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Abstract— Certain applications of the finite element method
require hexahedral meshes for the underlying discretization. A
procedure, known as THexing, which is guaranteed to produce
an all-hex mesh is to begin with a tetrahedral mesh and then sub-
divide each element into four hexahedra. This research presents
a method for improving the THex approach, known as Diced
THexing, or DTHexing. The DTHex approach is based on general
coarsening tools. An initial triangle surface mesh is coarsened and
smoothed iteratively until a coarse mesh of reasonable quality is
obtained. The volume is then easily meshed using a tetrahedral
scheme, then refined using ’h’ type modifications. The goal of
this method is to 1) improve the quality of elements in the finite
element mesh and 2) decrease the number of overall nodes. The
DTHex approach has been successful at improving models on
biological meshes without increasing node count. This research
was conducted using the CUBIT software.

I. INTRODUCTION

Finite element analysis is a numerical approach for ana-
lyzing multivariable systems with piece-wise approximations.
Although the first applications of the finite element method
were limited, it is now widely incorporated in many disci-
plines such as aeronautical engineering, structural engineering,
computational fluid dynamics, microelectronics, groundwater
flow, aerodynamics, computational medicine, mechanical en-
gineering, and electrical engineering. As computing power
continuously increases, the type and complexity of problems
that can be solved also increases.

Because finite element analysis is a numerical procedure,
its success is closely tied to the accuracy of the discretization
(i.e. the mesh). While it would be ideal to use extremely fine
meshes in all cases, it is not computationally feasible to per-
form analyses on such refined models. Rather, the analyst must
try to get the “best mesh possible” for the available computing
resources. Some analysis codes have been written to work
only with hexahedral elements, since it has been shown that
hexahedral elements have some desirable qualities that allow
them to perform better than their tetrahedral counterparts for a
given number of degrees of freedom [1][2][5][6][22]. Since the
early 1990’s, research has produced several methods for pro-
ducing hexahedral meshes [3][13][15][16][17][21]. However,

none of these methods produces the “best possible” mesh in
all situations, and significant user intervention is still required
to produce acceptable meshes. To date, the only method that
is guaranteed to generate all-hexahedral meshes on arbitrary
geometries is known as THexing[20]. THexing is the process
of splitting each element in a tetrahedral finite element mesh
into four hexahedral finite elements as shown in Figures 1 and
2.

Fig. 1. A single tetrahedron

Fig. 2. THexing a single tetrahedron

One of the newer applications of the finite element method
for three dimensional problems is in biological modeling.
Initial biological meshes are often processed using scanning
and imaging devices and software. These meshes typically
have a single topological surface, a large number of features,
regions of high curvature, holes, long narrow filaments, and
a large number of nodes. In addition, there are often many
inaccuracies and inconsistencies in the mesh that are generated
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in the data transfer process which require significant modi-
fication before meshing is possible. In almost all cases, the
mesh is created as a triangle surface mesh. Tetrahedral mesh-
ing is then possible for the volume, using existing meshing
technology[9][10]. Once a valid tetrahedral mesh is created,
it can be THexed to form an all-hexahedral mesh. THexing
is a simple process, but often generates more nodes that can
be accomodated by the analysis code. Even though THexing
is not ideal, it is the only fully automatic method currently
available for meshing most biological models. This research
explores the possibilities of improving the THexing approach.
We present an algorithm known as DTHex that is based on
general coarsening and refinement procedures. The goal of this
research is to develop a general approach for meshing complex
models that produces elements with better quality than THexed
meshes while decreasing the number of nodes for analysis to
thousands instead of millions.

II. OVERVIEW OF ALGORITHM

DTHex, which stands for “Diced THexing” is an improved
method for generating all-hexahedral mesh elements using an
indirect hex-meshing approach. This research is not intended
to be a solution to the all-hexahedral meshing problem for all
classes of geometry, but proposes a solution to a specialized
problem, namely hexahedral meshing for biological models. It
is hoped that with time the algorithm will be able to expand
to include additional classes of analysis problems. The focus
is on improving the THex approach, since that method is the
most commonly used for complex models, and has a great
potential for impact in this domain.

The input to the algorithm is an initial surface triangulation.
For biological models, this is the geometric faceted represen-
tation that is read in from the file. Geometric features are
extracted based on angles between triangles [19]. The steps of
the algorithm are given below.

• Verify valid boundary conditions – Every non-boundary
edge must be connected to two triangles, and no edges
can overlap.

• Coarsen the mesh – The algorithm used here is an edge-
collapsing algorithm, based on surface curvature approx-
imations. Edge swapping is then applied recursively to
improve element quality and node valence.

• Smooth the mesh – There are two methods of smoothing
that are employed in this research. The first is global
smoothing, and the second is local smoothing.

• Mesh the volume – This may be performed using any tet
meshing software[9][10].

• Refine the mesh – THex the mesh, and then further refine
by splitting each hex into eight hexes.

The final result is a mesh with better quality and decreased
node count. Examples will be given in Section VI.

III. COARSENING

Coarsening or decimation is the process of removing entities
such as nodes, edges or faces from a triangulation. Coarsening
is the most important step of the algorithm, since the surface

mesh that is produced after coarsening determines the quality
and topology of the final hexahedral mesh. The coarsening
algorithm applied in this research is based on a curvature
based sizing function that employs edge collapsing and edge
swapping.

A. Edge Collapsing

Edge collapsing is the process of systematic vertex removal
by edge deletion in a finite element mesh. The most difficult
problems encountered in edge collapsing are determining a
valid stopping criterion and preserving quality. Determining
a valid stopping criterion involves defining what is “coarse
enough” without sacrificing surface definition. The approach
used in this thesis was to develop a stopping criteria that is
individualized based on surface curvature at each point. The
work of Frey and Borouchaki of Inria [4][7][8] was used as a
basis for the edge collapsing algorithm presented here.

1) Curvature-Based Sizing Function: A curvature-based
discrete sizing function is calculated for the surface using a
method proposed by Frey and Borouchaki in [8]. No underly-
ing knowledge of surface curvature is needed to calculate an
approximation for curvature. One need only know the normal
νP and tangent vector τP at a point on the surface (Figure 3).
Frey and Borouchaki define the osculating circle of a point
P on curve γ(s). This approximation reduces to a second-
order polynomial Taylor series approximation for small ∆s.
The point Q can be approximated by the formula:

Q = P + τP ∆s +
νP

2ρP
∆s2

where Q belongs to the plane defined by the vector ~PQ and
the normal vector at P , νP . One may easily solve for an
approximation to ρP . The algorithm is given below.

Step 1: Define starting point P;
Step 2: Get all attached edges to P;
Step 3: Set ρP = large number

For i = 1 to number of edges
Set Qi = end node of edge i;

Find ~PQi = ~P − ~Qi;
Find νP = surface normal at P;
Set cos(θ) = ~PQi • νP /‖ ~PQi‖

Set ρI = ‖ ~PQi‖/2 cos(θ)
If ρI > ρP

ρP = ρI

end If;
end For;

Step 4: return ρP ;

This algorithm loops through the edges surrounding a node,
and finds the smallest osculating circle. The ideal edge length
can then be determined by defining a coefficient α such that
h(P ) = αρP where h(P ) is the Euclidean length at P (Figure
4). A variable ε is defined so that

δ/ρP ≤ ε
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Fig. 3. Osculating circle approximation

where δ/ρP is the ratio of the distance between the line PQ
and the osculating circle and the radius of curvature. This
variable ε may be referred to as the coarsening factor. It can
then be shown that

α ≤ 2
√

ε(2 − ε)
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Fig. 4. Graphical interpretation of distance criterion

2) Edge Collapse Algorithm: The basic edge collapse al-
gorithm shown below is a modification of [7].

• Let AB be an edge such that l = Ln(AB) and let ha, hb

be the sizing function parameters at A and B.
• Let P0(= A), P1, . . . , Pn be the vertices adjacent to B

given in cyclic order counter-clockwise to the surface
normal.

• Compute li = Ln(APi), 2 ≤ i ≤ n − 1.
• If ∀i, 2 ≤ i ≤ n − 1, li > l and li < 1

l , collapse B to A.

A discrete curvature-based sizing function is defined at each
node h(P ). Given the size at each point, a normalized edge
length may be determined using a linear interpolation scheme
between points which yields the following formula for the
normalized edge length.

l(AB) =
d(AB)

h(B) − h(A)
[Log

h(B)

h(A)
]

The goal of the algorithm is to coarsen such that all edge
lengths on the surface have a normalized edge length equal to
1. An additional parameter is added to limit the size of any
single edge to a user defined maximum, so that in the case
of a perfectly flat surface, the user may determine a limit on
edge length.
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Fig. 5. Edge Collapsing Procedure

The following figures show the curvature based sizing
function applied to a biological model of a tympanic mem-
brane, a very thin membrane in the inner ear. All of the
biological models in this paper are used with permission from
researchers at the University of Utah (Jim Weiss and Andy
Anderson). Previous coarsening methods do not adequately
capture the sharp curvature near the edges while maintaining
a coarse enough mesh on the rest of the model. The curvature-
based coarsening scheme is able to adequately capture this
curvature without sacrificing quality. The quality metric that
is used in this paper is the shape metric as defined by Knupp
(See reference [12]). The average shape quality, minimum,
maximum and standard deviation are given for each example.
A value of 1.0 indicates a perfectly shaped element (e.g. an
equilateral triangle or a cube). A value of 0 indicates an
inverted element. Table I gives quality metrics for elements
coarsened at various levels of ε. Quality measures deteriorate
as element count decreases, but these measures improve after
smoothing and refinement are applied to the mesh. For ε =
0.01, the average quality is 0.9105, compared to 0.9397 for
the original mesh. Average quality for ε = 0.1 and ε = 0.5
are 0.8963 and 0.8825 respectively. In all cases, the minimum
quality increases from the original mesh at 0.1244, and the
maximum quality stays near 1.0. Resultant meshes can be seen
in Figures 6,7,8, and 9.

TABLE I

SHAPE QUALITY FOR MESHES USING CURVATURE BASED SIZING

FUNCTIONS (FIGURES 6 TO 8.)

Avg. Std. Dev. Min. Max.

Original Mesh 0.9397 0.06240 0.1244 1.000

ε = 0.01 0.9105 0.07864 0.3288 1.000

ε = 0.1 0.8963 0.09119 0.1933 0.9991

ε = 0.5 0.8825 0.1076 0.2715 0.9998



Fig. 6. Original mesh

Fig. 7. Coarsening with ε = 0.01

Fig. 8. Coarsening with ε = 0.1

Fig. 9. Coarsening with ε = 0.5

IV. SMOOTHING

Coarsening cannot always guarantee well-shaped elements.
Smoothing, or node moving, is a method to improve element
quality. Two methods of smoothing-global smoothing and
local smoothing-were used in this research. Global smoothing
applies an iterative smoothing method over the entire surface
after coarsening is complete. This method produces good
quality elements, but takes significant processor time. Because
of this drawback, an alternative smoothing procedure was
introduced for this research known as local smoothing. In
local smoothing, the nodes are smoothed during the coarsening
process, after each edge collapse and edge swap. Each of these
techniques will be discussed in greater detail in this section.

A. Global Smoothing

Global smoothing is a process of improving element quality
over a surface or volume by iterative node movement. The term
global refers to the way the smoothing algorithm is applied
over an entire surface, node by node, and does not refer to
the solution of a PDE for the surface. During each iteration,
node movement should decrease, until it has reached some
minimum tolerance. The centroid area pull method [11] is
a smoothing method that is applied to nodes in a triangular
surface mesh. The goal is to create elements of equal area
over the surface. This approach was chosen initially in this
research because of the balance between speed and quality.
The algorithm given below corresponds to Figure 10.

Step 1: Start with a list of nodes on the surface;
Step 2: Loop through the list of nodes;

For i = 1 to number of nodes;
Set Ni = ith node in the list;
For j = 1 to number of triangles attached to Ni;

Calculate total area A =
∑

Aj ;
end For;
For j = 1 to number of triangles attached to Ni;

Calculate wj =
Aj

A ;
Find Cj = the center of Aj ;
Calculate N ′i+ = Cjwj ;

end For;
Set movement = Ni − N ′i;
If movement > a small tolerance;

Add neighbors of Ni to the list of nodes;
end If;

Step 3: Stop when there are no more nodes in the list;

This method of smoothing produced good quality elements,
but in practice took significant time because the entire mesh
was smoothed after every coarsening iteration, instead of just
smoothing the edges that changed. In addition, it did not
respect the sizing functions, but instead tried to make all the
mesh edges the same length. For these reasons, it was decided
that a local smoothing method was needed to adequately
capture mesh features.
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Fig. 10. Global smoothing

B. Local Smoothing

Local smoothing is similar to global smoothing in its
methodology. However, local smoothing includes only a small
number of nodes, instead of the entire surface. This is pos-
sible in coarsening because only one vertex is removed at a
time. The benefits of this approach are that it significantly
increases the speed of the algorithm and that it respects sizing
constraints. Like the centroid area pull method, the localized
smoothing technique that was employed in DTHex tries to
equalize element area. It also averages the sizing functions of
each node on the triangle as a secondary weight. The new node
position is a combination of these two weighting functions.
Two coefficients c1 and c2 are defined, where c1 + c2 = 1.
These factors represent how much the element area and sizing
function parameters affect the node movement. Increasing the
weight on the triangle size c1 generally improves the quality,
while increasing the weight on the sizing function c2 more
accurately captures the geometry. The algorithm for local
smoothing is shown below. See also Figure 11.

Step 1: Input a single node N ;
Step 2: Input c1 and c2;
Step 3: For i = 1 to number of triangles attached to N ;

Calculate total area A =
∑

Ai;
Calculate sum of sizing functions S =

∑

1/Sj ;
end For;
For i= 1 to number of triangles attached to N ;

Calculate w1i = Ai

A ;
Calculate w2i = 1/Si

S ;
Find Ci = the center of Ai;
Calculate N ′+ = Ci(c1w1i + c2w2i);

end For;

Localized smoothing is applied to the node to which each
edge is collapsed. It is also applied to nodes after edge
swapping. Local smoothing does not optimize quality as well
as a global technique, because each node is only moved once.

However, the benefits of increased speed and sizing accuracy
outweigh the costs. In the examples, the local smoothing actual
outperformed global smoothing in quality measurements as
well due to the fact that global smoothing would time out
before it converged.
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Fig. 11. Local smoothing

In the following example quality and speed were compared
for two different values of ε with global and local smoothing.
The global smoothing technique took 631 seconds for ε=0.01
versus 16.6 seconds for local smoothing on ε=0.01. For
ε=0.05, global smoothing took 455 versus 21.2 seconds. It
is interesting to point out that the direction of time increase
is reversed between global smoothing and local smoothing. In
other words, the increase in ε results in a decrease in time for
global smoothing, but an increase in time for local smoothing.
This is because in global smoothing the time to smooth is
proportional to the number of elements in the mesh, while
in local smoothing, the time to smooth is proportional to the
number of edge collapses. In quality comparisons, the global
smoothing had an average quality of 0.7662 versus 0.9105
with ε=0.01. Figures 12 and 14 show the resultant meshes. For
ε=0.05, the global smoothing had a quality of 0.6587 versus
0.8987. In Figure 13 the mesh has started to collapse from
the boundary towards the center. This is a problem that was
observed with several global smoothing applications. Such a
mesh is unsuitable for any type of analysis. By comparison,
the local smoothing performed very well in this application.
(See Figure 15).

V. REFINEMENT PROCEDURES–THEXING AND DICING

After a suitable surface mesh is created using the curvature
based sizing function, edge swapping, and smoothing, a tetra-
hedral mesh is created for the interior of the model. In this
research, the tetrahedral mesh was created using the CUBIT
software which is based on the work of [9] and [10]. The final
steps are to refine the mesh using THex and Dicing procedures.



Fig. 12. Global smoothing with ε = 0.01

Fig. 13. Global smoothing with ε = 0.05

Fig. 14. Local smoothing with ε = 0.01

Fig. 15. Local smoothing with ε = 0.05

TABLE II

AVERAGE SHAPE QUALITY AND CPU TIME FOR GLOBAL AND LOCAL

SMOOTHING METHODS (SEE FIGURES 12 TO 15)

ε Shape CPU Sec.

Global Smoothing 0.01 0.7662 631

0.05 0.6587 455

Local Smoothing 0.01 0.9105 16.6

0.05 0.8987 21.2

A. THex

THexing was introduced as the process of splitting every
tetrahedron in the mesh into four hexahedra. THexing is a
simple procedure, and it is used frequently because of its ease
of implementation. For example, Pelessone and Charman [20]
use this procedure in adaptive non-linear structural analysis
where local refinement of a hexahedral mesh is needed. The
advantages of THexing are its speed, lack of user intervention,
geometric generality, orientation insensitivity, and element size
control. The disadvantages are that it has poor boundary
sensitivity, increased element count, and poor element quality.
Another problem with the THexing is the node projection
problem. When edges that are on convex surfaces are split
during THexing, the interior node must be projected inward.
See Figure 16. This often creates inverted elements. There
are different approaches to solving this problem, but those
are outside the scope of this research. The assumption here is
that the curvature-based coarsening will help to alleviate that
problem by using smaller elements on highly curved segments.

Fig. 16. Node projection problem on concave surfaces

B. Dicing

Dicing is a refinement procedure described by Melander
[14] as a method of creating multi-million element meshes.
Using the dicing method, every hexahedral element can be
subdivided into smaller hexahedra. This is an ’h’ modification
that can improve analysis accuracy by producing a mesh with
smaller element size, and improved angles. Dicing should be
used with caution on mesh with a large number of nodes,



since the increase in node count may exceed analysis capabil-
ities. However, if used in conjunction with proper coarsening
techniques, it can help to increase the overall quality of the
mesh.

VI. BIOLOGICAL EXAMPLES

The main application of this research is for a specific class
of hexahedral mesh generation, namely biological models. The
stated goal was to improve element quality and reduce node
count for these complex meshes. With that purpose in mind,
this section highlights the features of the DTHex algorithm
with several example problems. All of the examples will be
compared to the existing THex approach in terms of quality
and node count.

A. Sphere

The first example is a simple sphere. The sphere is an ideal
mesh model because it is entirely convex. Because it is convex,
the mesh does not develop any negative Jacobian elements
when it is THexed as all projections are outward. The original
sphere is meshed with a triangle scheme at an edge length
size of one tenth the radius. The surface is coarsened with a
coarsening factor of ε= 0.1. The final mesh has an average
shape quality of 0.8298 compared to a value of 0.6018 for the
THexed mesh (see Table III). Figures 17 to 20 shows the model
at various stages in the DTHex process. Figure 21 compares
the THex approach to the DTHex approach. The final number
of nodes with THexing is over 18000 while with DTHex it is
around 2500.

TABLE III

SHAPE QUALITY FOR MESHES IN FIGURES 20 AND 21.

Avg. Std. Dev. Min. Max.

THex Mesh 0.6018 0.08286 0.3439 0.8230

DTHex Mesh ε = 0.1 0.8298 0.08310 0.5332 0.9809

B. Patella

The second example is a patella model (See Figure 22 to
25). The model appears to be very smooth, but it has regions of
sharp dips and valleys with high curvature. The non-curvature-
based coarsening function did not perform well on this analysis
because it did not capture these features. The curvature-based
coarsening algorithm was able to maintain the relative size
of features while creating as coarse a mesh as possible in
the regions of low curvature. The final hexahedral mesh did
have some negative Jacobian elements, but there were many
fewer than with the non-curvature-based coarsening function.
Further research will be necessary to determine if it is possible
to entirely eliminate these negative Jacobian elements. One
temporary solution is to constrain the nodes so they don’t
project to the surface during the THexing process. Since the
mesh approximates the surface curvature by its sizing function
this may be a valid option if the user does not mind sacrificing

Fig. 17. Original mesh (728 triangles, 1092 edges, 366 nodes)

Fig. 18. Mesh after coarsening (20 triangles, 30 edges 12 nodes)

Fig. 19. Mesh after THexing (80 hexes, 60 faces, 120 edges, 125 nodes)

Fig. 20. Final hexahedral mesh (2160 hexes, 540 faces, 1080 edges, 2473
nodes)



Fig. 21. A simple sphere meshed with the THex scheme (16176 hexes, 2184
faces, 4368 edges, 18647 nodes)

some of the surface definition. The user would be able to
specify the amount of desired surface definition by setting
the ε variable. Figure 26 compares the THex approach to the
DTHex approach. The final number of nodes with THexing is
162000 while with DTHex it is around 120000. The average
quality shown in Table IV is 0.5424 for the THex mesh and
0.6618 for the DTHex mesh.

TABLE IV

SHAPE QUALITY FOR MESHES IN FIGURES 25 AND 26.

Avg. Std. Dev. Min. Max.

THex Mesh 0.5424 0.1007 0.000 0.8084

DTHex Mesh ε = 0.1 0.6618 0.1114 0.000 0.9549

C. Tympanic Membrane

The third example is a tympanic membrane (See Figures 27
to 30). The tympanic membrane is part of the inner ear. This
mesh is difficult because it is quite thin. This makes coarsening
around the edges of the membrane difficult where there is a
180 degree turn over a very short distance. Curvature-based
coarsening performed as expected by maintaining relatively
small elements on the outer border, while allowing larger
elements on the flat regions. Another problem with this model
is the number of elements in the initial mesh. Re-meshing
is not possible with faceted biological models because of the
way they are defined. Thus the coarsest possible hexahedral
mesh for this model is over 1.7 million nodes before the
introduction of the DTHex scheme. DTHex decreases that
number to 300000 nodes while also improving the quality and
respecting curvature. The THex approach is shown in Figure
31. Average quality shown in Table V is 0.6320 for the DTHex
approach compared to 0.5807 for the THex mesh.

VII. CONCLUSION

Hexahedral meshing is challenging because of the layered
nature of hexahedral sheets. For this reason, it has been diffi-
cult to come up with an all-hexahedral meshing scheme that

Fig. 22. A patella meshed using the DTHex scheme with ε = 0.1 (a)
Original mesh (5862 triangles, 8793 edges, 2933 nodes)

Fig. 23. Mesh after coarsening ( 1146 triangles, 1719 edges, 575 nodes)

Fig. 24. Mesh after THexing (13704 hexes, 3438 faces, 6876 edges, 16647
nodes)

Fig. 25. Final hexahedral mesh (109632 hexes, 13752 faces, 27504 edges,
118955 nodes)



Fig. 26. A patella meshed with the THex scheme (141156 hexes, 17586
faces, 35172 edges, 161731 nodes)

TABLE V

SHAPE QUALITY FOR MESHES IN FIGURES 30 AND 31.

Avg. Std. Dev. Min. Max.

THex Mesh 0.5807 0.07854 0.000 0.8190

DTHex Mesh ε = 0.1 0.6320 0.1300 0.000 0.9562

is robust enough to produce good meshes on all geometries.
THexing is one approach that has been used with moderate
success. The work presented in this paper has shown that
the DTHex method of producing all-hexahedral meshes can
produce meshes with better quality and fewer elements than
the classical THex approach. An additional benefit of the
method is the ability to create meshes that approximate surface
curvature.

This research has potential for great impact in the field of
biological meshing. While there are other coarsening algo-
rithms available in other meshing packages, the synthesis of
parallel coarsening and refinement with curvature-based sizing
functions, and local smoothing is unique to this research. The
improved meshes will allow biological analysis to become
more viable by decreasing the computing power necessary to
perform the analyses.

This research also provides a framework for further studies
on improving node projection techniques. It may be possible
to completely eliminate the inverted elements that are formed
when nodes on concave surfaces are projected inward. Further
studies may also be done on automatically determining which
ε to use during coarsening.
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