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Abstract— A continuation of research into modeling 

airway events of patients undergoing sedation is 

described.  Sounds recorded at the trachea were 

recorded and separated by means of a threshold 

algorithm.  The threshold was determined by the 

expectation maximization algorithm on filtered data.  A 

comparison between the respiratory rate of the 

threshold algorithm and that of the direct airflow 

measure is done.  Classification of the audio airway 

events is discussed using both Neural Networks and 

Polynomial Classifiers.  Future work will be discussed 

 

I. INTRODUCTION 

 

here are a number of ways to determine if a 

patient undergoing sedation is doing all right.  

One of the simplest, yet rarely used vital signs is 

simply listening.  Long before the pulse-oximeter 

physicians and nurses would listen to their patients 

and not just their heart.  Typically an anesthesiologist 

would tether himself to a patient by a precordial 

stethoscope and listen to the airway during every 

procedure.  This is obviously tedious and can 

sometimes distract from more important 

observations.  It has also become obsolete due to the 

vast number of monitors available today.  Despite the 

tedious nature of this practice it provides data that 

cannot be provided by any commercially available 

monitor.  Listening also alerts the physician earlier to 

airway problems than most other monitors. 

 Patients who are sedated commonly suffer 

from two major breathing complications.  The first, 

respiratory depression happens when the subject 

becomes so relaxed from the analgesic as to stop the 

diaphragm muscles from trying to breath.  The 

second, airway obstruction, happens when the 

anesthetic relaxes the muscles around the airway 

enough to collapse the airway.  When snoring begins 

and at total obstruction no air is passed at all but the 

diaphragm muscles continue to try to push air. 

 It is proposed to build an electronic 

stethoscope which would listen to the patient’s 

airway and determine the state of the airway and their 

respiratory rate.  Such a device would be simple in 

nature and may be quite cheaply manufactured.  This 

kind of monitor can also be easily converted to help 

in sleep studies involving sleep apnea, physical stress 

tests, and coma situations. 

 Monitoring the airway autonomously can be 

difficult because of the high amount of variability in 

sounds produced at the trachea. The proposed design 

involves several steps which can be seen in Fig. 1.  

The two steps which will be discussed will be the 

breath detection algorithm and the event 

classification algorithm. 

 Section II describes the data set and any 

preprocessing which has been done thus far.  Section 

III describes the event segmentation problem and the 

current solution to finding the noise floor threshold 

values through the expectation maximization 

algorithm.  Section IV describes the classification 

problem and the two possible solutions that need to 

be compared.  Section V describes future work. 

 

II. DATA SET 

 
Data was collected from 24 subjects for an IRB 

approved study.  Each subject was sedated using a 

combination of remifentinal and propofol in 

incrementing dosages.  During the sedation procedure 

a precordial stethoscope with a condenser 

microphone inside was placed on the trachea and 

audio data collected at 22050 Hz at 24 bit resolution 

through an electronic stethoscope cup placed on the 

trachea as shown in Fig. 2.  Flow data was also 

recorded through a facemask with a 

pneumotachograph measuring flow(Cosmo +II 

respironics).  This device measures the flow by 

differential pressure measurement.  Chest and 

abdomen excursions were also measured using a 

respritrace device.  Each subject was sedated three 

times for about two hours each providing a very large 

database for post-processing.  Throughout the data 

collection many different audio events were captured 

such as vocalization, snoring, swallowing, pre-

T
Fig. 1.  Flow chart of proposed acoustic monitoring device.  Includes 

hardware description and future designs. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32556655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2008 Rocky Mountain NASA Space Grant Symposium 

obstruction sounds, and many other events not related 

to breathing. 

Small portions of this data have been used 

which include events during snoring vocalization and 

normal breathing.   

An example of the audio data with noise 

floor is shown in Fig. 3.  The approximate threshold 

of the noise floor is shown as well. 

The audio data was not time synchronized 

with the flow or chest excursion data which poses a 

problem for future comparison.  Data in the sets used 

for this paper were visually time synchronized as the 

flow data relates very well to audio amplitude during 

normal breathing [1]. 

There are many characteristics in the audio 

which can be filtered off as they do not help in 

processing the breathing.  In this case the heartbeat 

sound was removed spectrally as it has a frequency of 

50 Hz and below.  Strong heartbeats can be seen in 

higher bands as noise but this is only due to the 

microphone being shaken by the actual beat of the 

heart.  The data can also be low pass filtered and 

decimated to remove noise and simplify the audio 

processing for this problem.  In this case the 

stethoscope cup and tracheal tissue filter the audio at 

around 1300 Hz, thus the data was filtered digitally at 

1300 Hz and the sample rate decimated by a factor of 

7 to produce an audio rate of 3150 Hz.  For the sake 

of comparison both audio sampled at 22050 and 3150 

Hz will be used in different respects to provide a 

comparison and to determine if anything is lost in the 

filtering. 

 

III. EVENT SEGMENTATION 

A tracheal audio event can be defined as any 

signal that rises above the noise floor and is sustained 

for at least 0.25 seconds.  In general these sounds can 

be classified under four categories of clear breaths, 

vocalization, snoring, and events not related to 

breathing such as swallowing and external 

interference.  It is important to segment each breath 

in order to classify it differently.  Because the clear 

breaths are of such small amplitude in comparison 

with the noise floor and other audio events the noise 

floor cannot be arbitrarily defined. 

The noise floor is caused by several factors.  

First there is electronic noise and shot noise in the 

electronic system which can be measured and 

quantified but may change over time due to EMI.  

The main source of the noise floor however is the 

ambient audible noise inherent in any audio 

recording.  This noise is further filtered by the 

stethoscope cup and minimized in this way, but also 

added to by body noises such as heartbeat and 

circulatory sounds.  These sounds change with every 

subject and placement of the stethoscope cup.  It is 

not desired to eliminate the background noise as 

much as minimize it.  It is also desired to be able to 

differentiate between the noise floor and tracheal 

events.  In order to do this a threshold of the noise 

floor must be determined. 

In order to determine the noise floor a few 

assumptions must be made.  First it is important to 

filter off all spectrally non-stochastic signals such as 

the heartbeat.  The heartbeat signal is typically in the 

frequency band below 50 Hz.  This can be easily 

filtered off.  After this has been removed it is 

assumed that the remaining signal is white Gaussian 

in nature.  Statistically this can be determined by a 

QQ plot as shown in Fig. 4.  A one to one 

relationship is desired to determine the Gaussian 

nature of the noise floor signal.  In most cases after 

the heartbeat has been filtered the signal looks very 

Gaussian. 

With the previous assumptions the 

Expectation Maximization algorithm [2] can be used 

to determine the standard deviation of the noise floor.  

The standard deviation can then be used as a 

threshold in determining if a signal is an event and 

Fig. 3.  Example of audio data with approximate noise floor.  Shown are 

three breaths showing both inspiration and expiration. 

 
Fig. 2.  Precordial stethoscope with microphone attached by a double stick 

disk to the outside of the trachea. 
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can then segment the audio.  From further 

observations it was discovered that over longer 

periods of time (2 minutes or more) the audio 

histogram looks like a Gaussian and Laplace mixture 

algorithm as shown in Fig 5.  The Gaussian signal 

seen in the center is the noise floor and has a 

probability density function (PDF) of ���� �
�

√�	
 �
��|�|�����.  The rest of this signal can be estimated 

as a Laplace distribution with PDF ���� � �
�� ���

|�|
� �.  

Assuming this PDF for this rest of the signal is a 

broad assumption but can be done because of the 

predictability of the Gaussian distribution.  Putting 

these equations together yields the equation ��� �
� � ���� � �1 � �� � ���� which is the mixture 

PDF model of this signal.   There are three unknowns 

of σ, b, and p.  The only value really that is needed is 

σ but in order to find it all three must be found by 

means of the Expectation Maximization algorithm. 

In the Expectation Maximization algorithm 

an initial value of σ is estimated using the initial data.  

The input signal is then separated into groups that 

belong and do not belong to a Gaussian signal with 

standard deviation of σ.  This is first done by 

assuming that no values of the input signal exist 

outside of three standard deviations.  After this is 

done the values within three standard deviations are 

compared with a true Gaussian signal with standard 

deviation σ which is independent of the input signal.  

Those that fall within this comparison are kept and 

the standard deviation is taken of these remaining 

samples which replaces σ.  This process is iterated 

until σ converges to the standard deviation of the 

noise floor.  The number of samples which belong to 

the Gaussian signal divided by the total number of 

signals evaluates p and b can then be measured by 

taking the standard deviation of the samples that were 

not considered Gaussian.  The model shown in Fig. 5 

has been estimated using this algorithm and appears 

in this case to be a very good estimate of all of the 

parameters. 

It may be that a Laplace PDF is not a good 

estimate for f(x).  This does not hurt this algorithm 

because σ is the real point of interest and it is only 

important that the standard deviation of the noise 

floor is less than the standard deviation of the 

detected signals. 

In order to turn this threshold into something 

useful basic detection theory is used to determine the 

error rate of false alarms.  The error rate of 10% was 

chosen which puts the absolute threshold to 

1.2816 � σ.  After this point some features of the 

events are needed such as the minimum length of an 

event and the maximum length of an event.  The 

minimum length of 0.25 seconds was determined by 

observation of the lengths of breaths, snores and 

vocalizations.  Using this simply states that if the 

signal does not exceed the threshold approximately 

50% of the time (due to bipolar nature of audio 

signals) for 0.25 seconds it is not considered an 

event.  Either it is too short or not loud enough.  

Otherwise this would be considered an event.  There 

is no minimum to the time between events and 

currently no maximum set to the length an event can 

be.  An example of the event markers can be seen in 

Fig. 6 where the audio envelope is scaled to the flow 

signal and time synchronized.  It can bee seen that the 

audio markers are very close to the markers 

determined directly by the flow sensor.  When 

comparing these to sets of data a strong correlation 

can be seen between that of the respiratory rate 

measured by the event algorithm and the respiratory 

rate measured directly as shown in Fig. 7.   

 

Fig. 4.  QQ plot of noise floor after filtering of undesired components. 

Fig. 5.  Histogram of 10 minutes of audio data and model overlayed. 
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IV. CLASSIFICATION 

 

The next step after segmentation is 

classification of tracheal events.  There will only be 

four classes of events, namely clear breathing, 

snoring/pre-obstruction, vocalization, and events not 

related to breathing. 

Clear breathing is a modulated white noise.  

For just one audio segment it appears to be Gaussian.  

It is louder than the noise floor and over long periods 

of time the modulation of the white noise makes it 

appear to have a Laplace distribution rather than a 

Gaussian.  It’s spectrum reaches up to about 1200 Hz 

and is very low in amplitude in comparison to other 

events. 

Snoring/pre-obstruction is the hardest sound 

to define with features.  It can look white or it can be 

harmonic in nature.  It can be low or high amplitude.  

It is important to determine this signal due to its 

correlation to obstruction.  At full obstruction no air 

passes the trachea and thus no sounds are produced, 

but just previous to that the airway is constricted and 

produces a large amount of noise.  Because snoring 

and obstruction sounds typically only occur on 

inspiration the relative flow can be seen on the 

expiration of the breath.   

Vocalization is harmonic, extremely loud 

and does not have a very predictable pattern at the 

trachea.  It is important to determine vocalization 

patterns so that they do not false alarm one of the 

other classes. 

Events not related to breathing can be 

anything including swallowing and disturbances at 

the stethoscope cup.  This kind of signal is not 

predictable because of the number of different 

sources it can come.  This also does not happen at 

any particular rate such as snoring or breathing which 

is an important feature. 

In order to classify these events two 

methods have been considered. The first is a multi-

layered perceptron Neural Network as described in 

[3].  The second is a polynomial classifier which is 

described in [4]. 

 An artificial neural network is a structure 

which can have an arbitrary number of inputs and 

arbitrary number of outputs.  The reason they are 

desirable is because of the ease of training them and 

the ability for complex neural networks to solve 

problems that are not a single decision boundary.  

Lippman etal. [3] explains in great detail the many 

abilities of several types of neural networks.  In this 

case the multilayer perceptron was used because of 

its simple structure and complexity.  In this case there 

was the input layer, the output layer and two hidden 

layers.  Between each layer a sigmoid non-linearity 

of form���� � �
�� !�"!#� [3]. 

 During training backward error propagation 

is used which measures the eror at the output layer.  

The error is propagated through the weights to adjust 

the weights of the neural network.  The error is scaled 

by a learning rate much like that of an adaptive filter.  

The only difference is the non-linearity and the multi-

layered approach. 

 Because of the adaptive type algorithm 

present, the same set of data can be reused iteratively 

in order to better train the weights.  The advantage of 

iteratively training the algorithm is that the network 

can learn from previous mistakes.  The disadvantage 

of this method is that overtraining can occur which is 

when the network becomes specific to only the 

training data used.  This creates problems for data 

which is slightly different from the training data. 

 The inputs into the neural network need 

special attention in order to reduce the number of 

iterations during training.  In most cases it is 

important to scale the inputs by the mean and 

standard deviation of the training set for each input.  

The method would be to subtract the mean and divide 

by the standard deviation at each input.  If the inputs 

are not scaled each weight has to be iteratively scaled 

and this scaling is done in increments of the learning 

rate which can be very small.  It is more helpful if the 

input is scaled before training to expedite this 

process. 

 A polynomial classifier is a special type of 

polynomial filter.  This classifier has an additional 

Fig. 6.  Comparison of flow data overlayed with audio envelope with 

detected event markers for both.  A strong correlation between all can be 

seen. 

 
Fig. 7.  Correlation of flow breath detection to audio breath detection.  A 

strong positive correlation can be seen. 
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polynomial filter for each class.  Each filter is trained 

to have an average output of one for that class and 

zero for the average output of any other class.  The 

features are fed into each filter and the one which is 

closest to one is the estimated class. 

 Similar to [4] the order of polynomial filter 

for this project was limited to 4 for all trials.  The 

number of inputs varied from one set of features to 

another but just like the Neural Network, the same 

number of inputs are needed for each test signal in 

order for the weights to be matched to an input.  

 For each input vector $ � %�� �� �'  …�)* a 

vector of polynomial values was constructed with 

+�$� � %1 ��  ��  �'  … �)   ���   �� � ��  …  �� �
�)…�� � �� � …�) … *,.  It is easy to see with such 

an illustration that this can easily get out of hand.  

Thus both order and delays between multiplied inputs 

must be limited.  Each coefficient in the vector p(x) 

must now have a filter coefficient which must be 

trained which will be called wspk.  For each different 

sound to be identified a wspk needs to be identified.  

In the end the input features are fed through each 

filter and the numerical average is taken as shown 

here. 

- � 1
./0123, +�$4�

)

56�
 

 Training wspk is also a simple process.  In 

this case a matrix is made with each polynomial 

feature set +�$� as a row.  There are as many rows as 

training data for that class of data so that the final 

matrix looks like: 

7123 � %
+�$8�9

…
+�$:�9

* 
 Similarly each class has its own “M” matrix 

but for a desired class every other “M” matrix will be 

considered an imposter data set or 75;2.  A complete 

M matrix consists of  

7 � %7123
75;2

* 
where Mimp can be either the entire imposter training 

set or randomly selected vectors from several 

imposters.  One other vector has to be defined which 

is o.  This is a vector made up of ones for the number 

of rows in the Mspk matrix and zeros for the number 

of rows in Mimp. 

 In the end the calculation of wspk is simply 

solving for the end equation 

M
T
M wspk=M

T
o 

 Preliminary research in this area has shown 

that both the Polynomial Classifier and Neural 

Network perform relatively well against one another.  

With general features the Neural Network performed 

with an error rate of about 15% whereas the 

Polynomial filter performed at about 17%.  The 

reason for the high error rate can be attributed to the 

limited training set used and the arbitrarily chosen 

feature sets.  In the future features will have to be 

hand-picked in order to improve the difference 

between each class and make it easier for a signal to 

be classified. 

 

V. FUTURE WORK 

 

There are three major pieces of work to do 

before much progress can be made.  The first is to 

time synchronize the audio data with that of the other 

data equipment over all the sets and segment the 

audio into shorter easier to handle sets.  The 

synchronization requires a large amount of visual 

comparison over every data set. 

The second major project is to have the 

flow, chest, and abdomen excursion data predict the 

state of the airway.  This can be done by determining 

how hard the chest is working vs. how much flow is 

measured. 

The final major project is to use the standard 

of the flow and chest data to train several classifiers 

and determine which to use and how which features 

work the best at distinguishing classes. 
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