
Abstract The flexibility combined with the computa-
tional capabilities of FPGAs make them a very attractive 
solution for space-based computing platforms. However, 
SRAM-based FPGAs are susceptible to radiation effects, 
including Single Event Upsets. In order to increase the fault 
tolerance of FPGA designs, fault mitigation techniques, such 
as Triple Module Redundancy, can be applied. Such tech-
niques, however, can be excessive in terms of hardware costs. 
This work investigates the tradeoffs between fault mitigation 
techniques for FPGA designs and the corresponding costs of 
such mitigation. A particular focus is placed upon identifying 
design components that serve to benefit most from the appli-
cation of fault tolerance techniques, and investigating the 
tradeoffs associated with applying mitigation to these most 
sensitive design sections.

Introduction

FGPAs are very advantageous for use in cus-
tom computing applications because of their com-
putational and reconfigurable capabilities, in addi-
tion to their low design entry cost. FPGAs have 
been successfully used in high throughput signal 
processing applications, and are suitable for the 
requirements of space based computing[1],[2].

Though suitable to the computational demands 
of space based computing, FPGAs are sensitive to 
radiation effects common in a space environ-
ment[3]. This is particularly detrimental  for FPGA 
designs, the configuration of which are defined by 
the configuration memory. A behavior of a design 
that is programmed on an SRAM-based FPGA can 
actually be altered due to radiation effects. This is 
due to a change in state in the FPGA configuration 
memory, which in turn results in a change in the 
programmed FPGA design.

Even though SRAM-based FPGAs are sensitive 
to the radiation effects common in a space envi-
ronment, FPGA designs can be made fault tolerant 
through design level mitigation techniques[4],[5]. 

Mitigation techniques which are exhaustively ap-
plied to an FPGA design can remove the possibility 
of design failures due to single points of failure. 
However, such exhaustive mitigation techniques, 
which ensure correct FPGA operation during single 
points of failure, can be expensive in terms of 
hardware resource costs and power, as well as det-
rimental  to computational capabilities in terms of 
latency and throughput.

Certain design failure modes are more critical 
than others. Additionally, certain types of designs 
and systems are more tolerant of temporary design 
failures. For these types of situations, it is not al-
ways necessary to apply exhaustive mitigation tech-
niques to an FPGA design. In fact, in such situa-
tions an investigation into partial mitigation tech-
niques and the associated tradeoffs proves benefi-
cial.

We have begun an exploration in related to 
partial mitigation techniques and the associated 
tradeoffs in terms of reliability and hardware costs. 
In this paper, we will demonstrate a technique for 
partial Triple Modular Redundancy (TMR) which, 
for single points of failure, can remove the dynamic 
persistent cross section from an FPGA design. We 
will show how eliminating this particular cross sec-
tion is beneficial and sufficient for certain types of 
designs. We will show how system fault tolerance 
design upon removal of this cross section is simpli-
fied. Finally, we will present results obtained 
through applying an initial version of partial TMR., 
and will compare the tradeoffs associated with a 
non-mitigated design, a design with partial TMR, 
and a design with exhaustive TMR.

Radiation and FPGAs

The flexibility of SRAM-based FPGAs is made 
possible by the configuration memory which de-
fines the currently programmed design of an 
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FPGA. Figure 1 illustrates a hypothetical  building 
block of an FPGA architecture. The configuration 
memory defines the function of the programmed 
components; for example, Figure 1b shows how the 
configuration memory could possible define a 4-
input AND gate followed by a flip-flop. The con-
figuration memory can be crucial to the correct 
operation of an FPGA design. As illustrated in Fig-
ure 1c, an upset due to radiation can alter the con-
tents of the configuration memory, resulting in a 
change to the design. In this case, the change is 
illustrated through a change in logic function, as the 
4-input AND gate changes into a 4-input OR gate.

Figure 1: Hypothetical configurable block of an FPGA 
architecture, illustrating how the configuration memory 
defines the FPGA design, and how  an upset within the 
configuration memory can alter the design.

The severity of the consequences of an upset 
within the configuration memory can vary greatly. 
For example, if an upset occurs within a region of 
the FPGA that is not currently being used for any 
design functionality, it is likely that no deviation 
from expected design behavior will be observed. 
For a given FPGA design, such configuration 
memory locations are referred to as non-sensitive 
or non-critical configuration bits. Those configura-
tion memory upsets which are critical to the correct 
operation of an FPGA design are referred to as 
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sensitive configuration bits. The set containing all 
sensitive configuration bits for a given design is 
referred to as the dynamic sensitive cross section.

In order to guarantee continued correct FPGA 
design operation in a radiation environment, such 
as space-based computing, the configuration mem-
ory needs to be periodically scrubbed or re-
freshed[6]. During this process, the contents of the 
configuration memory of the FPGA are examined 
and, if an upset is found, it is repaired. Any system 
intended for operation in a radiation environment 
that contains SRAM-based FPGAs as part of the 
computational payload should employ some sort of 
method for refreshing the contents of the configu-
ration memory, in order to recover from the effects 
of a sensitive configuration bit upset. The rest of 
this paper will  assume that such an implementation 
is in place.

The set of sensitive configuration bits can be 
subdivided into two categories: persistent and non-
persistent bits[7]. A non-persistent configuration bit 
is defined as one which, when upset, results in only 
a temporary design failure, without the need of a 
reset[7]. This behavior is better illustrated through 
Figure 2, which plots the difference between ex-
pected design behavior and actual design behavior 
against time for a non-persistent configuration up-
set. As the figure illustrates, upon occurrence of the 
configuration upset, design behavior deviates from 
expected. Likewise, when the configuration mem-
ory upset is repaired, design behavior returns to 
normal. No external intervention, such as a design 
reset, is required to cause such non-persistent be-
havior.

Figure 2: A plot of the difference between expected and 
actual design behavior against time, illustrating the con-
sequences of a non-persistent configuration bit upset.



Figure 3: A plot of the difference between expected and 
actual design behavior against time, illustrating the con-
sequences of a persistent configuration bit upset.

A persistent configuration bit upset is defined 
as one which, when upset, causes indefinite devia-
tion of design behavior from expected[7]. Even 
when the configuration memory upset is repaired, 
design behavior continues to deviate from normal. 
It is only through external intervention, such as a 
reset signal, that design behavior will  return to ex-
pected. Such persistent configuration bits usually 
define circuit structures which involve some sort of 
feedback, along with the circuit structures which 
feed into these feedback paths. Figure 3 illustrates 
the consequence of a persistent configuration bit 
being upset. Even though the persistent configura-
tion bit upset is repaired, expected design behavior 
continues to deviate from normal.

Figure 4: Circuit layout of a signal processing kernel 
design.

Figure 5: Map of the sensitive configuration memory 
locations for the signal processing kernel design.

A two-dimensional map can be generated illus-
trating the physical layout of sensitive locations 
within the configuration memory for a given FPGA 
design[8]. For example, the schematic for a design 
containing a signal processing kernel is shown in 
Figure 4. This figure illustrates the physical location 
of utilized FPGA resources, along with the associ-
ated routing interconnect. The two-dimensional 
map representing the location of sensitive configu-
ration bits is presented in Figure 5. Because no fault 
tolerance techniques were applied to the signal 
processing kernel design, a high correlation exists 
between the location of utilized FPGA resources 
and sensitive configuration memory locations.

Figure 6: Map of the persistent configuration memory 
locations for the signal processing kernel design.



A map similar to that presented in Figure 5 can 
also be created for the locations of persistent con-
figuration bits[7]. Such a map for the signal proc-
essing kernel design is shown in Figure 6. The set of 
persistent configuration bits is a subset of the sen-
sitive configuration cross section; consequently, the 
dynamic persistent cross section is always smaller 
than or equal to the size of the dynamic sensitive 
cross section for a given FPGA design.

FPGA Design Fault Tolerance

The severity of errors due to faults within an 
FPGA configuration memory varies. Additionally, 
the ability of a given design to tolerate varying de-
grees of error severity differs from design to de-
sign.

Figure 7: Hypothetical plot of resource cost for fault 
mitigation versus the corresponding design uptime for a 
particular design and radiation environment.

Critical applications cannot ever tolerate an 
error, no matter how infrequent or how short last-
ing the effects of the error are. Not all applications, 
however, fall  in this category. Applications design to 
gather sensory information, for example space 
remote sensing, may be able to tolerate temporary 
lapses in correct design operation. A given applica-
tion may be able to tolerate a 95% up time in terms 
of system reliability as long as the corresponding 
fault mitigation costs are low. An example plot 
contrasting design up time versus the correspond-
ing resource cost to guarantee such an uptime is 
illustrated in Figure 7. This hypothetical figure 
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shows that the costs associated with guaranteeing 
100% up time may be excessive or prohibitive; 
however, a design that can tolerate a 95% up time 
may be able to afford the component costs to im-
plement the necessary mitigation techniques. This 
tradeoff will vary on a design by design basis, and 
can be taken advantage of when implementing fault 
tolerance techniques.

When considering the cost of fault tolerance 
mitigation techniques, the severity of the types of 
errors should be taken into account in addition to 
design uptime. This idea was touched on earlier 
during the discussion of persistent and non-
persistent configuration bits. To better illustrate, 
consider a system which contains an FPGA design 
with a dynamic persistent cross section greater than 
0%. In order to guarantee that the design will con-
tinue to operate correctly, the system will need to 
monitor the design for the occurrence of a dynamic 
persistent error. When such an occurrence is ob-
served, the state of the design must be corrected, 
for example through a system reset. However, cor-
rectly identifying such an occurrence can be a diffi-
cult, if not impossible, task. Consequently, it may be 
much simpler to apply fault mitigation techniques 
that effectively drive the dynamic persistent cross 
section to 0%. Such a solution removes the neces-
sity for resetting the system, as well as any detection 
circuitry for determining when a dynamic persistent 
error has occurred. For this reason, an investigation 
into mitigation techniques intended to remove the 
dynamic persistent cross section would prove bene-
ficial.

Fault Mitigation through Partial 
TMR

Partial application of Triple Module Redun-
dancy (TMR) is one technique that can be used for 
eliminating the dynamic persistent cross section of 
an FPGA design. The dynamic persistent cross sec-
tion is comprised of those configuration memory 
locations that define design structures containing 
feedback, as well as those which feed into these 
feedback structures, as illustrated by the grayed out 
section of Figure 8. In order to remove the dy-
namic persistent cross section from an FPGA de-
sign, only the structures comprising feedback and 
feeding into feedback need to have TMR applied to 
them. A partial TMR technique such as this can 
remove the entire dynamic persistent cross section, 
while reducing the mitigation cost when compared 
to exhaustive TMR techniques. Instead of applying 



mitigation to the entire design, mitigation need only 
be applied to structures likely to propagate dynamic 
persistent errors. Instead of mitigating all  of the 
sensitive structures, as illustrated in Figure 5, only 
the persistent structures need mitigation applied, as 
in Figure 6.

Figure 8: Not all of the components of a design need to 
be triplicated in order to remove dynamic persistent pro-
pogation.

In order to facilitate the identification of feed-
back structures and the cone of input logic feeding 
into feedback structures, a Java-based EDIF infra-
structure has been developed[9]. EDIF stands for 
the Electronic Design Interchange Format[10], and 
is commonly used as an intermediate file format for 
representing FPGA designs. The Java-based EDIF 
infrastructure is capable of parsing in an EDIF 
representation of a digital design, representing the 
EDIF design structure as a series of Java objects, 
modifying the EDIF design and implementation, 
and rewriting the EDIF design structure to file.

We have used the Java-based EDIF infrastruc-
ture to parse in FPGA designs and create a graph 
based representation of a given FPGA design. 
Once the graph representation of the design has 
been created, graph algorithms can be used to lo-
cated feedback structures and identify those design 
components that need to have TMR applied in or-
der to remove the persistent sensitive cross section. 
Based upon the identification of these persistent 
design sections, TMR can be appropriately applied 
using the Java-based EDIF infrastructure, and the 
resulting design can be written to file. The Java-
based EDIF infrastructure and corresponding tools 
for graph representation and design manipulation 
are fast and have been shown to be able to correctly 
apply TMR mitigation to an FPGA design.

Results

We have used the partial TMR mitigation 
toolkit to apply partial TMR to a real world FPGA 
design. The design consists of a signal processing 
kernel. The hardware on which the design has been 
implemented for testing is the SLAAC1-V FPGA 
board, which consists of three Virtex 1000 FPGAs. 
This platform has been used extensively to perform 
dynamic sensitive and persistent cross section esti-
mation[7],[8].

Because of the limitations of the FPGA board, 
the partial TMR technique that we used did not 
apply TMR to all feedback structures. In particular, 
applying TMR to all  of the block memory struc-
tures used in the feedback path of the design ex-
ceeds the block memory resources available on the 
FPGA. For this reason, block memories were a 
component that was not included in this particular 
test of the partial TMR technique. Additionally, pin 
I/O constraints did not allows for us to apply TMR 
to the clock domain, nor to the inputs of the de-
sign. However, this preliminary test of the partial 
TMR techniques allowed for us to evaluate the ef-
fectiveness of our initial partial TMR infrastructure.

Table 1 contains the results of our preliminary 
investigation into the effectiveness of our partial 
TMR infrastructure. This table shows the dynamic 
sensitive and persistent cross sections for the signal 
processing kernel design, both before and after 
partial TMR was applied. Also shown is the FPGA 
resource utilization required by each design.

Utilized 
Slices

Sensitive 
Bits

Persistent 
Bits

Unmitigated 
Design

5,778 
47%

514,841 
8.86%

9,503 
0.16%

Partial TMR 
Mitigation

8,563 
70%

525,947 
9.05%

2,179 
0.0375%

Table 1: Initial partial TMR test results.

From these initial results we can see that partial 
TMR was successful at reducing the dynamic per-
sistent cross section of the signal processing kernel 
design. Indeed, the dynamic persistent cross section 
was reduced by a factor of 4.26, while the required 
mitigation resulted in only a 49% increase in re-
source utilization. This increase in resource utiliza-
tion favorable in comparison to the theoretical in-
crease of 300% required by exhaustive TMR tech-
niques.



Conclusions and Future Work

The dynamic persistent cross section of an 
FPGA design can be greatly reduced through the 
application of partial TMR. Future work will focus 
on applying partial TMR to all of the feedback 
structures and logic driving the feedback structures 
in order to demonstrate that the dynamic persistent 
cross section can be driven to 0%. Additionally, 
tradeoffs between various levels of partial TMR and 
resource cost utilization will be investigated. Finally, 
low cost techniques for identifying the occurrence 
of dynamic persistent errors in an FPGA design, 
will be investigated.
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