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1 Background 

Observations of evolved stars in the infrared are well suited for studies of dusty 
environments, providing a wealth of absorption and emission bands with which 
to diagnose grain characteristics. We are currently developing an instrument that 
will employ a Fourier transform spectrometer in conjunction with TNTCAM2 
(Klebe et al. 1998), an imaging polarimeter. The FTS component will enhance 
TNTCAM2, giving the instrument a maximum resolution of 2000 at 10 11m. The 
FTS is capable of operating between 2-15 11m, but polarimetry for the instrument 
is limited to the 8-15 11m region due to waveplate/wiregrid characteristics. 

SIFTIR, the Spectro-polarimetric Imaging Fourier Transform spectrometer 
for the InfraRed, will build upon the results of TNTCAM2 (Jurgenson et al. 
2003). Imaging polarimetry has the potential to trace polarization magnitude 
and P.A. changes throughout an extended region of interest. TNTCAM2, though 
capable of a fair degree of spatial resolution, lacked spectral resolution needed 
to carry out the analysis for approximating grain shapes (e.g. Hildebrand & 
Dragovan 1995). Holloway et al. (2002), established correlations in polarization 
magnitude and position angle between the 10 11m silicate feature and the 3 11m 
water ice feature in a small sample ofYSO's. The existence of a correlation makes 
plausible the argument that silicate grains might provide nucleation sites for 
grain growth in a core-mantle arrangement. SIFTIR not only has the capability 
to cover both the near and mid-IR spectral regions to check for polarization 
correlations, but will also have the resolution necessary to characterize the grain 
shapes. 

2 SIFTIR Control Aspects 

SIFTIR was designed with the intent to provide not only the spectral resolution 
needed to carry out investigations such as those discussed above, but also main
tain the imaging capability already provided for in TNTCAM2. Figure 1 shows 
the FTS component that will be mated with TNTCAM2, built by Idealab of 
Franklin, Massachusetts. This component will have the ability to operate in a 
step scan mode as well as in continuous scan with a maximum optical path dif
ference (OPD) of 2 cm. Designed to operate between 2-15 11m, with a resolution 
up ot 10,000 at 211m. 
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Fig. 1. The FTS component of SIFTIR 

The stepping mode will allow for background subtraction and waveplate ro
tation at each step with enouph rapidity to avoid atmospheric changes. Four 
background-subtracted interferograms are then produced, one for each wave
plate position, from which Stoke's parameters are calculated. The number of 
steps over the course of a single scan is determined by the bandwidth of the 
observation and the resolution. The resolution is determined by the maximum 
travel ofthe moving mirror, and the bandwidths will be the filters in TNTCAM2. 
Figure 2 depicts how the control system will use two HeN e laser signals that are 
90 degrees out of phase with one another to provide relative positional feedback. 

Fig. 2. This schematic represents relative positional feedback 
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A 45-degree polarized laser (shown parallel to moving mirror in figure 1), 
enters the interferometer, is split into two directions by the beamsplitter, each 
traveling either to a stationary or moving corner cube reflector. The beam that 
travels to the moving mirror passes once through a quarter waveplate (resultant 
is 90 degrees out of phase relative to the stationary mirror beam) before recom
bining at the beamsplitter. The recombined beam then travels to a polarizing 
beamsplitter cube, separating the two orthogonal components of the recombined 
beam and sending each to its own encoder. Two analog input channels of a field 
programmable gate array (FPGA), produced by National Instruments, square 
up the waves, compute the logical AND from the two square waves, and the 
number of high/low toggles are counted and used to trigger sampling and/or 
stepping. This is the relative positional feedback mentioned above. An analog 
output signal from the FPGA commands the motor to stop, go, or turn around 
for a specified number of toggles, as well as control the array readout. Figure 3 
is the overall control scheme for SIFTIR. 

D 
Human/Compuer 

Optical 
Encaler 

Fig. 3. SIFTIR control schematic 

The FPGA also has ninety-six digital I/O lines as well as the analog, thirty
one of which will be used to communicate with the array electronics. All signals 
either come or go through the FPGA, so that the timing between reading data 
off of the array, and motion of the interferometer is worked out in the Labview 
software. Filter wheel control, though not done through the FPGA, still exists in 
the main control program. Light coming in from the telescope will be collimated 
into the interferometer, and re-focused upon exit, and enter into TNTCAM2. 
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Initial testing of the instrument will take place at the University of Denver's 
Student Astronomy Laboratory, which consists of a 76.2 em afocal Mersenne 
telescope (Mellon et al. 2002) on the roof of the Physics and Astronomy building. 
The light path from the telescope gets sent into a laboratory beneath it where the 
FTS will sit horizontal on a turntable that will rotate at the sidereal rate. After 
checkout, SIFTIR can travel to larger telescopes such as the 2.3 m telescope at 
the Wyoming InfraRed Observatory. 

Coftinator 

Fig. 4. SIFTIR calibration schematic 

In order to adequately account for instrumental polarization, a Calibration 
scheme developed by the Optical Sciences Instrumentation Group at the Uni
versity of Alabama, Huntsville (Smith et al. 2000) will be used (figure 4). The 
method consists of two blackbody sources at different temperatures and an exter
nal wire grid. Radiation from source 1 gets reflected, while that from source 2 is 
transmitted. The two rays, polarized 90 degrees relative to one another, produce 
a partially polarized beam from which to calibrate the instrument. Instrumental 
polarization can then be subtracted out during reduction of data. 
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