
Abstract The flexibility combined with the computa-
tional capabilities of FPGAs make them a very attractive
solution for space-based computing platforms. However,
SRAM-based FPGAs are susceptible to radiation effects,
including Single Event Upsets. In order to increase the fault
tolerance of FPGA designs, fault mitigation techniques, such
as Triple Module Redundancy, can be applied. Such tech-
niques, however, can be excessive in terms of hardware costs.
This work investigates the tradeoffs between fault mitigation
techniques for FPGA designs and the corresponding costs of
such mitigation. A particular focus is placed upon identifying
design components that serve to benefit most from the appli-
cation of fault tolerance techniques, and investigating the
tradeoffs associated with applying mitigation to these most
sensitive design sections.

Introduction

FGPAs are very advantageous for use in cus-
tom computing applications because of their com-
putational and reconfigurable capabilities, in addi-
tion to their low design entry cost. FPGAs have
been successfully used in high throughput signal
processing applications, and are suitable for the
requirements of space based computing[1],[2].

Though suitable to the computational demands
of space based computing, FPGAs are sensitive to
radiation effects common in a space environ-
ment[3]. This is particularly detrimental for FPGA
designs, the configuration of which are defined by
the configuration memory. A behavior of a design
that is programmed on an SRAM-based FPGA can
actually be altered due to radiation effects. This is
due to a change in state in the FPGA configuration
memory, which in turn results in a change in the
programmed FPGA design.

Even though SRAM-based FPGAs are sensitive
to the radiation effects common in a space envi-
ronment, FPGA designs can be made fault tolerant
through design level mitigation techniques[4],[5].

Mitigation techniques which are exhaustively ap-
plied to an FPGA design can remove the possibility
of design failures due to single points of failure.
However, such exhaustive mitigation techniques,
which ensure correct FPGA operation during single
points of failure, can be expensive in terms of
hardware resource costs and power, as well as det-
rimental to computational capabilities in terms of
latency and throughput.

Certain design failure modes are more critical
than others. Additionally, certain types of designs
and systems are more tolerant of temporary design
failures. For these types of situations, it is not al-
ways necessary to apply exhaustive mitigation tech-
niques to an FPGA design. In fact, in such situa-
tions an investigation into partial mitigation tech-
niques and the associated tradeoffs proves benefi-
cial.

We have begun an exploration in related to
partial mitigation techniques and the associated
tradeoffs in terms of reliability and hardware costs.
In this paper, we will demonstrate a technique for
partial Triple Modular Redundancy (TMR) which,
for single points of failure, can remove the dynamic
persistent cross section from an FPGA design. We
will show how eliminating this particular cross sec-
tion is beneficial and sufficient for certain types of
designs. We will show how system fault tolerance
design upon removal of this cross section is simpli-
fied. Finally, we will present results obtained
through applying an initial version of partial TMR.,
and will compare the tradeoffs associated with a
non-mitigated design, a design with partial TMR,
and a design with exhaustive TMR.

Radiation and FPGAs

The flexibility of SRAM-based FPGAs is made
possible by the configuration memory which de-
fines the currently programmed design of an

A Partial TMR Technique for Improving Reliability at a
Low Hardware Cost in FPGAs

D. Eric Johnson
darrel.eric.johnson@gmail.com

Department of Electrical and Computer Engineering,
Brigham Young University,

Provo, UT, 84602

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32556766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FPGA. Figure 1 illustrates a hypothetical building
block of an FPGA architecture. The configuration
memory defines the function of the programmed
components; for example, Figure 1b shows how the
configuration memory could possible define a 4-
input AND gate followed by a flip-flop. The con-
figuration memory can be crucial to the correct
operation of an FPGA design. As illustrated in Fig-
ure 1c, an upset due to radiation can alter the con-
tents of the configuration memory, resulting in a
change to the design. In this case, the change is
illustrated through a change in logic function, as the
4-input AND gate changes into a 4-input OR gate.

Figure 1: Hypothetical configurable block of an FPGA
architecture, illustrating how the configuration memory
defines the FPGA design, and how an upset within the
configuration memory can alter the design.

The severity of the consequences of an upset
within the configuration memory can vary greatly.
For example, if an upset occurs within a region of
the FPGA that is not currently being used for any
design functionality, it is likely that no deviation
from expected design behavior will be observed.
For a given FPGA design, such configuration
memory locations are referred to as non-sensitive
or non-critical configuration bits. Those configura-
tion memory upsets which are critical to the correct
operation of an FPGA design are referred to as

!"#$
!"%$!&'(")

*##+,-$

./0
1#/2%34

'5

65

(5

78-

10100
10100
10100
10100
10100

10

10
10100
10100
10100
10100
10100

1010001101

101100 1000

1010001101
1011000101
0001100000
1011001100
0101110100
1110010010
1011010100

1011010100
0101110100
1110010010

0001100000
1011000101

sensitive configuration bits. The set containing all
sensitive configuration bits for a given design is
referred to as the dynamic sensitive cross section.

In order to guarantee continued correct FPGA
design operation in a radiation environment, such
as space-based computing, the configuration mem-
ory needs to be periodically scrubbed or re-
freshed[6]. During this process, the contents of the
configuration memory of the FPGA are examined
and, if an upset is found, it is repaired. Any system
intended for operation in a radiation environment
that contains SRAM-based FPGAs as part of the
computational payload should employ some sort of
method for refreshing the contents of the configu-
ration memory, in order to recover from the effects
of a sensitive configuration bit upset. The rest of
this paper will assume that such an implementation
is in place.

The set of sensitive configuration bits can be
subdivided into two categories: persistent and non-
persistent bits[7]. A non-persistent configuration bit
is defined as one which, when upset, results in only
a temporary design failure, without the need of a
reset[7]. This behavior is better illustrated through
Figure 2, which plots the difference between ex-
pected design behavior and actual design behavior
against time for a non-persistent configuration up-
set. As the figure illustrates, upon occurrence of the
configuration upset, design behavior deviates from
expected. Likewise, when the configuration mem-
ory upset is repaired, design behavior returns to
normal. No external intervention, such as a design
reset, is required to cause such non-persistent be-
havior.

Figure 2: A plot of the difference between expected and
actual design behavior against time, illustrating the con-
sequences of a non-persistent configuration bit upset.

Figure 3: A plot of the difference between expected and
actual design behavior against time, illustrating the con-
sequences of a persistent configuration bit upset.

A persistent configuration bit upset is defined
as one which, when upset, causes indefinite devia-
tion of design behavior from expected[7]. Even
when the configuration memory upset is repaired,
design behavior continues to deviate from normal.
It is only through external intervention, such as a
reset signal, that design behavior will return to ex-
pected. Such persistent configuration bits usually
define circuit structures which involve some sort of
feedback, along with the circuit structures which
feed into these feedback paths. Figure 3 illustrates
the consequence of a persistent configuration bit
being upset. Even though the persistent configura-
tion bit upset is repaired, expected design behavior
continues to deviate from normal.

Figure 4: Circuit layout of a signal processing kernel
design.

Figure 5: Map of the sensitive configuration memory
locations for the signal processing kernel design.

A two-dimensional map can be generated illus-
trating the physical layout of sensitive locations
within the configuration memory for a given FPGA
design[8]. For example, the schematic for a design
containing a signal processing kernel is shown in
Figure 4. This figure illustrates the physical location
of utilized FPGA resources, along with the associ-
ated routing interconnect. The two-dimensional
map representing the location of sensitive configu-
ration bits is presented in Figure 5. Because no fault
tolerance techniques were applied to the signal
processing kernel design, a high correlation exists
between the location of utilized FPGA resources
and sensitive configuration memory locations.

Figure 6: Map of the persistent configuration memory
locations for the signal processing kernel design.

A map similar to that presented in Figure 5 can
also be created for the locations of persistent con-
figuration bits[7]. Such a map for the signal proc-
essing kernel design is shown in Figure 6. The set of
persistent configuration bits is a subset of the sen-
sitive configuration cross section; consequently, the
dynamic persistent cross section is always smaller
than or equal to the size of the dynamic sensitive
cross section for a given FPGA design.

FPGA Design Fault Tolerance

The severity of errors due to faults within an
FPGA configuration memory varies. Additionally,
the ability of a given design to tolerate varying de-
grees of error severity differs from design to de-
sign.

Figure 7: Hypothetical plot of resource cost for fault
mitigation versus the corresponding design uptime for a
particular design and radiation environment.

Critical applications cannot ever tolerate an
error, no matter how infrequent or how short last-
ing the effects of the error are. Not all applications,
however, fall in this category. Applications design to
gather sensory information, for example space
remote sensing, may be able to tolerate temporary
lapses in correct design operation. A given applica-
tion may be able to tolerate a 95% up time in terms
of system reliability as long as the corresponding
fault mitigation costs are low. An example plot
contrasting design up time versus the correspond-
ing resource cost to guarantee such an uptime is
illustrated in Figure 7. This hypothetical figure

0% 25% 50% 75% 100%

Design Uptime

R
es

o
u
rc

e
C

o
st

 o
f
M

it
ig

at
io

n
shows that the costs associated with guaranteeing
100% up time may be excessive or prohibitive;
however, a design that can tolerate a 95% up time
may be able to afford the component costs to im-
plement the necessary mitigation techniques. This
tradeoff will vary on a design by design basis, and
can be taken advantage of when implementing fault
tolerance techniques.

When considering the cost of fault tolerance
mitigation techniques, the severity of the types of
errors should be taken into account in addition to
design uptime. This idea was touched on earlier
during the discussion of persistent and non-
persistent configuration bits. To better illustrate,
consider a system which contains an FPGA design
with a dynamic persistent cross section greater than
0%. In order to guarantee that the design will con-
tinue to operate correctly, the system will need to
monitor the design for the occurrence of a dynamic
persistent error. When such an occurrence is ob-
served, the state of the design must be corrected,
for example through a system reset. However, cor-
rectly identifying such an occurrence can be a diffi-
cult, if not impossible, task. Consequently, it may be
much simpler to apply fault mitigation techniques
that effectively drive the dynamic persistent cross
section to 0%. Such a solution removes the neces-
sity for resetting the system, as well as any detection
circuitry for determining when a dynamic persistent
error has occurred. For this reason, an investigation
into mitigation techniques intended to remove the
dynamic persistent cross section would prove bene-
ficial.

Fault Mitigation through Partial
TMR

Partial application of Triple Module Redun-
dancy (TMR) is one technique that can be used for
eliminating the dynamic persistent cross section of
an FPGA design. The dynamic persistent cross sec-
tion is comprised of those configuration memory
locations that define design structures containing
feedback, as well as those which feed into these
feedback structures, as illustrated by the grayed out
section of Figure 8. In order to remove the dy-
namic persistent cross section from an FPGA de-
sign, only the structures comprising feedback and
feeding into feedback need to have TMR applied to
them. A partial TMR technique such as this can
remove the entire dynamic persistent cross section,
while reducing the mitigation cost when compared
to exhaustive TMR techniques. Instead of applying

mitigation to the entire design, mitigation need only
be applied to structures likely to propagate dynamic
persistent errors. Instead of mitigating all of the
sensitive structures, as illustrated in Figure 5, only
the persistent structures need mitigation applied, as
in Figure 6.

Figure 8: Not all of the components of a design need to
be triplicated in order to remove dynamic persistent pro-
pogation.

In order to facilitate the identification of feed-
back structures and the cone of input logic feeding
into feedback structures, a Java-based EDIF infra-
structure has been developed[9]. EDIF stands for
the Electronic Design Interchange Format[10], and
is commonly used as an intermediate file format for
representing FPGA designs. The Java-based EDIF
infrastructure is capable of parsing in an EDIF
representation of a digital design, representing the
EDIF design structure as a series of Java objects,
modifying the EDIF design and implementation,
and rewriting the EDIF design structure to file.

We have used the Java-based EDIF infrastruc-
ture to parse in FPGA designs and create a graph
based representation of a given FPGA design.
Once the graph representation of the design has
been created, graph algorithms can be used to lo-
cated feedback structures and identify those design
components that need to have TMR applied in or-
der to remove the persistent sensitive cross section.
Based upon the identification of these persistent
design sections, TMR can be appropriately applied
using the Java-based EDIF infrastructure, and the
resulting design can be written to file. The Java-
based EDIF infrastructure and corresponding tools
for graph representation and design manipulation
are fast and have been shown to be able to correctly
apply TMR mitigation to an FPGA design.

Results

We have used the partial TMR mitigation
toolkit to apply partial TMR to a real world FPGA
design. The design consists of a signal processing
kernel. The hardware on which the design has been
implemented for testing is the SLAAC1-V FPGA
board, which consists of three Virtex 1000 FPGAs.
This platform has been used extensively to perform
dynamic sensitive and persistent cross section esti-
mation[7],[8].

Because of the limitations of the FPGA board,
the partial TMR technique that we used did not
apply TMR to all feedback structures. In particular,
applying TMR to all of the block memory struc-
tures used in the feedback path of the design ex-
ceeds the block memory resources available on the
FPGA. For this reason, block memories were a
component that was not included in this particular
test of the partial TMR technique. Additionally, pin
I/O constraints did not allows for us to apply TMR
to the clock domain, nor to the inputs of the de-
sign. However, this preliminary test of the partial
TMR techniques allowed for us to evaluate the ef-
fectiveness of our initial partial TMR infrastructure.

Table 1 contains the results of our preliminary
investigation into the effectiveness of our partial
TMR infrastructure. This table shows the dynamic
sensitive and persistent cross sections for the signal
processing kernel design, both before and after
partial TMR was applied. Also shown is the FPGA
resource utilization required by each design.

Utilized
Slices

Sensitive
Bits

Persistent
Bits

Unmitigated
Design

5,778
47%

514,841
8.86%

9,503
0.16%

Partial TMR
Mitigation

8,563
70%

525,947
9.05%

2,179
0.0375%

Table 1: Initial partial TMR test results.

From these initial results we can see that partial
TMR was successful at reducing the dynamic per-
sistent cross section of the signal processing kernel
design. Indeed, the dynamic persistent cross section
was reduced by a factor of 4.26, while the required
mitigation resulted in only a 49% increase in re-
source utilization. This increase in resource utiliza-
tion favorable in comparison to the theoretical in-
crease of 300% required by exhaustive TMR tech-
niques.

Conclusions and Future Work

The dynamic persistent cross section of an
FPGA design can be greatly reduced through the
application of partial TMR. Future work will focus
on applying partial TMR to all of the feedback
structures and logic driving the feedback structures
in order to demonstrate that the dynamic persistent
cross section can be driven to 0%. Additionally,
tradeoffs between various levels of partial TMR and
resource cost utilization will be investigated. Finally,
low cost techniques for identifying the occurrence
of dynamic persistent errors in an FPGA design,
will be investigated.

References

[1] A. Ramanathan, R. Teisser, and D. McLaugin,
“Acquisition of sensing data on a reconfigurable
platform,” in International Geosciences and Re-
mote Sensing Symposium, 2001.
[2] M. Caffrey, “A space-based reconfigurable ra-
dio,” in Proceedings of the International Confer-
ence of Engineering of Reconfigurable Systems
and Algorithms, P. Plaks and P. Athanas, Eds.
ERSA, June 2002, pp. 49–53.
[3] E. Fuller, P. Blain, M. Caffrey, C. Carmichael, N.
Khalsa, and A. Salazar, “Radiation test results of
the Virtex FPGA and ZBT SRAM for space based
reconfigurable computing,” in 2nd Anual Interna-
tional Conference on Military and Aerospace Pro-
grammable Logic Devices, 1999.
[4] C. Carmichael, “Triple module redundancy de-
sign techniques for Virtex FPGAs,” Xilinx Corpo-
ration, Tech. Rep., November 1, 2001, xAPP197
(v1.0).
[5] N. Rollins, M. Wirthlin, P. Graham, and M. Caf-
frey, “Evaluating TMR techniques in the presence
of single event upsets,” in 6th Annual International
Conference on Military and Aerospace Program-
mable Logic Devices, May 2003.
[6] C. Carmichael, M. Caffrey, and A. Salazar, “Cor-
recting single-event upsets through Virtex partial
configuration,” Xilinx Corporation, Tech. Rep.,
June 1, 2000, xAPP216 (v1.0).
[7] D. Eric Johnson, Keith Morgan, Michael J.
Wirthlin, Michael Caffrey and Paul Graham, “De-
tection of Configuration Memory Upsets Causing
Persistent Errors in SRAM-based FPGAs,” Military
and Aerospace Applications of Programmable
Logic Devices (MAPLD), September 8-10, 2004.
[8] D. Eric Johnson, Michael Caffrey, Paul Graham,
Nathan Rollins and Michael Wirthlin, “Validation of

an FPGA Fault Simulator,” IEEE Transactions on
Nuclear Science, Volume 50, Number 6, December
2003.
[9] J a v a E D I F H o m e P a g e .
http://reliability.ee.byu.edu/edif
[10] Electronic Design Interchange Format.
http://www.edif.org

