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Troy A. Wynn and Dr. Vicent B. Wickwar
Utah State University, Department of Physics

Abstract
It is well known that atmospheric data is autocorrelated. Techniques for fitting a model to autocorrelated data

without data gaps are well known. However in cases where large data gaps exist the analysis is more challenging.
By large data gaps we mean 16-24% of the possible data present. This paper explores the challenges of estimating
the correlation coefficient in an autocorrelated data set containing large data gaps and suggests ways to accurately
estimate the autocorrelation and linear trend in a signal when such cases arise.

1. Introduction
The industrialization of the last 150 years has

increased the amount of CO2 and other greenhouse
gases in the earth’s atmosphere. This large increase is
expected to have a dramatic effect on the climate of the
earth in the form of global warming. Model simulations
predict that with increasing levels of greenhouse gases
there should be a warming of the troposphere and a
cooling of the stratosphere and mesosphere, and that the
levels of cooling in the middle atmosphere should be
greater than the warming in the lower atmosphere
[Gruzdev and Brasseur, 2005]. The predicted cooling of
the middle atmosphere has generated interest in
detecting cooling trends in this region.

Many data sets span ten years or more. And data
gaps are common. In cases where only a few points are
missing interpolation is acceptable. However, upper
atmospheric observations frequently depend on weather
conditions and other factors that are not easily
controlled, such as repair and funding availability. The
USU Rayleigh lidar has been in regular operation since
1993 taking density measurements from 45 to 90 km; a
data set has been collected spanning more than ten years
with 593 nightly temperature profiles. The data set
covers a span of 3623 days. This amounts to about
16.4% of possible observations. While this seems low it
is not unusual. Over a similar time span (October 1978
through December 1989) the French lidar at Haute-
Provence collected a total of 872 nights of observations
out of 4110 possible, amounting to 21.3% of possible
observations [Hauchecorne et al., 1991].

2. Assumptions
The length of a data set and large data gaps affect

the confidence intervals for an estimated linear trend.
When ordinary least squares (OLS) regression is used it
is assumed that the errors are independent and
identically distributed random variables (sometimes
called the i.i.d. assumption) with zero mean and
variance σ2. In practice these assumptions rarely hold.
For atmospheric temperature measurements the data are
autocorrelated, there are sometimes large data gaps, and
the variance is nonconstant (gravity wave activity
during winter greatly increases the noise in the signal).

For a simple linear model such as yi = β0 + β1ti + εi, the
estimated value for the β's are consistent if the yi’s are
bounded, the ti’s are fixed, and the errors have zero
mean; that is, the probability that the estimated value b
will be close to the true value of β approaches one as the
sample size approaches infinity [Hamilton, 1992].

Normal errors are an unnecessary assumption for
OLS but are a convenient one for hypothesis testing.
(The Student’s t-distribution and the F distribution are
justifiable under that assumption.) This is where the
problem lies with fitting a linear trend to autocorrelated
data. The estimation of the trend is consistent but the
estimation of the standard error will be much larger than
need be.

3. Autocorrelation
The atmosphere has memory, meaning the previous

temperature influences the current temperature and so
forth. The motivation behind times series analysis is to
model this effect. In the atmosphere there are several
sources of variability: seasonal variation, gravity waves,
tidal effects, solar variation, secular trends,
anthropogenic influence, and volcanic eruptions to
name a few. All of these are known to influence
atmospheric temperatures. Of these the greatest source
of variability is seasonal: The annual oscillation (AO) in
the mesosphere has an amplitude of 3 to 16 K and the
semiannual oscillation (SAO) can have an amplitude of
up to 5 K. The time scales of interest are on the order of
days and therefore only autocorrelation in the noise
need be considered. And though more complicated
models are possible it best to first consider a simple
AR(1) model.

The proposed model is

yk = β tk + Nk (k = 1, …, n) (1)

where β is the linear trend, t k is the time, and Nk is the
residual term. The average of y and the average of t has
been subtracted from y and t so that both vary around
zero. The seasonal components have also been removed.
The centering of the data on the origin permits the
intercept to be left out of the regression equation and
tends to give better results when fitting for
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autocorrelation. The residuals are modeled as a first
order autocorrelation process

Nk = φ Nk-1 + ε k, or as this (2)

Nk = ε k + φ ε k -1 + φ2 ε k-2 + φ3 ε k-3 + …
+ φn-1 ε k-n-1 + φn ε k-n (3)

where the ε's are assumed to be random errors with
constant variance and zero mean. Though it is possible
to solve for the ε k's in (3) using OLS, it was found to
work only for autocorrelated data generated from
random data. In practice solving for ε k's using OLS is
problematic. The linear term is assumed to constant
whereas the errors are non-constant. This is also why
the data was centered at the origin; the intercept would
be very large as well as the ε k's. Moreover, if more
parameters are included in a model the R2 value
increases. Such a model would be a near perfect fit with
outrageously large parameter values.

4. A Simple Case
First a simple case of purely autocorrelated data

will be considered. The signal consists of first order
autocorrelated Gaussian noise with no data gaps. This is
represented by the following sequence.

N0 = ε 0 (5)
N1 = φN0 + ε 1

N2 = φN1 + ε 2

N3 = φN2 + ε 3...

where the ε 's are drawn from normal distribution with
mean zero and unit variance, and φ is a selected
correlation coefficient. Solving for the ε's will, in effect,
“unzip” the series.

ε 0 = N0 (6)
ε 1 = N1 - φN0

ε 2 = N2 - φN1

ε 3 = N3 - φN2...

The ε's can be extracted by iterating the sequence shown
in (6). However, if the correlation coefficient is
unknown then solving for the errors is not a
straightforward task. One could apply the Durbin-
Watson statistic and use the relationship d ≈ 2(1-r),
where d is the Durbin-Watson statistic and r is the
correlation coefficient, but this would not work if there
are large data gaps. The correlation coefficient can also
be calculated using a formula similar to the one
employed in solving for β in (1). But a different
approach was better suited to this application.

Figure 1. The distribution of the correlation coefficients 
(black) with fitted normal distribution (red). 

The selected approach focuses on minimizing the
errors. First a value for the autocorrelation coefficient is
guessed; the sequence in (6) applied; and the variance σ2

of the ε's is calculated. This process is repeated over a
range of φ's; the one that minimized σ2(ε) is selected.
Though a minimum variance of the ε's can always be
found in this way, it was found that when σ2 is
minimized the correlation coefficient is often near its
true value. A distribution of φ's was recovered (Figure
1). It can be seen from this figure that the distribution of
the correlation coefficients are well approximated by a
normal distribution.

To further validate this technique OLS was applied
to (3), with the correlation terms 1, φ, φ2, φ3, … being
the explanatory variables. It was found that if the data
was centered at the origin then the coefficients ε k, ε k -1,
ε k-2, ε k-3,… were identical to the ε's recovered from
unzipping (6); the sum of the absolute value of the
differences being on the order of 10-14.

5. Missing Data Points
The following equation can represent an AR(1)

signal.
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where Zn is the measured signal, ε n is the random
component, and φ the correlation coefficient. This can
be rewritten as
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To represent a data set containing missing data points
multiply the terms in the summation by an indicator
function.
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The indicator function Ii has a value of 1 if the i'th data
point is present and 0 if not. I* is the converse: 0 if
present and 1 if not. Note that Ii + Ii

* = 1 for all i. Zn is a
measured data point which contains no missing
information. So replacing Zn in (9) by (7) gives
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where ζ is the true correlation value and ai' is the true
noise. Multiplying the terms in the first summation by I
+ I* gives
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Then collecting terms
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And finally taking the variance of (12)
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If the correlation coefficient is guessed correctly φ ≈ ζ.
Expanding the variance gives
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remembering that the last two expectation values are a
variance, the sum being positive. If the errors εi can be

recovered such that they are approximately equal to the
true noise ai then the variance of εn will have been
minimized. Though this is not a proof it does serve to
illustrate that an accurate guess of the correlation
coefficient can minimize the variance.

Figure 2. How the variance of the ε's change with 
(guessed) correlation coefficient. A minima can be seen 
near the true value of the correlation coefficient.

A procedure similar to the one described in the
preceding section was applied to an AR(1) signal with
USU data gaps. A total of 3623 data points were
randomly drawn from a normal distribution and filtered
to make an AR(1) signal. From this 593 data points
were drawn matching the USU data gaps. It was found
that even with these gaps the distributions of the
correlation coefficient were reasonable. Furthermore the
standard deviations for these distributions are nearly the
same those for the no gaps case. And the standard
deviation between the no data gaps cases were nearly
the same.

6. Other Cases
In the USU data set of 593 data points 287 (48%)

are consecutive, 89 have 2 day spacing, 46 have 3 day
spacing, and 29 have 4 day spacing. If the procedures
described above are applied to an uncorrelated signal
the correlation coefficient distribution has a large spike
near the origin (Figure 4) indicating that no
autocorrelation is present in the data. For cases with
evenly spaced data gaps of two, three, and four days a
similar spike is found near the origin for the smaller
values of correlation coefficients (φ ~ 0.1 to 0.3). (See
Figure 5, Figure 6, and Figure 7.) With data gaps
present the variance on the estimated autocorrelation
coefficient is larger for smaller values of φ; and as φ
gets larger the estimate of the variance becomes nearly
equal to the no gaps case. (See Table 1.) This effect is
due to the greater influence of previous information on
the current measurement when autocorrelation is strong.
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Further, as the size of the gaps increase so does the
“zero spike” effect. Figure 5 shows that the zero spike is
prominent up to φ = 0.3 for two-day gaps; Figure 6
shows a prominent spike up to φ = 0.4 for three-day
gaps; and Figure 7 has a prominent spike up to φ = 0.5
for four-day gaps.

Figure 3. The distribution of the correlation coefficients with 
USU data gaps (black). Fitted normal distribution (red). 

Table 1. The standard deviation of a Gaussian 
distribution fitted to the probability densities 
corresponding to no gaps, USU data gaps, two-day gaps, 
three-day gaps, and four-day gaps. 

phi No gaps
USU 
gaps

2 day 
gaps

3 day 
gaps

4 day 
gaps

0.1 0.0467 0.0600 0.1297 0.1917 0.2645

0.2 0.0447 0.0576 0.1578 0.2373 0.2846

0.3 0.0429 0.0526 0.0920 0.2389 0.3133

0.4 0.0422 0.0499 0.0727 0.1093 0.3142

0.5 0.0393 0.0454 0.0562 0.0738 0.1067

0.6 0.0371 0.0395 0.0466 0.0540 0.0648

0.7 0.0324 0.0334 0.0369 0.0377 0.0431

0.8 0.0270 0.0261 0.0286 0.0260 0.0260

0.9 0.0211 0.0161 0.0211 0.0178 0.0160

Figure 4. The distribution of correlation coefficients obtained 
from noise. 

Figure 5. The probability densities for φ from two-day data 
gaps data. The probability densities are shown in black; the 
red is a Gaussian distribution fitted to the data.

Figure 6. The probability densities for three-day data gaps. 
The densities for φ = 0.1, 0.2, and 0.3 are not shown as they 
are nearly identical to those in Figure 5.
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Figure 7. The probability densities for φ = 0.5-0.6 from four-
day gaps data. The probability densities for less than φ = 0.5 
are not shown as they are nearly identical to those in Figure 6
and Figure 5. 

7. Effects on Detecting Linear Trends
The uncertainty on the autocorrelation coefficient

has important consequences for estimating the
significance of a linear trend. Frederic [1984] gives a
formula for calculating the variance of an estimated
trend for the following model

yi = bo + b1ti + εi . (15)

The variance of b1 is given by

 




i

tt

Y
b

])[(

)(

)1(

)1(
)ˆ(

2

2

2

2

1
2 




(16)

where the autocorrelation between consecutive
measurements is given by φ = e –λΔ t, where Δt is the
time between measurements. This autocorrelation
function shows that the autocorrelation decreases with
increasing time between measurements. Thus closer
spaced data points do not always result in a more
accurate estimation of the standard error of the linear
trend. If (16) is being used to estimate the variance of a
linear trend then a good estimate of the autocorrelation
function φ is needed. What this paper shows is that
determining the autocorrelation coefficient from the
data can be problematic. Especially when there are data
gaps present in the data set.

The probability density functions shown above
were estimated using kernel density estimation. In the
cases with evenly spaced data gaps a spike near the
origin is evident. The area under each probability
density gives the probability of finding a range of values
for the correlation coefficient. Estimating the area under
the zero spike gives the probability that autocorrelation
is not detectable in a signal. (See Figure 8 for example
and Table 2 for probabilities.) From Table 2 it can be
seen that the probability of being unable to detect
autocorrelation in a signal with a correlation coefficient
of 0.4 is 15% for three-day gaps and 31% for four-day
gaps, suggesting that modeling autocorrelation becomes
less useful with greater time intervals between

measurements. However, the table is for evenly spaced
data. In the case of USU data gaps where 48% of the
data points are consecutive the probability density
functions shown in Figure 3 have no zero spike. Hence,
an autocorrelated model can be beneficial.

Table 2. The probabilities of not detecting 
autocorrelation with even gaps data.

φ two-day three-day four-day

0.1 0.49 0.53 0.53

0.2 0.29 0.48 0.52

0.3 0.07 0.34 0.47

0.4 0.005 0.15 0.31

Figure 8. The area under the “zero spike”. The 
plot above is for φ = 0.1 with two-day data gaps. 
The probability of no detectable autocorrelation 
is 49%. 

Krzyścin [1997] proposed an iterative procedure for
fitting a linear trend to autocorrelated data. The
procedure is as follows. The model

yk = αm + βm tk + φm(yk–1 – am–1 – βm–1tk–1)
+ ε k

m, k = 1,2,3,…n, (17)

where αm, βm, and φm are the fitted parameters at the
mth step and am–1and βm–1 are the fitted parameters from
the previous step is iterated. The term in the parenthesis
approximates the Nk–1 residual term. While this iterative
technique converges quickly (two or three iterations) it
is not clear how to handle missing data points. I have
adapted Krzyścin’s approach to handling missing data
points by using a more involved method to approximate
the Nk–1 residual term. What I have sown in the previous
sections of the this paper is that if a large percentage of
the data points are consecutive, large data gaps
notwithstanding, the approximation of the correlation
coefficient is stable.
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8. Problems approximating the Nk–1 Residuals
First order autocorrelation can be modeled as

Nk = φNk–1 + ε k 

where Nk is the kth residual, Nk–1 is the previous
residual, φ is the correlation coefficient, and ε k is the
random error component. The equation above can be
rewritten as a series of equations

N1 = ε1

N2 = φ(ε1) + ε2

N3 = φ(φε1 + ε2) + ε3

N4 = φ(φ2ε1 + φε2 + ε3) + ε4...

where the terms in the parenthesis approximates the Nth
residual. If there are missing data points then summing
the terms in the parenthesis while leaving out the
missing data points can approximate the residuals. For
example if the first 6 days in the data set are spaced 1, 2,
3, 5, 9, and 16 then we would have

N1 = ε1

N2 = φ(ε1) + ε2

N3 = φ(φε1 + ε2) + ε3

N5 = φ(φ3ε1 + φ2ε2 + φ1ε3) + ε5                   (18)
N9 = φ(φ7ε1 + φ6ε2 + φ5ε3 + φ3ε5) + ε9

N16 = φ(φ14ε1 + φ13ε2 + φ12ε3 + φ10ε5 + φ6ε9) + ε16....

Again, the terms in the parenthesis approximating the
Nk-1 residual. (For convenience I shall refer to the N's as
residuals and the ε's as errors.)

Three techniques for approximating the N terms in
(18) were attempted. In the first the data gaps were
ignored and the residuals were applied according to
(17). But this was found to produced very inaccurate
results. The two other methods were more productive
and had results very similar to each other. The first
method involved OLS regression on (1), then the
correlation coefficient of the errors was found using the
variance minimizing techniques described in this paper.
The errors from the fit are then used to approximate the
terms in the parenthesis in (18). This replaces the yk–1 –
am–1 – βm–1tk–1 term in (17). The process is iterated until
no further improvement is detected. While it was found
that a relatively accurate estimation of the correlation
coefficient could be achieved the nature of the iteration
introduces a small instability. Since the correlation
coefficient from the previous step is used to calculate
the residuals for the current step there is a tendency for
the correlation coefficient to oscillate between two
values. The oscillations however are small (0.01 or
less). I shall refer to this first technique as residual
simulation (RS).

The second technique is very similar to the first. In
place of using the errors to estimate the N values, the
residuals were estimated from yk–1 – am–1 – βm–1tk–1 (17).
These residuals were then put into equation (18) in
place of the errors. OLS regression was performed and
the procedure repeated. I shall refer to this second
technique as hybrid residual simulation (HRS).

These techniques were applied to simulated data
consisting of a linear trend of –0.5 K/year, an
autocorrelation correlation of 0.7, and a standard
deviation of 6.0 K in the noise (typical for the
mesosphere). Gaussian noise was generated and then

Figure 9. The probability densities for the 
correlation coefficient (above) and the linear trend 
(below). The green is the estimate for the no 
autocorrelation case. The red corresponds to RS; 
blue corresponds to the autocorrelated data with no 
data gaps; and the black is HRS. 

autocorrelated and added to the linear component. Data
was selected from this so as to duplicate the USU data
gaps. A second autocorrelated data set was created with
the same values but no data gaps. And a third was also
created with no autocorrelation. This procedure was
repeated 1300 times to create a distribution of the linear
term as well as the correlation coefficient. The cooling
rate of 0.5 K/year was selected because it is near the
average value of cooling rates measured in the
mesosphere [Beig et al., 2003].

As can be seen from Figure 9 the distribution of the
correlation coefficient for the HRS is much tighter than
the no gaps case and RS. The case with no data gaps is
also broader than the case with USU data gaps. As far as
the linear trend is concerned HRS and RS did equally
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well and both produced a tighter distribution than the no
gaps case. Using (16) to calculate the standard deviation
of the linear term we get a value of 0.202 K/year which
is very close to the measured value from the simulations
of 0.205 K/year. As Frederick pointed out the number of
measurement required to detect a significant linear trend
decreases as the spacing between the measurements
increases. Since the blue distribution is from
consecutive measurements we would expect the
standard deviation to be greater than a similar data set
with data gaps. As was demonstrated earlier in this
paper, evenly spaced data gaps make estimating the
correlation function difficult. However, in the case of
data sets where there are large data gaps but many
consecutive measurements the best of both can be had.
If a large portion of the measurements is consecutive
then one can reasonably estimate the correlation
coefficient; further, large data gaps decrease the number
of data points needed to detect a significant trend. Thus
Figure 9 shows a tighter distribution on the linear trend
estimates for RS and HRS than for the no data gaps
case. There is however the question of the distribution
for the correlation coefficient, the distribution for RS
and HRS are tighter than the no gaps case; and a
markedly tighter distribution for HRS is obvious. This
result is not intuitive. If there were no data gaps present
one would expect a better estimation of the correlation
function. It could be that the residual simulation and
hybrid residual simulation are more accurate ways of
approximating the residuals. But whatever the case may
be the question remains open to inquiry.

9. Conclusions
It is possible to accurately measure the

autocorrelation and the linear trend from a data set with
large data gaps if certain conditions apply: if large data
gaps are present in a data set and a large portion of the
measurements are consecutive. If this be the case then
an accurate estimation of the linear trend is possible. If
the data is evenly spaced then estimating the correlation
coefficient becomes problematic and fitting an
autoregressive model to the data is questionable. Of the
two techniques that were viable, namely residual
simulation (RS) and hybrid residual simulation (HRS),
HRS proved to estimate the correlation better than RS
and estimated the linear trend equally well with RS.
Modeling the autocorrelation in this way gave better
results on linear trend estimation than the case with no
data gaps. The question as to why HRS gave a much
tighter distribution than RS is open to further
investigation. It should be kept in mind that the equation
for estimating the variance of the linear trend (16) is
accurate only as far as the accuracy of the correlation
coefficient will permit.
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