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Abstract. During speech the vocal folds vibrate resultingaudible sounds that are
transmitted through the vocal tract as well asatibns that are transmitted through the
body tissue to the skin surface. These skin suN#mations can be detected by contact
microphones and used to transmit speech. Howelverskin attenuates high frequency
content and in some locations muffles the signallteng in poor speech quality. To
reconstruct a signal that better matches the miwnog signal a finite impulse response
filter is fit to an average transfer function oéthccelerometer signal. When implemented
this filter restores much of the lost frequencyteomh and in the presence of background
noise results in a signal with good intelligibilignd less noise than the microphone
signal.

between the contact microphone location and thalvoc
1 Introduction tract. _ _
During speech the vocal folds vibrate, resulting in_ . 1Mis Study has been conducted in two parts.
audible sounds. In addition to being transmitted! NS Paper will present the results from the seqerd
through the vocal tract, these vibrations are als@f the study. The first portion of the study invgated

transmitted through several layers of various typies V\r/]here_ thelfreqlier:jcy res::)onse rc]’” the skin is mist Iid
tissue throughout the head and neck, resultingnails 1€ signal picked up from the air (Munger an
but measurable, skin surface vibration. Contac homson, in r_ewew). In_thls partion of '_[he studg w
microphones sense these skin surface vibrations f6und that while the skin attenuates high frequency

speech transmission, as opposed to acoustﬁf)mem;]I SOme h'lgh frequencyh C(f)ntent ca(r; stghln'be
microphones that sense air vibrations that radiare ~ 9€tected at some locations on the face. We detedmin

the mouth. that locations other than on the throat, where many
Contact microphones have one significantcu”en“y used contact microphones are placed, can

advantage over acoustic microphones in environmenfiCk UP good speech signals. We also found that
with elevated ambient noise levels in that theyssen different types of sounds were picked up better at
very little background noise. In comparing the ose different locations. The nasa}l sounds were picked u

throat contact microphones to acoustic microphoneg€tter on the nasal bone while the vowel sounde wer
for use in rotary-wing aircraft, Acker-Mills et al. Picked up best above the upper lip. Based on power

(2004) found that throat microphones hagsPectral density (PSD) comparisons it was found tha

approximately a 10 dB higher signal-to-noise ratio the best locations overall for speech transmisgiara

Commercially ~ available  contact microphones,contaCt microphone are the nasal bone, above the

however, suffer from poor speech quality and!PPerlip, the temple and the zygomatic bone.
intelligibility (Acker-Mills et al., 2004; Shimamura Although some of the locations yielded speech

and Tamiya, 2005). This is a result of the Skinlsignals that were generally understandable, many

vibrations being influenced by the many tissue flaye |0cations on the face and neck produced signals tha
g y y y were muffled and hard to understand. Many of these

(e.g. skin, fat, muscles, bones) of the neck ok fac i :
locations that produced poorer speech signals akere
locations that are more convenient to place a cbnta


https://core.ac.uk/display/32556662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

microphone, such as over the vocal folds or intfiadn  were attached to 15 locations on the face and péck
the ear. The objective of this portion of the reska 14 male and 10 female subjects using medical-grade
was to find a simple filtering method to reconstruc double-sided adhesive tape. In this paper we will
from the accelerometer data a clear signal thatd®u present the results for the accelerometers plaoed i
more like the microphone speech signal. This filtefront of the ear and over the vocal folds for onalen

was then be applied to accelerometer signals acspe subject. These accelerometers measure the magnitude
recorded in the presence of elevated backgroursknoiand frequency of the skin vibration at each logatio

to compared with the microphone signals of the samehile the subject speaks. An acoustic microphong wa
speech recorded in the presence of elevategsed to simultaneously acquire the audible speech.

background noise The subjects sustained the vowels /adt)(b
/oo/ (oat), /ah (caught), /ee/ (B4), the nasals /m/ and
2 Methods /n/, and the fricative /f/ for 4 to 5 seconds eathe

subjects also said the phonetically balanced phkrase
2.1 Data Collection

To collect the skin vibration data small accelertere * Riceis often served in round bowls.
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Figure 1. Transfer functions for the sounds with Figure 2. Transfer functions for the phrases with their
their average for one male subject over the vocal average for one male subject over the vocal folds.

folds.



e Thebirch canoe slid on the smooth planks

* Gluethe sheet to the dark blue background.
» These days ehicken leg is a rare dish.

* It's easy to tell the depth ofveell.

2.2 Data Analysis

2.2.1 Transfer Function Estimate

The sound files were first truncated so that
only the portion of the data where the subject was

(Italicized words are used to reference the plsréise speaking is analyzed. For a given sound or phizse t
the figures.) The sounds and phrases where recardedtransfer function estimate is first calculated far

a quiet environment as well as with 95 dB backgebun particular location using the following equation

white noise.
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Figure 3. . Comparison of the average transfer

functions for the sounds — ) and phrases{- )

for one male subject over the vocal folds.
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Figure 4. Comparison of the average transfer

for one male subject in front of the ear.

Txy(f): ny(f) ,

Py f
whereT,, is the transfer function estimatg,, is the
cross power spectral density of the accelerometer t
the microphone, andPy is the PSD of the
accelerometer. The MatLab command tfestimate was
used to perform this calculation.

The transfer functions for all the sounds were
averaged at each frequency to obtain an average
transfer function for all sounds. An average transf
function was also found for the phrases. Theseageer
transfer functionsl,, .y were then smoothed using a
triangular smoothing weighted average

Txy,i—z + 2T><y,i—1 + 3Txy,i + 2Txy,i+1 +T

— Xy,i+2
xy,avg,i,Smooth — 9 h

T

This smoothing average includes the two points on
either side of the current value but weights thess|
than the current value. Smoothing was performed in
order to better fit the filter coefficients.

2.2.2 Filter Coefficients

A finite impulse response (FIR) filter was then
fit to these average transfer functions. Theseerfilt
coefficients were found using the fir2 function in
MatLab. The fir2 function returns the" order filter
numerator coefficients given the frequency and
magnitude information of the transfer function
estimate. The filter has the form

B(z)=b{1)+b(2)z* +---+b(n+1)z™"

The filter coefficients were only calculated for
data up to a selected cutoff frequency of 6 kHzsTh
was done in order to have a better fit for the iparof
data that is important for speech transmission.trer
results presented here a FIR filter order of 306 wa
used and was found to match the average transfer
functions with very little error. However, a lowerder
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Figure 5. Power spectral density for the— Microphone;- Filtered accelerometer signal:-- Unfiltered

accelerometer signal. a) Front of ear sound /ee/. b) Froof ear /m/. ¢) Over vocal folds sound /ee/. d) Over vocal
folds ear /m/.

filter would likely work just as well since the dat Welch’'s method (Welch, 1967) via the “pwelch”
being fit is an average so slight deviation woukely  function in MatLab. The accelerometer signals were
not effect the results. then normalized to yield the same area under thg PS

The accelerometer signal was then passedurve as the microphone signal between 0 and 4 kHz.
through a low pass filter to remove all frequency
content above that for which the transfer function
coefficients were calculated. This was done using a
butterworth filter with a cutoff frequency of 4 kHz

The low pass filtered accelerometer signal was

then passed through a filter with the calculateR FlI where PSD; o is the normalized PSD for location

coefficients to reconstruct a signal that soundsemo PSDyc is the PSD of the microphoneSD; is the PSD
like the microphone. This was done using the filte o (he accelerometer at locationf is the frequency
function in MatL.ab. andf. is the upper frequency (4 kHz). The integrals

. where numerically calculated using the trapezoidal
2.2.3 Power spectral Density method. y J P

The PSD of the microphone, accelerometer,
and the filtered accelerometer were found using

fe fe
jPSDm(f)df —J'PSDi(f)df
=PD, +L 0

PSD

i,norm

f

c



2.2.4 Spectrogram and phrases are compared in figures 3 and 4 for the

A spectrogram for the phrase, “These daychiaken locations over the vocal folds and in front of #war.
leg is a rare dish,” was calcufated for the loqatio  FOr the location over the vocal folds figure 3 skow
front of the ear. The spectrogram was generatetyusi that the two average transfer functions are fairly
the ‘spectrogram’ function in MATLAB, which similar out to 2.5 kHz, but differ quite a bit aftinat.
calculates the PSD estimate over select time iatery FO the location in front of the ear figure 4 aswws

using Welch’s method. that the transfer functions of the sounds and @sras
are similar out to 2.5 kHz. After 2.5 kHz both tsfar
3 Results functions follow the same general trends but the

transfer function of sounds is attenuated at fraqies
3.1 Transfer Function Comparison greater than 3 kH_z, but the transfer function of th
_ , phrases is not. This could be due to the presehce o

folds of each sound as well as the average transfgie phrases than are in the sounds analyzed.
function over all sounds for one male subject. The

sounds /Ah/ and /a/ have similar behavior and > power Spectral Density

generally have magnitudes greater than the average.
The sound /oo/ has magnitudes generally at or belgﬁgure S S.hOWS the PSD for sounds /ee/ and /thtor
cations in front of the ear and over the vocadigo

the average, while the sound /ee/ starts below the ;
average and then at 1.5 kHz the values becomeegrea \gure 56.‘ shows that for the sound /ee/ m_fromhef .
than the average. Sounds /m/ and /n/ also have veﬁﬂtéﬂgsf”:ﬁ; V\;;S a:rll?: toc(r)en(iggtstr(l;fcttﬁesgnczil(;:\whh(;ne
similar transfer functions, with some variationsward quency Icropr
1 kHz and 3.5 Khz. Their magnitudes are generally uch better than thg unfiltered accelerometer.ur€ig
little below the average magnitude. Sound /f/ gelher b shlgwsrérslaégf:je hf'olteé V;'?rl;i% nga?l#]é[of.l‘?:rorgt:
has magnitudes greater than the average. All sounc{%—lz‘ 'gu ’ Wever, show ' v
except /f/, decline in magnitude after 5 kHz. e vocal folds had minimal improvement for the
The transfer functions of each phrase Weresoundsli(_ee/ ang /rrr\ll. the PSD for the oh “Th
also calculated and averaged over all the phrases a davs a clr?'lélr(een Ise OY;'Sa rzre d'sh(’?rforetr?e rlif:;'dm ese
are shown in figure 2. Figure 2 shows that all ledf t Y ' 9! ! :

ranser functions for the phrases are very simafat 7, % o G0 BT 0L O SO el matdnes
generally follow the average with only slight 9

g microphone signal much better than the unfiltered
variations. ccelerometer signal
The average transfer function of the sound§ gnal.
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Figure 6. PSD of “These days a chicken leg is a rare dish*— Microphone; - Filtered accelerometer signal;

--- Unfiltered accelerometer signal. a) In front of earb) Over vocal folds.
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These days a chicken leg is a rare dish

Figure 7. Spectrogram of the phrase ‘Rice is often served round bowls” recorded with 95 dB
background noise. a) Microphone b) Filtered signal from irfront of the ear.

the filtered signal for the phrases matches the
microphone much better than the PSDs of the filtere
3.3 Spectrogram signals for the sounds. This indicates that geimeyat
This filter was then applied to the phrase recondit FIR filter using _the average transfer function_ bé t
background noise. The spectrograms of th&hrases results in a more accurate reconstructidreo
microphone and filtered accelerometer ~ signaldnicrophone signal than does the filter generatechfr
recorded with 95 dB background noise are shown i€ average transfer function of the sounds. The
figure 7. Figure 7 shows that the when compared tghonetically  balanced ~ sentences are  more
the filtered accelerometer signal the noisy micmyen 'épresentative of how often each phoneme is used in
signal has a much lower signal to noise ratio. gugh ~ SPeech thus resulting in a filter that is more aatel
there is still some noise in the filtered acceleeten USINg a filter that weights each phoneme the same
signal at high frequencies the signal to noiseorati Would result in a filter that may disproportionably
lower frequencies is much better. When listertmg favor certain phonemes that are not used as often.
the noisy microphone signal and the filtered . ,
accelerometer signal there is still some noisehim t 4-2 Signal Reconstruction
filtered signal but it is much quieter than in theFigures 6 and 7 show that the FIR filters can
microphone signal. The filtered signal is slightly reconstruct the signal from the accelerometer toemo

muffled but the speech quality overall is good. accurately match the frequency response of
microphone signal. Figure 7 shows that in the prese

4 Discussion of Results of background noise the filtered accelerometeraign
results in a signal which has much less background

4.1 Filter Design noise than the microphone while keeping good
intelligibility.

Figure 1 shows that each sound has a transferidunct
that follows a trend but each transfer functioniesr .

depending on the sound. However, figure 2 showél'3 Filter Type

there is much less variation in the transfer fuortiof  In this paper a FIR filter was used to fit an agera
the phrases. In comparing figures 5 and 6 the R8Ds transfer function in order to reconstruct a more



intelligible signal from the skin vibrations. Usiribe
phrases to develop an average transfer function has
resulted in a filter that restores much of the lost
frequency content and results in a good speectlalsign
However, this average transfer function only
represents five sentences which may limit its dbera
effectiveness. Other advanced filter techniqueshsu
as a least means squares (LMS) adaptive filter, may
result in a filter with improved results and wileb
explored.

5 Conclusions

This paper has shown that even though the
original accelerometer signal may not match the
microphone signal the implementation of a FIR filte
that corresponds to an average transfer function ca
reconstruct a signal that is a better represemtatio
the microphone signal. When implemented in the
presence of background noise the filtered signal ha
reduced noise and provided good intelligibility whe
compared to the noisy microphone signal.

Future research will involve expanding this
work over more subjects and sounds to generate more
generalized results. More advanced filtering
techniques will be explored to improve intelligibjl
and noise reduction of the filtered signal. Jusyeihing
tests will be needed to verify that the filterednsils
are preferred over the noisy microphone signals.
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