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Abstract. During speech the vocal folds vibrate resulting in audible sounds that are 
transmitted through the vocal tract as well as vibrations that are transmitted through the 
body tissue to the skin surface. These skin surface vibrations can be detected by contact 
microphones and used to transmit speech. However, the skin attenuates high frequency 
content and in some locations muffles the signal resulting in poor speech quality. To 
reconstruct a signal that better matches the microphone signal a finite impulse response 
filter is fit to an average transfer function of the accelerometer signal. When implemented 
this filter restores much of the lost frequency content and in the presence of background 
noise results in a signal with good intelligibility and less noise than the microphone 
signal. 

 

1 Introduction 
During speech the vocal folds vibrate, resulting in 
audible sounds. In addition to being transmitted 
through the vocal tract, these vibrations are also 
transmitted through several layers of various types of 
tissue throughout the head and neck, resulting in small, 
but measurable, skin surface vibration. Contact 
microphones sense these skin surface vibrations for 
speech transmission, as opposed to acoustic 
microphones that sense air vibrations that radiate from 
the mouth.  

Contact microphones have one significant 
advantage over acoustic microphones in environments 
with elevated ambient noise levels in that they sense 
very little background noise.  In comparing the use of 
throat contact microphones to acoustic microphones 
for use in rotary-wing aircraft, Acker-Mills et al. 
(2004) found that throat microphones had 
approximately a 10 dB higher signal-to-noise ratio.  
Commercially available contact microphones, 
however, suffer from poor speech quality and 
intelligibility  (Acker-Mills et al., 2004; Shimamura 
and Tamiya, 2005).  This is a result of the skin 
vibrations being influenced by the many tissue layers 
(e.g. skin, fat, muscles, bones) of the neck or face 

between the contact microphone location and the vocal 
tract.  

This study has been conducted in two parts. 
This paper will present the results from the second part 
of the study. The first portion of the study investigated 
where the frequency response on the skin is most like 
the signal picked up from the air (Munger and 
Thomson, in review). In this portion of the study we 
found that while the skin attenuates high frequency 
content, some high frequency content can still be 
detected at some locations on the face. We determined 
that locations other than on the throat, where many 
currently used contact microphones are placed, can 
pick up good speech signals. We also found that 
different types of sounds were picked up better at 
different locations. The nasal sounds were picked up 
better on the nasal bone while the vowel sounds were 
picked up best above the upper lip. Based on power 
spectral density (PSD) comparisons it was found that 
the best locations overall for speech transmission via a 
contact microphone are the nasal bone, above the 
upper lip, the temple and the zygomatic bone. 

Although some of the locations yielded speech 
signals that were generally understandable, many 
locations on the face and neck produced signals that 
were muffled and hard to understand. Many of these 
locations that produced poorer speech signals were at 
locations that are more convenient to place a contact 
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microphone, such as over the vocal folds or in front of 
the ear. The objective of this portion of the research 
was to find a simple filtering method to reconstruct 
from the accelerometer data a clear signal that sounds 
more like the microphone speech signal. This filter 
was then be applied to accelerometer signals of speech 
recorded in the presence of elevated background noise 
to compared with the microphone signals of the same 
speech recorded in the presence of elevated 
background noise   

2 Methods 

2.1 Data Collection 
To collect the skin vibration data small accelerometers 

were attached to 15 locations on the face and neck of 
14 male and 10 female subjects using medical-grade 
double-sided adhesive tape. In this paper we will 
present the results for the accelerometers placed in 
front of the ear and over the vocal folds for one male 
subject. These accelerometers measure the magnitude 
and frequency of the skin vibration at each location 
while the subject speaks. An acoustic microphone was 
used to simultaneously acquire the audible speech.  
 The subjects sustained the vowels /a/ (bat), 
/oo/ (boot), /ah/ (caught), /ee/ (feet), the nasals /m/ and 
/n/, and the fricative /f/ for 4 to 5 seconds each. The 
subjects also said the phonetically balanced phrases:  
 

• Rice is often served in round bowls. 

Figure 1. Transfer functions for the sounds with 
their average for one male subject over the vocal 
folds. 

Figure 2. Transfer functions for the phrases with their 
average for one male subject over the vocal folds. 



• The birch canoe slid on the smooth planks 
• Glue the sheet to the dark blue background. 
• These days a chicken leg is a rare dish. 
• It’s easy to tell the depth of a well. 
 

 (Italicized words are used to reference the phrases in 
the figures.) The sounds and phrases where recorded in 
a quiet environment as well as with 95 dB background 
white noise. 

2.2 Data Analysis 

2.2.1 Transfer Function Estimate 
The sound files were first truncated so that 

only the portion of the data where the subject was 
speaking is analyzed. For a given sound or phrase the 
transfer function estimate is first calculated for a 
particular location using the following equation 
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where Txy is the transfer function estimate, Pxy is the 
cross power spectral density of the accelerometer to 
the microphone, and Pxx is the PSD of the 
accelerometer. The MatLab command tfestimate was 
used to perform this calculation. 
 The transfer functions for all the sounds were 
averaged at each frequency to obtain an average 
transfer function for all sounds. An average transfer 
function was also found for the phrases. These average 
transfer functions Txy,avg  were then smoothed using a 
triangular smoothing weighted average  
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This smoothing average includes the two points on 
either side of the current value but weights them less 
than the current value. Smoothing was performed in 
order to better fit the filter coefficients. 

2.2.2 Filter Coefficients 
A finite impulse response (FIR) filter was then 

fit to these average transfer functions. These filter 
coefficients were found using the fir2 function in 
MatLab. The fir2 function returns the nth order filter 
numerator coefficients given the frequency and 
magnitude information of the transfer function 
estimate. The filter has the form 
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The filter coefficients were only calculated for 

data up to a selected cutoff frequency of 6 kHz. This 
was done in order to have a better fit for the portion of 
data that is important for speech transmission. For the 
results presented here a FIR filter order of 300 was 
used and was found to match the average transfer 
functions with very little error. However, a lower order 

Figure 3. . Comparison of the average transfer 
functions for the sounds (      ) and phrases (      ) 
for one male subject over the vocal folds. 
 

Figure 4. Comparison of the average transfer 
functions for the sounds (      ) and phrases (      ) 
for one male subject in front of the ear. 
 



filter would likely work just as well since the data 
being fit is an average so slight deviation would likely 
not effect the results. 

The accelerometer signal was then passed 
through a low pass filter to remove all frequency 
content above that for which the transfer function 
coefficients were calculated. This was done using a 
butterworth filter with a cutoff frequency of 4 kHz.  

The low pass filtered accelerometer signal was 
then passed through a filter with the calculated FIR 
coefficients to reconstruct a signal that sounds more 
like the microphone. This was done using the ‘filter’ 
function in MatLab.  

2.2.3 Power spectral Density 
The PSD of the microphone, accelerometer, 

and the filtered accelerometer were found using 

Welch’s method (Welch, 1967) via the “pwelch” 
function in MatLab. The accelerometer signals were 
then normalized to yield the same area under the PSD 
curve as the microphone signal between 0 and 4 kHz. 
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where PSDi,norm is the normalized PSD for location i, 
PSDmic is the PSD of the microphone, PSDi is the PSD 
of the accelerometer at location i, f is the frequency 
and fc is the upper frequency (4 kHz). The integrals 
where numerically calculated using the trapezoidal 
method.  
 

b) /m/ a) /ee/ 

c) /ee/ d) /m/ 

Figure 5. Power spectral density for the        Microphone;         Filtered accelerometer signal;        Unfiltered 
accelerometer signal.  a) Front of ear sound /ee/. b) Front of ear /m/. c) Over vocal folds sound /ee/. d) Over vocal 
folds ear /m/.  
 



2.2.4 Spectrogram 
A spectrogram for the phrase, “These days a chicken 
leg is a rare dish,” was calculated for the location in 
front of the ear. The spectrogram was generated using 
the ‘spectrogram’ function in MATLAB, which 
calculates the PSD estimate over select time intervals 
using Welch’s method. 

3 Results 

3.1 Transfer Function Comparison 
Figure 1 shows the transfer functions over the vocal 
folds of each sound as well as the average transfer 
function over all sounds for one male subject. The 
sounds /Ah/ and /a/ have similar behavior and 
generally have magnitudes greater than the average. 
The sound /oo/ has magnitudes generally at or below 
the average, while the sound /ee/ starts below the 
average and then at 1.5 kHz the values become greater 
than the average. Sounds /m/ and /n/ also have very 
similar transfer functions, with some variations around 
1 kHz and 3.5 Khz. Their magnitudes are generally a 
little below the average magnitude. Sound /f/ generally 
has magnitudes greater than the average. All sounds, 
except /f/, decline in magnitude after 5 kHz. 

The transfer functions of each phrase were 
also calculated and averaged over all the phrases and 
are shown in figure 2. Figure 2 shows that all of the 
transfer functions for the phrases are very similar and 
generally follow the average with only slight 
variations. 

The average transfer function of the sounds 

and phrases are compared in figures 3 and 4 for the 
locations over the vocal folds and in front of the ear. 
For the location over the vocal folds figure 3 shows 
that the two average transfer functions are fairly 
similar out to 2.5 kHz, but differ quite a bit after that. 
For the location in front of the ear figure 4 also shows 
that the transfer functions of the sounds and phrases 
are similar out to 2.5 kHz. After 2.5 kHz both transfer 
functions follow the same general trends but the 
transfer function of sounds is attenuated at frequencies 
greater than 3 kHz, but the transfer function of the 
phrases is not. This could be due to the presence of 
more fricative sounds and high frequency content in 
the phrases than are in the sounds analyzed.  

3.2 Power Spectral Density 
Figure 5 shows the PSD for sounds /ee/ and /m/ for the 
locations in front of the ear and over the vocal folds. 
Figure 5a shows that for the sound /ee/ in front of the 
ear the filter was able to reconstruct a signal which 
matches the frequency content of the microphone 
much better than the unfiltered accelerometer.  Figure 
5b shows that the filter worked well out to about 2 
kHz. Figures 5c,d however, show that the filter over 
the vocal folds had minimal improvement for the 
sounds /ee/ and /m/.  
 Figure 6 shows the PSD for the phrase “These 
days a chicken leg is a rare dish” for the locations in 
front of the ear and over the vocal folds. For both 
locations the filtered accelerometer signal matches the 
microphone signal much better than the unfiltered 
accelerometer signal.  

a)  b)  

Figure 6. PSD of “These days a chicken leg is a rare dish”.       Microphone;         Filtered accelerometer signal; 
       Unfiltered accelerometer signal.  a) In front of ear. b) Over vocal folds. 
 



 

3.3 Spectrogram 
This filter was then applied to the phrase recorded with 
background noise. The spectrograms of the 
microphone and filtered accelerometer signals 
recorded with 95 dB background noise are shown in 
figure 7.  Figure 7 shows that the when compared to 
the filtered accelerometer signal the noisy microphone 
signal has a much lower signal to noise ratio. Although 
there is still some noise in the filtered accelerometer 
signal at high frequencies the signal to noise ratio at 
lower frequencies is much better.   When listening to 
the noisy microphone signal and the filtered 
accelerometer signal there is still some noise in the 
filtered signal but it is much quieter than in the 
microphone signal. The filtered signal is slightly 
muffled but the speech quality overall is good.  

4 Discussion of Results 

4.1 Filter Design 
Figure 1 shows that each sound has a transfer function 
that follows a trend but each transfer function varies 
depending on the sound. However, figure 2 shows 
there is much less variation in the transfer functions of 
the phrases. In comparing figures 5 and 6 the PSDs of 

the filtered signal for the phrases matches the 
microphone much better than the PSDs of the filtered 
signals for the sounds. This indicates that generating a 
FIR filter using the average transfer function of the 
phrases results in a more accurate reconstruction of the 
microphone signal than does the filter generated from 
the average transfer function of the sounds. The 
phonetically balanced sentences are more 
representative of how often each phoneme is used in 
speech thus resulting in a filter that is more accurate. 
Using a filter that weights each phoneme the same 
would result in a filter that may disproportionably 
favor certain phonemes that are not used as often.  

4.2 Signal Reconstruction 
Figures 6 and 7 show that the FIR filters can 
reconstruct the signal from the accelerometer to more 
accurately match the frequency response of 
microphone signal. Figure 7 shows that in the presence 
of background noise the filtered accelerometer signal 
results in a signal which has much less background 
noise than the microphone while keeping good 
intelligibility. 

4.3 Filter Type 
In this paper a FIR filter was used to fit an average 
transfer function in order to reconstruct a more 

a  

b  

Figure 7. Spectrogram of the phrase ‘Rice is often served in round bowls” recorded with 95 dB 
background noise. a) Microphone b) Filtered signal from in front of the ear.  
 



intelligible signal from the skin vibrations. Using the 
phrases to develop an average transfer function has 
resulted in a filter that restores much of the lost 
frequency content and results in a good speech signal. 
However, this average transfer function only 
represents five sentences which may limit its overall 
effectiveness. Other advanced filter techniques, such 
as a least means squares (LMS) adaptive filter, may 
result in a filter with improved results and will be 
explored.  

5 Conclusions 
This paper has shown that even though the 

original accelerometer signal may not match the 
microphone signal the implementation of a FIR filter 
that corresponds to an average transfer function can 
reconstruct a signal that is a better representation of 
the microphone signal. When implemented in the 
presence of background noise the filtered signal has 
reduced noise and provided good intelligibility when 
compared to the noisy microphone signal. 

Future research will involve expanding this 
work over more subjects and sounds to generate more 
generalized results. More advanced filtering 
techniques will be explored to improve intelligibility 
and noise reduction of the filtered signal. Jury listening 
tests will be needed to verify that the filtered signals 
are preferred over the noisy microphone signals.  
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