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Histogram Classification of Acoustic Breath
Sounds

Bryce Hill B.S. NASA Fellow

unable to determine the cause of apnea and are often

Abstract—A novel approach to classifying sounds recorded at cumbersome and awkward. Other monitors measure the

the trachea is introduced. The sounds in question are normal chest and abdomen movements which can be proportional to

breath sounds and snore sounds. The sounds are classified &y flow volume but in cases of obstruction can continue to show
the combination of a histogram classifier and a repeated pse /5jid breathing. Aside from missing periods of obstruetiv

counting classifier. Individually the classifiers perfomed 55,05 these monitors only measure a relative flow volume
poorly, but when used together they performed quite well. Tis
and are cumbersome[3][4].

is an ongoing study into developing an acoustic respiratory

monitor. The two major challenges associated with building an
acoustic respiratory monitor are detecting when apnearsccu
by use of the respiratory rate measured and classifying the

. INTRODUCTION period of apnea by the sounds preceding the apnea.
Patients undergoing sedation procedures often experience
a cessation of breathing due to two types of respiratorI DA SeT

distress. Respiratory depression is the first cause whic )

happens as the subject receives enough sedation drug tdat@ was collected from 24 subjects for an IRB approved

remove drive to breath. The second cause is respiratofpdy. Each subject was sedated using a combination of

obstruction which happens when the subject's oropharyrfgMmifentinal and propofol in incrementing dosages. Dgrin

collapses due to the lack of muscular tension. The rescifée sedation procedure a precordial stethoscope equipipled w

procedure for each of these cases is different and currenflymicrophone was placed on the trachea and collected a

there is no one device that can alert the physician as to t§gle channel of acoustic data at 22050 Hz with 24 bit
cause of respiratory distress. resolution. Flow data was also recorded with the use of a

tight fitting facemask with the flow being measured by a
As a solution to the above mentioned problem an oldifferential pressure monitor (Cosmo +II Respironics) othi
technology is being considered not only for the classifrat a5 collected at 100 Hz. Each subject was also fitted with
of respiratory distress as obstruction or depression, Isot& pands around their chest and abdomen to measure the change
respiratory rate monitor. The old technology is that ofy circumference by means of the change of inductance in the
listening to the tracheal breath sounds through a predordiggnds, called Respiratory Inductance Plethysmograph§)(RI
stethoscope. The new technology is automating the asalygjhich was collected at 100 Hz. Medical staff administered

of these sounds. Previous work has already been donetf drugs to the subjects and performed assessments on a
calculate the breath rate from the acoustic signal and coenpgegular basis.

it to the breath rate of a measured flow signal with a good _ _

indication of when apnea occurs in general, but determinirlgae acoustic data by means of visual comparison of the flow
the type of apnea may be able to be determined by tifita to the envelope of the audio data.
characteristics of the sounds.

Currently the standard for monitoring during a sedatiot!l- M eTHops

procedure is the pulse-oximeter which measures the bloodSnoring and obstruction are caused by the same

oxygen saturation in a finger. The main problem with thisnechanism [5] namely the collapse of the upper airway. The

monitor is the time delay from the cessation of breathing tdifference between partial airway obstruction and snoiig

the de-saturation of the blood at the finger. This delaylwan the volume of gas moved during each breath. Partial

several minutes[2]. Other monitors such as a flow meter atbstruction will limit the amount of volume to less than 200

able to measure flow volume or proportional flow but areml. Snoring also often precedes obstruction as the subject
gradually descends into apnea. [6] used the general rate th
shoring is much louder than normal breath sounds to
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distinguish snores. Snoring sounds recorded at the taach
are audibly different from other breath sounds. Althougt
amplitude is a simple indicator there is no threshold that ca
be defined to differentiate between snores and clear bseatl

a0 F

Breath Flow
Audio Envelope H

or

due to change in background noise and placement of th 0f
precordial stethoscope. w0}

In order to classify breath sounds features other tha _ 'r
amplitude will need to be processed. Normal breath sounc 3 of
are generated by turbulence in the trachea and upper airwa & ;|

Sound generated by any kind of turbulence is literally cduse
by the sound of the fluid colliding with itself. Turbuleneg¢
the trachea is relatively faint until amplified by a stetbase

20k

A0k

cup. It was also initially observed that normal breath saund 40}
sound white and may have a Gaussian distribution. Later ant .
was found that [7] used a Gaussian random noise generator 1 2 3 4 5 6

simulate this kind of sound. Initial observations havevamo Time (<)

that most normal breath sounds do indeed have a GaussiFigure 2: Normal breath to be modeled as a rectified
distribution, but this observation was not true across alSinusoid.

normal breath sounds. Some normal breath soun

distributions became heavy tailed and had a central pee

greater than a Gaussian distribution as shown in figuret1. | h( )=[1,1,1,1..1]
was soon discovered that this disparity was caused by the N

non-stationary variance of the audio signal. In order tjided from the modulated signal to attempt to create a

uniform variance Gaussian signal which should have a

normal distribution as shown in figure 3. The actual

vl After \Variance Normalization distribution for Gau55|an25|gnal2modu|ated by a sinusoid is

1 1 %, Z ,
f,(z)=————e* Ky,(=)] where K is the

- TV (2m) 4

_ order zero modified Bessel function of the second kind, Wwhic

was derived in [8]. The theory that most normal breath

sounds have a Gaussian distribution after variance
1 normalization turns out to be true.

. The standard deviation was then
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Figure 1: Comparison of the distribution of a normal breath
sound before and after variance normalization.
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further understand this a normal breath sound was model
as a normal distribution with a changing variance over tim 10t

N(t,o(t)) . The non-stationary variance of the normal
distribution N(t) was simulated by a single rectified

sine wave S(t) to create a simple match to the varying g -t 8
flow as shown in figure 2. The sound was further simulate L

as a Gaussian signal modulated by a sinusoid to create tFigure 3: Distribution of a Gaussian signal before modulate,
signal N(t,o(t))=s(t)-N(t) . The standard after modulation and after variance normalization

deviation of the signal was then measured using transf

— 2
function S(n)= \/(h(n)*(N (Lo (1)) where Snore sounds have been modeled based on the physical
explanation of the sound produced. Snore sounds are
produced as air passes through a partially collapsed pkaryn
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This causes the loose tissue to slap against each oth

Because of the relatively constant pressure the slappi

occurs at a regular rate for the given pressure and tensior

the pharynx. Each slap has a drum beat effect which appe

as a exponentially decaying sinusoid with equatic
—t

sh(t)=eT-sin(wt)

]
(5]
T

Raw Snoring Sound
FPeak Tracking Algorithm
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. After the variance normalization

. .. . = 005
technique, the distribution of snores was observed to =
approximately a Laplacian distribution with distributior £ o

1 3
f X)=—=¢e b 0.0s
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=]

Given that the variance normalized distribution of
normal breath is Gaussian and for a snore is approximat  01&r

Laplacian, a simple classifier can be built. In this casveh 23 231 2w 2@ 2w 2% 2m %
distribution  models  were  built  with  equation Time (s)
1 *_Xz 1 —Ix Figure 5: Raw snore sound with peak tracking algorithm
fx(x,p)J=p—=¢€* +(1-p)S-e"
V(2pio?) 2b

where p is the probability of the distribution being corresponding to the time constant ofthe_: exponential decay
Gaussian which was varied from 0 to 1 in increments of 0.1In the case of a normal breath, the time between pulses

A typ|ca| snore and normal breath are shown in figure §hOU|d be small and erratic without a fundamental time
against the eleven models. period. This as a classifier simply compares the number of

repetitions in a given repetition rate window. The optimal

threshold can be derived experimentally.

Typical Snore and Clear breath against Modek

015k | | ——— Typical Clear

— Typical Snore
11 Models IV. Resuts

Three ten minute audio clips were automatically segmented
and then classified by ear to create a standard to classify
against. The normalized histogram of each sound was then
compared to the eleven models by summing the difference
between each histogram and the distributions. The
distribution with the smallest amount of difference was
chosen as the best match. Figure 6 shows that the histogram
classifier performed quite well with an error rate of about
0.0724.
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Figure 4: Distribution of a typical snore and normal breath 2001
against 11 Gaussian-Laplacian mixture models
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An additional method for classifying breaths is to measu
the time between each snore slap. The actual slapping so
is so low in frequency that it fails to register on an fft. et
sound is a snhore the repeated impulse will have an observe
spike in certain time intervals. To find the interval beére
each impulse a simple method was used which tracks e:
peak and exponentially decays when the audio signal di
below that of the tracking signal as shown in figure 5. Th
time between each tracked impulse is then stored for pi
processing. The constant in the exponential decay can
either heuristically found or tuned to a desired repetitiate

100+
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Figure 6: Histogram of classified snoresvs. normal breaths
when classified by histogram matching method
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The ten minute sections were also classified using thé ConcLusions
repetition rate comparator and the results are shown imdigu 1o histogram classifier is very simple and vet it does a

7. This feature does not classify the set nearly as well aith very good job at classifying the snore vs. the normal breath
error rate of about 0.169. sound. It may be robust enough on its own to be able to

Histogram of Breath Compared to Pulse Repetition rate classify the breath sounds and be successful. The histogra

0 ' ' ' e ———. method however throws away any useful data from the time
ol B o Clear Sreaths domain. Perhaps the most common error that occurs is if
there is a snap sound in a normal breath which can drastically
el i change the distribution of the sound. It seems necessary to

use some kind of time domain classifier in thisecas

a0y 1 The time delay classifier by itself does not perform well.

The time delay classifier uses very little of the data at @l j
as the histogram classifier does. The use of this classifie
ok | with the histogram classifier improves the decision error
dramatically.

Murnber of Sounds

S0y 1 The combination of the two classifiers amplifies the

accuracy of each of them making it less likely to error. The

0

0 20 40 B0 &0 100 120 additional use of such technologies as Support Vector
_ _ Humber o Fuises o Machines [9] or Neural Networks [10] may further improve
Figure 7: Histogram of pulse repetition classification of the reliability of these features to classify thesands.

snoresvs. clear breaths.

VI. Future Work

If both classifiers are used at the same time an Although every obstruction sound could be considered to be
improvement over using a single classifier emerges as shownsnore, not every snore is an obstruction sound. Rules will
in figure 8. A simple linear decision boundary can be seehave to be made to classify periods of apnea as obstruction or
and gives a probability of error of about 0.0483 with equatiepression based on the classified sounds. Since there is n
probability that a snore or a normal breath will begold standard to determine the difference between obstruct
misclassified. Extraordinarily the pulse repetition eratand depression, a method for classifying periods of apnea
dramatically improves the histogram classifier even thmiig
individually does a very poor job.
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Figure 8: Dual feature classifier using histogram
classification and pulse repitition classification
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must be created. The method will be based on the physiology
of the subject. During periods of normal breathing the RIP
measurement correlates highly with the flow volume
measurement. If the airway becomes occluded but the
respiratory muscles continue to labor the effort can be seen
the RIP measurement but not on the flow measurement as
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shown in figure 9. Similar to normal breathing is respirgto [6]
depression which can be identified by decreasing breat?
volumes until apnea occurs as shown in figure 10. Periods f]
apnea defined as breath volumes less than 200 ml for longer
than 15 seconds will be manually classified as obstruction ¢8]
depression.

9]
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Figure 10: RIP and volume measurements as the subject
descendsto respiratory depression.

Next each period of apnea will need to be classified
acoustically by looking at the sounds produced and claskifi
prior to the apnea. The classifications will be compared an
the ability of this algorithm to determine respiratory
obstruction vs. respiratory depression will be daieed
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