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ABSTRACT 
Internal gravity waves are inherent in the atmosphere due to its stable stratification.  They may be generated in 
many ways, including by flow over topography, convective storms, or turbulent mixing.  As they propagate 
through the atmosphere and ocean, internal waves of various scales (tens of meters to tens of kilometers) 
interact with various phenomena found throughout geophysical fluid flows.  The interaction of small-scale 
internal waves with a vortex dipole is of particular interest because of their frequency in nature due to the 
rotation of the earth resulting in constant vortex generation.  The speed and direction with which internal waves 
approach a vortex dipole can significantly affect the wave-vortex interaction, determining if the energy of the 
internal waves will be absorbed, refracted, or unaffected by the dipole.  Variations of this interaction are 
investigated through three-dimensional linear and nonlinear numerical simulations.  The linear theory is ideal 
due to the speed of calculations: tens of thousands of waves can be tested in a few hours using a standard PC.  
Physical dynamics of possible interactions are quantified through the calculations of basic wave parameters and 
amplitudes and the results agree qualitatively with experimentation.  Fully nonlinear simulations and 
experimental results are used to validate the linear theory. 

_______________ 
 

Introduction 
A stably-stratified fluid is one in which the density 

increases continuously with depth, such as the ocean or the 
atmosphere.  Perturbations of a stably-stratified fluid, such 
as tidal flow over topography, move fluid particles of one 
depth and neutrally-buoyant state to a depth in which they 
are surrounded by fluid particles of a different density.  The 
surrounding fluid particles push the displaced particles back 
in the direction of their neutrally-buoyant state.  When there 
is enough momentum to displace the fluid particles in the 
other direction, oscillations occur until the fluid particles 
reach a stable location with respect to their density.  The 
oscillations are defined by the Brunt-Väisälä frequency, the 
natural frequency of the fluid, which involves the change in 
density over height within the fluid.  Oscillations less than 
this frequency create internal waves which play an integral 
role in oceanic and atmospheric dynamics. 

Since early last century scientists and researchers have 
observed and studied internal wave propagation and 
evolution in stratified fluids, especially in the ocean and 
atmosphere.  Today researchers can numerically simulate 
internal wave propagation and wave interactions with other 
fluid phenomena, studying them from every point in space 
and time, and compare the results with what is known from 
observation and experimentation.  However, reconciling 
theoretical predictions with experimental data is sometimes 
problematic since, during wave propagation and 
interactions, the transport of energy may be at such small 
scales that observations lack sufficient resolution and the 

onset of turbulence invalidates two-dimensional linear 
theories.  With three-dimensional-simulation capabilities, 
we can more completely study scenarios involving internal 
waves in the ocean and atmosphere and apply more accurate 
theories and approximations.   

Internal waves interact with a myriad of flow 
phenomena, including other internal waves of similar and 
different scales.  Javam, Imberger and Armfield (2000) 
numerically researched interactions of internal waves of 
similar scales and found these interactions were nonlinear 
and involved wave breaking.  Broutman and Young (1986) 
used ray theory (to be described later) to numerically track 
the changes of small-scale internal waves (on the order of 
tens of meters) interacting with a large-scale internal wave 
background (on the order of kilometers and greater).  They 
confirmed theoretical predictions for conditions of internal 
waves prior to and following the interactions.  Winters and 
D’Asaro (1989) used a two-dimensional model to 
numerically simulate the propagation of internal waves into 
a slowly-varying mean shear background.  Nonlinearity and 
three-dimensionality overcome the simulated waves when 
the internal waves become unstable and turbulence begins, 
breaking down the internal waves.  Later, three-dimensional 
considerations were discussed in Winter and D’Asaro 
(1994).  Convective instabilities yielded counter-rotating 
vortices, the effects of which were magnified by wave shear.  
The combination of convection and shear in these 
interactions obligate three-dimensional analysis.  This 
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obligation is a representative result of all the studies cited 
thus far and is essential to the continuing discussion. 

Vortices are a common occurrence in large, geophysical 
flows as a result of shear and turbulence in a rotating fluid.  
Moulin and Flór (2006) numerically demonstrated a three-
dimensional interaction between a large-scale internal wave 
and a Rankine-type vortex.  By varying the initial locations 
of the internal waves, the authors demonstrated that each 
wave-vortex interaction resulted in a different scenario with 
different effects on the internal waves.  In some cases, the 
waves reflected; in others, they were absorbed into the 
rotating flow; still other combinations produced breaking 
waves.  Despite the wealth of information gained from these 
simulations, questions remain about what happens to the 
energy of internal waves during the onset of turbulence and 
other three-dimensional characteristics during wave-vortex 
interactions.  While we know the waves may break, it is 
unclear what mechanisms are responsible for their evolution 
to breaking and how and why turbulence begins. 

Godoy-Diana, Chomaz and Donnadieu (2006) 
discussed the experimental interaction of internal waves 
with a Lamb-Chaplygin pancake vortex dipole.  A vortex 
dipole involves two side-by-side, counter-rotating vortices; 
the Lamb-Chaplygin vortex dipole is an exact solution of 
the Euler equations (Billant, Brancher and Chomaz (1999)).  
Two scenarios of wave-vortex interactions were conducted: 
one in which the internal wave’s horizontal wave number 
propagated with the flow and one in which it propagated 
against the flow.  The former scenario showed the wave 
beam bending to the horizontal and possibly being absorbed 
by the vortex.  The latter scenario resulted in the beam of 
internal waves steepening to the vertical and possibly 
reflecting.  The results of this experiment suggest three-
dimensional effects are essential in internal wave 
propagation.  A numerical analysis of this experiment 
illuminates the three-dimensional mechanisms of these 
effects, showing what happens to the internal wave 
properties and energy during internal wave interactions. 

This paper details the work that has been done and 
discusses work to still be done to numerically model a set of 
small-scale internal waves interacting in three dimensions 
with a vortex dipole of constant propagation.  The Methods 
section discusses the experimental setup of Godoy-Diana et. 
al. (2006) and the corresponding numerical setup for the 
current study, and presents the mathematical theory 
involved.  The next section presents the results of the 
interaction simulations, including comparisons to the 
experiment of Godoy-Diana et. al. (2006).  The final section 
discusses the practical impact of the results of the study, 
further research to be done on this project, and ideas for 
future research. 

 
Methods 

The experimental internal wave-vortex interaction of 
Godoy-Diana et. al. (2006) was completed in a salt-
stratified water tank as shown in Figure 1.  The dipole is 

created and then approaches a screen which allows only a 
thin slice of the dipole to pass to the area of interaction.  The 
internal-wave beams are generated by oscillating a cylinder 
at a frequency less than the natural buoyancy frequency of 
the fluid, which was maintained constant.  Figure 2 shows a 
close-up view of two scenarios of interactions: co-
propagating, in which the waves propagate in the same 
direction as the vortex direction of propagation; and 
counter-propagating, in which the waves propagate opposite 
to the vortex direction of propagation.  The general 
anticipated outcome of the experiment can be seen as the 
co-propagating representation of the wave beam is absorbed 
into the flow of the vortex, and the counter-propagating 
representation of the wave beam is reflected away from the 
vortex. 

 

 
Figure 1: Saltwater stratified water experimental tank (Godoy-Diana, 
et. al. (2006)). The dipole is created by flaps at one end of the tank and 
approaches a screen which allows a slice of the dipole to pass into the 
interaction area with the cylinder generating the internal waves. 

 

 
Figure 2: Close-up view of oscillating cylinder generating internal 
waves relative to the vortex velocity profile (Godoy-Diana, et. al. 
(2006)).  The co-propagating case shows the internal waves being 
absorbed by the vortex.  The counter-propagating case shows the 
internal waves reflecting away from the vortex. 

 
The numerical code for the current study was written in 

Matlab.  It has been modified from previous two-
dimensional code and developed for three-dimensional 
simulations.  It has been organized to consider individually 
the same two scenarios of interaction carried out in its 
experimental counterpart.  At the code’s core, ray theory 
governs the numerical simulation.  Ray theory, often called 
ray tracing, traces the directions (rays) of small-amplitude 
internal wave propagation before, during, and after the 
wave-vortex interaction.  Ray theory is linear, even in three 
dimensions, so the basic propagation of the waves can be 



simply modeled.  In addition, calculations are made to 
analyze wave amplitudes which may result in wave 
breaking.  Ray theory efficiently tracks internal wave 
propagation and the results easily compare to those of the 
experiment.  Ray theory is also quick in its application, 
providing a method of research much faster and less 
expensive than experimentation and observation.   

Ray theory is a method of solving the Navier-Stokes 
equations, the governing equations of fluid flow.  To 
simplify the Navier-Stokes equations for this case, the 
propagation of the vortex is assumed slowly varying while 
the only side-effects of the interaction are changes to the 
characteristics and propagation of the small-scale internal 
waves.  This is the linear, inviscid Wentzel-Kramer-
Brillouin (WKB) approximation.  It allows the dispersion 
relation to be valid locally.  While it is not representative of 
all wave-vortex interactions, this assumption is realistic 
when waves are interacting with large-scale geophysical 
flows and is the foundation of ray theory.  Another 
simplification is the Boussinesq approximation, which states 
that changes in density are negligible except in terms where 
the acceleration due to gravity is a multiplier.  The solution 
to the Navier-Stokes equations is then in a form of the wave 
equation. 

To verify that the correct equations are being solved for 
this simulation, the equations have been rederived and their 
accuracy of implementation in the code confirmed.  The full 
ray theory equations for a mean velocity field V= (v1,v2,v3) 
through which the internal waves propagate with frequency 
relative to the background are now presented.   

The Doppler relation defines the relation between the 
frequencies of the background Ω and the frequency of the 
internal wave ωr,  

jjr kv−Ω=ω    (1) 

where vj is the component of the background velocity and kj 
is the component of the small-scale wavenumber vector k= 
(k1,k2,k3) in the same direction.  The dispersion relation 
defines ωr as a function of wavenumber, the buoyancy 
frequency N, and the Coriolis force (which is insignificant 
for the simulations at hand), 
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The velocities of the internal waves are defined by the 
sum of the background velocity and the group velocity of 
the internal waves, 
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for which x=(x1,x2,x3) defines the space of the domain and 
where 
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The law governing refraction is given by 
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To define the change of the relative frequency with 
respect to time, 
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For this simulation, the partial derivative of ωr with 
respect to space is zero because k, N, nor f in the dispersion 
relation are functions of space.  Thus the last two equations 
reduce to only their first terms on the right hand side. 

 
Results 

To validate the results of the numerical simulations, the 
conditions of the experiments of Godoy-Diana, et. al. (2006) 
were input to the code.  Figure 3 shows the initial 
representation of the lines of wave propagation for the co-
propagating wave-vortex interaction in a three-dimensional 
domain.   



   a) 

  b) 

  c) 

  d) 

 
Figure 3: Initial results of the numerical co-propagating scenario.  The 
lines are the rays traced by ray theory and represent internal waves at 
various initial locations.  They all begin at the same position along the 
length and the depth in the domain, but at different positions along the 
width. 

 
The lines are the rays tracing various internal waves.  The 
waves begin at the same position along the length and along 
the depth of the domain, but at different positions along the 
width.  They also begin with the same wave numbers.  By 
following the rays, it is clear that the interaction is being, in 
general, appropriately represented.  That is, the lines/rays 
representing the movement of the internal waves over time 
follow the patterns expected in an interaction with a vortex 
dipole: the center ray moves quickly along the length of the 
domain, never wavering; one of the inner rays on either side 
of the center ray are caught for a time in the vortex; outer 
rays are affected by the vortex velocity field, but escape 
through its underside. 

 
Figure 4: View of numerical solution showing how rays change along 
the depth with respect to a nondimensional time t/TN, where TN is the 
buoyancy period of the fluid.  The top ray is the center ray of Figure 3, 
and is entirely absorbed by the vortex.  Other rays are also shown 
being absorbed.  Still other rays are affected by the interaction but 

pass through the vortex at angles different than their initial angle.  
This is due to changes in their properties, such as wave number. 

 
Figure 4 shows a view of how the rays change along the 

depth of the tank with respect to a nondimensional time t / 
TN, where TN is the buoyancy period of the fluid.  In this 
view, it is seen how the rays change their angles of 
propagation, inferring also changes to their properties.  
Figure 5 shows a similar result from the experimental 
counterpart, and can be compared to the center ray of 
Figures 3 and 4.  Figure 5a shows the beams of internal 
waves before interaction with the dipole.  Figure 5b shows 
one of the beams bending to the velocity profile of the 
dipole.  Figures 5c and 5d show the beams being more 
absorbed into the vortex.  Figures 4 and 5 in comparison 
demonstrate qualitatively that the code is performing as 
expected.  Some rays are being absorbed, based on their 
initial location, while others are passing through the vortex 
dipole with new properties.  These rays passing through 
show other interactions not considered in the experimental 
counterpart to this numerical study.  There are many 
possible interactions still to be discovered. 

 

        
Figure 5: View of experimental results from Godoy-Diana, et. al. (2006) 
for the co-propagating scenario showing the wave beams changing 
along the depth with respect to the length of the tank.  5a shows the 
internal wave beams prior to the interaction, 5b shows one wave beam 
being absorbed by the interaction.  5c and d show the evolution of the 
interaction as the vortex absorbs the wave beams. 

 
It is the change in properties that is particularly 

interesting.  Depending on the changes of wave numbers 
and amplitude, the waves may in some cases be approaching 
breaking and turbulence.  While ray tracing cannot follow or 
predict these nonlinear characteristics due to internal wave 
interactions, it can help predict their evolution to breaking 
and turbulence.  Then, as the waves begin to overturn, a 
point of breaking can be determined. 
 
Discussion 

Despite the expected quantitative demonstration of the 
correct flow pattern of the interaction, the initial results do 
not yield the solutions of Godoy-Diana et. al. (2006), and 
full analysis of the interaction is not yet possible.  Upon 
further investigation, several errors have become known.  

x 

z 



First, it was discovered that time dependence of the second 
wave number k2 had been neglected.  As a result, this 
property of the internal waves was maintained constant 
rather than changing according to (6).  Without the 
necessary changes to the wavenumber vector, the rays after 
the interaction do not accurately predict the actual physical 
state of the individual internal waves. 

 
Figure 6: Results of initial efforts to modify the numerical code to 
account for k2 to change with respect to time.  The same general flow 
pattern is shown, but with fewer waves being absorbed by the vortex.  
Also, the center ray now has slight, but unexpected, periodic variations 
as it is carried along with the vortex. 

 
Still further unsettling, the initial efforts to modify the 

code yield a solution more inaccurate.  Figure 6 shows that 
the center mostly follows the straight line shown in Figure 
3, but with slight periodic variation.  Also, the rays traced 
are significantly spread out, refracted away from the dipole 
instead of being absorbed by it.  It is impossible to tell at 
this stage if the rays that should pass through are doing so 
correctly.  Though there may be more to modify with the 
code of the internal waves, it is also believed that the code 
for the dipole will need modification.  Due to time 
constraints, these errors have yet to be cleared.  However, it 
is known how to proceed to determine the exact cause for 
these errors.  The equations are again being verified in the 
code.  Likely the problem comes down to simple debugging 
of the subroutines involved in the numerical solution.  It is 
expected that these problems will shortly be solved. 

Additionally, the code for the counter-propagating 
scenario is not yet yielding any anticipated results and is 
clearly not yet functioning properly.  This will require more 
time, though it is expected that the majority of problems 
associated with this case will be sorted out with the 
corrections of the errors in the co-propagating scenario. 

Once the code is debugged and accurately finding the 
solution to the wave-vortex interaction, the results will have 
a variety of practical impact.  Internal waves have large 
scale effects, are a significant source of atmospheric and 
oceanic mixing, and are a potential source of renewable 
energy.  Through experimentation and observation, we 

know the breaking of internal waves drives global 
circulation patterns, yet we do not understand sufficiently 
how, where and when breaking and turbulence occur in the 
open ocean and atmosphere.  Also, due to resolution 
capabilities of experimentation and observation, studies 
regarding geophysical flows are restricted to large scale 
analysis.  However, much of what occurs on a global scale 
is a cumulative effect of many small-scale internal wave 
interactions, including three-dimensional processes.  
Additionally, the small-scale processes related to internal 
waves frequently obligate three-dimensional considerations. 

As for the importance of the study particular to this 
paper, internal wave-vortex interactions are merely a single 
type of interaction that occurs naturally in geophysical 
stratified flows, but they are not uncommon; rather, they are 
quite the opposite.  Understanding the relationship between 
the two phenomena in this interaction cannot only aid in the 
advancement of climate modeling and renewable energy 
potential, but it may also help in determining efficient flight 
patterns and shuttle-launch timing and locations.  Re-entry 
methods can be improved, as well as inland landing sites, 
particularly as topography plays a distinct role in the 
generation of internal waves. 
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