8], 

and in the USA human fatalities resulting from WVCs have risen to ~200 annually [9].  

Currently there is a critical need for accurate and standardized WVC data [10–12], 

because these are the foundation of mitigation projects that protect both motorists and wildlife 

[13]. For example, exclusionary fencing (> 2 m high) is used to prevent wildlife from accessing 

road right-of-ways, and it is typically only constructed on road sections with high traffic volumes 

and high numbers of WVCs [14]. Wildlife crossings, which promote connectivity and facilitate 

safe passage of wildlife above and below roads, are also placed in areas where WVCs occur [15–

18]. Effective WVC mitigation is generally costly [19] and high quality WVC data helps ensure 
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that limited mitigation resources are strategically targeted to areas that produce the greatest 

results for motorists and wildlife. However, effectively gathering WVC data for mitigation 

planning has proven challenging [12] because WVCs occur over broad geographic areas, during 

all seasons of the year, and in large numbers [6,20]. Collecting data of this magnitude requires 

many observers and an efficient data management system. 

Ecologists have been collecting WVC data since at least the 1920s [21]. These early 

ecologists recorded WVC data manually using the only method available to them at the time: pen 

and paper. Now almost a century later, most state agencies still use the pen/paper method to 

report animal carcasses that occur on roadways [12], which is problematic because data collected 

in this manner generally have low spatial accuracy (i.e. nearest highway and km/mi marker), 

contain avoidable inaccuracies, and require a considerable time investment to reformat data 

digitally so they are useful for analyses and mitigation planning [10]. For instance, data must be 

entered once on a paper form while in the field and then manually transcribed into an electronic 

database. After data are in an electronic database, they must then be imported into a Geographic 

Information System (GIS) to be visually analyzed for mitigation planning. Errors inevitably occur 

in the process as humans enter and transcribe WVC data manually, particularly if the handwriting 

on the paper form is illegible. Location data may also be prone to data entry errors. For instance, 

the nearest marker may not be visible from the carcass location or the road may not have any 

markers, which can make reporting an accurate location difficult or impossible.  

Researchers have been aware of the difficulties associated with WVC data for many 

years, and as a result, have been actively developing new methods with the goal of improving 

accuracy and efficiency. As early as 2005, Ament et al. [22] developed a system in which 

observers used Personal Data Assistants (PDAs) to electronically record data on animal carcasses 

and to generate spatially accurate location coordinates using integrated Global Positioning 
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System (GPS) technology. This system represented a breakthrough in WVC data collection 

because it not only increased location accuracy, but it also standardized data collection and 

eliminated transcription errors. Donaldson and Lafon also used this PDA system in Virginia [23]. 

The use of PDAs, however, did not solve all WVC data collection problems, because PDAs still 

required the user to periodically transfer data from the PDA to a database for storage, which can 

be cumbersome when many users are reporting data across large geographic areas. Additionally 

in about 2006, PDAs began to be replaced by smartphones as the technology of choice. 

Consequently, PDA reporting systems have not been widely adopted for WVC data collection. 

Another reporting system for WVCs was developed by Hesse et al. [24] in 2007. Their 

system used an inexpensive (~100 USD) but lesser known device called the Otto-Driving 

Companion. This device was attached to the dashboard of the vehicle, and it allowed the motorist 

to report animal carcasses with the push of a button while driving. The system generated spatially 

accurate locations using GPS, but was limited by the number species that could be reported. 

Again, WVC data had to be downloaded manually from each device to a database for the 

information to be useable. While this represented another step forward in WVC data collection, 

the Otto-Driving Companion has not been widely accepted. 

Most recently, a small number of states and provinces (i.e., California, Idaho, Maine, and 

British Columbia) have developed web applications for reporting WVCs [25]. These web-based 

systems allow users to report animal carcasses by accessing a website where they enter location 

and species information. Some systems even allow users to upload photos of animal carcasses. 

The development of web applications for reporting WVC data is a significant advancement that 

standardizes data collection and eliminates transcription, but these systems have two important 

limitations: 1) users must have internet access, and 2) users must define carcass locations based 

on what they know about the road location. The requirement of internet access requires personal 
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computer users to either record the data or remember it until they have access to their computer. 

Web applications can be accessed with mobile devices, they require mobile broadband internet 

which is incomplete in most states, especially in rural areas where many WVCs occur. Web 

applications also require users to define the locations of WVCs manually, so there is the potential 

for significant location error to occur; although most web applications now have built in map 

viewers (e.g., Google Maps) that allow users to zoom to and select a location on the map, which 

makes defining the location relatively easy. However, locations errors associated with this 

technique are unknown and largely dependent on the user. 

Presently there is no widely adopted WVC data collection system that is both efficient for 

users and accurate for geographic locations. My intent was to create a data collection system that 

increased efficiency and accuracy, but also had the potential to be broadly accepted and used. I 

also desired to create a system that seamlessly integrated WVC data collection, storage, and 

analysis. In this paper, I review the development and testing of the WVC Reporter. The WVC 

Reporter is a smartphone-based reporting system that combines a mobile web application for data 

collection, a centralized database for data storage, and a desktop web application for analyses. I 

found that the WVC Reporter produced accurate, nearly error free location data. Additionally, 

efficiency was greatly increased because data entry time was reduced and transcription was 

eliminated. Finally the web application improved the ease and effectiveness of WVC data 

analyses. The WVC Reporter represents a step forward in the continued pursuit to improve WVC 

data collection. 
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Methods 

Study Area 

 The WVC Reporter was developed and tested in Utah (219,807 km2), which is located in 

the southwestern United States. The Utah landscape is topographically diverse with elevations 

ranging from 663-4,413 m [26]. The climate for much of the state is considered semi-arid (127-

381 mm precipitation annually), but high elevation areas can receive considerably more 

precipitation (>1,473 mm) [27]. Three major ecoregions comprise the majority of the state: the 

Colorado Plateau, the Wasatch and Uinta Mountains, and the Central Basin and Range [28]. As a 

result, Utah is ecologically diverse and inhabited by a wide variety of plants and animals that are 

adapted to an array of habitats from salt desert shrub lands to alpine tundra [29]. 

Utah is largely a rural state with 75 % of the land area being federally or state owned 

[26]. There are, however, several urban areas along the front of the Wasatch Mountains in central 

Utah, where the majority of the state’s 2.8 million residents live [30]. According to the latest 

census estimate, Utah was the 3rd fastest growing state [31] in the United States. Consequently, 

the state is rapidly becoming urbanized [32]. The growing human population has increased 

demand for transportation and traffic volumes have doubled in the past 30 years (1980-2010) 

[33]. In 2010, it was estimated that 42.8 billion km were driven on the states 73,413 km of roads 

[33,34].  

Wildlife-vehicle collisions commonly occur in Utah and are a considerable public safety 

concern [35]. Most reported wildlife vehicle collisions in Utah involve mule deer (Odocoileus 

hemionus) [35], which is the state’s most abundant wild large mammal [36]. Vehicle collisions 

with mule deer in Utah result in an average of 7.5 million (USD) in damages each year [37]. 

Consequently, mitigation measures such as wildlife crossings and exclusionary fencing have been 

used to address the problem [38]. 
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WVC Data Collection 

Surveys for wildlife carcasses using automobiles have been conducted systematically in 

Utah since at least 1998 [39]. Automobile surveys were done by Utah Department of 

Transportation (UDOT) contractors. During the study, UDOT contractors were obligated to drive 

~2,800 km of roads twice a week (Monday and Thursday) throughout the year. UDOT contractor 

routes were selected because they had high numbers of WVCs. During surveys UDOT 

contractors were required to remove all animal carcasses that were detected on the road surface, 

the median, and the road shoulder. They also were required to keep detailed records of the species 

removed and their locations. Utah Division Wildlife Resources (UDWR) employees also 

removed and reported animal carcasses that occurred on roads other than those covered by UDOT 

contractors. UDWR employees did not conduct systematic surveys, but reported carcasses 

opportunistically. Prior to implementation of the WVC Reporter system, both agencies recorded 

animal carcass data using the pen/paper method.  

WVC Reporter System 

The WVC Reporter system consists of three integrated components: 1) a mobile web 

application, 2) a database, and 3) a desktop web application (Figure 5.1). The mobile web 

application was designed for in-field data collection. It allows the user to report information on 

wildlife carcasses using a smartphone. When reporting a wildlife carcass, the user simply clicks 

on the mobile web application bookmark and a report form opens. The report form contains a 

dropdown menu of wildlife species that are commonly encountered. If the species being reported 

is not available in the menu, it can be entered manually. The user also enters the sex (male, 

female, or unknown) and age class (adult, juvenile, or unknown) of the animal. Optional 

information that can be reported includes a carcass fat measurement (an indicator of health in 

ungulates) and an ID number if the animal was involved in a research study and marked.  



126 
 

 

For each reported carcass, the mobile application generates a number of pieces of 

information automatically. For example, the mobile web application accesses the smartphone 

GPS and acquires coordinates (latitude/longitude) for the location. Coordinates are then used to 

determine the nearest highway and marker automatically. This eliminates all data entry errors 

associated with location information. The mobile web application also reports the user, time, and 

date. When the user is finished entering information in the report form, the send button transfers 

data via a mobile internet connection to the WVC Reporter database. If mobile internet service is 

unavailable, the information is stored in the phone until the next report is submitted.  

The mobile web application is compatible with most iPhone and Android smartphones. 

Specific device requirements include iOS Safari 3.2+, Android Browser 2.1+, or Google Chrome 

10.0+. The programming code for the mobile web application was written in HTML5, CSS, and 

JavaScript. The HTML5 geolocation Application Program Interface (API) was used to enable 

location data collection, and the application cache allows the mobile web application to be used 

even when there is no internet connection available. Programming for all components of the 

WVC Reporter was done by the Utah Automated Geographic Reference Center (AGRC). 

The WVC Reporter database serves as the central repository for all reports that are 

submitted using the mobile web application. The database is dynamic and updated when reports 

are submitted through an ESRI ArcGIS Server Feature Service.  The database is an ESRI ArcSDE 

Geodatabase, and it is housed in a Structured Query Language (SQL) Server at the AGRC in Salt 

Lake City, Utah.  

The desktop web application was designed to make it easier for planners, maintenance 

crews, and wildlife managers to use WVC data. To accomplish this, the web application serves 

as: 1) a map to view carcass locations at user defined scales, 2) a place to download current WVC 

data, 3) a way to enter carcass data manually, and 4) a link to the mobile web application. To map 
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carcass locations, the desktop web application uses ESRI's ArcGIS Server and ArcGIS API for 

JavaScript. The web application is dynamically linked to the WVC Reporter database, so mapped 

carcass locations represent the most current data available. Rather than display all carcass 

locations on the map regardless of the spatial extent, the map viewer shows clusters of carcass 

locations as circles, where the size of the circle represents the number of carcasses in the area 

(Figure 5.2). As one zooms in on specific locations within the state, the circles become 

progressively smaller and eventually disappear at fine scale extents showing only the actual 

carcass locations. This provides an efficient means to see where WVC hotspots occur regardless 

of the scale extent the map is viewed at. Carcass locations also can be overlaid on one of seven 

different base maps. The high-resolution aerial imagery base map provides an excellent backdrop 

for analyzing WVC patterns, because landscape features such as vegetation, rivers, human 

developments, agricultural fields, and roads are clearly visible at fine scale extents. Additionally, 

the terrain base map shades relief making topography appear three dimensional, which is helpful 

for viewing carcass location with respect to major topographic features such as drainages. To add 

additional context not available in the base maps, I included GIS layers for wildlife crossing 

locations, exclusionary fencing, marker locations, and management regions (UDOT and UDWR) 

that can be toggled on and off by the user. The map viewer also includes data filters (date, 

species, and management region) allowing the user to modify data to suit their specific needs. For 

fine-scale WVC analysis, users can also enter a highway number (e.g.; US 6) and section (e.g., 

markers 210-213), and the map viewer will zoom to that location and summarize WVC data for 

that area (Figure 5.2). Finally, the map viewer allows displayed data to be exported as a PDF, 

which provides the user with a way to share data or create figures for reports. 

While the map viewer provides an efficient means to visualize WVC patterns, in some 

situations it may be desirable to perform more sophisticated spatial analyses. To facilitate this, the 
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desktop web application allows the user to download the WVC Reporter database as either an 

ESRI shapefile or a dbf file. The shapefile is a common GIS format that allows carcasses location 

to be easy imported into GIS software where spatial analyses can be performed. The download 

function also respects the data filters in the desktop web application.  

When designing the desktop web application, I realized not all agency personnel 

reporting WVC collision data would have access to smartphones and consequently some 

information would still be collected on paper forms. To address this situation, the desktop web 

application has a report form for manually entering carcass locations. It essentially functions the 

same as the mobile web application report form, with the exception that the user has to define the 

carcass location manually by either entering GPS coordinates (latitude/longitude or UTM), the 

highway/ marker, or the street address. Once the location information is entered, the user is able 

to verify the location information was correct by viewing the location on a built-in map viewer.   

The final function of the desktop web application is to serve as a location to link to the 

mobile web application. Before field technicians can use the mobile application on their 

individual smartphones, they must first access the web application 

(https://wvc.mapserv.utah.gov/wvc/desktop/index.php), click on the mobile app link, and then 

bookmark the location on their smartphone. The desktop web application was programmed using 

the same languages as the mobile application, and it works with nearly all commonly used web 

browsers (Internet Explorer 7+, Chrome, Firefox, and Safari).  

Location Error 

I tested the WVC reporter application using a Motorola Droid X smartphone (Model 

10083V2-B-K1, Verizon, New York, New York, USA) and an Apple iPhone 4 (Model A1349, 

Apple, Inc., Cupertino, California, USA). To estimate the horizontal error for locations collected 

with these phones, I tested them at random locations on highways throughout the state of Utah. At 
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each random location, I recorded location coordinates using a mapping-grade Archer Differential 

Global Positioning System (DGPS) receiver (Model XF101, Juniper Systems, Logan, Utah, USA) 

that was capable of sub-meter accuracy. I used locations collected with DGPS receiver to 

represent the “true” location. Additionally at each random point, I recorded location coordinates 

using the smartphones and a recreation-grade Garmin GPS receiver (Model eTrex Legend H, 

Garmin International, Inc., Olathe, Kansas, USA). I included the recreation-grade GPS in testing 

to see how the smartphones compared to a standalone GPS receiver. All location data were 

imported into ArcGIS 10.1 (ESRI, Redlands, California, USA) for analysis. Location error was 

estimated as the Euclidean distance between the true location and the points collected by the test 

units. Because the location errors were not normally distributed, I reported the medians and 

median absolute deviations (MADs) instead of means and standard deviations. I also used the 

nonparametric Kruskal–Wallis test to test for differences in location errors between units. All 

statistical tests for this study were performed using R 2.14.1 (R Development Core Team, Vienna, 

Austria). To estimate how much spatial accuracy improved, I compared the location error for my 

smartphones to the location error (401 m) estimated by Gunson et al. [10] for reporting only the 

highway and marker. 

Data Entry Time 

I estimated the amount of time required to report carcasses using the WVC Reporter 

application under field conditions. For both smartphones, I recorded data entry time in seconds 

using a stopwatch. The reported data entry times represents the time from when the mobile web 

application was opened on the smartphone until all data was entered and the submit report button 

was pressed. Data entry times were also non-normal, so I reported medians and MADs. I tested 

for differences in data entry times between smartphones using the Wilcoxon rank-sum test. I did 

not measure data entry times for the pen/paper method but assumed it took 60-90 seconds to 
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report each carcass using this technique. I also made the same assumption for the amount of time 

it takes to transcribe written data into an electronic database.  

Data Entry Errors 

I estimated reporting errors for the previous system of paper forms and transcription. I 

could only estimate reporting errors for location data. Location data were reported as both the 

highway/marker, and as GPS coordinates (easting, northing) reported in UTMs. For each record, I 

verified the GPS coordinates matched with the reported highway/marker. When GPS coordinates 

were associated with a highway, but the reported highway/marker did not match the location, I 

assumed that the highway/marker was reported incorrectly. When GPS coordinates did not 

coincide with a highway, I assumed that the coordinates were reported incorrectly.  

Costs Savings 

To estimate the total cost savings from using the WVC Reporter, I used the data entry 

time saved for both infield data collection and transcription and assumed the mean hourly wage 

for those reporting and transcribing data was $12/hr.  All dollar amounts in this paper represent 

United States currency (USD).   

Results 

WVC Reporter System 

I began development on the WVC Reporter in July of 2011. The system was thoroughly 

tested for a 6 month period (October 2011- March 2012) prior to its release. Development costs 

for programming and testing totaled $34,000. Annual maintenance costs were estimated to be 

$1,500. The WVC Reporter officially went into use across Utah on April 16, 2012. Use of the 

WVC Reporter application was restricted to UDWR and UDOT personnel, UDOT contractors, 
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and select wildlife and transportation professionals.  During the first year of use, 6,822 carcasses 

were reported by 47 different users across the state. A total of 43 different species were reported, 

but the majority of carcasses (85 %) were mule deer (Figure 5.3). Additionally, spatial patterns 

were clearly apparent at multiple scale extents when using the map viewer to assess carcass 

locations. For instance at the statewide scale, the majority of WVCs occurred in the north central 

portion of the state (Figure 5.2). At the scale of individual highways, carcasses appeared to be 

clustered in hotspots along highways. At fine scale extents, the landscape and infrastructure 

features associated with hotspot locations were clearly visible when viewed in conjunction with a 

high-resolution aerial imagery (Figure 5.2). 

Location Error 

Location error varied between the units I tested (K = 25.26, p < 0.01). The Droid X had 

the highest median location error (5.2 m). The location error for the iPhone 4 was lower (4.6 m), 

but similar to the Droid X. The Garmin GPS had the lowest median location error (2.4 m). The 

use of smartphones decreased location error 99 % over reporting highway/marker locations. 

Using a Garmin GPS instead of the smartphones I tested would have further decreased location 

error < 1 % (Table 5.1).  

Data Entry Time 

Data entry time varied between the Droid X and the iPhone 4 (W = 3528, p = < 0.01). 

The median data entry time for the Droid X (22.0 s) was shorter than median data entry time for 

the IPhone 4 (26.5 s). Using smartphones over the pen/paper method decreased data entry time 

56-76 %, which I estimated saved approximately 63.5-128.9 person hours of work over a one 

year period. Additionally, data transcription was eliminated, which resulted in a time savings of 

113.7-170.5 person hours of work annually.  
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Data Entry Errors 

I measured data entry error rates for carcasses that were reported using the pen/paper 

method and then transcribed into an electronic database (Table 5.2). Data entry error rates were 

highest for marker locations (19 %), intermediate for GPS coordinates (10 %), and lowest for 

highway names (1 %). The overall data entry error rate for all location data was 10 %.  

Cost Savings 

I estimated $2,126-$3,593 was saved in data entry and transcription time during one year 

in Utah.  

Discussion 

In 2008, Bissonette and Cramer [11] recommended accurate and standardized WVC data 

as a priority for transportation planning and wildlife management in North America. Given the 

recent advances that have taken place in mobile communications and electronics, it seemed 

promising that WVC data collection could be improved by incorporating these modern advances. 

The WVC Reporter was specifically designed to leverage modern technologies to produce 

accurate and standardized WVC data. The system accomplished this by integrating several 

modern advances (smartphones, GPS, a mobile application, mobile broadband internet, an 

electronic database, a web application, a map viewer) into a seamless method for collecting, 

managing, and using data. The system was developed and tested at a statewide scale to serve as a 

proof of concept, but has the potential to be adopted throughout North America because it 

produced accurate data, improved efficiency, and enhanced data management and use. 

Accuracy was increased by reducing errors associated with location data and by reducing 

data entry errors.  On average, location error for the smartphones I tested was only ~4-5 m and 

the largest recorded error for either phone was 23 m. However, location error for highway/marker 
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method can be > 800 m, even if locations are reported correctly [10]. Location error of that 

magnitude can potentially obscure relationships with vegetation, topography, and infrastructure 

that can be highly variable within an 800 m area. Alternatively, locations collected with 

smartphones were accurate enough that relationships with landscape features and infrastructure 

were readily apparent, providing managers with a clearer understanding of the nature of the 

problem. Furthermore, using a standalone GPS unit did not substantially decrease location error 

over using smartphones.   

With WVC data that is both spatially accurate and temporally current, management can 

be conducted at a fine scale to address problems as they arise. For instance, deer are occasionally 

killed on roads that have exclusionary fencing. This can happen when fencing becomes damaged 

or gates are left open. If maintenance crews observe that deer carcasses are being reported in area 

with exclusionary fencing over a short time period of days or weeks, they can examine the 

location for damaged fencing or open gates, allowing them to quickly address the problem while 

it is occurring to prevent further WVCs at that location. When WVC data are collected on paper 

forms, data can be months to years old before they are processed and examined. Subsequently the 

opportunity to prevent WVCs is reduced. This is just one example of how management can be 

enhanced with accurate WVC data. 

The WVC Reporter also improved data accuracy by reducing errors that occurred from 

data collection and transcription. When using the pen/method for data collection, ~10% WVC 

locations had associated errors. Errors occurred in highway names, marker locations, and GPS 

coordinates. The highest error rate occurred for marker locations (19 %), which was likely due to 

the fact that markers are not always visible from carcass locations. GPS coordinates, which 

consist of a long string of numbers (e.g., 12 T 505698 4405622), were also prone to errors (10 %) 

when collected and transcribed manually. Errors in GPS coordinates are especially problematic, 
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because a seemingly innocuous error in which one digit is off by one number can make a location 

unusable. The errors that occur from manually recording and transcribing data were virtually 

eliminated using the WVC Reporter because location data were record by the mobile application 

using the smartphone’s GPS capabilities, rather than by the user manually.  

There was also a marked increase in efficiency when I compared the WVC Reporter 

system to the pen/paper method as data collection time was reduced 55-75 % and transcription 

was eliminated. For one year of reporting in Utah, the time savings from these two factors alone 

equates to 4-7 weeks of work for one person. Time savings could be considerably more for states 

with higher numbers of WVCs. In one year Pennsylvania had an estimated ~115,571 deer-vehicle 

collisions [40]. If I assumed that these data were recorded with the WVC Reporter rather on paper 

forms, it is possible that 1.4-2.4 person-years of work could be saved. Today state agencies are 

consistently asked to do more with fewer resources. They may not have the time or person power 

to process data that requires considerable labor to make it useable for management purposes. The 

use of WVC Reporter allowed managers to focus on analysis and planning rather than data entry 

and preparation.  

Time savings produced by increased efficiency inevitably translates into reduced costs 

for agencies. I estimated that in one year thousands of dollars ($2,126-$3,593) were saved in data 

entry and transcription time in Utah. There are additional savings that occur in data management 

and analysis. A total of 47 state employees and contractors reported WVC data throughout Utah. 

Collecting data entry forms from all of those individuals at regular intervals is not trivial; it 

requires a considerable commitment of time and effort, which is not required with the WVC 

Reporter system. Additionally data analysis is streamlined with WVC Reporter, because data do 

not have to be prepared for GIS analysis, and analysis time is reduced because data can be 

instantly viewed by simply accessing the desktop web application. These cost savings are more 
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difficult to estimate, but are possibly equivalent to or exceed those costs saved on data entry and 

transcription.  

The WVC Reporter had its own associated expenses. System development and testing 

was moderate ($34,000). Additionally, annual maintenance costs ($1,500) were 4.4% of the 

development costs. The WVC Reporter system also requires investment in smartphones and 

wireless data plans. These costs can be partially defrayed by the fact that many people already 

have smartphones, which would necessitate them only downloading the mobile application at no 

cost. When WVC Reporter costs are viewed in context of the problem, the investment in the 

system appears relatively minor. The average economic cost of a deer-vehicle collision has been 

estimated to be $8,388 and as high as $30,773 for a moose-vehicle collision [8]. Consequently 

only ~4 deer-vehicle collisions or ~1 moose-vehicle collision would need to be prevented to pay 

for system development. Additionally, if one human fatality could be prevented (estimated value 

of a human life is $ 3.3-9.1 million [8,41,42] ), the system would pay for itself many times over.  

 While the WVC Reporter has advanced data collection and use, the capabilities of the 

system could be expanded further. As most smartphones now have built in cameras, the mobile 

web application could easily be modified to allow users to submit photos of carcasses. 

Additionally survey effort of users could be quantified by programming the mobile web 

application to track user’s movements while they are conducting carcass surveys. Quantifying 

survey effort allows for more rigorous analysis of WVC data. The WVC Reporter system could 

also be linked to a warning system for drivers.  The warning system could be designed as a 

mobile application that notified drivers whenever they entered an area that was currently 

experiencing high numbers of WVCs. The alert produced by the warning system could also notify 

drivers if they are traveling during a time of day when WVCs are more likely to occur (e.g., 

evening or early morning). This form of warning system would provide drivers with the best 
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information available on WVC conditions. Given the effectiveness of the WVC reporter in 

collecting location data, the system could easily be modified for recording sightings of live 

wildlife, collecting data on wildlife crossing infrastructure, or it could be used for general 

maintenance issues like reporting potholes and broken/missing road signs. The applications for 

this type of technology are broad and could potentially result in significant benefits for agencies, 

wildlife, and the public. 

 In just the past 5 years, citizen science has emerged as a powerful tool to address 

scientific problems that were previously too costly, difficult, or labor intensive for researchers to 

undertake [43]. Citizen science involves recruiting the general public to collect data for scientific 

research, and it has the power to focus the efforts of many individuals on large scale problems. 

WVCs are truly a large scale problem that affects much of the developed world [5,17,44]. The 

scope of the problem is beyond what can be addressed by agencies and researchers alone. For 

instance in Utah, < 4 % of the roads were surveyed for carcasses by contractors. Given the ease of 

data collection and management with the WVC Reporter system, it could easily be extended to a 

citizen science enterprise where the general public reported WVCs on roads that were not 

surveyed by agencies. Citizen science programs for WVC data collection have successfully been 

implemented in California (California Roadkill Observation System), Maine (Wildlife Road 

Watch), and Idaho (Roadkill and Wildlife Salvage) using web applications. Despite the 

challenges associated with citizen science programs (i.e., inexperienced observers, double 

reporting, people management), the expansion of WVC data collection to large scales will likely 

depend on the degree to which the general public can be leveraged using modern electronic 

reporting systems such as these. 
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Table 5.1. The estimated location error and entry time for data collected with smartphones and a 

standalone GPS at 60 random locations throughout Utah.  

  Location Error (m)   Data Entry Time (s) 

  Unit n Median  MAD Range    n Median MAD Range 

   Droid 60 5.2 4.5 0.7-23.2   111 22.0 5.9 10.0-42.0 

   iPhone 60 4.6 2.9 0.2-21.0   122 26.5 9.6 15.0-87.0 
              
Garmin 60 2.4 1.3 0.3-8.0   NA NA NA NA 
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Table 5.2. Data entry errors for location data that was collected using the pen/method and then 

transcribed into an electronic spreadsheet.  

Location Data  n Errors % Error 

  Highway 1836 23 1.3 

  Mile Marker 1836 356 19.4 

  Easting Coordinate 1836 196 10.7 

  Northing Coordinate 1836 189 10.3 

          Total 7344 764 10.4 
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Figure 5.1. Flow of information through the WVC Reporter system.  
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Figure 5.2. WVC Reporter map viewer depicting spatial patterns in wildlife-vehicle 

collisions.  
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Figure 5.3. Animal carcasses reported using the WVC Reporter system in Utah.  
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CHAPTER 6 

CONCLUSIONS 

Roads are an essential part of modern communities and economies (Forman et al. 2003, 

Larsson et al. 2010). As the human population grows, traffic volumes are expected to continue to 

rise, and roads will be built and expanded to accommodate the increasing demand for 

transportation (FHWA 2010). As a result, the effect that roads and vehicle traffic have on wildlife 

will likely intensify, making it imperative that managers understand how roads are affecting 

wildlife so mitigation can be directed accordingly.   

In Utah, considerable amounts of mule deer (Odocoileus hemionus) habitat are now 

bisected by roads with increasing traffic volumes (UDOT 2012). Mule deer are commonly 

involved in vehicle collisions (West 2008), and there is concern that roads may be impacting 

populations. The focus of my research was to: 1) estimate the number of vehicle collisions 

involving deer in Utah, 2) examine the demographic effects of vehicle collisions, 3) determine 

how movements and survival were impacted by roads, and 4) create an electronic, smartphone-

based system for reporting vehicle collisions.  

Accurate estimates of DVCs are needed to effectively mitigate the effects of roads and to 

properly manage deer populations  (Bissonette and Cramer 2008). However, there is great 

uncertainty associated with most DVC estimates because commonly used DVC data sources are 

inherently biased and the bias is rarely accounted for in estimates (Huijser et al. 2007). In chapter 

2, I estimated the number of DVCs in Utah using carcass surveys conducted with automobiles 

and all-terrain vehicles. I found that uncorrected carcass surveys underestimated the actual 

number of DVCs substantially and detected only 41 % of deer killed in vehicle collisions along 

roads administered by the Utah Department of Transportation. After correcting for this bias, I 
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estimated that vehicle collisions were removing 2-5 % of the mule deer population in Utah 

annually, which was less than what was being harvested by hunters (7-9 %).  

The effect that DVCs have on deer populations depends not only on the number of deer 

killed but also on the demographic groups removed, because deer demographic groups have 

distinct fecundity and survival rates (Gaillard et al. 2000). In deer populations, prime-aged 

females (2-7 yrs) are the most important demographic group to population growth (Gaillard et al. 

1998). In chapter 3, I observed that 65 % of deer killed in vehicle collisions were female and 40 

% were adult females. Of adult females, 98 % were prime-aged, which indicates that vehicle-

related mortality could potentially exert a strong influence on deer abundance. Additionally, when 

I compared vehicle collision rates among deer species in Utah, I found that mule deer were 7.4-

8.7 times more likely to be involved in vehicle collisions than elk and 1.2-2 times more likely 

than moose. Although mule deer appeared to be more vulnerable to vehicle collisions than other 

species and a high percentage of prime-age females were being killed, mule deer abundance has 

been relatively stable for the past 20 years, while traffic volumes have steadily increased. Given 

this evidence, it is likely that current vehicle collision levels are not yet high enough to cause 

population declines at the statewide scale extent. 

The rate at which DVCs occur is spatially and temporally variable (Biggs et al. 2004, 

Kassar and Bissonette 2005). Understanding the sources of this variation is the key to effective 

mitigation that will enhance driver safety and reduce deer mortality. In chapter 4, I examined how 

natural variation in climate during winter influenced deer distribution, movement patterns, and 

DVC rates. I found that precipitation and snow depth differed considerably between winters, with 

precipitation decreasing 50 % and snow depth decreasing 48 % during the second winter. In 

response, the spatial distribution of deer changed, with deer occurring at higher elevations and 55 

% farther from roads. As result, crossing rates decreased as much as 96 % on roads with high 
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traffic volumes during the second winter. Reduced crossing rates were likely responsible for 

much of the 75 % decrease in deer-vehicle collisions during the second winter. My data suggest a 

causal mechanism by which winter conditions affect DVC rates, which can help managers predict 

when DVC rates are likely to rise, allowing them to warn drivers of the increased danger.  

There currently is a need for management agencies to be able to efficiently collect 

accurate and standardized wildlife-vehicle collision (WVC) data (Huijser et al. 2007), because it 

is the foundation of mitigation projects that benefit both drivers and wildlife (Ford et al. 2009). 

Prior to this study, there was no widely adopted electronic reporting system that was both 

efficient and accurate. In chapter 5, I discussed the development and testing of a smartphone-

based system for reporting WVC data. The WVC Reporter system consisted of a mobile web 

application for data collection, a database for centralized storage of data, and a desktop 

application for viewing data. The smartphones that I tested for use with the application produced 

accurate spatial locations (median error = 4.6-5.2 m), and reduced location error considerably (99 

%). Using the application also increased efficiency by reducing data entry times 56-76 % and 

eliminating data transcription. Additionally, data collected WVC reporter system had ~10 % 

fewer data entry errors. The desktop web application was an effective tool for accessing data and 

visualizing wildlife-vehicle collision patterns. The WVC Reporter integrated several modern 

technologies into a seamless method for collecting, managing, and using WVC data. The 

development costs ($35,000) for the system were minor when viewed in context of the potential 

benefits of having spatially accurate and temporally current wildlife-vehicle collision data. The 

WVC Reporter represents a step forward in WVC data collection and use, and the system has the 

potential to be widely adopted, because it addresses many of the problems associated with earlier 

electronic reporting systems. 
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