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NOMENCLATURE 

Symbol 

A 

Definition 

A r e a ,  f t .  
2 

A r e a  in  model ,  f t .  
2 

A r e a  in prototype, f t .  
2 

Ratio of A /A , dimensionless 
P m 

Bottom width, f t .  

Minimum depth in throat  for a specified f lowrate  and 
Froude  number  equal to one, ft. 

Discharge f o r  a specified submergence and energy  loss 
equal to one,  c f s .  

Depth of flow a t  entrance,  f t .  

Depth of flow a t  exi t ,  ft. 

Minimum depth of flow in throat ,  f t .  

Depth of flow a t  entrance of model,  ft. 

Depth of flow a t  exit of model,  ft 

Minimum depth of flow in throat of model ,  f t .  

Depth of flow a t  entrance of prototype, f t  

Depth of flow a t  exit  of prototype, f t .  

Minimum depth of flow in throat  of prototype,  f t .  

F roude  number ,  dimensionless 

Gravity f o r c e ,  lb .  

Lnertia fo r ce ,  lb. 



NOMENCLATURE (continued) 

Symbol 

F 
m 

F 
r 

Definition 

Maximum Froude  number in f lume,  dimensionless  

Ratio of prototype Froude number to model  Froude  
number ,  d imensionless  

Accelerat ion due to gravity, 32.2 f t / s e c .  2 

Any length, i t .  

Length in  model,  ft .  

Length in  prototype,  f t .  

Ratio of L /L  , dimensionless 
P m 

Actual  d i scharge ,  cfs .  

Discharge in model ,  cfs.  

Discharge in prototype,  cfs .  

Ratio of Q /am, dimensionless 
P 

Slope, d imensionless  

Average velocity, f t l s ec .  

Velocity in model,  f t / s ec  

Velocity in  prototype, f t / s e c .  

Ratio of V /V , dimensionless 
P m  

2 4 
Density of fluid, lb .  - sec.  / f t .  
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DESIGN AND OPERATION 

Necessi ty  f o r  Submerged F lume  

The D.M.A.D. dam and r e se rvo i r  a r e  located on the Sevier  River  

nor theas t  of Delta, Utah, and s e r v e  a s  a s torage reservoi r  for  the 

winter and spring flows of the Sevier  River below Sevier Bridge 

Reservoi r .  The D.M.A.D. dam has  been constructed with two outlet 

works ,  one fo r  feeding Canal "A", which s e r v e s  the Delta and Melvil le 

I r r igat ion Companies,  while the other canal s e rves  the Abraham and 

Dese re t  I r r igat ion Companies. 

A gaging station located along Canal "A" has been used for  many 

yea r s  to obtain flow measurements .  The gaging station measurements  

appeared to be ve ry  inconsistent,  and consequently, in 1963 a study 

was made  to evaluate the accuracy  of the station. The resu l t s  of the 

study (F igure  1 )  showed that for  a constant depth of flow, the flow r a t e  

might v a r y  m o r e  than 100 c f s  o r ,  fo r  a constant flow ra t e ,  the depth of 

flow might v a r y  m o r e  than a foot. The flows conveyed by this cana l  

range f r o m  15 to 500 c i s .  

Canal "A" is f '  ive mi les  in length and has a total drop in grade  of 

five fee t ,  the average slope therefore  being one foot per  mile .  Regulation 

of the end of the canal will cause backwater effects over the en t i re  

length of the canal.  The backwater effects will resu l t  in increased 

seepage lo s se s .  The installation of a P a r s h a l l  flume was contemplated 

f o r  measc r ing  the flows conveyed by Canal "A", but it  woulc' be 





necessa ry  to place the f loor  of the flume 2. 75 feet  above the canal  grade 

to insure  f r ee  flow over the en t i re  flow range.  The use of such a flume 

would significantly increase  the seepage losses  between the measur ing  

station and the dam for  a l l  f lows below the design discharge of 500 cfs .  

Since the D. M. A. D. r e se rvo i r  i s  used pr imar i ly  for  regulation,  

increasing the water  su r f ace  levels  in Canal "A" would reduce the 

regulating head and the usefulness of the lower s torage levels  in the 

r e se rvo i r  for  the Delta and Melville Irrigation Companies. 

Design of F lume 

As a pract ical  course  of action, it  was decided to constr ic t  the 

canal in some manner  to produce measurable  effects  that could be used 

to r a t e  the section. As a consequence, a rectangular f lume was  agreed  

upon wherein submerged flow would occur over the en t i re  flow range. 

Pre l iminary  computations showed that the total energy lo s s  a t  maximum 

flow should not exceed 0. 6 feet .  The final  design for  the submerged 

rectangular f lume i s  depicted in F igure  2 .  

Operation 

Flow charac te r i s t ics .  The submerged rectangular f lume was 

designed for  a maximum discharge of 500 cfs .  F igu res  3 and 4 show 

the flume at  a t ime when the measu red  discharge was 494 c f s .  The 

wave pat tern entering the throat  section i s  shown in. F igu re  5 for  an 

intermediate flow ra te .  F igu re  6 i l lus t ra tes  the wave pat tern a s  the 

flow passes  f r o m  the throat  to the diverging exit section. 
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!'Wal.kerl! differential head measuring system.  The calibration of 

the submerged rectangular f lume requi res  that the flow depth ups t ream 

f r o m  the f lume,  D l #  and the flow depth downstream f r o m  the f lume,  

D3, be measured .  The "Walker" differential  head measu r ing  device i s  

used to  m e a s u r e  D and D - D The measuring device i s  sensit i tve 
1 1 3'  

enough to detect differences in water  surface levels of two-thousandths 

(0 .  002)  of a foot,  thus providing a n  excellent means of obtaining flow 

depths for  submerged flumes.  

The differential head measur ing  device consists of two fixed length 

cab les ,  3 pound weight for  cab les ,  balance a r m  with pivot, pulleys,  and 

bracke t  with a calibrating sc rew.  A stage recorder  i s  at tached to  the 

calibrating sc rew,  Each  cable i s  attached to the float, brought over  an 

end pulley, over a cen te r  pivot pulley, and fastened to the weight. 

Because of the weight, each cable remains  taut and, being of constant 

length, any difference of water  level  in the two wells mus t  be compensated 

for  by a movement of the a r m  ends and weight t ravel  up o r  down. Water 

level  alone can make no change in position of the balance a r m .  Change 

occurs  only when the re  i s  a difference of water levels ,  the a r m  ends 

adjusting to make the dis tance f r o m  float over end, over cen te r  pivot, 

then to weight, constant for  each cable. The a r m  is balanced and pivot:ed 

oil a sealed ball  bear ing assembly .  F o r c e s  acting at  comparat ively long 

dis tances  f r o m  the pivot make i t  possible f o r  smal l  changes to be recorded.  

By different  a r m  pivot and pulley a r rangements ,  var ious  sca les  a r e  





possible. F igu re  7 i l lustrates  a typical hookup now being used. A 

diagram of the recording system being used for the submerged rectangular  

flume i s  shown in  F igure  8. 





CALIBRATION BY MODEL STUDY 

Purpose  of Calibration 

A calibration of the submerged rectangular f lume by means  of a 

hydraulic model was  felt  neces sa ry  to  substantiate which flow depth 

measurements  should be made and to provide a complete calibration of 

the flume over a wide range of submergence values. A few field measu re -  

ments  were obtained during the summer  of 1964, but not enough to provide 

a complete calibration. The calibration of the flume in the laboratory 

provided a more  rapid and economical s e t  of discharge cu rves  than 

would have been obtained with field measurements .  The model calibration 

will be  field checked during the summer  of 1965. 

Theorv 

In the open channel flow problem being studied, l amina r  flow will 

not occur and sur face  tension will have no significant effect  (Ackers  and 

Har r i son ,  1963). The predominant fo rces  acting on the flow will be  those 

of gravity and inertia.  Both fo rces  a r e  exerted on the model and the 

prototype. The ra t io  of iner t ia  fo rces  to gravity fo rces  i s  the Froude  

number .  The iner t ia  f o r c e s  a r e  given by 



FI = iner t ia  fo rces ,  lb. 

p = density of fluid, l b - sec / f t .  4 

L : length, i t .  

V = average  ~ ~ e l o c i t y  of flow, f t / s e c .  

The gravity f o r c e s  a r e  given by 

in which 

FG = g r a v i t y f o r c e s  

g = accelerat ion due to gravity: 32 .  2 f t / s e c .  
2 

The Froude number i s  defined by 

Normally,  the square  root of the ratio of the iner t ia  forces  to  the 

gravity f o r c e s  i s  used a s  the Froude number,  which can be defined a s  

The length, L, in the Froude number m a y  be any length, but 

in open channel flow, L i s  usually taken to be the depth of flow. The 

Froude number  to be evaluated will use L a s  D , the minimum depth 
m 

in the throat .  The Froude  number will then indicate if the flow i s  super -  

c r i t i ca l  o r  subcr i t ical .  

Fie ld  studies indicate that regulation of the end of the canal causes  

backwater e f fec t s ,  a t  a l l  depths and any r a t e  of flow, the ent i re  length of 

of the canal.  As  a resu l t  of these backwater effects the prototype i s  



always  a t  a  s u b c r i t i c a l  flow. T h e r e f o r e ,  only subcr i t i ca l  flow, o r  

F r o u d e  n u m b e r  l e s s  than one,  wil l  be  analyzed in  th is  r e p o r t .  

Any flow pass ing  through the f lume and fai l ing to  p a s s  through 

c r i t i c a l  depth  is sa id  to  be  submerged .  Submergence  i s  defined b y  Wel ls  

and Gotaas  (1948) a s  "the pe rcen t  r a t io  of t a i l w a t e r  depth to u p s t r e a m  

depth w h e r e  the  t a i lwa te r  depth i s  r e f e r r e d  to  the  channel  inver t  a t  the  

point of u p s t r e a m  m e a s u r e m e n t s .  I '  

Model  m e a s u r e m e n t s  a r e  conver ted  t o  cor respond ing  prototype 

m e a s u r e m e n t s  b y  the  laws of s imi l i tude .  T h e  s u b s c r i p t  "p" wil l  b e  

used to denote  prototype p r o p e r t i e s ,  "m" to  des ignate  model  p r o p e r t i e s ,  

and "r" to  denote the  ra t io  of the prototype p r o p e r t i e s  to the m o d e l  

p r o p e r t i e s .  

The  fundamenta l  r e q u i r e m e n t  f o r  the  des ign  of a F r o u d e  m o d e l  is 

that  the F r o u d e  number  b e  the s a m e  in the  mode l  and in  the prototype 

(Murphy,  1950),  thus  F ( r a t i o  of prototype F r o u d e  n u m b e r ,  
FP' 

t  0 
r  

mode l  F r o u d e  n u m b e r ,  F ) i s  equal  to one .  
m 

The  l a b o r a t o r y  i s  equipped with a f ive - foo t -wide  f lume which i s  

one-seventh  the  width of the  35-foot-wide c a n a l  in which the prototype 

f lume  i s  1-ocated. Consequently,  a f t e r  cons ide ra t ion  of the  avai lable  

l a b o r a t o r y  f a c i l i t i e s ,  a  decis ion w a s  m a d e  to  u s e  a length r a t i o  of 1 : 7 

(mode l  : prototype) .  



F r o m  the def:n:t:on of the F r o u d e  number  

and,  s i n c e  F = 1 and g = 1 ,  
r r 

F r o m  the  equation of continuitj, 

in  which 

3 
Q : f low r a t e ,  f t .  /set. 

A = c r o s s - s e c t i o n a l  a r e a  of flow, f t .  2 

T h e r e f o r e  



111 the prototype s t ruc ture ,  pipe has  been extended into the flow both 

ups t ream and downstream f r o m  the flume to measu re  the depth of flow 

a t  these locations. These  pipes lead to stilling wells placed alongside 

the flume, in  which f loats  and a r eco rde r  a r e  located. To duplicate this 

condition in the model f lume, tubing was used to m e a s u r e  the ups t ream 

and dowastream flow depth. The upstream and downstream depth 

measu remen t s ,  a s  read in the model stilling wel ls ,  w e r e  cor re la ted  

with the discharge r a t e s  through the flume to yield the neces sa ry  

calibration.  

The prototype flume h a s  been constructed of concrete .  The model 

was  constructed of plywood with a sanded painted surface to obtain an 

equivalent roughness,  

Experimental  Faci l i t ies  

After  the construction of the model rectangular measur ing  flume 

was completed, it  was proper ly  placed in the five-foot by  five-foot 

f lume located jn the Fluid Mechanics Laboratory.  

Two pumps w e r e  used, operating together and capable of 

delivering approximately four c i s .  The flow ra t e  was regulated by 

means  of a. valve located on the l ine a s  it just en te rs  the laboratory.  

Where smal le r  flows were  des i r ed ,  i t  was  i-~ecessar-, to use  only one 

pump. The water  was pumped through a 12-inch diametcl-  i3ipeline 

which feeds into the five-foot by five-foot f lume. At the beginning of 

this flu-me s a s c r e e n  which provides an  even distribution of the flow. 



The flow passed  through the flume and discharged into weighing tanks.  

The flow ra te  was calculated f rom the weight of water  measured  during 

a particular t ime period.  The water  was discharged f r o m  the weighing 

tanks into the sump, where  it was recirculated (F igure  9 ) .  

When the flow was passing through the rectangular  f lume, 

measurements  w e r e  made of (1) upstream depth, (2 )  minimum depth 

in the throat ,  and ( 3 )  downstream depth. All  depth measurements  were  

made by the use  of a point gage, and readings were  to the neares t  

0.  001 of a foot. Copper tubing running f r o m  ups t r eam and downstream 

of the rectangular f lume into stilling wells,  located n e a r  the middle of 

the f lume,  provided the ups t ream and downstream depths;  whereas  a 

c r o s s  b a r  a c r o s s  the flume was used to support  a point gage provided 

to measu re  the minimum depth occurring in the th roa t .  

A tailgate was placed downstream f r o m  the f lume exit in o rde r  

to regulate the ta i lwater  depth corresponding to that to be encountered 

in the field. 

Analysis of Data 

Considerable thought was given to an  approach for  analyzing 

submerged f l o w  conditions. The submergence,  D3/D1, was considered 

to be a ve ry  appropria te  pa rame te r .  The proper  c r i te r ion  f o r  super -  

c r i t i ca l  o r  subcr i t ical  flow i.n the throat i s  the Froude  number .  

Consequently, the Froude  number  was evaluated a t  the c r o s s -  section 

of the throat  where minimum depth occurscd.  This  Froude  number ,  
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F , is  actually the maximum Froude  number occurr ing in the f lume.  
m 

The other pa rame te r ,  which will be  r e f e r r ed  to a s  the energy-loss  

pa rame te r ,  i s  defined a s  (Dl - D3)/D The energy-loss  pa rame te r  
m 

was  obtained f r o m  the realization that the energy l o s s ,  D - D3, was 
1 

significant and then using the minimum depth of flow in the th roa t ,  D , m 

to a r r i v e  a t  a dimensionless  p a r a m e t e r .  The use of min imum depth,  

D , also had the advantage of relating the flow conditions a t  the 
m 

th ree  cross-sect ioi ls .  

The pa rame te r s  involved in submerged flow in rectangular  

measur ing  f lumes  can  be obtained f rom dimensional ana lys i s ,  a s  

follows: 

With five independent quanti t ies and two dimensions,  t h r e e  p i - t e rms  

a r e  neces sa ry .  



Equation 8 can  b e  modified b y  replac ing V with Q/A 
m 

w h e r e  

Q - f l o w r a t e ,  c f s .  

L A = a r e a ,  equa l s  jbD ), f t .  
m m 

b = f l u m e  t h r o a t  bot tom width, f t .  

D = m i n i m u m  depth  of flow in the th roa t ,  f t .  
m 

g = a c c e l e r a t i o n  due  t o  g rav i ty ,  32.2 f t l s e c .  
2 

The re la t ionship  be tween  submergence  and the  energy- loss  

p a r a m e t e r  w a s  developed on a rec tangular  plot with the  log  of sub-  

m e r g e n c e  a s  the o rd ina te  and  the  energy- loss  p a r a m e t e r  as the  

a b s c i s s a .  The  re la t ionsh ip  w a s  essen t i a l ly  a s t r a i g h t  l ine  ( F i g u r e  1 2 )  

which c a n  be  w r i t t e n  as a n  equation 

log D3/D1 = 0.34 (Dl  - D 3 ) / D  - 0.004 
m 

o r  simplifying 

Submergence  = D / D  = 0.99 
3 1 0. 34 (Dl - D3)/D, 

10 

A log-log plot w a s  p r e p a r e d  between the  e n e r g y - l o s s  p a r a m e t e r  

and the m a x j m u m  F r o u d e  n u m b e r ,  F ( F i g u r e  13). The  energy-  
m '  

l o s s  p a r a m e t e r  w a s  plot ted a s  the  ordinate  and F w a s  plotted as the  
m 

a b s c i s s a .  The re la t ionsh ip  w a s  essen t i a l ly  a s t r a i g h t  l ine  and r e s u l t e d  

i n  the equation 





To show the relationship between the three p i - t e rms  F , 
m 

D3/Dl ,  and (Dl - D3)/D an  additional plot was made between sub- 
m 

mergence and the energy-loss  pa rame te r .  The energy-loss  p a r a m e t e r  

was plotted on the log sca1.e a s  the ordinate and to the s ame  sca le  a s  in  

F igu re  13. Submergence was plotted a s  the absc issa  on a rectangular  

scale .  This plot {Figure  13) yields a practical  graphical  solution of 

F when the submergence i s  known a s  well a s  showing the relation- 
m 

ship between the th ree  p a r a m e t e r s  o r  p i - te rms .  

With the relationship between submergence and the Froude  

number known, it was des i r ed  to re la te  these two p a r a m e t e r s  to 

d i scharge .  F i r s t ;  since D - D and (D - D3)/Dm i s  known, D 
1 3 1 m 

can  be computed. Next, a three-dimensional log-log plot was prepared  

of D , F , and d ischarge ,  Q. Here  D was plotted a s  the ordinate,  
m m m 

F a s  the absc issa ,  aad  discharge a s  the varying quantity which yields 
m 

a family of curves  of discharge (F igure  14). The solution for  any 

d ischarge ,  given the ups t ream and downstream depths,  would entail  

obtaining a value of D ; the use of F igure  13 to obtain the Froude  
m 

number ;  and then f rom F igu re  14 a value of discharge could be in te r -  

polated. 

However, the general  solution fo r  evaluating the discharge f r o m  

F igu re  14 can be obtai.ned by writ ing the equation of each of the l ines  





F i g u r e  14. Rela t ionship  between F r o u d e  n u m b e r ,  minimum 
depth in th roa t ,  and d i s c h a r g e .  



The coefficient, 
C1' 

i s  the value of D for  F = 1. 0. Consequently, 
m 

a value of C i.s obtained for  each line of constant discharge.  A log- 
1 

log plot was then prepared between the parameter  C and d ischarge  
1 

(F igure  15).  The straight-l ine relationship between discharge,  Q, 

and C can  he expressed  by 
1 

F r o m  Figure  14, h and F a r e  related to C a s  
m m 1 

Combining Equations 14 and 15 

To obtain the relationship between Q and D ID Equations 
3 1' 

13 and 10  a r e  combined to yield 

which, when combined with Equation 9 and simplified, yields 
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Although Equation 17 i s  only valid f o r  the rec tangular  m e a s u r i n g  

f lume  s tudied,  i t  does  show that  only the u p s t r e a m  and d o w n s t r e a m  

depths  need to  be  m e a s u r e d  to  d e t e r m i n e  the  d i s c h a r g e  under  s u b m e r g e d  

flow condit ions in any rec tangu la r  f l u m e .  

The re la t ionships  a r r i v e d  a t  in  the preceding equations a r e  val id 

and the  inaccuracy  can  be  accounted f o r  as due to exper imenta l  

p r o c e d u r e .  The m i n i m u m  depth in  the  th roa t ,  D , was p a r t i c u l a r l y  
m 

difficult to m e a s u r e ,  due to the  wave act ion p resen t .  The a c c u r a c y  is 

sufficient  f o r  m o s t  f ield flow m e a s u r e m e n t s .  

Ca l ib ra t ion  C u r v e s  

The  p r i m a r y  purpose  of th i s  invest igat ion h a s  been the ca l ib ra t ion  

of a  prototype submerged  r e c t a n g u l a r  f lume  which h a s  been c o n s t r u c t e d  

in  Cana l  "A" of the d is t r ibut ion s y s t e m  of the D.M.A.D. Company,  

The f l u m e  o p e r a t e s  under  s u b m e r g e d  flow conditions and does  not p a s s  

through c r i t i c a l  depth.  T h e r e f o r e ,  it wi l l  b e  n e c e s s a r y  to m e a s u r e  

the u p s t r e a m  depth,  D l ,  and the  t a i lwa te r  depth,  D3, in  o r d e r  t o  

d e t e r m i n e  d i scharge .  

Hyatt  (1965) showed that  only the u p s t r e a m  and ta i lwater  dep ths  

need b e  m e a s u r e d  in  a s u b m e r g e d  t r apezo ida l  f lume.  The p r i m a r y  

purpose  of th is  mode l  s tudy w a s  to show tha t  the s a m e  ana lys i s  w a s  

valid f o r  a submerged  rec tangu la r  f lume .  Consequently,  only a m e a g e r  

amount  of d a t a  w a s  n e c e s s a r y  f r o m  the mode l .  The data  al low the  

p red ic t ion  of the prototype ca l ib ra t ion  c u r v e s ,  but  it w a s  r e a l i z e d  f r o m  



the  beginning, tha t  these  c u r v e s  would have to b e  ad jus ted  b a s e d  on 

f ie ld  m e a s u r e m e n t s .  

To p r e p a r e  ca l ib ra t ion  c u r v e s  fo r  submerged  f low, a t h r e e -  

d imensional  log-log plot w a s  p r e p a r e d  of Q, D - D and D 3 / D  
1 3'  1' 

T h e  d i s c h a r g e ,  Q, w a s  plotted a s  the o rd ina te ,  e n e r g y  l o s s ,  D - D3, 
1 

as the a b s c i s s a ,  and submergence :  D3/D1, a s  the  plot ted v a r i a b l e  

( F i g u r e  1 6 ) .  A s e r i e s  of p a r a l l e l  l ines  of varying s u b m e r g e n c e  w e r e  

then d rawn f o r  s u b m e r g e n c e s  between 80 pe rcen t  and  9 7  pe rcen t .  In  

the f i e ld ,  f o r  a m e a s u r e d  u p s t r e a m  and downs t ream depth ,  the  e n e r g y  

l o s s ,  D - D3, and the  s u b m e r g e n c e ,  
1 

D3/D1,  c a n  b e  computed,  thus 

allowing a de te rmina t ion  of the  d i scharge  f r o m  F i g u r e  18 f o r  the 

prototype rec tangu la r  m e a s u r i n g  f lume.  

F i e l d  Cal ibra t ion 

A number  of d i s c h a r g e  m e a s u r e m e n t s  w e r e  m a d e  with a c u r r e n t  

m e t e r  a t  the  prototype r e c t a n g u l a r  f lume during the  1964 i r r i g a t i o n  

season .  The prototype d i s c h a r g e  m e a s u r e m e n t s  indica te  tha t  the 

predic ted  prototype ca l ib ra t ion  c u r v e s  based  upon the  m o d e l  s tudy 

( F i g u r e  18) r e s u l t  in d i s c h a r g e s  five percent  l e s s  than the  t r u e  d i s -  

charge .  Additional prototype m e a s u r e m e n t s  wil l  b e  obtained dur ing  

the  1965 i r r iga t ion  s e a s o n .  P r i o r  to  the 1966 season ,  the  p red ic ted  

ca l ibra t ion c u r v e s  of F i g u r e  18 wi l l  be adjusted to  c o n f o r m  t o  the field 

m e a s u r e m e n t s .  
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F i g u r e  17. Development of re la t ionship  between d i s c h a r g e ,  
e n e r g y  l o s s ,  and  submergence .  
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Table  1.  B a s i c  m e a s u r e m e n t s  

Run  Q 
(D3)m (Dm'm 

Type of 
m no. flow 

1  0 .540 0 .253  0.237 0 .224  s u b c r i t i c a l  
2 0.540 0.267 0 .253  0 .245  s u b c r i t i c a l  
3  0.540 0 .229 0 .202 0 .190  s u b c r i t i c a l  
4  1 .108 0 .336  0 .286 0 . 2 6 0  s u b c r i t i c a l  
5  1 . 1 0 8  0 .440  0 . 4 2 1  0 .407 s u b c r i t i c a l  

6  1 .108  0.366 0.331 0 .319 s u b c r i t i c a l  
7  1 . 5 5 0  0 . 4 1 4  0. 348 0 .317 s u b c r i t i c a l  
8  1 .550  0 .430 0 .374 0 .344  s u b c r i t i c a l  

9 1 . 5 5 0  0 . 6 1 7  0 .602  0 .587  s u b c r i t i c a l  
i 0 1 . 5 5 0  0 . 4 7 2  0 .436 0 . 4 1 6  s u b c r i t i c a l  

1 I 3 .810 0 . 7 2 9  0. 616 0 . 5 4 2  s u b c r i t i c a l  
12  3 . 8 1 0  0 .791  0 . 7 1 4  0 . 6 9 4  s u b c r i t i c a l  
1 3  3. 810 0. 714 0 .549  0 . 4 3 0  s u p e r c r i t i c a l  

r l 4  3 .140  0. 629 0 .449  0 . 4 4 5  s u b c r i t i c a l  
i 4 3 .140 0. 730 0 .677  0 . 6 2 1  s u b c r i t i c a l  

1  6  3 .140  0 . 8 4 9  0. 810 0 . 7 7 7  s u b c r i t i c a l  
17 3 . 1 4 0  0. 635 0 . 5 1 8  0 . 4 5 8  s u b c r i t i c a l  
18 2.607 0 .604  0 . 5 4 4  0 . 5 0 9  s u b c r i t i c a l  
19 2 .595  0. 661 0. 618 0 . 5 7 6  s u b c r i t i c a l  
2  0  2 .610  0 . 5 5 9  0 . 4 4 7  0 . 3 3 7  s u p e r c r i t i c a l  

2  1 1 .880  0 . 4 6 1  0 . 3 8 4  0 .269 s u p e r c r i t i c a l  
2 2  1 .880  0 - 5 2 6  0 . 4 9 2  0 . 4 5 4  s u b c r i t i c a l  
2 3  1 .855  0 .758  0 . 7 4 3  0 . 7 2 0  s u b c r i t i c a l  
24 3 .345  0 .657 0 .515 0 . 3 9 6  s u p e r c r i t i c a l  
2  5  3 .345 0 .694  0. 619 0 , 5 3 0  s u b c r i t i c a l  

26 3 .350 0 .667 0 . 5 4 8  0 .470  s u b c r i t i c a l  
27 3 .445 0 .680  0 . 5 5 1  0 .502  s u b c r i t i c a l  

d, 

'Measurement s  i n  e r r o r .  



Table 2. Prototype measu remen t s  

Run Q 
no. P (= 1 'p (D3'p CDrn'p 

*Measurements  in  error. 



Table 3. Computation of pa rame te r s .  

- 

:%Measurements in e r r o r .  
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