Meta-data and Interface Synthesis Techniques for
Improving Design Productivity in Reconfigurable
Computing

Adam Arnesen
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering
Brigham Young University
Provo, UT, 84602, USA
adamarnesen @byu.net

Abstract—This paper demonstrates improvements in design
productivity for reconfigurable computing which are accom-
plished through a novel IP reuse strategy. It presents a set of
extensions to the IP-XACT XML specification that define the
temporal behavior of cores and describes how these extensions are
used in the Ogre synthesis system to simplify design complexity
and thereby reduce design time. Design productivity improve-
ment is demonstrated by reducing design time for software radio
designs from days to hours.

I. INTRODUCTION: DESIGN FOR RECONFIGURABLE
COMPUTING

Reconfigurable platforms such as Field Programmable Gate
Arrays (FPGAs) promise to decrease the time to market for
computing systems when compared with their custom silicon
ASIC counterparts. This decrease is in part a result of being
able to rapidly implement designs on FPGAs because they
are mapped onto pre-produced silicon and therefore do not
require multiple fabrication cycles to produce. Also software
development time for FPGA-based systems is also shorter as
actual hardware is available for software development early in
the design cycle [1].

The unique architecture of FPGAs enables designers to
implement a nearly infinite number of hardware designs on
the same chip without having to produce a custom silicon
solution. The basic hardware layout for an FPGA is shown in
Figure [T] This architecture consists fundamentally of an array
of processing elements with routing resources between them.
Each processing element can implement a logic function and
either save its result in a memory element or directly pass
it on to another processing element. To implement a design
on an FPGA, a designer simply writes a hardware description
language (HDL) description of the circuit he wishes to im-
plement, the design is then synthesized into a set of logic
equations and memories which are mapped into the logic
elements of the FPGA. Each logic element is then connected
to other elements by turning on programmable interconnection

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876. and by the Rocky Mountain NASA
Space Grant Consortium

Pl
AN

feorec Wiy —HHE—HE

T
T
T
PRl
LAY
i
T
T
T
T
T
Tt
T
T

LT

Fig. 1. A basic FPGA has logic elements containing look up tables and
registers surrounded by a mesh of interconnect wires. Interconnect wires
can be programatically connected to one another to rout signals between
processing elements(shown by black dots in the figure).

points between the wires in the mesh as shown in Figure
This architecture makes FPGAs especially appropriate for
computations that are easily broken down into blocks that
perform a part of the computation and then pass data to the
next block for further work. These types of computations can
typically be modeled by the synchronous data-flow (SDF)
model of computation [2]].

Many algorithms that have traditionally been implemented
in software on a microprocessor can be mapped to custom
hardware in an FPGA. This mapping allows algorithms with
inherrent data parallelism to operate much more rapidly by
operating in “custom” hardware. While FPGAs have shortened
the time-to-market and allowed large computational speedups
for many applications, low design productivity has been a
significant barrier to their widespread adoption. Reuse of pre-
viously designed and verified intellectual property (IP) cores
in an important method for improving design productivity;
however, reuse has proven difficult because it requires a

system designer to understand the internal details and interface
protocol of a particular core and to build custom circuitry to
integrate this core into a design. If a designer can produce this
same core themselves from scratch in 30% of the time it takes
to reuse the core, reuse will fail [3]].

The reuse problem has been addressed in part by describing
IP cores in computer-readable meta-data. The IP-XACT XML
schema from the Spirit Consortium defines a standard way of
describing reusable cores [4]. This specification primarily de-
scribes cores that have standard interconnection schemes and
can be attached to standard bus structures for communication.
IP-XACT does not, however, provide meta-data for describing
custom interfaces that do not comply to a standard protocol.

This paper presents a novel reuse framework that includes
a highly parameterized core library for software radio, exten-
sions to the IP-XACT schema allowing the library to describe
cores whose interfaces do not comply to a standard bus struc-
ture, and the Ogre design synthesis system that enables library
cores to be automatically interfaced and composed. Section
deals with the IP-XACT extensions and how they represent
temporal behavior of IP cores with non-standard interfaces.
Section |III] presents the synthesis techniques that leverage this
information to automatically generate designs, and section
summarizes the design productivity improvements observed in
the development of software radios on FPGAs.

II. META-DATA DESCRIPTIONS: ADDING TEMPORAL
BEHAVIOR DATA TO IP-XACT

IP-XACT provides most of the elements needed to describe
cores. Its strengths and limitations are discussed in depth in
[S[6]. In order to enable CAD tools to reason about the timing
of cores and their interconnect in data-driven applications,
extensions are needed to the basic IP-XACT schema. IP-
XACT allows for external vendor extensions to support this
type of extra information. This research extends IP-XACT in
several ways, including extensions to describe the temporal
behavior of library cores.

The design space in this research is constrained to designs
modeled by the homogeneous synchronous data-flow model of
computation [2l]. Meta-data descriptions must be added to IP-
XACT to describe the temporal behavior of cores that fitthis
model. Three elements are added to IP-XACT via vendor
extensions to do this: latency, data introduction interval and
sample delay. Each of these extensions are represented by
XML elements as extensions to the IP-XACT schema.

XML Code 1 This XML shows the vendor extensions added to IP-XACT
to describe the temporal behavior of IP cores. This example defines a temporal
SDF interface with a data introduction interval of 7, a latency of 8, and a

sample delay of 0.

<chrec:behaviorallayer>
<chrec:dataIntroductionInterval>7
</chrec:datalIntroductionInterval>
<chrec:pipelineDepth> 8
</chrec:pipelineDepth>
<chrec:sampleDelay>0</chrec:sampleDelay>

</chrec:behaviorallayer>

The latency represents the number of clock cycles that
elapse from the time that data is consumed on the inputs of the
core to the time that the corresponding results are produced on
the outputs. This does not mean that the core is pipelined in
the traditional sense or that data can be accepted by the core
on every cycle. For example, cores that accept data only every
8 cycles and take 9 cycles to compute a result would be given a
latency value of 9. The Ogre scheduler uses this information
to determine appropriate start times for pipelined cores. All
cores used in this environment have a static latency to allow
the scheduler to perform static scheduling. XML Code [I]shows
how latency is defined in XML. In the extension the latency
is listed under the <chrec:pipelineDepth> element.

The data introduction interval for a core describes how
many clock cycles must elapse between the introduction of
data for each new sample. Cores with a data introduction
interval of one can accept new samples each clock cycle.
The data introduction interval of a core is independent of
its latency. For example a core that has a data introduction
interval of 3 can consume data on clock cycle O but then
will not consume data again until clock cycle 3 and then
again on cycle 6. XML Code [I] shows the data introduc-
tion interval defined in XML listed as the value of the
<chrec:dataIntroductionInterval> element.

The sample delay parameter indicates the number of SDF
sample delays (Z 1) that occur between the input of the core
and its output. These are different delays than regular pipeline
register delays. Sample delays are used during synthesis to
ensure that samples correctly line up when pipelined cores
are used for computation. The outputs of a core with a
sample delay of one would be used in computations with
the sample immediately following the one that produced that
particular output. Sample delay is especially important in
systems that have feedback paths. A core with a sample delay
of greater than 1 must exist in each loop in a design. In XML
Code [I] the sample delay information is represented as the
<chrec:sampleDelay> element.

Loop Filter
Parameters
loopDampingFacotor
loopBandwidth
accumulationWidth
phaseDetectorGain
DDSGain
samplesPerSymbol est
order
kPrecision
Temporal Behavior
Latency =2
Introduction Interval = 1
Sample Delay =0

—clk—]

—rst—]

—ce—

-validin-

—erln—

Fig. 2. This figure shows the loop filter block from the library. This block
is modeled as having a latency of 2 and a data introduction interval of 1 and
no sample delay.

Figure [2] provides an example of the top-level interface of
the loop filter block. This example shows that the core takes

CHREC Extension Compliant

CHREC Extension Design Environment CHREC Extension
Compliant Object Compliant Generators
Descriptions % 111;2:?::(! (XD interpolator *
A
” Interface
Component PED Synthesis Tool
XML

I

loop
filter

loop
filter

dl
paJinbiuo)
pajelausn

DDS |

Component
IP
IP-XACT +
CHREC XML
Import

Fig. 3. The environment developed in this research imports HDL cores wrapped in XML, allows a designer to structurally connect these cores to one-another,
uses this structure to synthesize a functionally complete design, and generates a valid HDL design which can then be synthesized using standard techniques.

two clock cycles to compute one result, it can accept new
data every clock cycle, and there is no internal sample delay.
This figure also shows the high-level of parameterization that
is presented to the user.

III. SYNTHESIS TECHNIQUES

There are two important aspects of the synthesis techniques
developed in this research that help to improve reuse and
design productivity. The first is a simple design environment
that is easy for a designer to understand and use, and the
second is a powerful synthesis tool-flow that allows designers
to easily create valid designs from their specifications.

A. The Design Environment

The design environment that leverages the [P-XACT XML
and the added extensions is summarized in Figure [3] The
environment is connected to a library of parameterized IP cores
which are wrapped in IP-XACT XML with the extensions
described in Section [[Il This core description XML can be
automatically generated through a GUI interface from VHDL
cores with additional required meta-data being added by
the user . Any core that conforms to the SDF model can
have an XML description generated and be imported into
the core library and used by the synthesis system. Many
existing hardware development systems leverage libraries of
cores; however, this library differs from previous models
because the native library is itself extensible by definition.
This extensibility simplifies core reuse by allowing any core
to become a part of the native library and not simply requiring
designers to add cores through a black-box interface.

After the library is populated, it is imported into the design
environment and presented to the user as a hierarchical library
based on the vendor, library, name and version of the core.
The designer can drag and drop cores onto a design surface
to instance them. This is done by leveraging the Simulink
system and presenting the library to the user as a set of custom
Simulink blocks.

Once blocks have been instanced on the design surface, they
can be connected to each other and their parameters can be set.

[0 [Nomal - B B S BREE®

| 3% odeis

Fig. 4. This is the design window presented to the user. It allows the designer
to instance cores and set their parameters as well as define the structural
interconnect between cores.

, ,

CHRELC ¥ML CORE: decisionParam [mask] (k] I

WLNY: BYU radio.decisionParam,1.1
Decigion block defines the constelation far the radio. The parameter RADIO_TYPE defines the number
aof points with 2 being bpsk., 4 being gpsk. 8 being eightpsk, and 16 being 160AM.

Parameters

Number of constellation points [RADIO_TYPE]: The number of paintz in the constellation. 2 forg
bpsk. 4 for gpsk., 8 for Spsk, 16 for 16GAM

[ak. H Cancel ” Help] Apply

Fig. 5. This is an example of the parameterization window presented to the
user. Parameters can be set in drop-down menus as shown here or can be
typed in a text box.

Figure [4] shows a completed design on the design surface. The
designer is only required to connect the data signals between
cores and is not required to connect any control logic, clocking
or reset circuitry. All control connectivity is automatically
generated by the synthesis system.

Instances on the design surface can be parameterized to act
in different ways. This parameterization is accessed by double
clicking on the core instance, which displays a parameteriza-
tion window as shown in Figure 5} The parameterization that
this window shows reflects parameterization described in the
XML core description.

The parameterization used in this research is also a con-
tributing factor in increasing design productivity. In traditional
hardware design, IP cores are parameterized at the low bit-
width level. This research attempts to mask that level of
parameterization by providing higher level parameters for the
user to set which are then translated into the correct low-
level parameter values for a core. The calculate mu block
shown in Figure 2] shows examples of these higher level
parameters. Parameters such as the loop damping factor and
the phase detector gain are parameters that are specific to the
software radio design domain and because these parameters
are understood at a high level by radio designers, they increase
productivity by providing a higher level of abstraction for the
designer to reason with.

After the designer has set the parameters appropriately on
each of the core instances, the design environment passes the
complete structural design to the Ogre tool as shown in Figure
[Bl The Ogre tool completes the design by inserting control
and glue logic into the circuit. The operation of this tool is
described in the following section.

B. The Tool Flow

The Ogre tool uses the core description meta-data as well
as the structural interconnection information from the design
environment to construct a valid hardware design that can be
implemented in an FPGA. The stages of this tools algorithm
are described in general in Figure [6]

Schematic Validate Propagate High Level
Capture —9~ —p Parameters to Low Level
imuli arameters
(Simulink) Parameters
|
v
Resolve Generate Sypthesize
Bitwidths E— Global Finite State
Schedule Machine
T
R
Synthesize Top-level
VHDL of Complete
Design

Fig. 6. This is the flow used by the Ogre synthesis system to generate
complete designs.

Once the schematic capture of the design has been com-
pleted, the first step taken by the Ogre tool is to validate the

parameters set by the designer. This is done by checking the
parameters against their valid ranges or choice sets as defined
in XML. Once all designer-set parameters have been validated,
the high level parameter values are used in mathematical
expressions to calculate the value of low-level parameters.
An example of such a mathematical expression is shown in
XML Code [2] These mathematical expressions are supported
natively in the XPath language and can be quite expressive [7].

XML Code 2 This XML codes shows how high level parameters are
translated into low-level parameters using mathematical expressions as defined
by IP-XACT. This XML snippet is listed as a child of the low-level parameter

whose value is being calculated.

<spirit:value spirit:resolve="dependent"
spirit:dependency=" (id (' Sregsize’) >= 2)
* id(’Sregsize’) + (id(’'Sregsize’) < 2)
*x 2">2

</spirit:value>

Once both high and low-level parameters have all been
resolved, bit-widths are propagated through the design. The
bit-widths for the cores in the library are all dependent on
parameters which relate the input bit-width to the output bit-
width. The designer sets the bit-width on the input ports to the
design and these bit-widths are then propagated through the
design to set the bit-widths on each of the cores in the design
and to calculate the width of the signal wires that connect
them.

Following bit-width resolution, a global schedule for the
design is generated. This schedule controls which cores are
turned “on” or “off” at a particular time and it ensures that the
order in which they are activated allows data to correctly flow
through circuit to create the correct functionality. This step of
the tool relies heavily on the temporal behavior information
listed in the behavioral extensions to IP-XACT. The details
of the algorithm used to create this schedule is beyond the
scope of this paper. In general, however, this algorithm is
done by creating a dependency graph from the circuit netlist
and then creating a schedule using a variant of the iterative
modulo scheduling algorithm described in [8]. The result of
this schedule is a list of start and end times for each core in
the design as well as an overall latency, in clock cycles, for
the entire design.

Once a valid schedule has been created, it is implemented
in a finite state machine (FSM). This FSM controls the
operation of the circuit by manipulating the datavalid and
clockEnable signals on the scheduled cores. The tools
know the location of these signals because they are specified in
the XML meta-data description. During the first clock cycle
that a core is active, the datavValid and clockEnable
signals are asserted. For every cycle following the first in
which the core should be “on” the clockEnable signal is
asserted. The completed FSM design is output to a VHDL file.
The FSM implements the schedule and therefore ensure that
all data dependencies are met in the design.

After the FSM has been generated, it is inserted into the

design and the control signals for the design are connected.
Each of the clockEnable and datavalid signals are
connected from the FSM to their respective cores. The global
clock and reset signals are automatically connected to the cores
and the correct core ports are wired to top-level input and
output ports. This completed design is then also exported to
a VHDL file. This VHDL file can then be used in traditional
FPGA design flows to synthesize, place and route the complete
design on to an FPGA fabric.

IV. RESULTS: BUILDING SOFTWARE RADIOS

The meta-data descriptions and the synthesis techniques de-
scribed in the previous sections were tested and demonstrated
by building several software radios. The purpose of these tests
was to demonstrate design productivity improvement by using
the Ogre tools. To accomplish this, two versions of a QPSK
receiver (see Figure [/)) were designed by hand. The first was
a combinational version of the receiver in which a single
iteration of the loop ran in a single clock cycle. The design
time for this radio was approximately one day. A pipelined
version, multiple clock cycles for the loop, was also developed
by hand and the design time for this radio was three days.

matched () interpolator decision
filter X
A
loop

p strobe filter 4

loop
NCO filter

DDS |,
Fig. 7. A QPSK Receiver

To demonstrate design productivity improvement, each of
these QPSK radios was also built using the Ogre system. The
design time for the combinational radio, which was a day by
hand, was reduced to less than an hour using the Ogre tools.
The pipelined version was also implemented in Ogre and a
functional radio was produced in less than an hour. In addition
to the much shorter design time, the generated radio was more
efficient; it took only 14 cycles to complete the loop where as
the hand generated one required 15.

Design productivity improvements were also demonstrated
by the ability of designers to develop several different radio
personalities in a single afternoon. Using the entire Ogre reuse
system, this research was able to produce seven different
QPSK implementation which differed in their latency and
area requirements, a BPSK design, and 8PSK and 16QAM
designs in a single day. Each of these radios was implemented
on an Xilinx XTremeDSP FPGA board and demonstrated to
correctly produce a constellation.

The type of design time improvement demonstrated in this
research can contribute not only to an increase in design
productivity but also to the feasibility and ease of use for
rapidly reconfigurable radio and other data-driven designs.
For example, radio systems implemented in FPGAs could be
rapidly designed and configured on the fly to meet current
needs in the field.

V. CONCLUSION

This paper has presented a core reuse system that demon-
strates the ability to increase design productivity in data-driven
designs implemented in reconfigurable systems. This design
productivity improvement has been obtained by leveraging
meta-data descriptions of IP cores and using these descriptions
in an end-to-end synthesis environment to allows a designer
to rapidly implement designs and explore the design space.

IP cores are described in IP-XACT with extensions for
describing temporal behavior. The parameterization provided
by IP-XACT is also leveraged. These cores are imported into
a library which is made available to the designer. This library
is natively extensible and allows easy importation of cores that
fit into the SDF model.

The synthesis system allows the designer to connect cores
into a complete design and to set parameters on these cores
to change their internal operation. The synthesis system also
removes the need for the designer to specify the timing of
the circuit by automatically generating a schedule and FSM to
control the circuit. All other control logic is also automatically
generated and inserted into the circuit.

The combination of parameterized IP cores, their meta-
data descriptions, and the end to end design environment has
enabled increases in design productivity. Designs that took
days to build by hand were able to be built in a matter of hours.
This design approach is particularly applicable to data-driven
designs that are a natural fit for FPGA and other reconfigurable
computing platforms.

REFERENCES

[1] S. Hauck and A. DéHon, Eds., Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation. Morgan Kaufmann Publish-
ers, 2008.

[2] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[3] R. Passerone and J. A. Rowson, “Automatic synthesis of interfaces
between incompatible protocols,” in Proceedings of the 35th Design
Automation Conference (DAC 1998), June 1998, pp. 8-13.

[4] IP-XACT Draft/D5: A specification for XML meta-data and tool inter-
faces, SPIRIT consortium, 1370 Trancas Street #184, Napa, CA, 94558,
May 2009.

[S] A. Arnesen, N. Rollins, and M. Wirthlin, “A multi-layered XML schema
and design tool for reusing and integrating FPGA IP,” in /9th Interna-
tional Conference on Field Programmable Logic and Applications (FPL-
2009), August 2009, pp. 472-475.

[6] N. Rollins, A. Arnesen, and M. Wirthlin, “An XML schema for repre-
senting reuable IP cores for reconfigurable computing,” in Proceedings
of the National Aerospace and Electronics Conference (NAECON 2008),
July 2008.

[71 W. Wide Web Consortium (W3C), “XML Path Language (XPath) 2.0,”
http://www.w3.org/TR/xpath20/, January 2007.

[8] B. R. Rau, “Iterative modulo scheduling,” The International Journal of
Parallel Processing, vol. 24, no. 1, February 1996.

http://www.w3.org/TR/xpath20/

	Introduction: Design for Reconfigurable Computing
	Meta-Data Descriptions: Adding Temporal Behavior Data to IP-XACT
	Synthesis Techniques
	The Design Environment
	The Tool Flow

	Results: Building Software Radios
	Conclusion
	References

