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Abstract
When doing regression multicollinearity between model variables can be a problem. This is a 

problem for time and solar coefficients for data sets of mesospheric temperatures spanning one solar cycle 
or less. This paper focuses on the problem of multicollinearity between the linear term and the solar term 
in an ordinary least squares regression (OLSR). The multicollinearity between those two terms will 
change according to the phase of the solar cycle. If solar maximum occurs in the middle of the second 
half of the data set there is significant negative correlation between them. Conversely, if solar maximum 
occurs in the middle of the first half of the data set there is significant positive correlation. The optimal 
phase of the solar cycle relative to the data is for solar max or solar min to occur in the time center of the 
data set. In that particular case the correlation between the linear and solar coefficients is minimized. 
When the data set spans approximately 1.3 solar cycles or greater then multicollinearity between the time 
coefficient and solar coefficient is not an issue. The degree of multicollinearity is independent of the 
magnitude of the solar response and cooling rate.

1. Introduction

There is compelling evidence that the earth’s 
climate is undergoing long-term changes, and there 
is a strong consensus among scientists that this is 
largely due to anthropogenic influence. It has been 
shown that increases in the level of carbon dioxide 
cause the lower atmosphere (troposphere) and 
middle atmosphere (stratosphere and mesosphere) 
to react differently: the lower atmosphere warms 
and the middle atmosphere cools. Further, the 
temperature change in the middle atmosphere is 
expected to be about ten times greater than that in 
the lower atmosphere (Fomichev, et al., 2007). 
Hence, many scientists are looking for evidence of 
anthropogenic influence on atmospheric 
temperatures in the middle atmosphere. Information 
about how atmospheric temperatures are evolving 
on decadal time scales, as well as seasonally, and to 
external influences such as solar variability is often 
extracted using ordinary least squares regression 
(OLSR). If each measurement is unbiased and 
uncorrelated then this technique provides the best 
linear unbiased estimator (BLUE). Looking at it a 
different way, a column of data, temperatures in this 
case, is projected onto a column space of 
independent variables as to minimize the variance 
of the residuals. If the relevant independent 
variables are included in the model then OLSR 
minimizes what the model cannot account for. 
However, if there is a high degree of correlation 

between explanatory variables interpreting the 
results is less than straightforward, though the 
coefficients are still BLUE. How multicollinearity 
between explanatory variables affects the results of 
an OLSR needs to be understood and considered in 
the final interpretation of the results. 

2. The problem

OLSR on atmospheric temperatures generally 
includes the following explanatory variables: 
annual oscillation and semiannual oscillation, linear 
trend, and a solar proxy representing changes in 
solar input. It might also include information about 
the quasi-biennial oscillation, or short-term effects 
such as changes in atmospheric optical depth due to 
volcanic eruption. Consider the following model, 

Ti = w + b·ti + s·F107i+ A1sin(2π·ti) +  A2cos(2π·ti) +  
B1sin(4π·ti) +  B2cos(4π·ti) + εi,  (1)

where Ti is the temperature at time ti , b is the linear 
trend coefficient, s is the solar response coefficient, 
w is the intercept; from the coefficients A1 and A2

the amplitude and phase of the annual oscillation 
can be extracted; the same is true for the 
semiannual oscillation coefficients B1 and B2 ; εi is 
the residual and F107 is the solar proxy data, in this 
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case the 10.7 cm radio flux in solar flux units (1 sfu 
= 10-22 W m-2 Hz-1), which is sometimes used as a 
proxy for changes in UV intensity. The following 
explanatory variables form a column space onto 
which T is 

Figure 1:  (a) The simulated F10.7 proxy and (b) 
comparison of the solar response and time coefficients. 
The solar response coefficients was multiplied by 2*57.6 
sfu to puts the solar coefficient on a scale of K.

projected: (1) t, (2) f107, (3) sin(2π·t), (4) cos(2π·t), 
(5) sin(4π·t), (6) cos(4π·t), and a column of 1’s for 
the intercept. Also, for simplicity, time is adjusted 
so that t=0 occurs exactly in the time center of the 
data set. Under ideal conditions the independent 
variables form an orthogonal column space, in 
which case there would be no need to consider 
multicollinearity. Obviously (3) is orthogonal to (4), 
and (5) is orthogonal to (6), and multicollinearity 
between any of the sine and cosine terms with the 
other periodic terms is minimal. So, for examining 
multicollinearity a simplified model may be 
considered,

Ti = 0 + b·ti + s·F107i + εi ,         (2) 

where Ti, ti, b, εi are as indicated above. The 
solar proxy (F107), time (t), and temperatures 
(T) have zero mean, which allows the 
regression to be forced through zero, indicated 
by the 0 on the right hand side of (2). For this 
analysis, time is in years, making one day equal 
to (1/365) years, or ~ 2.74x10-3 years. To 

further simplify, a sine function with amplitude 
of 57.6 sfu and angular frequency of 0.0986 
rad/year (a period of ~ 10.14 years) was used in 
place of the 10.7-cm solar proxy; the phase of 
the solar function is referenced to the time 
center (t = 0) of the data set. (See Figure 1a.)

Figure 2: Same as Figure 1 except for a solar phase of 
90o.

Figure 3: Same as Figure 1 but for one half solar cycle.

3. Strong multicollinearity: one solar cycle

There is a simple way to test for the presence of 
multicollinearity. After doing an initial regression 
the residuals and predicted values are obtained. 
Then, supposing the data set has n data points, n of 
the residuals are selected with replacement, 



meaning that any given residual may be selected 
more than once or not at all. The selected residuals 
are added to the predicted values and the regression 
is repeated. From this new regression slightly 
different regression coefficients are obtained. This 
process is repeated about 1000 times and from the 
set of coefficients obtained a distribution may be 
inferred for each estimator. This process is known 
as bootstrapping and has the advantage of avoiding 
assumptions about the underlying distribution. By 
plotting one set of coefficients against another the 
effect of multicollinearity becomes apparent. The 
presence of significant multicollinearity will create 
a pattern similar to that in Figure 1b, which shows 
coefficients from 1500 bootstrapped regressions 
done on a time series of temperatures having a 
cooling rate of -0.4 K/year and a 4 K/(max – min) 
solar response between maximum and minimum.
The pattern is that of a bivariate normal 
distribution. 

Figure 4: Same as Figure 2 except for a data set spanning 
one half of a solar cycle. (The mean as been subtracted 
from the solar signal.)

In the case where there is no multicollinearity 
the confidence intervals indicate, to a specified 
level of confidence, the region that presumably 
includes the true value corresponding to the 
estimator. Ideally the range of values of one 
coefficient would say nothing about the others. But 
if the pattern of coefficients is bivariate then 
interpretation is more involved. The pattern in 
Figure 1b indicates possible values that could be 
obtained from any given regression. The gray 

dashed lines indicate the 2σ or 95% confidence 
intervals for the time and solar coefficients. They 
indicate with 95% confidence (based on the 
regression) that the true value of the cooling rate is 
between -0.2 and -0.6 K/year and the true value of 
the solar response is between 2.2 and 5.7 K from 
solar max to solar min. But because of the 
correlation between them, joint inferences cannot 
be freely made. For example, it would be highly 
unlikely that the true value of the solar response is 
2.5 K and the true value of the time coefficient is -
0.6 K/year. Those two values when taken together 
are outside the elliptical region covered by the time 
and solar coefficients jointly. It sounds rather 
counter intuitive, but if our interpretation is 
constrained by the results then that is how it must 
be stated. But if it is inferred that the true value of 
the solar response is 4.7 K then according to that 
conditional, the cooling rate is between -0.54 to -
0.40 K/year with 95% confidence, which is much 
narrower than the overall spread. If it is inferred 
that the cooling rate is  -0.3 K/year then the solar 
response is between 2.7 and 3.9 K to the same level 
of confidence. One cannot make specific inferences 
about one coefficient without making inferences 
about the other. 

Each data point can also be thought of as a 
possible mean value for the solar and time 
coefficient from a given site. Assuming that the 
temperature data at every site has a -0.4 K/year 
cooling rate and a 4 K solar response then the 
distribution shown in Figures 1 and 2 are possible 
OLSR time and solar coefficients from 1500 data 
collection sites. Since the standard errors (SE's) will 
be essentially the same for each point (all other 
things being equal) they each have a bivariate 
distribution similar to the overall pattern but 
centered at their own mean value. Using Figure 1 as 
an example, if the time coefficient at a given site is 
higher than the actual cooling rate then the solar 
coefficient is likely to be too low. But if the time 
coefficient is lower than the actual cooling rate then 
the solar coefficient is likely to be too high. 

If interpretation is restricted to statements about 
the range of possible values then multicollinearity is 
not problematic since there would be a significant 
amount of overlap in the confidence intervals from 
each of the sites. But we usually don’t know what 
the actual mean values are, and therefore it's 
difficult to know if the results from any given site 



has a high/high or low/high tendency. 

4. No multicollinearity

The case of no multicollinearity occurs when 
the solar phase angle is π/2 or 3π/2 radians. This is 
when solar max or min occurs in the time center of 
the data set. Figures 2 and 4 show cases with no 
multicollinearity for data sets spanning 1 and 0.5 
solar cycles, respectively, and a phase angle of π/2. 
There is no apparent correlation between outcomes. 
The true value of the solar (or time) coefficient 
might be high or low, but this says nothing about 
the value or confidence interval of the other 
coefficient. Also, the overall spread is narrower 
than when multicollinearity is present. The standard 
deviation of the time and solar coefficients each 
increased 59% from Figure 4 to Figure 3. But going 
from Figure 3 to Figure 4 the standard deviation of 
the solar coefficients increased 96% and that of the 
time coefficients 327% respectively.

In the case of extreme multicollinearity, shown 
in Figure 3, the possible values of the true solar and 
time coefficients are unacceptably imprecise. In 
cases like this, alternative methods of regression 
should be considered. However, leaving out the 
solar proxy variable should not be considered, as it 
can introduce significant bias in the time coefficient 
if there is a true solar temperature response in the 
temperature data. 

5. The source of Multicollinearity

The reasons for this response can be seen more 
clearly in the equation for the standard error of a 
regression coefficient

            , (3) 

where se is the standard error of the residuals, Rk
2 is 

the coefficient of determination from regressing the 
kth variable on the other variables, and TSSk = Σ(Xki

– Xk)
2, where X is the average. The factor (1 – Rk

2)-

1 is called the variance inflation factor (VIF). 
Because there are only two explanatory variables in 
(2), each with zero mean, the coefficient of 
determination becomes the square of the correlation 
between them, and TSSk = Σ(Xki)

2 = |X2|
2. 

Rewriting equation (3) for the solar and time 
coefficient we get 

(4) 

.  (5) 

where ρst is the coefficient of correlation between 
the solar and time variables and |s|2 and |t|2 are the 
square of the magnitudes of the solar and time 
independent variables respectively. Equation (5) 
was multiplied by (2A) to put it on a scale of 
K/(solarmax – solarmin), where A is the amplitude of 
the solar proxy; doing this makes the SE of the solar 
coefficient independent of the amplitude of the 
solar proxy and therefore applicable to any solar 
proxy one would elect to use. With the standard 
errors written in this form it is easier to see how the 
interaction of the two independent variables and the 
length of the data set influence the standard error. A 
high degree of correlation between the solar proxy 
data column and time column in (2) creates a high 
standard error but a longer data set has a larger |s|2

and |t|2, which lowers it. 

6. Conclusions

In most cases not much can be done about 
multicollinearity. But if present it should be 
understood. The confidence interval for the time 
coefficient in Figure 1 still spans -0.6 to -0.2 
K/year, and the confidence interval for the solar 
coefficient spans 2.2 to 5.8 K. However, joint 
inferences are constrained to the elliptical region 
covered jointly by the bootstrapped coefficients. 
The tendency between them is, for a solar phase 
angle of 0 radians, a (low cooling trend)/(high solar 
response) and (high cooling trend)/(low solar 
response). For a solar phase angle of π radians the 
tendency is reversed, high/low and low/high. This 
can become relevant when comparing results 
between data sets. Because the true values of the 
coefficients are unknown, the tendency is also 
unknown. But if there is no multicollinearity then 
the value of one coefficient says nothing about the 
value of the other.

Even with strong multicollinearity between the 



explanatory variables the coefficients from OLSR 
are still BLUE. The consequences are in the 
interpretation of the data. If a line is drawn through 
the length of the data (the first principle component 
along the elliptical spread) in Figure 1b the slope of 
the line does not depend on the amplitude of the 
coefficients or their SE’s. It depends only on the 
phase of the solar cycle. 

Figure 1: (a) Shows the temperatures from the Volgograd 
site from January 1969 to September 1995. The vertical 
line shows when a major sensor change occurred. The 
solid vertical line in (a) shows the predicted values from 
an OLSR that included a linear trend, solar proxy, and 
step function. (b) The bootstrapped coefficients for the 
solar proxy and time coefficient. Very little 
multicollinearity is present. (c) The same for (b) but for 
the coefficients for the step function and time coefficient. 
Also, very little multicollinearity is apparent. (d) The 
same as (b) and (c), but for the step function coefficients 
and linear trend coefficients considerable 
multicollinearity is present. 

The results found here for the interaction of the 
time and solar data coefficient can be generalized. If 
there is a large temperature perturbation near the 
beginning or end of the data set, then 
multicollinearity is very likely and should be taken 
into consideration. Any temperature perturbation 
that goes through one cycle or less over the span of 
the data set should be considered for possible 
multicollinearity, e.g, step functions used in 
regressions on rocketsonde temperatures. 
Temperatures from several sites (Ryori Japan 
[Keckhut and Kodera et al., 1999], US rocketsondes 
in North and South America [Keckhut et al., 1999], 
and Volgograd Russia [Kubicki et al., 2006]) span 

several decades. Over that time instrumentation 
changes occurred that might have introduced bias 
into the temperatures. This is sometimes accounted 
for by adding a step function to the OLSR. But this 
creates an intractable multicollinearity problem 
between the time coefficient and the step function 
coefficient. The phase of the step function (taken to 
be where it goes from its low to its high value, 
assuming there is only one step) cannot null out. 
The result is a high degree of correlation between 
the bootstrapped linear trend coefficients and the 
step function coefficients, resulting in a pattern very 
similar to that in Figure 1b. For example, 
temperatures from the Volgograd site (Figure 5a  
[Kubicki et al., 2006]). have an instrumentation 
change a third of the way through their data set. 
Figure 5(b, c, and d) are multicollinearity plots 
between the solar, time, and step function 
coefficients. There is strong multicollinearity 
between the step function and time coefficients. 
However, if the magnitude of the step function is 
not important then joint inference need not be 
made. If it is, then multicollinearity needs to be 
considered.

When multicollinearity is present in the data the 
following difficulties arise. (1) The SE’s of highly 
correlated variables will be much greater than when 
uncorrelated. (2) Inferences about the actual value 
of one coefficient must be made jointly with 
coefficients it is correlated with. (3) Because the 
actual values of the linear estimators are unknown 
comparing results from different sites is 
problematic because the high-high, low-high, or 
low-low tendency cannot be easily discovered. (3) 
Multicollinearity between the time coefficient and 
step function is only problematic if the magnitude 
of the step function is important. 

This analysis of multicollinearity was prompted 
by the analysis of 11 years of Rayleigh-lidar 
mesospheric temperatures from USU. A simple 
OLSR analysis of the data from the upper 
mesosphere produced a time coefficient of –1 
K/year and no dependence on solar input. These 
results did not seem right—the magnitude of the 
time coefficient was much bigger than predicted 
and inferred from the other data at slightly higher 
altitudes, while the solar dependence was much 
smaller than inferred from data from slightly higher 
altitudes. This simulation shows that the results 
could have arisen from multicollinearity. The best 



way to avoid an erroneous result from 
multicollinearity is to extend the data set over more 
years.  
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