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ABSTRACT 

The application of active noise control (ANC) to interior cabin noise of helicopters is a 
challenging problem because of multiple tones and significant broadband frequency content.  The most 
common control approach is to use the standard filtered-x algorithm.  For this algorithm, the convergence 
and tracking speed is dependent on the eigenvalues of the filtered-x autocorrelation matrix, with these 
eigenvalues being frequency dependent.  To maintain stability, the system must be implemented based on 
the slowest converging frequency that will be encountered, which can lead to significant degradation in the 
overall performance of the control system.  This paper will discuss an approach that has been developed 
which largely overcomes this frequency dependent performance, in a manner that maintains a relatively 
simple control implementation but significantly improves the overall performance of the control system.  
The favorable convergence characteristics are demonstrated through the application of helicopter noise in a 
mock helicopter cabin. 

INTRODUCTION 

Helicopter cockpit noise has 
become an increasingly important 
problem for designers to address.  
Research at NASA Langley has 
indicated that the dominant frequencies 
of helicopter noise fall in the range 
where the human ear is most sensitive 
and that the issue of cockpit noise is a 
significant concern and needs to be 
addressed. 

Traditionally, noise reduction has 
occurred through improved design of 
rotor systems or through passive 
attenuation devices installed in the 
cockpit itself.  Generally, passive noise 
cancellation is limited to attenuating 
high frequency noise where the 
wavelengths of the sound are relatively 
short. In the case of low frequency noise, 
active noise control (ANC) has shown to 
be an effective approach.  One of the 
most common control algorithms for 
implementing ANC is the filtered-x 
LMS algorithm (FXLMS)1-4.  

One of the limitations of the 
FXLMS algorithm is its slow frequency 
dependent convergence properties.  An 

improvement to the algorithm has been 
made which largely overcomes this 
limitation. This development is 
explained by first giving some necessary 
background information.  Second, a new 
approach to implementing the FXLMS 
algorithm is developed.  Lastly, the 
application to helicopter noise is 
discussed through a brief 
characterization of helicopter noise 
followed by a presentation of results 
using the new control approach. 

 
BACKGROUND 

As a basis for understanding the 
new control approach, a brief discussion 
of the FXLMS algorithm and its 
convergence properties are given.  

 
FXLMS Algorithm 

 
The goal of the FXLMS 

algorithm is to minimize the mean-
squared error by adaptively updating 
W(z), a vector containing control 
coefficients of an FIR filter.  A basic 
block diagram of the FXLMS algorithm 
is shown in Figure 1.  In Figure 1, 
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signals are represented in both the time 
domain and in the frequency domain*.  
Boucher, Elliot, and Nelson5 provide a 
good reference for deriving the control 
filter update equation for W(z). 

 

 
 
Figure 1. Block Diagram of the FXLMS 
Algorithm 

 
To adaptively update the control 

coefficients of W(z), the method of 
steepest descent is used on the gradient 
of a quadratic cost function, )(tξ , 
defined as the mean-squared error.  For 
each iteration of the algorithm, W(z) 
takes a step of size µ, the convergence 
coefficient, times the gradient in search 
of a single global minimum that 
represents the smallest attainable mean-
squared error.  The control filter update 
equation for W(z) can be expressed in 
the time domain as    

)()()()1( trtetwtw µ−=+    (2.1) 

where again  µ is the convergence 
coefficient.   

One difficulty in implementing 
the FXLMS algorithm is that the 
secondary path, represented as H(z) in 
Figure 1, is unknown.  This secondary 
path is an impulse response that includes  
the effects of digital-to-analog 
converters, reconstruction filters, audio 
                                                 
* A lower case letter with a t in parenthesis 
represents the signal in the time domain, for 
example d(t), and capital letter with a z in 
parenthesis represents the signal in the frequency 
domain, for example D(z).  Both are used in the 
derivation of the control filter update equation.     

power amplifiers, loudspeakers, the 
acoustical transmission path, error 
sensors, signal conditioning, anti-alias 
filters, and analog-to-digital converters 
In practice it is impossible to get H(z) so 
an estimate, Ĥ(z), of the secondary path 
must be used.  This estimate is usually 
obtained through a process called system 
identification.  Once obtained, the 
secondary path estimate is used to create 
r(t), the filtered-x signal, that is used in 
updating the control coefficients of W(z).   
The reference signal, x(t), is then filtered 
with these control coefficients to 
produce the desired control signal.  

 
Convergence Characteristics 

 
The use of an estimate of the 

secondary path transfer function, Ĥ(z), 
effects the stability and convergence 
rate1 of LMS based algorithms.  Lower 
convergence rates and instability are 
directly related to errors in the 
estimation of the secondary path transfer 
function.  Estimation errors can be 
considered in two parts: errors in the 
magnitude estimation and errors in the 
phase estimation3.  Magnitude 
estimation errors will alter the maximum 
stable value of the convergence 
coefficient through an inverse 
relationship4.  It has been shown that 
phase estimation errors greater than +/- 
90 degrees cause algorithm instability5.  
Magnitude estimation errors tend to be 
less important than phase errors, as 
magnitude errors can be compensated 
for in the value of the convergence 
coefficient or through the adaptive 
filters.   

The convergence coefficient, µ, 
must be selected for each application.   
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       Figure 2. Sample Plot of Eigenvalues for an ANC Application 

                                                                               
Several factors affect the choice 

of µ including:  number of control 
sources and sensors, time delay in the 
secondary path, digital filter length, 
system amplifier gains, the type of noise 
signal to be controlled (random or tonal), 
and the estimate of the secondary path 
transfer function1.  An estimate for the 
largest value of the convergence 
coefficient that would still keep the 
system stable is made by looking at the 
eigenvalues of the filtered reference 
signal autocorrelation matrix.  The 
autocorrelation matrix is defined in 
Equation 2.2 where E is the expectation 
operator and R(n) is a matrix whose 
column represents the filtered-x signal. 

                )}()({ nRnRE T

                 (2.2) 

The eigenvalues of the autocorrelation 
matrix dictate the rate of convergence of 
each filter coefficient.  The maximum 
stable convergence coefficient that can 

be used for control is the inverse of the 
maximum eigenvalue of all of the filter 
coefficients. Disparity in the eigenvalues 
forces some filter coefficients to 
converge rapidly and others to converge 
more slowly6.  A plot of the maximum 
eigenvalues at each frequency for a 
sample ANC application is shown in 
Figure 2.  The data for the graph were 
computed by calculating the maximum 
eigenvalue from the autocorrelation 
matrix for tonal inputs from 0-500 Hz.  
To generate the filtered-x signal a 
secondary path from a mock cab was 
used. 

From Figure 2 it is apparent that 
the maximum eigenvalue varies at each 
frequency meaning that the system will 
convergence more quickly at some 
frequencies and less quickly at other 
frequencies.   While the fastest 
convergence rate of the system is found 
at the frequency with the smallest 
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eigenvalue, it cannot be used or the 
system can become unstable1.  The only 
way to assure system stability is to use 
the convergence rate found at the 
frequency with the largest eigenvalue.  
While in reality it is the slowest possible 
convergence rate for the system, it is 
nevertheless called the maximum 
convergence rate for the system because 
it is the largest rate that still assures 
system stability.  

Degraded convergence and 
tracking performance is expected in 
cases where the target frequency is not 
steady or where several target 
frequencies are present.  One proposed 
solution for several target frequency 
applications improves convergence by 
implementing in parallel a FXLMS 
algorithm for each frequency to be 
controlled6,7.  Doing so allows individual 
convergence parameters to be chosen for 
each target frequency at the expense of 
computational complexity.  A single 
convergence coefficient that could be 
optimized over all frequencies to be 
controlled could lead to improved 
control performance in terms of the 
convergence and tracking capabilities of 
the algorithm without increased 
computational complexity. 

 
NEW APPROACH 

If the variance in the eigenvalues 
of the autocorrelation matrix was 
removed, a single convergence 
parameter could then be chosen that 
would converge at the same rate over all 
frequencies.  The autocorrelation matrix  
is directly dependent on the filtered-x 
signal, R(n), which is computed by 
filtering the input signal with the 
secondary path transfer function.  The 
input signal is usually a reference signal 
taken directly from the sound field to be 

controlled and cannot be changed.  
Changes to the autocorrelation matrix 
must stem from changes to the 
secondary path transfer function.  As 
noted previously, variance in modeling 
the magnitude of the secondary path 
transfer function can be compensated for 
by the adaptive filters, but phase errors 
in excess of 90 degrees lead to system 
instabilities.  Ideally then, changes 
would be made to the magnitude of the 
secondary path model while the phase 
information is preserved.  

A relatively simple modification 
to the magnitude coefficients has lead to 
improvements in the convergence 
characteristics of the algorithm.  The 
basic procedure is as follows: 

 
1. Get the time domain impulse 

response of the secondary path 
transfer function through an 
offline system identification 
process 

2. Take the Fast Fourier Transform 
(FFT) of the impulse response 

3. Compute the mean value of the 
FFT 

4. Divide each value in the FFT by 
itself and then multiple by the 
mean value obtained in step 3 

5. Compute the inverse Fast Fourier 
Transform and use the new 
modified impulse in the FXLMS 
algorithm 

 
This procedure flattens the magnitude 
coefficients of the secondary path model 
while preserving the phase information.  
Figure 3 shows the original and flattened 
secondary path magnitude coefficients 
and also shows that the phase 
information has been preserved.  Figure 
4 shows the system eigenvalues using 
the original and modified secondary path 
model.
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Figure 3. Magnitude and phase of original and modified secondary path model 
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Figure 4. Original and modified maximum eigenvalues 
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In the top graph of Figure 4 the 
eigenvalues in each case have been 
normalized by the largest of the original 
eigenvalues. In the bottom graph of 
Figure 4 both the original and modified 
eigenvalues have been normalized by 
their individual maximum eigenvalues.  
It can be seen (top subplot) that 
compared to the original case the 
modified eigenvalues are more uniform 
(“flat”) over all frequencies.  It can also 
been seen (bottom subplot) that the 
modified eigenvalues are not perfectly 
flat over frequency.  An attempt to 
quantify the improvement has been 
made by using the following metrics: 
 

1. Span – maximum eigenvalue 
divided by the minimum 
eigenvalue.  Ideally equal to one.  

2. RMS value – root mean square.  
Ideally equal to one. 

3. Crest factor – maximum 
eigenvalue divided by the rms 
value.  Gives a sense of how 
close the rms value is to the peak 
value. Ideally equal to one. 

 
The comparison of using these metrics 
can be seen in Table 1. 
 

Table 1. Comparison of modified and original 
eigenvalues. 

Metric Original Modified 
Span 1506 239 
RMS 0.314 0.440 

Crest Factor 3.18 2.28 
 
In the Table it can be seen that the 
modified case has a lower span, higher 
rms value, and a lower crest factor.  In 
all three metrics, the values for the 
modified case are closer to the optimum 
values that would be present if the 
eigenvalues across all frequencies were 
exactly the same.  While not the 
optimum, the modification to the 

secondary path that gives these 
improved eigenvalues should make a 
noticeable improvement in the 
convergence speed of algorithm at 
different frequencies. 

 
HELICOPTER NOISE 

The control of helicopter noise is 
a challenging problem in that there are 
multiple noise sources that contribute to 
overall sound level observed in the 
interior of the cabin.  In the frequency 
range where active noise control is most 
effective (0-500 Hz), three major noise 
sources have been identified (see Table 
2).  By using known gearing 
relationships for the different 
components, the fundamental frequency 
for each of these three sources has also 
been identified. 
 

Table 2. Major sources of helicopter noise and 
their corresponding fundamental frequencies. 

Source Fundamental 
Frequency 

Main Rotor 13.6 Hz 
Tail Rotor 80.9 Hz 

Engine 135.8 Hz 
 
As can be seen in Table 2, the 
fundamental frequencies of these three 
sources are quite low in frequency; this 
results in several higher order harmonics 
below 500 Hz for each source.  The 
significance of this identification is that 
there are twenty or more tonal 
components that can be targeted by the 
active control system.  
 As previously discussed, multiple 
tonal noise sources can be a challenge 
for the control algorithm because it will 
converge at a different rate for each 
frequency.  The convergence parameter, 
µ, will be limited by the slowest 
converging frequency. In order to test 
the effectiveness of the modified
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Figure 5. Power spectral density of helicopter noise with engine tones identified. 

 
algorithm in overcoming this limitation 
for helicopter noise, an ANC simulation 
was performed. 

Recordings of three interior 
microphones of a Robison R44 
helicopter were obtained, in addition to a 
simultaneous recording of the engine 
tachometer.  The engine tachometer was 
recorded for use as the reference signal 
for controlling the tonal components that 
are created by the engine.  Similar 
reference signals for use in controlling 
the main and tail rotor tonal components 
will be gathered for use in later 
experimentation.  For now, the control 
simulations will be limited to controlling 
the engine tones.  Figure 5 shows the 
power spectral density from one of these 
microphone recordings. The three engine 
tones are identified in the Figure. 

 
RESULTS 

Control simulations were made with 
both the original and the modified 
FXLMS algorithm. The helicopter 
recordings were used as the sound 
source.  A secondary path model was 
obtained by getting an impulse response 
from a mock helicopter cabin fabricated 
for use in this and other experiments.  
The results shown will focus on the 
convergence speed of the algorithm for 

the three engine tones.  For both test 
cases, the maximum stable convergence 
parameter was used.  Figure 6 shows the 
results when the original algorithm was 
used.  In the Figure, the normalized error 
signal is plotted as a function of time for 
the three engine tones.  For each subplot, 
the convergence speed (how long it takes 
the algorithm to reduce the error signal) 
can be observed.  It is seen that the 
algorithm converges much quicker at 
136 Hz (~0.4sec) and 408 Hz (~0.4sec) 
than at 272 Hz(~1.2sec).  In terms of 
sound attenuation, less attenuation in 
practice is expected at 272 Hz. 

Figure 7 shows the results when the 
modified algorithm is used.  It is seen 
that the convergence speed for each of 
the three frequencies is more uniform.  
In comparison to the results for the 
original case, the modified algorithm 
converges faster at each of the three 
frequencies; 136 Hz (< 0.4sec), 408 Hz 
(< 0.4sec), 272 Hz(< 0.4sec).  The 
important implication of these results, is 
the additional sound attenuation that 
should result from a faster convergence 
at each frequency.  Though not 
quantified in this report, the difference in 
attenuation will be largest in an actual 
helicopter where the target frequencies 
change with time as the engine speed 
changes for different flight conditions.  
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Figure 6. Convergence speed of engine tones 
using original algorithm 
 

 
Figure 7. Convergence speed of engine tones 
using modified algorithm 

CONCLUSIONS 
A new modified FXLMS 

algorithm has been developed which 
offers improved convergence 
characteristics compared to the original 
FXLMS algorithm.  This modified 
algorithm has been applied to controlling 
the engine tones of helicopter noise and 
has shown to converge as much as three 
times faster than the original algorithm 
at the frequencies tested.  

The greatest advantage of the 
new algorithm is its simplicity.  It can be 
implemented in only a few lines of code 
and adds essentially no computational 
complexity to the algorithm.  

Further development and 
experimentation of the new modified 
algorithm is planned to fully explore its 
potential in increasing the performance 
of the FXLMS algorithm for ANC. 
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