Rayleigh Lidar Temperature Studies in the Upper Mesosphere and Lower Thermosphere

Leda Sox
Utah State University
Vincent B. Wickwar
Utah State University
Joshua P. Herron
Utah State University
Matthew T. Emerick
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/atmlidar_post
Part of the Atmospheric Sciences Commons, Climate Commons, and the Physics Commons

Recommended Citation

Sox, Leda; Wickwar, Vincent B.; Herron, Joshua P.; and Emerick, Matthew T., "Rayleigh Lidar Temperature Studies in the Upper Mesosphere and Lower Thermosphere" (2013). CEDAR Workshop. Posters. Paper 20.
https://digitalcommons.usu.edu/atmlidar_post/20

This Poster is brought to you for free and open access by the Green Beam (Rayleigh-Scatter LIDAR) at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Rayleigh Lidar Temperature Studies in the Upper Mesosphere and Lower Thermosphere

Leda Sox ${ }^{1}$, Vincent B. Wickwar ${ }^{1}$, Joshua P. Herron ${ }^{2}$, Matthew T. Emerick

 (${ }^{1}$ Physics and CASS; ${ }^{2}$ Space Dynamics Lab; Utah State University, Logan, UT)
Introduction

Ravleigh lidar technology opened the middle atmosphere (from $30-90 \mathrm{~km}$) to ground-based bservations. The upgraded system at the ampus of Utah State University , 11.81$)^{\circ}$) has shown that these ground-based observations can be extended to
109 km , with the goal of reaching 120 km . The sultant study of short and long-term ontributes immensely to the overall understanding of the properties and dominan physical processes in the middie atmosphere region. Temperature variations on short time scales, from minutes to days, give insight into the effects of waves (gravity waves, tides,
planetary waves), while climatological studies change throughout the atmosphere Figure 1 shows a simplified diagram of the upgraded ALO Rayleigh lidar system. The major output of 42 W and the use of four parabolic mirrors as one receiving telescope with an overall

Summer Rayleigh Lidar Data Campaigns

aring the summer 2012 data campaign, observations were made over a month-long period (June 3-July 12). Data from eighteen nights gave good temperature profiles in the MLT region from method, which was modified to use temperatures instead of pressures as the initial condition at the top altitude. The initial temperatures were taken from the MSISe00 model for each night, which is why the observed temperature profiles approach the MSISe00 curve at the highest altitudes in why the observed temperature profiles approach the
Figure 2. For a single temperature profile the altitude resolution was a little greater than 3 km and

Temperature (K) MSISe00 model temperature curve and an average curve for the whole data set. With this
representation, one of the striking features is the variability from night to night. Some of this representation, one of the striking features is the variability from night to night. Some of this
variability is due to wave activity, i.e., gravity waves, tides and/or planetary waves. Waves with variability is due to wave activity, i.e.,.gravity waves, tides and/or planetary waves. Waves with
large amplitudes similar to those seen in some of these nights' temperatures can produce particularly low temperatures at altitudes near the minima of the waves. This can affect the deduced mesopause
temperature and its altitude. Low temperatures in the mesosphere produced in this way have been temperature and its altitude. Low temperatures in the mesosphere produced in this way have been

Rayleigh Lidar MLT Temperatures

As expected, temperatures in this region during this period are quite low compared to the temperatures during other seasonal periods. Ignoring obvious wave structures, there is an underlying average of approximately 165 K near 87 km (Fig. 2), which could indicate the mesopause. However,
four individual nights, exhibiting what appear to be wave like variations, clearly show temperatures only slightly greater than 150 K between 79 and 84 km (Figure 3a). Another set of four nights shows minima of about 140 K between approximately 94 and 100 km . This illustrates the fact that, from night-to-night the mesopause is not clearly present and can only be found

${ }^{250}$

System Improvements help of additional electrical and mechanical engineering support. The timing of the Rayleigh lidar system is now run with an Atmel ATmegal68 micro controller and accompanying
software. New sockets, which control the software. New sockets, which control the voltage to the photomultiplier tube (PMT) dynodes a the gating of that voltage, are also being
developed. The alignment process of the developeoses has been significantly improved through the use of servo motors, which control the x and y positions of the fiber holders at the focus of the parabolic mirrors. A new alignment program is being developed (Fig. 5 control the servo motors, which will allow for both manual and automated alignment. This
set-up has already improved the alignment procedure - a complete alignment of the telescopes, which would have taken two ni now takes a couple of hours with much greater precision than before.

Upcoming Work

Figure 6 . Temperatures for the night of May 15,2013 . (a) The two hours' worth of data give temperatures up to the an altitude
of 109 km , as high as the highest night from 2012 . (b) the shortest integration time for this night, while reaching 107 km in

Through the improved receiver telescope alignment, laser power optimization, new PMT socket development, and full night data collection, an upper altitude limit in temperature data of 120 k will be reached. This improvement in data collection also implies shorter integration times. As seen in the most recent observations, made in May 2013 (Figure 6), the sensitivity of the instrument
increased. The temperatures now have an upper altitude of 109 km from just two hours of data instead of 4 -5 hours, previously. Short integrations can be obtained in 30 minutes instead of 1 hour. With finer adjustments, the all-night top altitude will reach 120 km . Additional detection channels will allow us to extend the data collection range, and thus temperature data range, downward from 120 km to about 15 km . The additional channels will be comprised of tw Rayleigh scatter channels for the measurement of the MLT region, one Rayleigh and Mie scatter channel for the measurement of the Stratosphere and one Raman scatter channel to be used in the separation of the Rayleigh and Mie signals that come from the Stratosphere. The extension of the range of the instrument will enable studies of density and temperature throughout the coupling mechanisms between atmospheric regions such as gravity waves, tides and planet waves, all of which propagate throughout the atmosphere, and coupling phenomena such as Sudden Stratospheric Warmings.
The fully upgraded ALO Rayleigh lidar is in a prime location to make comparisons with many different instruments also located at ALO and USU including: the Na Lidar, Airglow imagers and temperature mappers, a meteor wind radar and an Ionosonde, as well as satellite-based
 campaigns to
atmosphere.

