
OPTIMIZATION OF W ASTEW ATER DESIGN 
USING GENETIC ALGORITHMS 

D. Starr Stanfield 

Department of Civil and Environmental Engineering 
Brigham Young University 

Provo, UT 84602 

Abstract 

Recently, at Brigham Young University, 
graduate students in the Environmental 
Engineering Laboratory have been exploring 
the possibility of using Genetic Algorithms for 
the optimization of wastewater treatment 
design. This research applies the IA WRC 
ASM no. 1 model for solving a four-stage 
Bardenpho process system using a tournament 
style selection genetic algorithm. The 
mathematical model was solved in Maple, and 
programmed in C++ using a Gauss-Seidel 
iterative method. Final results will be 
available in June 2003. 

Introduction 

"If we knew what is was we were doing, it 
would not be called research, would it?" -
Albert Einstein, 1941 

In recent years, there has been much 
debate and speculation about the exploration 
of the planet Mars, manned and unmanned. 
Eventually, the United States will send human 
explorers to Mars. As with any prolonged 
human voyage, whether a family road trip to 
Disney World, or manned interplanetary 
travel, problems associated with waste and 
waste disposal have to be solved. However, 
unlike the family road trip, any waste that is 
generated will have to be reclaimed of its 
constituents to the maximum extent possible 
because a spaceship is a closed environment. 

Interplanetary space travelers do not have the 
option of obtaining more resources when 
needed. 

The most essential resource needed for 
interplanetary space travel, besides oxygen, 
will probably be water. Water is essential to 
all life forms. In the future, most prolonged 
space flights will require some sort of 
treatment and recycling of water. This 
research paper explores the application of 
genetic algorithms to the optimization of 
wastewater treatment design. 

First, the International Association on 
Water Pollution Research and Control's 
(IA WRC) Activated Sludge Model no. 1 will 
be discussed, along with the mathematical 
solution to the model. Next, the design that 
will be optimized in this problem, the four
stage Bardenpho process, is explained. 
Finally, the genetic algorithm being used is 
explored, with some consideration given to 
future directions in the research. 

Background 

Activated Sludge Model no. 1 

In 1983, the IAWRC formed a task group 
to "facilitate the application of practical 
models to the design and operation of 
biological wastewater treatment systems 
(Grady et aI., 1986)." The task group 
recognized that although physical models are 
useful in design, the cost of lab-scale reactors 
is still sufficient to prevent the exploration of 



all potentially feasible solutions. 
Mathematical models allow the engineer to 
quickly explore other possible solutions and 
designs. 

Although models had been used for 
years in biological wastewater design, most 
models were based on empirical models, 
developed by using a statistical approach to 
make end results of the model match 
measured results from the physical model. 
This approach had two main limitations. First, 
predictions could only be reasonably 
extrapolated to designs that were physically 
similar to the test physical model, and to 
where the governing assumptions were still 
valid. Second, many of these models and 
design methods were proprietary, and their use 
and application was very limited. In 1986, the 
task group released their report, including the 
IA WRC Activated Sludge Model no. 1 (ASM 
coefficients In the column times their 
respective reaction rates . 

no. 1). ASM no. 1 presents the constituents of 
wastewater, along with the associated reaction 
rates and processes. By the promulgation of a 
kinetically based mathematical model, new, 
non-traditional system designs could be 
explored by researchers and engineers across 
the field. 

The ASM no. 1 matrix format model is 
presented in Figure 1. below. It is in a 
convenient matrix format that allows for 
easier programming and understanding. In the 
left-most column are the eight kinetic 
processes modeled. For the complete ASM 
no. 1, please see Grady et aI., 1986, or Grady, 
Daigger, and Lim, 1999. Across the top are 
the constituents of wastewater the model 
accounts for. On the rightmost column are the 
eight process rate equations. In order to 
calculate the rate of change in a constituent, 
one sums the kinetic 

Figure 1. Process Kinetics and Stoichiometry for Heterotrophic Bacterial Growth in an Aerobic 
Environment (Grady et aI., 1986) 
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Genetic Algorithms 

Genetic Algorithms vs. Classical Optimization 

Genetic Algorithms mimic natural 
evolutionary principles in order to find 
optimal solutions for given design problems. 
These stand in stark contrast to classical 
optimization techniques. Most classical 
optimization techniques use a deterministic 
procedure for approaching an optimal 
solution. These types of algorithms start with 
a random guess solution. Then, based on a 
pre-determined transItIon rule, a search 
direction is determined. A unidirectional 
search is then performed along this direction 
to find a best solution. This solution then 
becomes the starting point for a new search. 
Usually, the new search direction is 
determined from local conditions. Algorithms 
of this type differ mainly in the way the search 
direction is computed at each intermediate 
solution. 

Classical optimization techniques have 
several weaknesses that make them difficult to 
apply to wastewater optimization problems. 

First, the convergence to an optimal 
solution depends on the chosen initial 
solution. Although this may not matter as 
much when the problem is a straightforward 
optimization of a chosen design, and not a 
typology problem, our eventual plans are to be 
able to solve typological design problems. 
Second, most classical algorithms become 
"stuck" in local maximums or minimums, 
whereas designers are generally seeking the 
global maximum or mmimum. Third, 
classical algorithms are not as effective at 
handling a discrete search space (Deb 2001). 

As their name suggests, Genetic 
Algorithms (GA) borrow their working 
principles from the principles of natural 
genetics. The overall algorithm can be seen in 
Figure 2. GA's begin by randomly creating an 
initial population of designs (solutions). 

Every parameter needed to define a solution is 
represented as a binary number. An arbitrary, 
although finite precision for any decision 
variable can be achieved by simply using a 
long enough string. The decision variable 
strings are then put in a predefined order to 
create a pseudo-chromosomal representation 
of a solution. The initial population of designs 
is created by making arbitrary strings of ones 
and zeros. 

Each design is then evaluated, and a 
fitness is assigned based on the underlying 
objective and constraint functions. In most 
cases, where there may be one objective 
function, the fitness is made equal to the 
objective functions value. At this point, the 
genetic operator parts of the algorithm come 
into play. 

Figure 2. A flowchart of the principle of a 
GA (Deb 2001). 



Although there are many methods in 
the literature used to create a "mating pool" 
for the next generation of design, we used the 
'tournament' style of selection. First, each of 
the designs were randomly paired against 
another solution. The solution with the lowest 
fitness number (in our case, we are 
minimizing our objective equations) was 
copied, and the copy of its 'DNA' was placed 
in the gene pool. Next, each of these winners 
was randomly paired against another solution 
from the winner pool. Copies of the winners 
from this tournament round are placed in the 
gene pool. Finally, a consolation tournament 
round is created by randomly pairing each of 
the first round losing solutions, and a copy of 
the winners of this round are placed in the 
reproducing pool. The end result of the 
tournament is that of a population of sixteen 
solutions, four solutions would get two copies 
of their DNA in the gene pool, eight solutions 
would get a single solution, and the four 
double 'loser' solutions would be eliminated 
from the gene pool all together. 

Next, two strings of DNA are 
randoml y selected to be "mated." Their 
binary DNA strings are placed side-by-side, 
and a bit-wise swapping operation is 
performed from a randomly selected crossover 
site. 

110100110010 : 1110011110 
110010100101 : 0110111001 

This operation forms two new designs, which 
would appear as 

110100110010 1 0110111001 
110010100101 : 1110011110 

The reproduction algorithm continues until a 
new population of designs is generated. In 
order to perform a search operation, an 
element of variability is introduced by 
allowing a small probability of a mutation 
occurring for a given solution. If a mutation 

occurs, a site on the DNA strand is randomly 
selected, and the binary 1 or 0 is switched to a 
o or 1. For example, 

1101001100 ! O! 110111001 
10: : 

becomes 

1101001100 ! 1! 110111001 
10: : 

after a mutation operation. The process of the 
GA is repeated until the specified number of 
generations is reached. 

As can be seen above, the GA is more 
powerful than classical optmuzation 
techniques for problems that form a Pareto set, 
where there may be more than one non
dominating solution. Furthermore, 
convergence on the optimal set of solutions 
does not depend on a correct initial guess. 
The introduction of random mutations also 
prevents the algorithm from being trapped by 
local minima or maxima. 

Methods and Materials 

For initial testing of our concept of 
using GA for the optimization of wastewater 
design, we chose to optimize a four-stage 
Bardenpho process. The Bardenpho process 
was created to achieve ammonification and 
denitrification of wastewater without the need 
of an additional carbon source. A limitation 
of this type of design for space-based 
application is the fact that it is gravity driven. 
But the strength of the GA is that it can be 
applied to forced-flow systems with some sort 
of non-gravity-driven filtering system. 

All programming was accomplished 
using Microsoft Visual C++ Studio 6.0. 

Four Stage Bardenpho Process 

The Bardenopho process is one 
example of process designs that use a series of 



anOXIC and aerobic reactors in series. An 
anoxic reactor is not an anaerobic condition, 
but rather it uses available nitrates as the 
electron acceptor for respiration rather than 
oxygen. As the influent enters the second 
stage reactor, any ammonia is converted into 
nitrate and nitrite, which are recycled back to 
the first reactor. In the first reactor, anoxic 
bacteria breakdown organic waste using 
nitrogen compounds as the electron acceptor, 
and also form denitrification by converting the 
nitrogen into the Nz form. In the settling tank, 
the microorganisms are settled out of the 
effluent, and are recycled to the beginning of 
the process. 

Figure 4. Four stage Bardenpho process 
(Met~alf and Eddy, 2003). 
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Gauss-Seidel Method 

Because the ASM no. 1 is a system of 
partial differential equations, the system mass 
balance was solved for the steady state 
condition. Using Maple, each constituent was 
isolated, and a Gauss-Seidel iterative method 
using C++ was used to solve for the steady
state effluent of each reactor. 

C++ Code 

C++ coding was used for its ease in 
data management and storage. Two separate 
classes were created, a design class, and a 
reactor class. The design class included four 
reactor class member functions, along with a 
constructor that creates the design from the 
DNA string. 

Results 

This research project is still being developed. 
Results will be available in May, 2003. 

Future Directions 

Ultimately, for a given wastewater and it's 
associated kinetic parameters, the GA will be 
able to create a population of optimal designs 
that will be able to optimize non-traditional 
aspects of plant design. For example, in 
space-based applications, it will be very 
important to minimize parameters such as size 
and weight, oxygen requirements, electrical 
power requirements, etc. This research 
project explores the feasibility of applying 
GA's for the optimization of a pre-defined 
process. The next step will be allowing the 
GA to solve a typology problem, which will 
create new and novel processes. Furthermore, 
GA's can be used to optimize the operation of 
a design for a different wastewater condition 
other than what it was initially designed for. 
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