
IMPROVING ELECTROMAGNETIC BIAS ESTIMATES
Floyd W. Millet and Karl F. Warnick

Brigham Young University, MERS Laboratory: 459 CB, Provo, UT 84602
801-422-4884, milletf@ee.byu.edu

Abstract

The derivation of an electromagnetic (EM) bias model
that includes the physical optics scattering models and
the non-Gaussian long wave surface statistics is pre-
sented. The final formulation of the model is ex-
pressed as a function of hydrodynamic modulation, sur-
face skewness, and tilt modulation. Through the mod-
ulation transfer function, the hydrodynamic modulation
coefficient is shown to be equivalent to the long wave
RMS slope multiplied by a function of the short wave
spectrum. With this result the normalized EM bias re-
duces to a function of long wave surface parameters with
coefficients determined by properties of the short ocean
waves. EM bias values are computed from the theory,
using a realistic surface PSD, and compared within situ
bias measurements. The bias model is shown to be in ex-
cellent agreement with the measured values, and includes
features of normalized bias not present in previous mod-
els.

1 INTRODUCTION

Altimeter measurements of the mean sea level are com-
plicated by errors introduced by atmospheric propaga-
tion, satellite ephemeris, and the interaction between the
electromagnetic signal and the ocean surface. As satel-
lite technology has matured and our understanding of
geophysical processes improves, errors in mean sea level
measurements have been reduced to the centimeter level.
The remaining uncertainty is dominated by errors in elec-
tromagnetic (EM) bias estimates.

The electromagnetic bias is caused by an unequal dis-
tribution of returned power from the crests and troughs of
ocean surfaces. Larger power returns from ocean troughs
than from the crests causes a time delay in the median
backscattered power. Remote sensing instruments, such
as altimeters, interpret this time delay as an increased
distance to the surface, and causing mean sea level esti-
mates to be lower than the true surface.

EM bias models for satellite based altimeters are lim-
ited to parameters that can be estimated from the EM
backscatter characteristics of the surface.1–5 Among
these models are the current operational models for the
TOPEX/Poseidon and Jason-1 altimeter missions that es-
timate the bias from significant wave height and wind

speed values. Though bias estimates using these param-
eters are accurate in the mean a significant amount of
variance remains.6

Theoretical studies of the EM bias have shown that
the bias is a composite of two underlying physical mech-
anisms. The non-Gaussian long wave surface statistics
were used to develop the first EM bias model. Using the
weakly non-linear (WNL) theory by Longuet-Higgins,7

the EM bias for a one dimensional surface was described
by Jackson8 as a function of the skewness and tilt mod-
ulation ocean surface. The contributions of the non-
Gaussian surface was expanded to two-dimensions in
a work by Srokosz, et al.,9 and further developed by
Elfouhaily, et al.10

The second physical mechanism that contributes to
the EM bias is hydrodynamic modulation. Using the the-
ory by Longuet-Higgins11 that equates the modulation
coefficient with the RMS wave slope, the empirical re-
lationship between RMS wave slope and bias been de-
veloped in a number of models.12–14 This approach has
been expanded recently by a pair of theoretical models.
The first, by Elfouhaily, et al.,15 develops a bias the-
ory that describes the hydrodynamic modulation using
the modulation transfer function (MTF) by Alpers and
Hasselmann.16 The second model, by Warnick, et al.,17

introduces hydrodynamic modulation through the physi-
cal optics (PO) scattering model. This method results in a
bias model that reflects the relationship between the bias
and the RMS wave slope seen inin situ and laboratory
measurements.

The only study to combine the non-Gaussian surface
statistics with hydrodynamic modulation was a numeri-
cal study by Rodriguez, et al.18 In this study, the joint
height-slope PDF by Longuet-Higgins7 was combined
with the modulation transfer function (MTF) of Alpers
and Hasselmann.16 The result is a model that shows
that contributions from the non-Gaussian surface statis-
tics and hydrodynamic modulation are roughly the same.

This paper presents an EM bias model that includes
both hydrodynamic modulation and non-Gaussian long
wave statistics as sources of the EM bias. The non-
Gaussian statistics come from the same WNL theory
developed by Longuet-Higgins7 and used in previous
bias models. The hydrodynamic modulation is included
through the use of the PO scattering model as devel-
oped by Warnick, et al.17 The resulting model describes
the EM bias as a sum of terms that include skewness,
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peakedness, and RMS wave slope with the well-known
linear dependence on significant wave height.

A number of features of the model are worth not-
ing. First, an analytical relationship between the hydro-
dynamic modulation and the EM bias is shown through
the use of the MTF. Second, through the PO model small
wave roughness and wind speed dependence are included
in the EM bias model. Finally, the results from the model
show excellent agreement with measured data, including
a number of data features that are not seen in previous
models.

2 EM BIAS MODEL DERIVATION

The model derivation begins with the definition of the
EM bias, ε, as the normalized correlation between the
surface height,ζ, and the radar cross section at that
height, or backscatter coefficient profile,σ◦(ζ),

ε =
E [ζσ◦(ζ)]
E [σ◦(ζ)]

=
∫ ∫

ζσ◦(ζ, θ)P(ζ, θ)dζdθ∫ ∫
σ◦(ζ, θ)P(ζ, θ)dζdθ

. (1)

The bias in this form is composed of the backscattered
power from patches of small-scale ocean waves,σ◦(ζ, θ)
at heights and local incidence angles described by the
joint height-slope probability distribution of the surface,
P(ζ, θ).

The terminology that defines the bias seen by re-
mote sensing instruments is typically divided into three
contributing components: skewness bias, EM bias, and
tracker bias. The tracker bias is an instrumental error
that is neglected in this discussion. The skewness bias
and electromagnetic bias are errors that are inherent in
the signal returned from the ocean surface. These errors
are often combined into a single error referred to as the
sea state bias.

This derivation results in three factors that contribute
to the bias seen by the instrument: skewness bias, tilt
modulation bias, and hydrodynamic modulation bias.
The total of these factors is referred to as the EM bias
in this paper.

A number of steps are taken in the derivation of the
EM bias model. First, a description of the surface is de-
veloped with long and short wave components. Next,
hydrodynamic modulation is developed with the MTF.
Using an analytic expression for the backscatter coeffi-
cient profile and the physical optics scattering model, and
the EM bias model is developed. The last two sections
review the contributions of the long and short wave com-
ponents to the bias, the terms that describe the bias, and
a comparison of the model to measured bias values.

2.1 Surface Modeling

A requirement in the derivation of EM bias models is
a statistical description of the ocean spectrum. In this

paper the unified ocean spectrum by Elfouhaily, et al.19

has been used as a model for a realistic ocean spectrum.
The spectrum has as inputs the wind speed,U and inverse
wave age,Ω.

Division of the ocean spectrum is necessary for ap-
plication of the MTF and facilitates the computation of
the rough surface scattering. We identify the division
between the long and short wave components of the
ocean spectrum using the separation wavelength,λsep =
2π/ksep such that

[λ◦ = O(10m)] � λsep �
[
λem = O(10−2m)

]
(2)

whereλem is the electromagnetic wavelength andλ◦ is
the dominant wavelength of the surface spectrum. We
note thatksep influences the small and long wave por-
tions of the spectrum, and investigate its effect in the re-
sults section.

2.1.1 Long Wave Surface Statistics

The joint height-slope distribution of the long wave sur-
face spectrum is developed by Longuet-Higgins7 in his
weakly non-linear theory. The distribution used is a
Gram-Charlier expansion that describes the surface as
Gaussian, to first order, with modifications described by
the skewness,λ30, and peakedness or tilt modulation,
λ12, of the surface.9,10 We model the long waves us-
ing the long crested assumption so that the slope in one
direction is set equal to zero,ζy = 0. With this approx-
imation the three dimensional joint-height slope PDF is
reduced to a two dimensional expression,

P (η, ηx) =
e−

1
2 (η2+η2

x)

2πhlsl
(3)

×
[
1 +

λ30

6
H30(η, ηx) +

λ12

2
H12(η, ηx)

]
,

where we define the normalized height and normalized
slope as

η = ζ/hl (4)

ηx = ζx/sl (5)

and the height and slope variances are described by
h2

l and s2
l respectively. The Hermite polynomials,

Hij(η, ηx), used in this paper are

H30 = η3 − η (6)

H12 = η(η2
x − 1) (7)

where we drop the explicit dependencies on height and
slope.9

2.1.2 Short Wave Surface Spectrum

With the definition of the separation wave number above,
the short wave surface spectrum is defined by

Ws(k) = W (k), k > ksep (8)
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whereW (k) is the full surface spectrum, with the related
correlation function is defined as

C(x, y) =
1
h2

∫
Ws(k)eik·r dk. (9)

where C(x, y) is the Fourier transform of the short
wave PSD normalized by the surface height variance,
h−2W (k).

It should be noted that the small waves are described
by a two-dimensional isotropic spectrum. This leads to
the development of an EM bias model using scattering
from two-dimensional small wave facets of the surface
on a corrugated, or one-dimensional, long wave surface.

2.2 Hydrodynamic Modulation

The modulation of short wave heights as a function
of surface displacement causes a differential in surface
roughness between the crests and troughs of the ocean
surface. This results in a larger specular return from the
troughs, contributing to the energy differential that is the
cause of the EM bias. We refer to this contribution to the
EM bias as the hydrodynamic bias.

Short wave height modulation is described by a mod-
ulation transfer equation (MTF). The MTF, developed
by Alpers and Hasslemann16 and used by Rodriguez,
et al.18 and Elfouhaily, et al.15 in previous EM bias stud-
ies, describes the height modulation of short waves over
the phase of longer ocean waves as a function of spectral
frequency,

δW (ks) = W (ks)
∫

dkl z(kl)R(ks, kl)ei(klx−ωlt)

(10)
wherez(kl) is the Fourier transform of the long wave
profile, ζ(x, t), andωl andkl are the long wave angular
frequency and wavenumber, respectively. The one di-
mensional form of the modulation transfer function can
be written as

R(ks, kl) = kl
ωl + iµs

ω2
l + µ2

s

cl

cs

[
1

F (k)
∂F (k)

∂k
− γs

ks

]
×

(
csklks −

1
2
klωl

)
(11)

whereµs is the short wave relaxation rate,cl andcs are
the long wave and short wave phase speeds,

γs =
1
2

1 + 3(τk2
s/ρg)

1 + τk2
s/ρg

(12)

and the constantsτ = 74 × 10−6 m3/s2 and ρ =
1027 kg/m3 are the surface tension and water density.

2.3 Physical Optics Scattering Model

The rough surface scattering model has an important in-
fluence in developing a model for the EM bias. The most

common scattering model used in EM bias theories is
the geometrical optics (GO) model. Geometrical optics
uses the infinite frequency, or ray tracing, approximation
to model scattering from a rough surface. With this ap-
proximation surfaces are considered smooth with respect
to the incident EM wavenumber, thus applying an inher-
ent high wavenumber cutoff to the surface spectrum. The
use of GO in EM bias models is complicated by hydro-
dynamic modulation. Because the modulated wave small
wave heights are on the same order of magnitude as the
incident wavenumber, the GO approximation does not
apply.

A more accurate description of rough surface scat-
tering is provided by the physical optics (PO) scattering
model,

σ◦(θ) =
k2

em cos2 θ

4π

∫ ∫
eikbxe−λ(1−C(x,y))dxdy,

(13)
where the Bragg wavenumber,kb = 2kem sin θ, and
λ = (2kemh cos θ)2. The PO model includes the sur-
face height variance,h2, and the correlation function,
C(x, y), as input parameters, and has been shown to ac-
curately model scattering from ocean-like surfaces.20,21

The first EM bias model to use the physical optics
(PO) scattering model was developed in Warnick, et al.17

By parameterizing the short wave height as a function of
surface elevation, hydrodynamic modulation entered the
EM bias model throughh(ζ). The result was a descrip-
tion of the bias as a function of RMS wave slope that was
strongly correlated to measured EM bias values.

This model is developed in the same form as that seen
in Warnick, et al.,17 with the addition local tilt angles for
the small wave facets. We have already discussed the el-
evation and tilting of the scattering facets in the descrip-
tion of the long wave joint height-slope PDF. In this sec-
tion we describe the correlation function,C(x, y), and
the short wave surface height,h, used in this model.

2.3.1 Correlation Function

The correlation function required by the PO scatter-
ing model can, in theory, be computed directly as the
Fourier transform of the short wave power spectrum,
Ws(k), in equation 8. However, direct calculation of the
two-dimensional Fourier transform is computational pro-
hibitive. Instead, we model the small wave power spec-
trum as a power law fit to the two dimensional, omni-
directional, unified spectrum described by Elfouhaily,
et al.19 The short wave portion of the unified surface
spectrum can be modeled as

W (k) =
{

h2(p− 2)kp−2
sep k1−p k ≥ ksep

0 k < ksep
(14)

whereW (k) is the surface PSD and the values ofh2

andp are calculated from fits to the unified surface spec-
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trum. The correlation function associated with a power
law power spectrum forp 6= 3 is defined by

C(x) = (p− 2)xp−221−p Γ
(
1− p

2

)
Γ

(
p
2

)
+ HYP

([
1− p

2

]
,
[
1, 2− p

2

]
,−x2

4

)
(15)

whereHYP is the hypergeometric function. A similar
expression can be developed forp = 3, that is similar
to equation (15) In the remainder of the paper, the ex-
plicit dependence on distance of the correlation function
is dropped so thatC = C(x, y).

2.3.2 Hydrodynamic Modulation

The change in small wave surface height with surface
displacement defines the hydrodynamic modulation. For
a surface with no modulation, the standard deviation of
the small waves is described by a constant,h = h◦. To
include the hydrodynamic modulation, we parameterize
the short wave height variance with surface height,h(ζ).
Figure 1 shows the modulation in the short wave variance
as a function of surface height when the MTF is applied
to surface described by the unified surface spectrum. A
numerical study by Rodriguez, et al.18 and experimental
measurements of small wave surface heights showed a
similar relationship.17 From these studies the short wave
height standard deviation can be described by

h(ζ) = h◦

(
1 + m

ζ

hl

)
(16)

whereh◦ is the average short wave standard deviation
andm is the modulation coefficient.

2.4 Backscatter Coefficient Profile

An analytic expression for the backscatter coefficient
profile, σ◦(ζ), is created from expressions for the long
wave joint height-slope PDF, (4), and the small wave
scattering described by the PO model, (13). Using the
approximations for the correlation function, (15), and hy-
drodynamic modulation, (16), the resultant expression

σ◦(ζ) =
k2

em cos2 θ

4π

∫
d tan θ

×
∫ ∫

dx dyei2kem sin θe−λ(η)(1−C)

× 1
2πhlsl

e
− 1

2

[(
ζ

hl

)2
−
(

tan θ
sl

)2
]

×
(

1 +
λ30

6
H30 +

λ12

2
H12

)
(17)

is a three-dimensional integral that appears in both the
numerator and denominator of the EM bias definition,

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6
x 10−5

Normalized Surface Displacement

∆ 
h l2

Modulation vs. Surface Displacement

Figure 1: Application of the modulation transfer function
(MTF) to surface described by the unified ocean spec-
trum by Elfouhaily, et al.19 shows a linear correlation
between the magnitude of the short wave modulation and
the normalized surface height.

(1). Because the leading coefficient,(kem cos θ)2/4π,
appears in both numerator and denominator in the bias
definition, it will ultimately cancel out, and is dropped in
the remainder of the derivation.

To simplify the computation ofσ◦(ζ), the assump-
tion of small local incidence angles is made such that

sin θ ≈ θ (18)

cos θ ≈ 1 (19)

tan θ ≈ θ. (20)

The order of integration is also changed so that the first
integral performed is the integral over the long wave
slopes,

σ◦(ζ) =
e−η2/2

√
2π

∫ ∫
dx dye−λ(η)(1−C)

×
∫

dηxeiµηx
e−η2

x/2

√
2π

×
(

1 +
λ30

6
H300 +

λ12

2
H120

)
(21)

whereµ = 2xkemsl. The expression inside the last in-
tegral can be seen as a Fourier transform that with the
identities∫

eiµxx2e−x2/2dx =
√

π

2
e−µ2/2(1− µ2) (22)∫

eiµxe−x2/2dx =
√

2πe−µ2/2. (23)
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can be solved analytically. A simplified expression for
equation (21) can be written

σ◦(ζ) =
e−η2/2

√
2πhl

∫
dx dy e−λ(η)(1−C)e−µ2/2 (24)

×
(

1 +
λ30

6
(
η3 − η

)
− λ12

4
η

(
1− µ2

))
,

and the expression for the backscatter coefficient profile
is reduced to a two dimensional integral in thex andy
dimensions.

2.5 EM Bias

The final expression of the EM bias model is created by
expanding the definition of the EM bias in equation (1)
in a power series aboutζ = 0,

ε =
E [ζ (σ◦(0) + ζσ◦′(0) + ...)]

E [σ◦(0) + ζσ◦′(0) + ...]
. (25)

whereζσ◦′(0) refers to the derivative ofσ◦(ζ) with re-
spect toζ. Results from the model by Warnick, et al.17

show that the average backscatter coefficient is linear
with displacement, and the expression in equation (25)
can be truncated after the linear term.

Using this approximation, equation (25) reduces to

ε ≈ hl
σ◦′(0)
σ◦(0)

. (26)

where to compute the bias only the numerator

σ◦′(0) =
−1√
2π

∫ ∫
dx dye−(2kho)2(1−C)−µ2/2 ×[

8m(kho)2 (1− C) +
λ30

6
+

µ2λ12

2

]
(27)

and denominator

σ◦(0) =
1√
2π

∫ ∫
dx dye−(2kho)2(1−C)e−µ2/2 (28)

are needed. The notation can be simplified by writing the
expression for the EM bias as

ε = −H(γm + κλ30 + τλ12). (29)

where the significant wave height isH = 4hl, and the
coefficientsγ, κ, andτ are defined by

γ =
∫ ∫

2k2
emh2

◦(1− C)e−(2kemh◦)
2(1−C)e−µ2/2 dx dy∫ ∫

e−(2kemh◦)2(1−C)e−µ2/2 dx dy

τ =
1
8

∫
µ2e−(2kemh◦)

2(1−C)e−µ2/2 dx dy∫
e−(2kemh◦)2(1−C)e−µ2/2 dx dy

κ =
1
24

(30)

A quick review of the final bias model in equa-
tion (29) shows the leadingH dependence, common to
all bias models, followed by terms relating the bias to the
surface skewness, peakedness, and hydrodynamic modu-
lation. An in-depth analysis of the terms and coefficients
that describe the model are is conducted in the following
sections.

3 EVALUATING THE BIAS

The contributions of each term in the bias model can be
more fully understood by individual analysis. We begin
by dividing the contribution from the modulation coef-
ficient, m, into a function of the long wave RMS slope,
S, and a short wave function,g. Following this division
the contributions of the long wave components,λ30 and
λ12, and short wave components,γ, τ , andκ, are inves-
tigated. A comparison of the contribution of each term
when compared with previous models is included.

3.1 Modulation Coefficient and Wave Slope

A number of EM bias models have derived an empirical
relationship between the RMS long wave slope and the
modulation coefficient.12,14 The first model to explic-
itly derive a relationship between the small wave modu-
lation and RMS slope was Melville, et al.13 In the model,
the two frequency surface model by Longuet-Higgins11

showing that to first order the modulation coefficient and
RMS wave slope are equal was used. Warnick, et al.17

used the same relationship and found that the RMS wave
slope was strongly correlated, but that theoretical values
consistently overestimated the bias.

The relationship between the short wave modulation
and the RMS wave slope can be generalized as

m = g(p, U)S, (31)

whereU is the wind speed andp is the short wave spec-
tral exponent. The behavior of the modulation coeffi-
cient as a function ofp andU for a constant wave slope
can be modeled using an idealized power law PSD,k−p.
Figure 2 shows the ratio ofm/S for short wave PSDs
with the exponents ofp = 3, 3.5, and 4 at different
wind speeds, where the value ofg(p, U) decreases with
increasing wind speed and decreasing values ofp.

3.2 Skewness and Tilt Modulation

The skewness bias and tilt modulation bias are a direct
result of the WNL theory by Longuet-Higgins,7 and can
be described as integral functions of the long wave por-
tion of the surface PSD. The definitions and equations
describing these values are included here for complete-
ness and convenience.
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Figure 2: The relationship between the modulation coef-
ficient, m, and the RMS wave slope,S, is modified by
the wind speed. The effect of the wind speed is realized
through the modulation transfer function. The ratio of
m/S is shown for ak−p short wave power law spectrum
for values ofp = 3, 4, and5.

The long wave skewness is defined by

λ30 =

〈
ζ3

〉
〈ζ〉3/2

(32)

and can be computed from the long wave surface com-
ponents using

λ30 =
12

h
3/2
l

∫ ksep

0

dkW (k)

[∫ k

0

dl lW (l)

]
(33)

as described by Longuet-Higgins7 and Jackson.8 The
behavior ofλ30 as a function of wind speed is shown in
figure 3.

The definition of the long wave peakedness is

λ12 =

〈
ζζ2

x

〉
〈ζ〉1/2 〈ζx〉

. (34)

Jackson8 showed that with the WNL theory, the surface
peakedness can be calculated as

λ12 =
4

hls2
l

∫ ksep

0

dkW (k) (35)

×
∫ k

0

dl
(
2k2l + l3

)
W (l).

The tilt modulation as a function of wind speed is shown
in figure 4.
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Figure 3: Long wave skewness values computed from the
Unified Spectrum by Elfouhaily, et al.19 The input pa-
rameters for this surface spectrum model are wind speed,
U , and inverse wave age,Ω.
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Figure 4: Long wave tilt modulation values computed
from the Unified Spectrum by Elfouhaily, et al.19 The
input parameters for this surface spectrum model are
wind speed,U , and inverse wave age,Ω.

3.3 Bias Coefficients

The contributions of theλ30, λ12, andm are modified by
the coefficients,γ, κ, andτ . The coefficients are primar-
ily functions of the short wave spectrum, and are present
as a result of the PO scattering model. Of special interest
is the relationship ofκ, and τ , with equivalent coeffi-
cients derived from models based on the GO scattering
approximation.

3.3.1 Hydrodynamic Modulation Coefficient

From the EM bias model by Warnick, et al.,17 the value
of γ was shown to asymptotically approach1/(p − 2).
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This bias model did not included the contribution of the
long wave tilting of short waves. Figure 5 shows that the
addition of long wave tilting has a negligible effect on
asymptotic value ofγ. We note that with typical values
of h between2-3 cm andkem > 100, the value ofγ can
be considered a constant in the final EM bias model.
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Figure 5: The value ofγ determines the contribution of
hydrodynamic modulation to EM bias. Values ofγ as
a function of the electromagnetic height of short ocean
waves,kh, are shown for a short wave power law PSD,
K−p for representative exponents,p = 3 and 4. The
asymptotic value ofγ approaches a constant value of ap-
proximately1/(p− 2) for all cases.

3.3.2 Tilt Modulation Coefficient

The inherent peakedness of the ocean causes fewer nadir
pointing facets to be present near the crests of ocean sur-
faces, thus introducing a tilt modulation bias. For a sur-
face smooth on the order of the incident EM wavelength,
the tilt modulation results in a larger specular return from
the troughs than the crests. By using the GO approxima-
tion, the model by Sorkosz, et al.9 inherently uses the
smooth surface approximation, resulting in a tilt modu-
lation bias described by

τ = −1
8
λ12. (36)

The contribution of the tilt modulation bias is mod-
ified when surface include small scale roughness. Fig-
ure 6 shows that the value ofτ as a function of the elec-
tromagnetic height ,kemh, where the GO approximation
is equivalent tokh = 0. With increased values ofkem

the surface scattering is more Lambertian. The result is
a decrease in the effect of the local incidence angle on
backscattered power, and a decreased contribution ofλ12

to the EM bias.

The change inkemh can also be seen as a frequency
dependent term, where the increase inkem is equiv-
alent to an increase in the small wave heights. The
change in EM bias as a function of frequency is the re-
sult of changes in the tilt modulation bias with incident
wavenumber.
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Figure 6: The contribution of the height-tilt variance cor-
relation,λ12 is determined by the value ofτ shown here
as a function of the electromagnetic height of short ocean
waves. The asymptotic value ofτ approaches a constant
value of1/8.

3.3.3 Skewness Coefficient

From equation (30), the skewness bias coefficient has a
constant value ofκ = 1/24. Different thanγ and τ ,
the contribution of the skewness bias is not frequency
dependent. This result is identically equal to the results
from the models by Srokosz and Elfouhaily, et al.

4 RESULTS

The accuracy of the EM bias model is analyzed by com-
parison toin situ EM bias measurements made during
the Gulf of Mexico Experiment (GME).22 Data from
the GME consists of concurrent measurements of envi-
ronmental variables and the ocean surface that allows
the correlation of wind speed and significant wave height
with the EM bias.

4.1 Separation Wavenumber

To compute the long and short wave model parameters
from the unified spectrum, the separation wavelength
must be set. Because the value ofksep influences the
long and short wave values, it can have a significant ef-
fect on estimated bias values. Figure 7 shows the change
in EM bias values for various values ofksep. For in situ
measurements, the separation wavelength is constrained
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to values greater than the radar spots size. With this con-
straint, the separation wavenumber used for this study is
ksep = 4π/5, that corresponds to a2.5 m footprint for
the GME experiment.
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Figure 7: Effect of the separation wavenumber,ksep, on
EM bias values.

4.2 Wind Speed Dependence

The behavior of the EM bias computed from the unified
surface spectrum is shown in figure 8. Measured values
from the GME experiment are included in the figure as
a qualitative comparison. Similarities in the curvature
of the bias and the zero intercept forU = 0 are read-
ily apparent. Figure 9 shows normalized bias values as
a function of wind speed for a surface described by the
unified spectrum. Both theoretical and measured values
of the normalized bias exhibit non-zero intercepts for low
wind speeds. The lack of theoretical values for low wind
speeds,U < 2, is the result of the minimum wave num-
ber being greater thanksep. This causesH = 0 so that
values that are computed withhl in the denominator have
infinite values.

4.3 Model Accuracy

Application of the model to measured values of the sur-
face is done by reviewing the surface profiles from the
GME experiment and computing the tilt modulation and
skewness parameters. The parameters were computed
from the surface PSDs, as described in equation (36) and
equation (33) as well as by direct measurements from
the surface profiles. A pseudo time series plot of slope,
skewness, and tilt modulation is shown in figure 10.

The small wave dependence of the EM bias is com-
puted using constant values for the coefficients,γ, τ , and
g. This approximation eliminates the inconsistencies and
small wind speeds, and eliminates the need of choosing
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Figure 8: EM bias values computed from the unified sur-
face spectrum by Elfouhaily, et al.19 as a function of
wind speed and inverse wave age.
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Figure 9: Normalized EM bias values computed from the
unified surface spectrum by Elfouhaily, et al.19 as a func-
tion of wind speed and inverse wave age.

the appropriate inverse wave age for the GME data set.
Values of the small wave parameters are theγ = .42,
g = .63, andτ = .11. Figure 11 shows pseudo-time
plots of the normalized bias. The top plot shows mea-
sured bias values compared against the values from the
model with the GME values forS, λ12, andλ12. The
bottom plot shows the contribution from each component
of the EM bias: skewness bias, tilt modulation bias, and
hydrodynamic modulation bias.

4.4 Frequency Dependence

The frequency dependence of the model is shown in fig-
ure 12, where increases inkem are accompanied by de-
creases in the observed bias. The frequency dependence
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enters the EM bias model through the value ofkem in the
modulation coefficient. Because the value ofγ is close to
the asymptotic limit in normal conditions, this decrease
is primarily a result of the change in the value ofτ , as
observed in figure (6).
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Figure 10: Long wave parameters computed from the
GME experiment. Values for the skewness,λ30, and
the tilt modulation,λ12 are computed from the surface
height PSD (black), (33) and (36) and directly from the
surface profiles (gray).
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Figure 11: Bias values computed from GME measure-
ments. The contribution of each long wave parameter,
γgS, τλ12, andκλ30 is shown in the upper plot. The con-
tribution of the tilt modulation,λ12 is shown as computed
from the surface profiles and from the surface height
PSD.

5 DISCUSSION

This paper discusses the derivation of a model based on
the physical optics scattering model with the inclusion
of non-Gaussian long wave surface statistics. The final
form of the model includes the well-known linear de-
pendence on the significant wave height, with further de-
pendence described by other surface parameters. Con-
tributions to the bias included the long wave parameters,
skewness, peakedness, or tilt modulation, and RMS wave
slope. The coefficients of these parameters were derived
as function of the short wave surface spectrum.

By deriving a model for the EM bias using the phys-
ical optics scattering model, the hydrodynamic modula-
tion can be included by parameterizing it as a function of
surface height. This simplifies the inclusion of the hydro-
dynamic modulation over previous methods, and results
in a simple expression relating the contribution of the hy-
drodynamic modulation to the EM bias.

Previous models have used equated the RMS wave
slope with the modulation coefficient to derive the EM
bias as a function of the RMS wave slope. Using the
modulation transfer function a more formal description
of the relationship between the RMS slope and the mod-
ulation coefficient is developed.
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Figure 12: The magnitude of the EM bias decreases as
a function of the incident wavenumber showing the fre-
quency dependence of the EM bias. The frequency de-
pendence is almost entirely due to the change in the tilt
modulation coefficient withkem.

Surface skewness and tilt modulation are included in
the EM bias model through a Gram-Charlier expansion
used by other. The contributions of these terms show
similarities to previous models, but are modified by coef-
ficients that are introduced by inclusion of the PO model.
The coefficients, as functions of the small wave spec-
trum, modify the contributions of the long wave compo-
nents with changes in small wave heights. These reasons
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are explained in terms of the physics related to rough sur-
face scattering. The cause of the frequency dependence
of the EM bias model is also observed.

A qualitative comparison of numerical EM bias val-
ues computed using a realistic surface spectral model
show good agreement with measured bias values. A
number of features, including the roll-off in bias val-
ues with increasing wind speeds, not present in previ-
ous models were observed. Further analysis was con-
ducted using measured long wave surface parameters to
compute bias values. A strong correlation between the
measured and computed EM bias values was seen. The
frequency dependence of the model is also shown.
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