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ABSTRACT
Internal gravity waves are inherent in the atmosplaie to its stable stratification. They may beayated in
many ways, including by flow over topography, coectise storms, or turbulent mixing. As they propiega
through the atmosphere and ocean, internal wavesbus scales (tens of meters to tens of kilorsgte
interact with various phenomena found throughouwptssical fluid flows. The interaction of smallede
internal waves with a vortex dipole is of partigulaterest because of their frequency in nature wuée
rotation of the earth resulting in constant vorgexeration. The speed and direction with whichriml waves
approach a vortex dipole can significantly affdw tvave-vortex interaction, determining if the gyeof the
internal waves will be absorbed, refracted, or fewéd by the dipole. Variations of this interaactiare
investigated through three-dimensional linear aadlinear numerical simulations. The linear thewrydeal
due to the speed of calculations: tens of thousahagves can be tested in a few hours using alatdnPC.
Physical dynamics of possible interactions are tifi@t through the calculations of basic wave pagters and

amplitudes and the results agree qualitatively wétkperimentation.

Fully nonlinear simulations and

experimental results are used to validate the fitiesory.

Introduction

A stably-stratified fluid is one in which the detysi
increases continuously with depth, such as therooedhe
atmosphere. Perturbations of a stably-stratifla f such
as tidal flow over topography, move fluid particlesone
depth and neutrally-buoyant state to a depth irciwhihey
are surrounded by fluid particles of a differenhsigy. The
surrounding fluid particles push the displacedipkes back
in the direction of their neutrally-buoyant statd/hen there
is enough momentum to displace the fluid partiéieshe
other direction, oscillations occur until the flumhrticles
reach a stable location with respect to their dgnsiThe
oscillations are defined by the Brunt-Vaisala freey, the
natural frequency of the fluid, which involves thigange in
density over height within the fluid. Oscillatiofess than
this frequency create internal waves which playrdaegral
role in oceanic and atmospheric dynamics.

Since early last century scientists and researdievre
observed and studied
evolution in stratified fluids, especially in theean and
atmosphere. Today researchers can numericallylaienu
internal wave propagation and wave interaction$ wiher
fluid phenomena, studying them from every poinspace
and time, and compare the results with what is knfnem
observation and experimentation. However, recongil
theoretical predictions with experimental datadamstimes
problematic since, during wave propagation
interactions, the transport of energy may be ahsroall
scales that observations lack sufficient resolutton the

andThe combination of convection and shear

onset of turbulence invalidates two-dimensionaledin
theories. With three-dimensional-simulation calitds,
we can more completely study scenarios involvirtgrimal
waves in the ocean and atmosphere and apply moveate
theories and approximations.

Internal waves interact with a myriad of flow
phenomena, including other internal waves of siméad
different scales. Javam, Imberger and Armfield O@0
numerically researched interactions of internal eg\of
similar scales and found these interactions wendimear
and involved wave breaking. Broutman and Young3€)9
used ray theory (to be described later) to numbiyiteck
the changes of small-scale internal waves (on thderoof
tens of meters) interacting with a large-scaleriraewave
background (on the order of kilometers and great@fey
confirmed theoretical predictions for conditionsiofernal
waves prior to and following the interactions. Wéirs and
D’Asaro (1989) used a two-dimensional model to

internal wave propagation andumerically simulate the propagation of internalvesinto

a slowly-varying mean shear background. Nonlirtgamnd
three-dimensionality overcome the simulated wavésnw
the internal waves become unstable and turbuleegi$,
breaking down the internal waves. Later, threeettisional
considerations were discussed in Winter and D’Asaro
(1994). Convective instabilities yielded countetating
vortices, the effects of which were magnified byweaghear.

in these
interactions obligate three-dimensional analysisThis
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obligation is a representative result of all thedss cited
thus far and is essential to the continuing disouss
Vortices are a common occurrence in large, geophlsi
flows as a result of shear and turbulence in aingtdluid.
Moulin and Flér (2006) numerically demonstratecheeé-
dimensional interaction between a large-scale matewave
and a Rankine-type vortex. By varying the init@dations
of the internal waves, the authors demonstratetl éaah
wave-vortex interaction resulted in a differentrsxéo with
different effects on the internal waves. In sorases, the
waves reflected; in others, they were absorbed thto
rotating flow; still other combinations producedebking
waves. Despite the wealth of information gainexdhfithese
simulations, questions remain about what happenthé¢o
energy of internal waves during the onset of twhaé and
other three-dimensional characteristics during \wawgex
interactions. While we know the waves may breaksi
unclear what mechanisms are responsible for tiveilugon
to breaking and how and why turbulence begins.
Godoy-Diana, Chomaz and Donnadieu
discussed the experimental interaction of interwalves
with a Lamb-Chaplygin pancake vortex dipole. A tear
dipole involves two side-by-side, counter-rotativatices;
the Lamb-Chaplygin vortex dipole is an exact solutof
the Euler equations (Billant, Brancher and Choni£99)).
Two scenarios of wave-vortex interactions were cated:
one in which the internal wave’s horizontal waveminer
propagated with the flow and one in which it progagl
against the flow. The former scenario showed tlavew
beam bending to the horizontal and possibly bebspebed
by the vortex. The latter scenario resulted in ltkam of
internal waves steepening to the vertical and pbssi
reflecting. The results of this experiment suggibsee-
dimensional effects are essential in internal
propagation. A numerical analysis of this experime
illuminates the three-dimensional mechanisms ofsehe

effects, showing what happens to the internal wave

properties and energy during internal wave intépast

This paper details the work that has been done an

discusses work to still be done to numerically medset of
small-scale internal waves interacting in three etisions
with a vortex dipole of constant propagation. Thethods
section discusses the experimental setup of Godagéet.
al. (2006) and the corresponding numerical setup lier t
current study, and presents the mathematical
involved. The next section presents the resultsthef
interaction simulations, including comparisons the t
experiment of Godoy-Dianet. al. (2006). The final section
discusses the practical impact of the results ef study,
further research to be done on this project, amddfor
future research.

M ethods

(2006) E

wave

created and then approaches a screen which allalysao
thin slice of the dipole to pass to the area ddrimttion. The
internal-wave beams are generated by oscillatiogliader

at a frequency less than the natural buoyancy é&eqy of
the fluid, which was maintained constant. Figurgh@ws a
close-up view of two scenarios of interactions: co-
propagating, in which the waves propagate in theesa
direction as the vortex direction of propagatiomda
counter-propagating, in which the waves propagpposite

to the vortex direction of propagation. The gehera
anticipated outcome of the experiment can be seetha
co-propagating representation of the wave bearhserhed
into the flow of the vortex, and the counter-progiity
representation of the wave beam is reflected away the
vortex.

=

Vortex-dipole

p(z)

20m 151 fy

Figure 1: Saltwater stratified water experimental tank (Godoy-Diana,
et. al. (2006)). The dipoleis created by flaps at one end of the tank and
approaches a screen which allows a dlice of the dipole to pass into the
interaction areawith the cylinder generating the internal waves.
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Figure 2: Close-up view of oscillating cylinder generating internal
waves relative to the vortex velocity profile (Godoy-Diana, et. al.
(2006)). The co-propagating case shows the internal waves being
absorbed by the vortex. The counter-propagating case shows the
inter nal waves r eflecting away from the vortex.

2

theory

The numerical code for the current study was writte
Matlab. It has been modified from previous two-
dimensional code and developed for three-dimentiona
simulations. It has been organized to consideviddally
the same two scenarios of interaction carried outtsg
experimental counterpart. At the code’s core, ttagory
governs the numerical simulation. Ray theory, roftalled
ray tracing, traces the directions (rays) of sraatiplitude

The experimental internal wave-vortex interaction o internal wave propagation before, during, and aftes

Godoy-Diana et. al. (2006) was completed in a salt-
stratified water tank as shown in Figure 1. Thpgot# is

wave-vortex interaction. Ray theory is linear, e three
dimensions, so the basic propagation of the waessbe



simply modeled. In addition, calculations are made

analyze wave amplitudes which may result in wave——

breaking. Ray theory efficiently tracks internalawe
propagation and the results easily compare to tofdbe
experiment. Ray theory is also quick in its apgtiimn,
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providing a method of research much faster and less

expensive than experimentation and observation.

Ray theory is a method of solving the Navier-Stoke

equations, the governing equations of fluid flowTo
simplify the Navier-Stokes equations for this casiee
propagation of the vortex is assumed slowly varyivigle
the only side-effects of the interaction are chantge the
characteristics and propagation of the small-saatiernal
waves.
Brillouin (WKB) approximation. It allows the disp@on
relation to be valid locally. While it is not regzentative of
all wave-vortex interactions, this assumption isligtic
when waves are interacting with large-scale geadphys
flows and is the foundation of ray theory.
simplification is the Boussinesq approximation, ethstates
that changes in density are negligible exceptiimsewhere
the acceleration due to gravity is a multiplierheTsolution
to the Navier-Stokes equations is then in a fornthefwave
equation.

To verify that the correct equations are being etlfor
this simulation, the equations have been rederaretitheir
accuracy of implementation in the code confirméthe full
ray theory equations for a mean velocity figld (vq,V,,va)
through which the internal waves propagate witlgydency
relative to the background are now presented.

The Doppler relation defines the relation betwelaa t
frequencies of the backgrourdl and the frequency of the
internal wavew,,

w, =Q-vk; (1)
wherey; is the component of the background velocity gnd
is the component of the small-scale wavenumbeiovéet
(k1,ko,k3) in the same direction. The dispersion relation
definesw, as a function of wavenumber, the buoyancy
frequencyN, and the Coriolis force (which is insignificant
for the simulations at hand),
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The velocities of the internal waves are definedhgy
sum of the background velocity and the group véjoaf
the internal waves,

dx, da
—hEv 3)
dit ok,
for whichx=(x1,%,,x3) defines the space of the domain and
where
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and

This is the linear, inviscid Wentzel-Kramer da, _
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The law governing refraction is given by
d 0w ©
dt box  ox

To define the change of the relative frequency with
respect to time,

da, _0a, dk N de, dx

dt ok dt  ox dt

For this simulation, the partial derivative af with
respect to space is zero becakish, norf in the dispersion

relation are functions of space. Thus the last égoations
reduce to only their first terms on the right haidke.

@)

Results

To validate the results of the numerical simulagiathe
conditions of the experiments of Godoy-Diaeaal. (2006)
were input to the code. Figure 3 shows the initial
representation of the lines of wave propagationtlier co-
propagating wave-vortex interaction in a three-digienal
domain.
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Figure 3: Initial results of the numerical co-propagating scenario. The
lines are the raystraced by ray theory and represent internal waves at
variousinitial locations. They all begin at the same position along the
length and the depth in the domain, but at different positions along the
width.

The lines are the rays tracing various internal egav The
waves begin at the same position along the lengthatong
the depth of the domain, but at different positiaieng the
width. They also begin with the same wave numbdy.
following the rays, it is clear that the interactis being, in
general, appropriately represented. That is, ifesirays
representing the movement of the internal waves e
follow the patterns expected in an interaction vetkiortex
dipole: the center ray moves quickly along the teraf the
domain, never wavering; one of the inner rays timeeiside
of the center ray are caught for a time in the exqrouter
rays are affected by the vortex velocity field, m#cape
through its underside.
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Figure 4: View of numerical solution showing how rays change along
the depth with respect to a nondimensional time t/Ty, where Ty is the
buoyancy period of the fluid. Thetop ray isthe center ray of Figure 3,
and is entirely absorbed by the vortex. Other rays are also shown
being absorbed. Still other rays are affected by the interaction but

pass through the vortex at angles different than their initial angle.
Thisisdueto changesin their properties, such aswave number.

Figure 4 shows a view of how the rays change athag
depth of the tank with respect to a nondimensidinaé t /
Ty, WhereTy is the buoyancy period of the fluid. In this
view, it is seen how the rays change their anglés o
propagation, inferring also changes to their proper
Figure 5 shows a similar result from the experiraknt
counterpart, and can be compared to the centerofay
Figures 3 and 4. Figure 5a shows the beams ofnidte
waves before interaction with the dipole. Figutedshows
one of the beams bending to the velocity profile thoé
dipole. Figures 5c and 5d show the beams beinge mor
absorbed into the vortex. Figures 4 and 5 in coispa
demonstrate qualitatively that the code is perfagnas
expected. Some rays are being absorbed, basebean t
initial location, while others are passing througk vortex
dipole with new properties. These rays passinguidn
show other interactions not considered in the arpantal
counterpart to this numerical study. There are yman
possible interactions still to be discovered.
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Figure5: View of experimental results from Godoy-Diana, et. al. (2006)
for the co-propagating scenario showing the wave beams changing
along the depth with respect to the length of the tank. 5a shows the
internal wave beams prior to the interaction, 5b shows one wave beam
being absorbed by the interaction. 5c and d show the evolution of the
interaction as the vortex absor bs the wave beams.

It is the change in properties that is particularly
interesting. Depending on the changes of wave musnb
and amplitude, the waves may in some cases be agpny
breaking and turbulence. While ray tracing carialddw or
predict these nonlinear characteristics due tormalewave
interactions, it can help predict their evolutiankreaking
and turbulence. Then, as the waves begin to avertu
point of breaking can be determined.

Discussion

Despite the expected quantitative demonstratiothef
correct flow pattern of the interaction, the iritrasults do
not yield the solutions of Godoy-Diargh al. (2006), and
full analysis of the interaction is not yet possibl Upon
further investigation, several errors have becomewh.



First, it was discovered that time dependence efsécond know the breaking of internal waves drives global
wave numberk, had been neglected. As a result, thiscirculation patterns, yet we do not understandiaefitly
property of the internal waves was maintained amtst how, where and when breaking and turbulence octting
rather than changing according to (6). Without theopen ocean and atmosphere. Also, due to resolution

necessary changes to the wavenumber vector, tiseafter
the interaction do not accurately predict the dgmysical
state of the individual internal waves.
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Figure 6: Results of initial efforts to modify the numerical code to
account for k, to change with respect to time. The same general flow
pattern is shown, but with fewer waves being absorbed by the vortex.
Also, the center ray now has dight, but unexpected, periodic variations
asit iscarried along with the vortex.

Still further unsettling, the initial efforts to rdidy the
code yield a solution more inaccurate. Figure @ashthat
the center mostly follows the straight line shownFigure
3, but with slight periodic variation. Also, thays traced
are significantly spread out, refracted away fréma dipole
instead of being absorbed by it. It is impossifalgell at
this stage if the rays that should pass throughdameg so
correctly. Though there may be more to modify witie
code of the internal waves, it is also believed the code
for the dipole will need modification. Due to time
constraints, these errors have yet to be cleartmvever, it
is known how to proceed to determine the exactedos
these errors. The equations are again being e@rifi the
code. Likely the problem comes down to simple dgjing
of the subroutines involved in the numerical sainti It is
expected that these problems will shortly be salved

Additionally, the code for the counter-propagating

scenario is not yet yielding any anticipated resualnd is

clearly not yet functioning properly. This willqaire more

time, though it is expected that the majority obldems

associated with this case will be sorted out wiltte t
corrections of the errors in the co-propagatingade.

capabilities of experimentation and observatiorydists
regarding geophysical flows are restricted to lasgale
analysis. However, much of what occurs on a glcale
is a cumulative effect of many small-scale internave
interactions, including three-dimensional processes
Additionally, the small-scale processes relatednternal
waves frequently obligate three-dimensional consititens.

As for the importance of the study particular tésth
paper, internal wave-vortex interactions are meeegingle
type of interaction that occurs naturally in geogbsl
stratified flows, but they are not uncommon; ratlieey are
quite the opposite. Understanding the relationgigifwveen
the two phenomena in this interaction cannot oidyimthe
advancement of climate modeling and renewable gnerg
potential, but it may also help in determining @#ént flight
patterns and shuttle-launch timing and locatiofe-entry
methods can be improved, as well as inland landgites,
particularly as topography plays a distinct role time
generation of internal waves.
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Once the code is debugged and accurately findiag th

solution to the wave-vortex interaction, the reswiill have
a variety of practical impact. Internal waves hdagge
scale effects, are a significant source of atmasprend
oceanic mixing, and are a potential source of reidev
energy.

Through experimentation and observatior, w



