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Abstract—A novel approach to classifying sounds recorded at
the trachea is introduced. The sounds in question are normal
breath sounds and snore sounds. The sounds are classified bya
the combination of a histogram classifier and a repeated pulse
counting classifier. Individually the classifiers performed
poorly, but when used together they performed quite well. This
is an ongoing study into developing an acoustic respiratory
monitor.

I. INTRODUCTION

atients undergoing sedation procedures often experience
a cessation of breathing due to two types of respiratory

distress. Respiratory depression is the first cause which
happens as the subject receives enough sedation drug to
remove drive to breath. The second cause is respiratory
obstruction which happens when the subject’s oropharynx
collapses due to the lack of muscular tension. The rescue
procedure for each of these cases is different and currently
there is no one device that can alert the physician as to the
cause of respiratory distress.

P

As a solution to the above mentioned problem an old
technology is being considered not only for the classification
of respiratory distress as obstruction or depression, but also a
respiratory rate monitor. The old technology is that of
listening to the tracheal breath sounds through a precordial
stethoscope. The new technology is automating the analysis
of these sounds. Previous work has already been done to
calculate the breath rate from the acoustic signal and compare
it to the breath rate of a measured flow signal with a good
deal of accuracy [1]. An accurate breath rate gives an
indication of when apnea occurs in general, but determining
the type of apnea may be able to be determined by the
characteristics of the sounds.

Currently the standard for monitoring during a sedation
procedure is the pulse-oximeter which measures the blood
oxygen saturation in a finger. The main problem with this
monitor is the time delay from the cessation of breathing to
the de-saturation of the blood at the finger. This delay canbe
several minutes[2]. Other monitors such as a flow meter are
able to measure flow volume or proportional flow but are



unable to determine the cause of apnea and are often
cumbersome and awkward. Other monitors measure the
chest and abdomen movements which can be proportional to
flow volume but in cases of obstruction can continue to show
valid breathing. Aside from missing periods of obstructive
apnea these monitors only measure a relative flow volume
and are cumbersome[3][4].

The two major challenges associated with building an
acoustic respiratory monitor are detecting when apnea occurs
by use of the respiratory rate measured and classifying the
period of apnea by the sounds preceding the apnea.

II.DATA SET

Data was collected from 24 subjects for an IRB approved
study. Each subject was sedated using a combination of
remifentinal and propofol in incrementing dosages. During
the sedation procedure a precordial stethoscope equipped with
a microphone was placed on the trachea and collected a
single channel of acoustic data at 22050 Hz with 24 bit
resolution. Flow data was also recorded with the use of a
tight fitting facemask with the flow being measured by a
differential pressure monitor (Cosmo +II Respironics) which
was collected at 100 Hz. Each subject was also fitted with
bands around their chest and abdomen to measure the change
in circumference by means of  the change of inductance in the
bands, called Respiratory Inductance Plethysmography (RIP)
which was collected at 100 Hz. Medical staff administered
the drugs to the subjects and performed assessments on a
regular basis.

The data collected at 100 Hz was later synchronized with
the acoustic data by means of visual comparison of the flow
data to the envelope of the audio data.

III. M ETHODS

Snoring and obstruction are caused by the same
mechanism [5] namely the collapse of the upper airway. The
difference between partial airway obstruction and snoringis
the volume of gas moved during each breath. Partial
obstruction will limit the amount of volume to less than 200
ml. Snoring also often precedes obstruction as the subject
gradually descends into apnea. [6] used the general rule that
snoring is much louder than normal breath sounds to
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distinguish snores. Snoring sounds recorded at the trachea
are audibly different from other breath sounds. Although
amplitude is a simple indicator there is no threshold that can
be defined to differentiate between snores and clear breaths
due to change in background noise and placement of the
precordial stethoscope.

In order to classify breath sounds features other than
amplitude will need to be processed.  Normal breath sounds
are generated by turbulence in the trachea and upper airway. 
Sound generated by any kind of turbulence is literally caused
by the sound of the fluid colliding with itself. Turbulenceat
the trachea is relatively faint until amplified by a stethoscope
cup. It was also initially observed that normal breath sounds
sound white and may have a Gaussian distribution. Later it
was found that [7] used a Gaussian random noise generator to
simulate this kind of sound. Initial observations have shown
that most normal breath sounds do indeed have a Gaussian
distribution, but this observation was not true across all
normal breath sounds. Some normal breath sound
distributions became heavy tailed and had a central peak
greater than a Gaussian distribution as shown in figure 1. It
was soon discovered that this disparity was caused by the
non-stationary variance of the audio signal. In order to

further understand this a normal breath sound was modeled
as a normal distribution with a changing variance over time

N t ,t  . The non-stationary variance of the normal

distribution N t  was simulated by a single rectified
sine wave st  to create a simple match to the varying
flow as shown in figure 2. The sound was further simulated
as a Gaussian signal modulated by a sinusoid to create the
signal N t , t =s t ⋅N t  .  The standard
deviation of the signal was then measured using transfer

function S n=h n∗N t , t 2 where

h n=[1,1,1,1...1]
N

. The standard deviation was then

divided from the modulated signal to attempt to create a
uniform variance Gaussian signal which should have a
normal distribution as shown in figure 3. The actual
distribution for Gaussian signal modulated by a sinusoid is

f Z  z = 1

 2 [e
−z2

4 K0  z
2

4
] where K 0 is the

order zero modified Bessel function of the second kind, which
was derived in [8]. The theory that most normal breath
sounds have a Gaussian distribution after variance
normalization turns out to be true.

Snore sounds have been modeled based on the physical
explanation of the sound produced. Snore sounds are
produced as air passes through a partially collapsed pharynx. 
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Figure 1: Comparison of the distribution of a normal breath
sound before and after variance normalization.

Figure 2:  Normal breath to be modeled as a rectified
sinusoid.

Figure 3:  Distribution of a Gaussian signal before modulate,
after modulation and after variance normalization
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This causes the loose tissue to slap against each other. 
Because of the relatively constant pressure the slapping
occurs at a regular rate for the given pressure and tension of
the pharynx. Each slap has a drum beat effect which appears
as a exponentially decaying sinusoid with equation

sn t =e
−t
b⋅sin t  . After the variance normalization

technique, the distribution of snores was observed to be
approximately a Laplacian distribution with distribution

f X x= 1
2b

e
−∣x∣

b  .  

Given that the variance normalized distribution of a
normal breath is Gaussian and for a snore is approximately
Laplacian, a simple classifier can be built. In this case eleven
distribution models were built with equation

f X x , p = p
1

2pi2 e
−x2

221− p 1
2b

e
−∣x∣

b

where p is the probability of the distribution being
Gaussian which was varied from 0 to 1 in increments of 0.1. 
A typical snore and normal breath are shown in figure 4
against the eleven models.

An additional method for classifying breaths is to measure
the time between each snore slap. The actual slapping sound
is so low in frequency that it fails to register on an fft. If the
sound is a snore the repeated impulse will have an observable
spike in certain time intervals. To find the interval between
each impulse a simple method was used which tracks each
peak and exponentially decays when the audio signal dips
below that of the tracking signal as shown in figure 5. The
time between each tracked impulse is then stored for post
processing. The constant in the exponential decay can be
either heuristically found or tuned to a desired repetitionrate

corresponding to the time constant of the exponential decay. 
In the case of a normal breath, the time between pulses
should be small and erratic without a fundamental time
period.  This as a classifier simply compares the number of
repetitions in a given repetition rate window. The optimal
threshold can be derived experimentally.

IV. RESULTS

Three ten minute audio clips were automatically segmented
and then classified by ear to create a standard to classify
against. The normalized histogram of each sound was then
compared to the eleven models by summing the difference
between each histogram and the distributions. The
distribution with the smallest amount of difference was
chosen as the best match. Figure 6 shows that the histogram
classifier performed quite well with an error rate of about
0.0724.
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Figure 4:  Distribution of a typical snore and normal breath
against 11 Gaussian-Laplacian mixture models

Figure 5:  Raw snore sound with peak tracking algorithm

Figure 6:  Histogram of classified snores vs. normal breaths
when classified by histogram matching method
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The ten minute sections were also classified using the
repetition rate comparator and the results are shown in figure
7. This feature does not classify the set nearly as well withan
error rate of about 0.169.

If both classifiers are used at the same time an
improvement over using a single classifier emerges as shown
in figure 8. A simple linear decision boundary can be seen
and gives a probability of error of about 0.0483 with equal
probability that a snore or a normal breath will be
misclassified. Extraordinarily the pulse repetition rate
dramatically improves the histogram classifier even though it
individually does a very poor job.

V. CONCLUSIONS

The histogram classifier is very simple and yet it does a
very good job at classifying the snore vs. the normal breath
sound. It may be robust enough on its own to be able to
classify the breath sounds and be successful. The histogram
method however throws away any useful data from the time
domain. Perhaps the most common error that occurs is if
there is a snap sound in a normal breath which can drastically
change the distribution of the sound. It seems necessary to
use some kind of time domain classifier in this case.

The time delay classifier by itself does not perform well. 
The time delay classifier uses very little of the data at all just
as the histogram classifier does. The use of this classifier
with the histogram classifier improves the decision error
dramatically.

The combination of the two classifiers amplifies the
accuracy of each of them making it less likely to error. The
additional use of such technologies as Support Vector
Machines [9] or Neural Networks [10] may further improve
the reliability of these features to classify these sounds.

VI. FUTURE WORK

Although every obstruction sound could be considered to be
a snore, not every snore is an obstruction sound. Rules will
have to be made to classify periods of apnea as obstruction or
depression based on the classified sounds. Since there is no
gold standard to determine the difference between obstruction
and depression, a method for classifying periods of apnea

must be created. The method will be based on the physiology
of the subject. During periods of normal breathing the RIP
measurement correlates highly with the flow volume
measurement. If the airway becomes occluded but the
respiratory muscles continue to labor the effort can be seenon
the RIP measurement but not on the flow measurement as
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Figure 7:  Histogram of pulse repetition classification of
snores vs. clear breaths.

Figure 8:  Dual feature classifier using histogram
classification and pulse repitition classification

Figure 9:  Respiratory obstruction.  RIP bands show
muscular movement and Flow volume zeros.
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shown in figure 9. Similar to normal breathing is respiratory
depression which can be identified by decreasing breath
volumes until apnea occurs as shown in figure 10. Periods of
apnea defined as breath volumes less than 200 ml for longer
than 15 seconds will be manually classified as obstruction or
depression.  

Next each period of apnea will need to be classified
acoustically by looking at the sounds produced and classified
prior to the apnea. The classifications will be compared and
the ability of this algorithm to determine respiratory
obstruction vs. respiratory depression will be determined
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Figure 10:  RIP and volume measurements as the subject
descends to respiratory depression.


