Advantages of a Grazing Incidence Monochromator in the Extreme Ultraviolet

By Sarah Barton

Thin Films

We "grow" films with thicknesses in the range of 200-400 Å

We measure reflectance properties of different films in the extreme ultraviolet

Methods used for creating films include sputtering and evaporation

Past Projects and Applications

 ESA Mars Express Probe, Venus Express Probe

- Astronomy
- Microscopy
- Plasma Diagnostics

- Synchrotron
- High Intensity
- Shorter Wavelengths
- Continuous Spectrum
- Many Different Gratings
 - Including Grazing Incidence

What is a Grazing Incidence Monochromator Anyway?

-- Insert GIMS here

Differences

- Near-Grazing vs. Near-Normal Angles
- More Reflective for Higher Wavelengths
 - Possible Higher Intensity
 - Smaller Size

Reflection and Absorption

Why We Care

Benefits

- Less Absorption
- Higher Wavelengths
- 2 Sources

• And...

Convenience!

The Under Ground Lab is a lot closer than

California!

Acknowledgements

- Dr. Alexander Shevelko
 - Dr. Turley
 - Dr. Allred
 - BYU Thin Films Group
- NASA Rocky Mountain Consortium
 - John Ellsworth