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Abstract—An adaptive filtering algorithm was used to test the

validity of adaptively filtering respiratory signals recorded at the

trachea with an external reference microphone. Two different

setups were tested. The first used a microphone in open air, the

second used a microphone that was housed inside a second

stethoscope cup. The primary microphone was affixed to a

phantom material. External sounds and music were played via

aloud speaker to record additive noise data from within the

stethoscope cup. Data showed that adaptive filtration using a

secondary stethoscope cup was the most effective method to

remove ambient noises.

Index Terms—adaptive filters, stethoscope acoustics, noise

cancellation, respiratory sound detection.

I. INTRODUCTION

A.  Objective

he goal of this project was to find the validity of using

noise cancellation to reduce ambient sounds recorded

within the precordial stethoscope. Noises generated outside of

the stethoscope that are not wide sensse stationary (WSS) can

cause signals to be recorded within the stethoscope that are

loud enough to be counted as a detected breath. If these

sounds are recorded during a period of apnea the acoustic

signal will not be able to detect it as a period of apnea and it is

classified as a period missed by the acoustic apnea detection

algorithm. 

T

For this reason a method to reduce disturbances caused by

ambient sounds was explored. The method used was an

adaptive filter requiring a secondary microphone to record

ambient sounds.

B.  Stethoscope acoustics

The stethoscope cup used was a heavy precordial cup shown

in figure 1. The stethoscope cup was designed to amplify

signals detected within the cup. Physiologically the skin

within the stethoscope cup creates a diaphragm that acts like a

loud speaker for the vibrations on the skin. The metal

stethoscope attenuates external signals from entering the cup.

Acoustics of a stethoscope cup attenuation and amplification

can be characterized [1] through experimentation, but this can

change depending on the placement of the stethoscope cup on

the skin, the tightness of the skin within the cup, and the

placement of the stethoscope cup on the trachea. Observations

from previous research showed that sounds such as talking or

Submitted to the NASA Space Grant Consortium April 19, 2010

machine alarms can be loud enough to be detected as breath

sounds. 

C.  Adaptive noise cancellation overview

Adaptive noise cancellation is a method of signal processing

that uses multiple sources of signal to produce a desired signal.

A simple adaptive filter with block diagram shown in figure 2

has two inputs. Signal d is the primary input and signal x is the

reference input. The reference input is then filtered by the

weights w of the adaptive filter and an estimate of d is created

called y. The difference of the filtered signal y, and desired

signal d is then calculated to create the error signal e=d-y.

The error signal is then used as an input to the adaptive filter

to update the filtering weights w as will be described the next

section [2].

The adaptive filter algorithm chosen to adapt the weights w

can was the least mean squared (LMS) algorithm. The LMS

algorithm is the most widely used adaptive filter algorithm due
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Fig. 2.  Block diagram of a typical adaptive filter

 

Fig. 1. Metal stethoscope used to house the microphone used for recording

the tracheal sounds.
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to its stability, robustness and simplicity [2]. This filter has

many variants including the simplified LMS algorithm, and the

normalized LMS algorithm.

The classic LMS algorithm updates the weights w are

updated with the equation:

w(n+1)=w(n)+2µe(n)x(n)      (1)

where w(n+1) is the new vector of filtering weights with

length N, w(n) is the current vector of filtering weights with

length N, µ is the step size parameter, e(n) is the error signal,

and x(n) is a vector of recorded reference signals x with length

of N.

The simplified LMS algorithm has three forms and is

similar to the classic LMS algorithm. The three forms shown

here are the signed regressor, sign, and sign-sign algorithms

respectively:

w(n+1)=w(n)+2µ sign(e(n))x(n)          (2a)

w(n+1)=w(n)+2µ e(n))sign(x(n))         (2b)

w(n+1)=w(n)+2µe sign(n))sign(x(n))      (2c)  

The signed regressor algorithm is favored for its ability to

adapt similarly to the classic LMS but requiring less

computations. The sign algorithm and the sign-sign algorithm

do not converge as quickly [2] but are not much less

complicated than the sign algorithm.

The normalized LMS (NLMS) algorithm adds some

complexity in order to improve stability. The general form of

the NLMS algorithm is

w n1=w n 

x
T n x n 

e nx n      (3)

where  is the step size parameter and ψ is a small value to

ensure that the denominator of the equation is never zero. The

NLMS algorithm improves stability of the adaptation at the

expense of computation. The step size parameter is

normalized to the values of the input ensuring that if  is

properly chosen the output will never become unstable.

The step size parameter µ in the LMS algorithm is the value

that controls how quickly the filter adapts. If this value is too

high the filter can become unstable and the output of the filter

becomes useless. If its value is too low the filter will not adapt

quickly to changes in the filtering characteristics. The

maximum value that µ can be while maintaining the stability of

the filter can be calculated with this equation [2]:

MAX=
1

3tr [R]
(4)

where R is the autocorrelation of the input calculated by:

R=E[x(n)x(n)T]  (5)

and tr[] is the trace of a matrix defined as the sum of the

diagonal of the matrix [2]. Although this can be calculated for

every sample of the signal being filtered it is computationally

expensive. The NLMS algorithm uses this limit to maximize

the step size while maintaining stability.

D.  Adaptive noise cancellation in the literature

Adaptive noise cancellation in stethoscopes has been

performed for very noisy environments. Patel et al. [3] used

an adaptive filtering algorithm to filter helicopter noise from

cardiac and breathing sounds through a diaphragm stethoscope

cup with a second microphone to record ambient sounds. Data

were recorded on a subject in a sound proof room using the

stethoscope as described and also using a pneumotachometer

to measure respiratory flow volume. Sounds simulating being

inside a helicopter were played inside the sound proof room.

A real time adaptive filter was used to monitor the progress of

the filter. Post processing was performed using both an LMS

algorithm with N=40 and µ=0.02 and an NLMS algorithm

with N=40 and =1.2 . Patel found that the NLMS

algorithm provided a significant improvement over both non-

filtered data and the LMS filtered data.  

Although the work done in [3] is closely related to the noise

cancellation performed in this project, there are significant

differences in the methods performed. The comparison of the

respiratory rate of the acoustic data to that of the respiratory

flow data was not discussed by Patel. In addition the adaptive

filter was not applied when the reference signal was in a quiet

situation. In a quiet enough setting the signal detected by the

reference input can be uncorrelated with the noise on the

primary input. When the two input signals of the adaptive

filter are uncorrelated the reference input can increase the

noise on the output when compared with the primary input.

This paper defines this phenomenon as contamination.

Another difference between the research performed in [3] and

the current research was that Patel only used one kind of

additive noise at one amplitude. In this paper several different

types of additive noise were used at several different additive

gain amplitudes. An increase in the number of different kinds

of sources and the amplitudes of these sources allows for the

production of a more robust adaptive filter. Finally, this

research uses an automatic breath detection algorithm to

determine the validity of the adaptive filtering algorithm rather

than a subjective argument.

II.METHODS

A. Data set

Data recorded from the data set as described in [4] were

used to test adaptive filter algorithms. From the periods of

apnea identified by the respiratory flow meter, forty periods of

apnea detected were selected on a manual basis. The periods

were selected if the signal fifteen seconds prior to the apnea

showed normal breathing on the flow volume signal. The data

used included the respiratory flow volume from the CosmoII+

(Respironics) and the raw acoustic signal recorded at the

trachea. Conventionally the data recorded at the trachea would

be collected on a subject as he/she lies in an an-echoic

chamber as different sounds are played and recorded in the

stethoscope cup, while the subject performs breath-hold

periods. This method was not pursued due to necessity of

obtaining IRB approval, the lack of time to receive that

approval, and budget constraints. It is noted that the method

used involving subjective selection of data was not optimal.

Each data segment was marked as the breathing segment

and the apnea segment. This distinction was made so that

during breath detection the number of breaths detected could

be counted toward a period of breathing or a period of apnea.
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The noise floor was calculated for each breath sound

segment using the method described in [4]. The noise floor

served as a reference for the amplitude of the additive the

noise sound that will be described in the next section. The

average noise floor measurement for each segment was

calculated as σNF.

The audio data in the forty sets described above were

assumed to be free of any major ambient artifact. These data

were also recorded without the use of a second reference

microphone to record the disturbances coming from outside of

the stethoscope cup. For this reason additive noise was

recorded at different time using two microphones and a

phantom material representing human tissue. The additive

noise was added to the acoustic breathing signal after the

recordings were finished. This method allowed for the

original signal to be known before noise was added and also

allowed for different amplitude levels of additive noise to be

tested without the need of multiple recordings. This method is

also similar to a common image processing technique where an

image assumed to be noise free is corrupted with noise and

filtering algorithms are tested by comparison of the filtered

image to the original image.

Eight sound segments were used consisting of simulated

Gaussian noise, talking, and several kinds of music. These

sounds were chosen because they are common in an operating

room environment.  

A microphone (WM-56A103 Panasonic) was placed inside

the stethoscope cup (Wenger #00-390-C, AINCA, San

Marcos, CA) as was done during the recording of the

breathing sounds. The cup was affixed to a gelatin phantom

made of edible gelatin formed inside a latex balloon, by a

double stick disk (#2181 3M). Gelatin was chosen as cheap

phantom that has similar properties to humsan soft-tissue. The

balloon was suspended above a table with the second

microphone resting outside the stethoscope cup. Speakers

were placed on a second table approximately twenty five

centimeters from the microphone assembly. The balloon

suspension and use of two separate tables was an attempt to

minimize mechanical coupling of the loud speakers to the

microphones. The speakers played the eight noise segments

described above. The amplitude of the sound played by the

speakers was adjusted to ensure that the external microphone

was not saturated and that the signal was detected by the

microphone inside the stethoscope cup. The data recorded at

the microphones were digitized via an audio soundcard

(SoundBlaster Audigy, Creative, Singapore) at a sample rate

of 22 kHz directly to a computer hard-drive. A diagram of this

setup is shown in figure 3.

  After performing using this filter on the data described it

was noticed that the type of additive noise used affected how

well the filter performed. The sound sources that performed

better were Gaussian noise, talking, or symphonic music. The

method for determining how well the filters worked will be

described later. Rock music caused some problems because

the contamination of the signal even when the gain, Gi, was

zero. After looking directly at the resulting waveforms and

listening to them, the sounds that were not able to be filtered

were strong impulses related to a drum beat or similar sound.

It was concluded that the impulse disturbance had a high

enough frequency that the adaptive filter could not adapt

quickly enough to remove the sound.

An additional problem that was noticed was that the signal

of the reference microphone contained much higher frequency

signals. It is also assumed that the stethoscope cup attenuates

signals in a non-linear manner over both frequency and

amplitude. This is a problem because the filter used was a

linear filter.

Matching a non-linear filter such as the stethoscope cup has

considerable challenges. Although this is possible a single

order linear filter such as the NLMS adaptive filter algorithm

described would not be sufficient. A non-linear adaptive filter

such as an adaptive polynomial filter could be a solution to

this problem [5], but it was hypothesized that physically

filtering the reference signal with a similar stethoscope cup

would be a simpler solution. 

The additive noise was recorded again as described above,

with the one difference. The difference was that the reference

microphone was placed inside an identical stethoscope cup as

the primary microphone and affixed to the back of the primary

microphone cup via a double stick disk. A diagram of this

setup is shown in figure 4. This setup did not test the amount
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Fig. 3. Diagram of experimental setup for recording ambient room noises

using an open air microphone.

 

Fig. 4. Diagram of experimental setup for recording ambient room noises

using a microphone inside a stethoscope cup.
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of desired sound signal such as breathing, that would pass

through the primary stethoscope cup to the reference

microphone. It is assumed that the reference microphone and

cup can be sufficiently isolated to eliminate any of the sounds

recorded on the trachea.. The most important features of the

reference microphone in this situation are that it is in close

proximity of the primary microphone, physically filtered

similarly to the primary microphone, and the same kind of

microphone as the primary microphone. This is because the

additive noise is easiest to filter from the primary source when

the reference source is as close as possible to the additive

noise signal.

B. Mixing the signals

The standard deviation, σIN, of the additive noise segment

recorded inside the stethoscope cup, AIN(n), was calculated for

each of the eight segments. The corresponding reference input

will be called AOUT(n). The segment AIN(n) and the segment

AOUT(n) were divided by σIN to normalize the sounds recorded

inside the stethoscope. The signal AIN(n) was additionally

divided by the standard deviation of the noise floor of the

breathing signal σNF described above to normalize the

amplitude of the additive noise signal to the amplitude of the

noise floor of the breathing signal.

The normalized sound AIN(n) was added to the breathing

sound B(n) resulting in X(n) with equation:

X(n)=B(n)+Gi× AIN(n)  (6)

where Gi is the gain applied to the noise. The adaptive filter

was processed with Gi having values of 0, 2, 4, 6, and 8. The

value of 0 was chosen to test the effect of having an

uncorrelated signal as the reference input. The other values of

Gi were chosen to add a range of sounds that would be

detected by the breath detection algorithm.

C. Adaptive filter implementation

An NLMS adaptive filter was used to filter additive noise

from the signal X(n). The NLMS algorithm was chosen over

the others to ensure stability of the filter. Using the adaptive

filter shown in figure 2, the signal X(n) was used as the

primary input d and the signal AOUT(n) was used as the

reference input x. The signal used as output of the adaptive

filter was the error signal e.  

This configuration of the adaptive filter works for the

following reasons. If the reference signal AOUT(n) was

perfectly filtered to match the external noise signal within the

stethoscope cup AIN(n), the error signal between y and the input

signal  X(n) would result in just the breathing signal, B(n).  

The value of  was chosen experimentally by performing

adaptation on the signals of AIN(n) and AOUT(n) before adding

the additive noise to the respiratory sound. The signal AIN(n)

was used as the primary signal d and the signal AOUT(n) was

used as the reference signal x. The output signal used was the

error signal e.  

The filtration process was calculated using each of the eight

noise signals and varying the value of  from 0 to 2 in steps of

0.01. The standard deviation of the filtered signal e was

calculated. The minimum standard deviation was chosen as

the best value of . The optimized value of  ranged from

0.3 to 0.8 over all of the signals processed. The value of 0.65

was chosen to be the optimal value for the step parameter.

The length of the filter N was chosen to be 51 from

experimental observations. Figure 5 Shows an example of the

original signal AIN(n)  and the signal after it was filtered.

After the samples were filtered they were compared to the

original input sample. The output sample e(n) was compared

to the input sample X(n). If |X(n)|<|e(n)|, then the value of the

input sample X(n) was chosen as the output sample rather than

the filtered signal. This was done to minimize contamination

of the output signal with the reference signal. Contamination

is clearly evident when the gain Gi is 0 and the output signal

e(n) is not the same as the input signal X(n). For the purposes

of breath detection this is only a problem when the amplitude

of the contamination increases the absolute amplitude of the

signal.

D. Breath detection

Breath detection was performed exactly as described in

[4]. The standard deviation of the noise floor σNF and the

standard deviation of the detected signal σS were calculated

using the expectation maximization (EM) algorithm. The

breath detection threshold τ was calculated from the two

signals σNF and σS. An audio envelope was calculated using the

audio signal X(n), and also the filtered signal e for each audio

segment, gain Gi, and additive noise signal. Sounds were

detected as breaths that had an envelope that rose above the

noise floor threshold for a period of 0.3 seconds or more.  

The breath detection was calculated using the original

respiratory signal X(n). This calculation was used as a

reference for the number of sounds detected in the breathing

segment and apnea segment before noise was added and the

adaptive filter algorithm was performed. The number of

sounds detected were counted during the respiratory section of

each segment, and the number of sounds detected were

counted during the apnea section of each segment. The

number of sounds detected in each section was compared to

the number of sounds detected when it was not filtered, when
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Fig. 5.  Example of the adaptive filtering of the additive noise..
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it was filtered using an open-air reference signal and when

using a reference signal inside a stethoscope cup.

III. RESULTS

To measure how well each algorithm performed the number

of periods of apnea of the forty data sets was calculated. The

percent error of detecting apnea out of the forty data sets were

calculated for non-filtered audio data, data filtered with the

reference microphone in open air and the data filtered with the

reference microphone in a stethoscope cup. Table 1 shows the

percent missed apnea detections for each of these groups with

respect to the kind of noise used and the gain Gi of the additive

noise.

The open air reference microphone did improve the

detection of apnea in most cases but was subject to

contamination with a gain Gi of zero. This was especially

prominent when the additive noise contained a strong beat

such as in rock music. 

The reference microphone inside of the stethoscope cup

improved apnea detection at every gain for every kind of noise

when compared to not filtering at all. The worst percentage

rate was a percentage miss rate of 57.5%.

IV. DISCUSSION

Additive Gaussian noise did not affect the apnea detection

when there was no filtering performed. This can be explained

by the way the breath sounds were detected. The noise floor

of the signal was modeled as a Gaussian signal and

independent Gaussian signals summed also produce a

Gaussian signal. Therefore an additive noise that is close do

Gaussian will not affect the apnea detection but may affect the

breath detection.

The open air microphone does improve the apnea detection

when the amplitude of the additive signal is several times the

noise floor. This is because the contamination from the filter

is enough to add signals to the output even when the reference

input is uncorrelated with the primary input.

The cupped reference microphone produces a reference

signal as close as possible to the additive noise. This allows

the adaptive filter to not have to adapt as quickly for

nonlinearities in the frequency and amplitude of the

stethoscope cup. The closer the reference input is to the

additive noise signal, the easier it is to filter out.

The cupped reference microphone clearly performed the

best and further testing are needed. A future addition to this

algorithm will be to only apply the adaptive filter when the

signals are correlated and when a signal is detected by the

reference microphone.
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TABLE I

PERCENT ERROR WHEN DETECTING APNEA WHEN NO FILTRATION WAS PERFORMED

PERCENT ERROR WHEN DETECTING APNEA WHEN FILTRATION USING AN OPEN AIR

REFERENCE MICROPHONE WAS USED

PERCENT ERROR WHEN DETECTING APNEA WHEN FILTRATION USING A REFERENCE

MICROPHONE INSIDE OF A STETHOSCOPE WAS USED

Type of additive noise

Gaussian Talking Sym phonicJazz

0 0 0 0 0

2 0 52.5 7.5 37.5

4 0 82.5 32.5 75

6 0 92.5 47.5 85

8 0 92.5 50 90

Jazz Vocal Rock Rock

0 0 0 0 0

2 60 100 95 92.5

4 92.5 100 97.5 100

6 100 100 97.5 100

8 100 100 100 100

Gain G
i

Gain G
i

Type of additive noise

Gaussian Talking Sym phonic Jazz

0 17.5 2.5 20 42.5

2 17.5 2.5 20 42.5

4 25 2.5 20 42.5

6 67.5 2.5 20 42.5

8 82.5 2.5 20 42.5

Jazz Vocal Rock Rock

0 100 90 22.5 92.5

2 100 90 22.5 92.5

4 100 90 22.5 92.5

6 100 90 22.5 92.5

8 100 90 22.5 92.5

Gain G
i

Gain G
i

Type of additive noise

Gaussian Talking Sym phonic Jazz

0 0 0 0 0

2 0 2.5 0 0

4 0 15 5 0

6 0 40 27.5 0

8 0 57.5 32.5 0

Jazz Vocal Rock Rock

0 0 0 0 0

2 0 0 0 0

4 2.5 10 2.5 10

6 30 30 2.5 25

8 45 42.5 10 37.5

Gain G
i

Gain G
i


