
Voter Insertion Techniques for Fault Tolerant FPGA
Design.

Jonathan Johnson
Michael Wirthlin

NSF Center for High Performance
Reconfigurable Computing (CHREC)
Dept. of Elec. & Comp. Engineering

Brigham Young University
Provo, UT 84604, USA

jonjohn@byu.net, wirthlin@ee.byu.edu

Abstract—Triple Modular Redundancy (TMR) is a common
reliability technique for FPGA designs used in radiation envi-
ronments. TMR consists of triplicating a design and inserting
voters to mask errors using redundancy. This paper will in-
vestigate the automatic placement of voters in TMR designs.
In particular, it will introduce three algorithms for determin-
ing where to insert synchronization voters and compare the
area and timing impact of these algorithms on FPGA designs.
It will be shown that the placement of synchronization voters
in a triplicated design can have an important impact on the
area and timing characteristics of the resulting design. The
algorithms presented in this paper give results that increase
the critical path length of a design when adding TMR voters
by as little as 3% to as much as 50%.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 FPGA SINGLE EVENT EFFECTS 1
3 MITIGATION APPROACHES . 2
4 TMR VOTER INSERTION . 3
5 SYNCHRONIZATION VOTER INSERTION ALGO-

RITHMS . 5
6 EXPERIMENTAL COMPARISON OF ALGORITHMS 6
7 CONCLUSIONS . 7

REFERENCES . 8

1. INTRODUCTION

SRAM-based FPGAs are an attractive alternative to ASICs
in space-based computing missions for several reasons. Their
reconfigurability allows them to be used to perform various
tasks at different times during a mission. FPGAs are often
used to implement custom designs that attain application spe-
cific performance that would not be possible with software
reconfigurable only alternatives. In addition, the use of FP-
GAs can reduce the overall non-recurring engineering (NRE)
costs involved in developing a space-based application [1],
[2], [3], [4].

This work was supported by the Rocky Mountain Space Grant Consortium.
This work was also supported by the I/UCRC Program of the National Sci-
ence Foundation under Grant No. 0801876.

SRAM-based FPGAs are, however, susceptible to radiation
effects in space environments. The functionality of an FPGA
is dependent on the integrity of its configuration memory.
FPGA configuration memories are very large and are suscep-
tible to errors caused by single event upsets (SEUs).

Triple Modular Redundancy (TMR) is the most commonly
used mitigation technique against SEUs for FPGA designs
used in radiation environments. The basic concept of TMR is
to triplicate a circuit design so that the resulting design con-
sists of three redundant copies of the original. Majority voters
are used to mask errors in any single copy of the circuit.

The insertion of voters is an important aspect of applying
TMR to a design. One of the more challenging design prob-
lems is deciding where to insert synchronization voters. Syn-
chronization voters are used to keep the sequential logic state
of the three redundant copies of a circuit (domains) synchro-
nized when there are SEUs that affect design feedback. In
order to keep a design synchronized properly, synchroniza-
tion voters must be inserted in enough locations to intersect
all of the feedback in a design.

TMR is often implemented by hand, and the process of prop-
erly inserting synchronization voters manually can be tedious
and error-prone. This paper will introduce three different al-
gorithms for automatically determining suitable synchroniza-
tion voter insertion locations. These algorithms have been im-
plemented in an automated TMR tool developed at Brigham
Young University in collaboration with Los Alamos National
Laboratory [5]. While all three algorithms properly intersect
all design feedback with synchronization voters, they do so in
different ways. The choice of where to insert synchronization
voters affects how many voters are needed as well as the criti-
cal path length of a design. This paper will compare the three
synchronization voter insertion algorithms and show that the
choice of voter insertion locations has a significant impact on
both circuit area and timing performance.

2. FPGA SINGLE EVENT EFFECTS

The voter insertion algorithms presented in this paper are
motivated by FPGA implementations of the TMR technique.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32556639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This section will summarize single event effect (SEE) issues
in FPGAs that make techniques such as TMR necessary in
FPGA designs for space-based missions. While FPGA man-
ufacturers generally guarantee the total ionizing dose (TID)
life and single event latchup (SEL) immunity of their radia-
tion hardened devices [6], the devices are susceptible to single
event upsets (SEUs). In an SRAM-based FPGA, an SEU oc-
curs when a charged particle strikes an SRAM cell, causing
the state of the memory cell to change. SEUs are problem-
atic for FPGAs because their configuration memories contain
millions of memory cells which makes them a large target for
SEUs.

The functionality of an FPGA is dependent on the contents
of its configuration memory. FPGAs are typically made up
of highly configurable logic blocks containing lookup tables
(LUTs) that define logic functions and registers used for se-
quential logic. A reconfigurable routing network connects
the logic blocks in an FPGA in order to implement complex
designs. The contents of LUTs, the functionality of regis-
ters, and the routing network connections are all stored in
an FPGA’s configuration memory. The functionality of an
FPGA changes when the contents of its configuration mem-
ory change.

An SEU in an FPGA’s configuration memory affects only a
single bit of memory. However, a single bit flip can have sig-
nificant consequences on FPGA functionality. For example,
a single bit flip in a LUT can change a boolean AND function
to a boolean function that always outputs a logical 0. A single
bit flip can also change the connections in the FPGA’s routing
network. The results of an SEU in an FPGA’s configuration
memory can be unpredictable.

FPGAs are also sensitive to SEUs in Block RAMs (BRAMs)
and user flip-flops. BRAMs are often used as memories
or FIFOs in FPGA designs. User flip-flops are the regis-
ters in the FPGA that are instantiated in a design for use in
state machines, counters, and other sequential logic struc-
tures. BRAM and user flip-flop upsets can cause a design
to enter invalid states. Although these kinds of upsets are im-
portant, the configuration memory has a much larger cross
section and is more likely to receive SEUs.

3. MITIGATION APPROACHES

The most common mitigation approach for FPGAs used in ra-
diation environments is a combination of bitstream scrubbing
and TMR. Bitstream scrubbing corrects errors in an FPGA’s
configuration memory after they occur and TMR masks cir-
cuit functionality errors as they occur. When used together,
the two techniques improve reliability significantly.

Bitstream Scrubbing

SEUs in the configuration memory of an FPGA can be cor-
rected by bitstream scrubbing [7], [8]. In bitstream scrubbing,
the FPGA’s configuration control logic is used to periodically

read the configuration memory and check for errors using a
pre-computed CRC code. Upon detection of an SEU-induced
error, partial reconfiguration is used to repair the affected con-
tents of the configuration memory. In this manner, bitstream
scrubbing corrects errors in the configuration memory soon
after they occur.

Although errors are corrected quickly, there is a finite amount
of time between the occurrence of an upset and the partial re-
configuration that corrects it. During this time, circuit func-
tionality modified by the upset can cause errors in computa-
tion. Such errors can propagate to circuit outputs or feed back
into sequential logic state, causing incorrect circuit operation
to persist even after the effect of the SEU on the configuration
memory is corrected. In addition, bitstream scrubbing can-
not address errors caused by SEUs in BRAMs and user flip-
flops because the correct value of the corresponding mem-
ory cells cannot be known unless redundancy is employed.
Bitstream scrubbing becomes a more effective mitigation ap-
proach when used in conjunction with an error masking tech-
nique such as TMR.

Triple Modular Redundancy

TMR is a well known technique for improving the reliability
of integrated circuits. Three redundant copies of a circuit are
created and majority voters are used to mask errors that occur
in any of the three copies (see Figure 1).

Although TMR is often applied to designs manually, the pro-
cess is straightforward enough to be implemented by an auto-
mated CAD tool. Existing tools for applying TMR to FPGA
designs include the Xilinx XTMR tool [9] and the BLTmr
tool developed at Brigham Young University in collaboration
with Los Alamos National Laboratory [5]. Using an auto-
mated tool can provide several advantages over implement-
ing TMR by hand. For example, inserting voters in the proper
places manually can be a tedious and error prone process. An-
other pitfall when attempting to implement TMR manually
is that many synthesis tools remove redundant logic. This
issue is avoided by automated CAD tools that operate on a
post-synthesis circuit representation (i.e. EDIF netlist). One
further advantage of the BLTmr tool in particular is that it
allows for prioritized partial triplication of designs based on
target device size [10].

In a TMR system, majority voters are used to mask errors
that occur in any single copy of the circuit. In FPGAs, voters
are most commonly implemented using look-up tables. A
three input look-up table (LUT3) is sufficient to implement a
single majority voter. In general, triplicated voters are used to
avoid single points of failure. As shown in Figure 1, each of
the three voters takes an input from each domain and passes
outputs along to its respective domain.

2

Figure 1. Triplicated Voters

Reliability Modeling

Reliability modeling is important for determining the benefits
of using various reliability techniques. FPGA reliability can
be modeled using several methods, including combinatorial
modeling [11] and markov modeling [12]. In general, a non-
redundant system is less reliable than a TMR system with-
out repair (i.e. without bitstream scrubbing) for short mission
times. Overall, a TMR system with bitstream scrubbing is
much more reliable than both a non-redundant system and a
TMR system without repair. Figure 2 compares the reliabil-
ity of three example systems with these configurations using
combinatorial and markov modeling techniques.

Figure 2. Reliability Comparison for TMR

4. TMR VOTER INSERTION

While the basic concept of TMR is straightforward, deter-
mining where to insert voters can be somewhat difficult. In
general, the reasons for inserting voters suggest where they
should be placed. For example, reducing voters are used to
reduce a signal from three domains to a single domain (gen-

erally at circuit outputs) and clock domain crossing voters
mitigate TMR vulnerabilities created by clock domain cross-
ing synchronizers. Optimal locations for other types of vot-
ers can be more difficult to determine. Partitioning voters
subdivide a circuit into TMR partitions for higher reliability.
Determining the optimal number and locations of partitions
is difficult. Synchronization voters keep the sequential logic
state of TMR domains synchronized when upsets in feedback
sections of a design occur. Determining optimal locations for
synchronization voters is also difficult.

Reducing Voters

Reducing voters take outputs from three separate TMR do-
mains as input and produce a single output. The most com-
mon use of reducing voters is at circuit outputs. Sometimes it
is desirable to have a single set of circuit outputs rather than
output all three TMR domains for external voting. This can
be necessary, for example, when the target FPGA has insuffi-
cient I/O resources to allow full triplication of the circuit out-
puts. In such a situation, reducing voters are used to reduce
three TMR domains to a single output as shown in Figure 3.

Figure 3. Reducing Voter

Reducing voters are also useful in partial TMR configura-
tions. When partial TMR is used, there are circuit locations
where data must flow from a triplicated partition to a non-
triplicated partition. Reducing voters are used at these loca-
tions to provide a single input to the non-triplicated partition.

TMR can also be mixed with duplication with compare
(DWC), an error detection technique which uses duplication
instead of triplication. In such a configuration, there are cir-
cuit locations where data must flow from a triplicated circuit
partition to a duplicated partition. At such locations, two re-
ducing voters are used in parallel to reduce the three TMR
domains to two inputs for the duplicated partition.

Voter Partitioning

In a typical TMR system, errors that occur in the configura-
tion memory are discovered and corrected by scrubbing. In a
circuit that has voters only at the outputs, errors are masked

3

as long as they occur in only one of the three TMR domains at
a time. If multiple errors occur fast enough such that they ac-
cumulate in more than one domain before being corrected by
scrubbing, the redundancy is overcome and errors can reach
circuit outputs. This vulnerability can be mitigated by subdi-
viding the circuit into multiple partitions and applying TMR
to each partition separately. The partitions are separated with
triplicated voters.

In a TMR system with multiple partitions, each partition can
tolerate errors in a single domain. That is, the system can tol-
erate concurrent non-overlapping failures (failures in separate
partitions and possibly separate domains). The reliability of
the circuit can be improved by subdividing it into smaller and
smaller partitions up to the point where the reliability gains
from partitioning are overridden by the unreliability of the
voters being added in between the partitions.

Clock Domain Crossing Voters

Special consideration is required when applying TMR to cir-
cuits with multiple clock domains. Clock domain crossing
synchronizers are a TMR domain synchronization hazard.
A typical clock domain crossing synchronizer consists of a
number of consecutive flip-flops to reduce the probability of
a metastable value propagating through the entire synchro-
nizer. Because of the uncertainty associated with metastabil-
ity, three synchronizers whose inputs transition at exactly the
same time do not necessarily propagate the correct output at
the same time. This means that TMR domains have the po-
tential to be unsynchronized after clock domain crossing syn-
chronizer outputs even without radiation effects. The prob-
lem is compounded by the fact that the inputs to the clock do-
main crossing synchronizers are three separate nets with three
separate timing paths. Even the synchronizer inputs may not
transition at exactly the same time.

The problem that is created by TMR domains being possi-
bly unsynchronized after clock domain crossing synchroniz-
ers is that it leaves the circuit vulnerable to SEUs. When only
two of the domains are synchronized, a single error in either
of them can cause an incorrect output that is not masked by
TMR. This is because a single TMR partition can tolerate er-
rors in only a single domain at a time.

Several strategies for mitigating TMR circuits with clock do-
main crossings are being investigated. These strategies in-
volve strategically placing voters in order resynchronize the
TMR domains after the clock domain crossing syncrhonizers.

Synchronization Voters

Synchronization voters are used to keep the state of the three
TMR domains in a triplicated design synchronized in the face
of SEUs. Consider a simple triplicated counter with voters in-
serted only at design outputs (see Figure 4). If an error were
to occur in one of the domains, it would have the potential
to cause incorrect values to feed back into the state of the

counter in the domain in error. This domain would then con-
tinue to produce incorrect results even if the original error in
the circuit functionality were corrected via bitstream scrub-
bing. Such an error is called a persistent error [13] because
the state of the affected domain remains unsynchronized even
after the original error in the configuration memory is cor-
rected. One way to recover from a persistent error is to reset
the design after the configuration memory has been corrected.
Resetting the design frequently is costly in terms of system
availability.

Figure 4. Simple Counter

Synchronization voters provide a better solution than fre-
quently resetting a design. Consider the same triplicated
counter as before but this time with triplicated voters inserted
in the feedback path (see Figure 5). The added voters mask
errors that would normally reach and remain in the state of
the affected domain. Errors that occur after the voters (i.e. in
the counter logic) can still cause incorrect values to reach the
counter registers, but they will be flushed out after the con-
figuration memory error is corrected via bitstream scrubbing,
and the voters keep the errors from ever reaching the rest of
the design. Triplicated voters placed in design feedback paths
in this manner are called synchronization voters because they
keep the state of the three domains from becoming perma-
nently unsynchronized by errors that would otherwise affect
design state in a persistent manner.

The placement of synchronization voters is the most difficult
voter placement issue to resolve automatically. Synchroniza-
tion voters should be placed at locations that cut all design
feedback, but there are many ways to cut all of the feedback in
a design. In addition, synchronization voters can slow down a
design’s critical timing path. Algorithms for determining ap-
propriate places to insert syncrhonization voters are discussed
in the next section.

4

Figure 5. Synchronized Simple Counter

5. SYNCHRONIZATION VOTER INSERTION
ALGORITHMS

This section will present three different algorithms for deter-
mining where to insert synchronization voters. The insertion
of synchronization voters presents a particular challenge, es-
pecially for FPGA designs. In order to effectively mitigate
against persistent errors, all of the feedback paths in a de-
sign must be cut by triplicated voters. In a general sense, this
problem can be considered an instance of the feedback edge
set (FES) problem in which one is given a directed graph and
asked to find a minimum subset of edges that intersects ev-
ery cycle in the graph. The unweighted version of the FES
problem is NP-hard [14].

It is difficult to determine the best locations to insert synchro-
nization voters because the choice has a significant impact on
the resulting circuit’s timing performance and area and be-
cause there are certain locations where voters cannot be in-
serted due to FPGA architectural constraints. When multiple
voters are placed in a single timing path, the performance of
the circuit is adversely affected. Voter insertion locations also
determine the total number of voters needed to cut all feed-
back and hence affect circuit area. The three algorithms pre-
sented in this section were implemented in the BLTmr tool at
Brigham Young University. They are the basic SCC decom-
position algorithm, the highest fanout SCC decomposition al-
gorithm, and the highest flip-flop fanout SCC decomposition
algorithm. Their impact on area and timing will be discussed
in section 6.

Basic SCC Decomposition

The first algorithm considered is a simple decomposition of
strongly connected components (SCCs). The circuit netlist
is first converted to graph form and analyzed to find SCCs.
Then, the SCCs are decomposed into successively smaller
SCCs by removing feedback edges until there is no feedback
left in the circuit graph. Special consideration is made for
circuit locations where voters cannot be inserted due to archi-
tectural constraints. These locations are referred to as bad cut
edges. Pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1 Basic SCC Decomposition Algorithm
Initialize list L
Initialize stack S
Perform SCC analysis
Push SCCs onto S
while S not empty do

current scc = S.pop()
Find back edges in current scc
if back edges are all legal cuts then

Remove all back edges from SCC
Save removed back edges to L

else if back edges are both bad and legal cuts then
Remove only legal cut back edges
Save removed back edges to L
Clear S
Recompute SCC analysis
Push SCCs onto S

else
Clear S
Perform SCC analysis with new vertex visit order
Push SCCs onto S

end if
end while
Insert voters on edges in L

The basic SCC decomposition algorithm correctly mitigates
against persistent errors by inserting voters that cut all de-
sign feedback, but no attempt is made to optimize the voter
locations to minimize the impact of voters on circuit area or
timing.

Highest Fanout SCC Decomposition

The highest fanout SCC decomposition algorithm is an at-
tempt to reduce the number of voters used to cut feedback.
It is based on the fact that many circuit designs have some
high fanout nets. When a voter is inserted on a net with high
fanout, a significant amount of feedback can be cut with only
a single voter. The highest fanout SCC decomposition al-
gorithm takes advantage of this by decomposing SCCs in a
manner that prioritizes the removal of the edges that can cut
the most feedback with the fewest voters. That is, each SCC
is analyzed to find the node with the highest legal cut fanout
and its legal cut output edges are cut first. Pseudocode for this
algorithm is given in Algorithm 2.

5

Algorithm 2 Highest Fanout SCC Decomposition Algorithm
Initialize list L
Initialize stack S
Perform SCC analysis
Push SCCs onto S
while S not empty do

current scc = S.pop()
Node n = Find node with highest legal cut fanout
Remove from graph the legal cut edges coming from n
Recompute SCC analysis of current scc subgraph
Push SCCs onto S
Save removed edges to L

end while
Insert voters on edges in L

It will be shown in section 6 that the highest fanout SCC
decomposition algorithm is indeed effective at reducing the
number of voters used but that it does not always provide
better timing results than the basic SCC decomposition al-
gorithm.

Highest Flip-Flop Fanout SCC Decomposition

The highest flip-flop fanout SCC decomposition algorithm is
designed to both reduce the number of voters used to cut feed-
back over the basic SCC decomposition algorithm and min-
imize the impact of the voters on circuit timing. Voters can
negatively affect timing more than is necessary when more
than one set of voters is placed in a single path from one reg-
ister to the next. This algorithm prevents this from happening
by decomposing SCCs as before but by prioritizing the re-
moval of edges coming from flip-flop nodes with high legal
cut fanouts. Since a timing path consists of the logic from
one flip-flop to the next, inserting voters directly after flip-
flops ensures that only one voter will be inserted per timing
path. The pseudocode for this algorithm is the same as that
of the previous algorithm except that for each SCC the algo-
rithm finds the flip-flop node with the highest legal cut fanout
instead of the node with the highest legal cut fanout overall.

6. EXPERIMENTAL COMPARISON OF
ALGORITHMS

This section will present the results of applying TMR to a
suite of test designs using each of the three synchronization
voter insertion algorithms described in the previous section.
Both area and timing impact will be considered.

Designs

A suite of test designs including both real world and synthetic
designs was selected to test the effectiveness of the three syn-
chronization voter insertion algorithms. Only designs that in-
clude some amount of feedback were selected since synchro-
nization voters are unnecessary in feed forward only designs.

The MACFIR design implements a multiply accumulate

(MAC) unit using a feedback loop. A MAC unit performs
a sum-of-products operation that is useful for computing a
convolution sum. Such a design can be used to implement a
FIR (finite impulse response) filter for signal processing ap-
plications.

The DES3 design implements a triple DES encrypter. Triple
DES is a block cipher used in cryptography applications. It
uses three keys and works by first encrypting data using the
first key, decrypting the data with the second key, and finally
encrypting the data with the third key. This design was chosen
because it is a computationally intensive real world applica-
tion.

The QPSK design is a quadrature phase-shift keying (QPSK)
demodulator. QPSK is a digital modulation scheme used in
communications applications in which data is encoded using
the phase of the carrier signal. This design contains a fair
amount of feedback and is another computationally intensive
real world application.

The Synthetic design is a design that was crafted to contain
both feedback and feed forward logic. It consists of a lin-
ear feedback shift register (LFSR) whose output is combined
with an input signal using a multiplier and an adder tree.
While it is not necessarily a real world application, it is useful
because it contains feedback (making synchronization voters
necessary) and uses a large portion of the resources available
on the target FPGA device. This is interesting because it re-
sults in routing congestion which makes it more difficult for
the place and route software to find a routing that meets tim-
ing constraints.

The LFSRs design is another synthetic design that consists of
a large LFSR replicated ten times. It is interesting because
it contains a large amount of feedback, and the feedback in-
herent in an LFSR is of a fairly complex nature, meaning that
there are many possible synchronization voter configurations
for cutting the feedback.

Test Procedure

Each of the test designs was triplicated using the automated
TMR tool developed at Brigham Young University. Each of
the three synchronization voter insertion algorithms was used
on each design. In all of the designs except the DES3 de-
sign, full triplication of all circuit elements and I/Os except
the clock was performed. There is a large amount of I/O in
the DES3 design, and there were insufficient I/O resources
on the target FPGA device to facilitate full triplication of the
inputs and outputs so they were left untriplicated. In each it-
eration of each design, the total number of voters inserted into
the design was recorded.

The target FPGA device for these experiments is the Xilinx
Virtex 1000 (XCV1000-5-bg560). Using a script to control
the Xilinx tool flow, a place and route was performed on each
iteration of each design using successively tighter timing con-

6

MACFIR QPSK DES3 Synthetic LFSRs
Original Design Critical Path 14.7 ns 79.8 ns 10.9 ns 9.8 ns 11.9 ns
Basic SCC Critical Path 18.6 ns 120 ns 16.2 ns 10.5 ns 13.6 ns
Decomposition Total Voters 219 1188 543 720 570
Highest Fanout Critical Path 18.5 ns 90.2 ns 14.9 ns 11.2 ns 13.7 ns
Decomposition Total Voters 219 165 434 288 360
FF Fanout Critical Path 18.3 ns 84.3 ns 13.6 ns 10.9 ns 12.3 ns
Decomposition Total Voters 219 96 352 324 450

Table 1. Synchronization Voter Insertion Algorithm Comparison Results

straints until the place and route run failed to find a routing
capable of meeting the timing constraint. In this manner, the
best possible critical path length for each iteration of each de-
sign was determined. Timing constraints were adjusted in 0.1
ns increments.

Results

The results of the synchronization voter insertion algorithm
comparison experiments are given in Table 1. An analysis of
the results provides some useful insights about synchroniza-
tion voter insertion.

First, it is interesting to compare the number of voters pro-
duced by each algorithm. The basic SCC decomposition
algorithm consistently gives the highest number of voters.
The lowest number of voters is given by the highest flip-flop
fanout SCC decomposition algorithm in the QPSK and DES3
designs (two of the real world designs) while the highest
fanout SCC decomposition algorithm gives the lowest num-
ber of voters in both of the synthetic designs (Synthetic and
LFSRs). This could be due to the fact that the Synthetic and
LFSRs designs both have similar feedback patterns (due to
LFSRs) that are distinct from the feedback patterns in the
real world designs. This suggests that an adaptive algorithm
based on analyzing the type of feedback in a design could be
used for more effectively minimizing the number of voters in
a triplicated design when that is the primary focus.

Given the relatively low impact of voters on circuit area, it
is generally more likely that timing is the primary concern
when inserting synchronization voters. In all designs except
Synthetic, the best timing results are obtained by using the
highest flip-flop fanout SCC decomposition algorithm. This
is an expected result based on the fact that the highest flip-flop
fanout SCC decomposition algorithm is designed to minimize
the number of voters placed in a single timing path. Unex-
pectedly, the basic SCC decomposition algorithm produces
the best timing results for the Synthetic design. This could
be an anomaly due to the fact that the Synthetic design uses a
large portion of the target FPGAs resources, creating routing
congestion. Such congestion makes it much more difficult for
the place and route software to produce a routing that meets
timing constraints. In such conditions, place and route results
are often more arbitrary.

It is interesting to note that it is not always the case that the
best timing results are obtained by the algorithm that pro-
duces the lowest number of voters. The results for the two
synthetic designs illustrate this. This could be due to the na-
ture of the feedback in these designs. Since the feedback in
both is due to LFSRs, which have a complex feedback pat-
tern, there are many possible ways to cut all of the design
feedback. In a design where feedback is due to a simple
counter or state machine structure, cutting all of the feedback
is a simpler problem because the feedback loops are simpler.

Finally, the case of the MACFIR design is particularly inter-
esting because all three algorithms produced the same num-
ber of voters, but the placement of the voters gave different
timing results for each algorithm. The highest flip-flop fanout
SCC decomposition algorithm gave the best timing results,
suggesting that the heuristic of inserting voters directly after
flip-flops employed by this algorithm is a good way to deter-
mine voter locations.

7. CONCLUSIONS

Because of its impact on area and timing performance, voter
insertion is an important issue when using TMR in FPGA
designs. Three algorithms for inserting synchronization vot-
ers have been described and compared based on experimen-
tal results. The highest flip-flop fanout SCC decomposition
algorithm provides the best results overall in terms of both
area and timing impact on the designs considered in this pa-
per. On average, the increase in critical path length due to
inserted voters with this algorithm was 23% better than the
increase given by the best of the other two algorithms; the av-
erage number of voters inserted by the algorithm was 5% less
than the best of the other two algorithms.

The problem of deciding where to insert voters to cut all de-
sign feedback is an instance of the feedback edge set problem
(FES), which is NP-hard. Algorithms exist for approximating
the weighted version of this problem [15]. One possible di-
rection for future work could be to cast the problem of where
to insert synchronization voters as an instance of the weighted
FES problem using appropriate edge weights to try to mini-
mize circuit area and timing impact. Existing approximation
algorithms could be used to provide solutions for such a prob-
lem.

7

TMR with bitstream scrubbing is an effective reliability tech-
nique for FPGA designs used in space-based missions. Insert-
ing voters to ensure reliability can be a hard problem when
implementing TMR manually, but the highest flip-flop fanout
SCC decomposition algorithm presented in this paper pro-
vides an effective way of inserting voters automatically with
a low impact on circuit area and timing performance.

REFERENCES

[1] D. Ratter, “FPGAs on Mars,” Xilinx, Tech. Rep., Au-
gust 2004, xCell Journal #50.

[2] M. Caffrey, “A space-based reconfigurable radio,” in
Proceedings of the International Conference on En-
gineering of Reconfigurable Systems and Algorithms
(ERSA), T. P. Plaks and P. M. Athanas, Eds. CSREA
Press, June 2002, pp. 49–53.

[3] A. S. Dawood, S. J. Visser, and J. A. Williams, “Re-
configurable FPGAs for Real Time Image Processing in
Space,” in 14th International Conference on Digital Sig-
nal Processing (DSP 2002), vol. 2, 2002, pp. 711–717.

[4] J. Villasenor and B. Hutchings, “The flexibility of con-
figurable computing: Providing the hardware for data-
intensive real-time processing,” pp. 67–84, Sept. 1998.

[5] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and
M. Wirthlin, “Improving FPGA design robustness with
partial TMR,” in 44th Annual IEEE International Reli-
ability Physics Symposium Proceedings, 2006, pp. 226–
232.

[6] Xilinx, “Radiation hardened Virtex-II QPRO 1.5V plat-
form FPGAs: Introduction and overview,” Xilinx, Inc.,
San Jose, CA, Datasheet DS124-1, July 2003.

[7] C. Carmichael, M. Caffrey, and A. Salazar, “Correct-
ing single-event upsets through Virtex partial configura-
tion,” Xilinx Application Notes, XAPP216 (v1. 0), 2000.

[8] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis,
X. Inc, and C. San Jose, “A fault injection analysis of
Virtex FPGA TMR design methodology,” in Radiation
and Its Effects on Components and Systems, 2001. 6th
European Conference on, 2001, pp. 275–282.

[9] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-
event upset mitigation selection guide,” Xilinx Applica-
tion Note XAPP987, vol. 1, 2008.

[10] K. S. Morgan, “SEU-Induced Persistent Error Propaga-
tion in FPGAs,” Master’s thesis, Brigham Young Uni-
versity, August 2006.

[11] D. Siewiorek and R. Swarz, Reliable computer systems:
design and evaluation. AK Peters, Ltd.

[12] D. McMurtrey, K. Morgan, B. Pratt, and
M. Wirthlin, “Estimating TMR reliability on FP-
GAs using markov models.” [Online]. Available:
http://hdl.handle.net/1877/644

[13] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt,

and M. Wirthlin, “SEU-induced persistent error propa-
gation in FPGAs,” IEEE Transactions on Nuclear Sci-
ence, vol. 52, no. 6 Part 1, pp. 2438–2445, 2005.

[14] R. Karp, Reductibility among combinatorial problems.
Univ. of California, 1972.

[15] G. Even, “Approximating minimum feedback sets and
multicuts in directed graphs,” Algorithmica, vol. 20,
no. 2, pp. 151–174, 1998.

8

