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ABSTRACT 
A rapid emergence from anesthesia combined with an extended duration of adequate analgesia is desired. 

Difficulties arise when trying to achieve a rapid emergence and provide adequate analgesia for procedures 

associated with moderate post operative pain.  We propose to use pharmacokinetic (PK) and pharmacodynamic 

(PD) models with optimization techniques to determine anesthetic drugs ratios to improve post-anesthetic 

outcomes of emergence and analgesia. We hypothesize that optimized propofol, remifentanil, and fentanyl 

administrations will shorten emergence time and extend the period of adequate analgesia during patient recovery.  

Anesthesiologists administered a general anesthetic to 21 patients for laparoscopic procedures with propofol, 

remifentanil, and fentanyl according to their standard practice. The theoretical improvement provided by the 

optimization was measured by comparing the time differences between the control predictions and the optimized 

prediction of the TROR time and TRON time.  In the control group the TROR was 10.2+-5.8 minutes (mean +- SD) and 

TRON was 3.5+-5.0 minutes after emergence. In the optimized group the TROR was 7.5+-2.2 minutes or 26% faster (p 

< .001, paired t-test) and the TRON was 7.4 +-2.4 minutes or 88% longer (p < .00001, t-test).   Optimized 

administrations of propofol, remifentanil, and fentanyl resulted in a theoretically shorter emergence time and a 

longer period of adequate postoperative analgesia. The optimization algorithm shows potential for real-time 

clinical guidance in drug management.   

 

INTRODUCTION 
 In anesthesia, a rapid emergence time and an adequate period of analgesia are both desired.11  

Pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation can be used to predict the 

anesthetic drug’s effect site concentration (Ce) and the expected probability of response to stimuli.1-6   

PK/PD optimization methods take advantage of unique drug characteristics in order to effectively achieve 

preferred anesthetic goals.  PK model optimization capitalizes on a drug's time course and accumulation 

within the body.   PD model optimization utilizes the synergistic interaction between sedatives (e.g., 

propofol) and opioids (e.g., remifentanil or fentanyl), which can predict a single probability of effect 

given a range of concentrations for the drug combination.  For example, the same PD drug effect can be 

achieved by decreasing the sedative and increasing the opioid Ce, or vice versa.  Combined PK and PD 

simulation allows one to explore differing combinations of sedative and opioid Ce and to choose an 

optimal combination that best achieves anesthetic goals.     

 Optimization via PK and PD modeling and simulation has been used in prior research that was 

intended to prevent response to surgical stimulation, yet provide an optimal time to emergence upon 

termination of the anesthetic.7  Limited infusion durations of 15, 60, 300, and 600 minutes for propofol 

and 4 different opioids were explored. Optimal target concentrations identified were largely dependent 

on the PD effect and also on the infusion length.  Shafer et al. also found the optimal concentrations are 

dependent on the infusion history.8  Emergence time was shown to be minimized, but post-operative 

pain management requirements were not considered as part of the optimization.   

 Our motivation was to expand upon prior optimization research by considering both a rapid 

wake up and prolonged post-operative analgesia.  In some cases, anesthetic goals may compete with one 

another (i.e. a rapid emergence versus maintaining adequate analgesia after surgery).  The aim of this 

study was to develop a cost functional that identifies the best dose of opioids and propofol to meet each 

goal while minimizing unwanted prolonged emergence and inadequate analgesia.  We hypothesize that 
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our optimization algorithm will find optimal infusion rates of propofol, remifentanil, and fentanyl which 

will decrease the TROR and extend the TRON without respiratory depression. 

 

METHODS 
Overview 

 The method for optimization was designed as a real time algorithm for anesthesiologists 

administering propofol and remifentanil during general anesthesia. The algorithm, without a reduction of 

the desired level of sedation and analgesia, suggested changes to propofol and remifentanil infusion 

rates that resulted in a more rapid recovery of responsiveness and an increased period of adequate post-

operative analgesia.   This was accomplished via pharmacokinetic (PK) simulation to calculate effect site 

concentration (Ce), and the use of response surface pharmacodynamic (PD) models, which gave a range 

of concentration pairs for propofol and opioids maintaining the desired level of effect, see figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Algorithm overview   

 Using a within study design, the potential utility of the optimization algorithm was assessed 

using previously collected drug administration data from 21 anesthetics using propofol and remifentanil.6  

To evaluate the algorithm, PK and PD simulation were performed twice, once without optimization 

(control group) and once with optimization (experimental group).  During optimization simulations, PD 

effects were maintained at the same level as in each of the control simulations; however propofol and 

remifentanil infusion rates were adjusted to achieve a rapid ROR and increased time until RON. 
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Modeling  

 Four compartment pharmacokinetic (PK) models were used to predict the propofol, remifentanil 

and fentanyl Ce during the anesthetic.   Three response surface pharmacodynamic (PD) models were 

used during the optimization process: (I) probability of unconsciousness to assess the level of sedation 

during and after the anesthetic (ES), (II) probability of no response to laryngoscopy as a surrogate for 

analgesic effect during surgery (EL), and (III) probability of no response to tibial pressure algometry as a 

surrogate for analgesia effect during post-operative recovery (EA). 5, 6, 9-13   The pharmacodynamic 

response model input is CeR and CeP. Fentanyl Ce (CeF) was converted to CeR using the equivalence 

potency ratio of 1:1.2. 6 

 The response surface models are characterized by the following equation: 

 

 

 

 

Equation 1 – Greco Pharmacodynamic response surface model 

Where E is the probability to effect, EMAX is the maximal possible effect. CeP and CeR are the effect site 

propofol and remifentanil concentrations, C50P and C50R are the individual effect site concentrations that 

produce 50% of the maximal effect,   α is the synergistic interaction between propofol and remifentanil, 

and γ is the slope of the response surface curve. E ranges from 0 (0% probability of no response) to 1 

(100 % probability of no response).  Because these models have been evaluated in a clinical setting, the 

models are expressed in terms of the clinically relevant goals:  the probability of unconsciousness, 

probability of adequate surgical analgesia, and the probability of adequate post-operative analgesia.   

Optimization Algorithm 

The algorithm behaves as follows: 

1. Estimate the remaining time of surgery.   

A. To mimic the estimation a clinician would have the algorithm assumed the 

remaining surgical time is actual remaining time rounded to the nearest 30 

minutes with 20% error.   

B. Every 60 minutes during the simulation the algorithm re-evaluates the remaining 

time of surgery.   

C. 15 minutes prior to the end of surgery the algorithm re-estimates the end of 

surgery with 20% error for one last optimization iteration. 

2.  Estimate the Ce of all anesthetics using the respective PK models. 

3. Calculate an opioid CeO (in terms of remifentanil), combining the remifentanil (CeR) and 

fentanyl (CeF) effect site concentrations using relative opioid potency relationships  (CeO 

= CeR + 1.2* CeF) 

4. Calculate the PD drug effects using the Ce for propofol and opioids, in terms of the 

probability of unconsciousness (ES), probability of no response to laryngoscopy (EL), and 

the probability of adequate post-operative analgesia (EA). 

5. Starting after induction three different infusions of fentanyl were simulated targeted to 

0, 1.5, and 2.5 ng/ml for long term analgesia.  In locales where a fentanyl infusion pump 

is unavailable (e.g., the U.S.A.), the algorithm suggests alternative dosing intervals of 50 

mcg boluses of fentanyl over time to maintain the fentanyl Ce within 20% of the target. 
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6. Without reducing the current effects EL or ES, 50 new CeR and CeP pairs are generated for 

each of the three fentanyl administrations.  This is achieved by choosing a new CeP 

ranging from 1.5 mcg/ml to 10 mcg/ml and solving Equation 1 for CeR.  To avoid 

respiratory depression, if the CeR was greater than 10 ng/ml within 10 minutes of the 

end of surgery it was removed from the 50 test Ce pairs. 

7. Simulate an effect-site target controlled infusion from the original CeP and CeR to the Ce 

values targeted in step 6 for the remainder of the surgery.  Simulate the three fentanyl 

infusions. 

8.  Terminate infusions at the end of surgery 

9. Calculate the return of responsiveness time (TROR) and return of nociception time (TRON) 

times for the simulated infusions.   

a. The TROR is the time difference between the time when the infusions are 

terminated and the expected emergence. 

i. The expected emergence time is determined by the PD probability of 

unconsciousness (ES).  The average patient emerges at ES = 50%.  ES
*
 is 

the ES value at the observed ROR during the surgical procedure.      

b. The RON time is found by subtracting the time of expected emergence from the 

time when the EA falls below 25%.    

10. Repeat steps 7-9, targeting a new combination of CeR and CeP values.   

11. Given the set of simulated TROR and TRON, use the weighting function with appropriate 

weights, equation 2, to determine the best remifentanil and propofol Ce pair (i.e., best 

return of responsiveness time given the constraint of adequate analgesia).    

a. The weights represent the anesthesiologist priority on sedation and analgesia.  

After repeated simulations of this data we found for this data set WROR = 0.85 

and WRON = .15 are the best weights. 

12. Recommend to the anesthesiologist an infusion rate or a TCI target for remifentanil and 

propofol.   

13. If the end of surgery has not been reached after 10 minutes, repeat steps 1-12 

 

 

 

 

 

 

Equation 2 – Optimizing weight function 

The optimizing weight function is used in step 11.  The weighting function minimum determines 

the optimal CeP and CeR with the given priorities on sedation and post-operative analgesia.  WROR and 

WRON are percentages of priority given to sedation and analgesia; however they are kept as variables to 

indicate the possibility of altering the priority given to sedation and analgesia.  TROR is the forecasted time 

until the expected return of responsiveness and TRON is the forecasted time for the expected return of 

nociception.  The weights WROR and WRON are percentages between 0 and 100 %, the sum of WROR and 

WRON are set to 100 %. 

( ) ( )RFPRORRORRFP CeCeCeTwCeCeCef ,,,, •=

( )RFPRONRON CeCeCeTw ,,•−
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Algorithm Assessment 

Overview 

The potential utility of the optimization algorithm was assessed using a PK/PD simulation study 

that was based upon clinical data collected from 21 total intravenous general anesthetics using propofol, 

remifentanil, and fentanyl using a within-subjects study design.6   The control condition was based upon 

model predictions of the anesthetic dosing without any PK/PD optimization.  The experimental 

conditions were based upon an optimized anesthetic, where the optimization algorithm suggested 

changes to propofol and remifentanil infusions were implemented every 10 minutes.  A conceptual 

“virtual anesthesiologist” always complied with the algorithm’s recommendations. Metrics for 

comparison were the TROR and TRON 

 

Clinical Data Set 

Data was used from a previous study, where anesthesiologists gave total intravenous general 

anesthesia to 21 patients for laparoscopic procedures administering propofol, remifentanil, and 

fentanyl.6   In addition, as part of the standard anesthetic technique, a small dose of midazolam was 

given pre-operatively.  A muscle relaxant (rocuronium) was also administered during induction of 

anesthesia and as needed during surgical maintenance.  A study investigator was present to record the 

patients’ demographics, time and amount of drug administrations, and the time of surgical and 

anesthetic events including loss of responsiveness, tracheal intubation, incisions, end of surgery, return 

of responsiveness, tracheal extubation, and the start of post-operative care.  More patient demographic 

information is in table 3, for more details about the procedures we refer you to the work by Johnson et 

al.6 

  

Control simulations 

For the control simulations, PK and PD simulations on the anesthetics’ dosing scheme were 

performed to predict the CeR, CeP, ES, EL, and EA during and after the anesthetic.  The patient’s PD level of 

sedation, ES
*
, was set to the ES value at the observed ROR.  ES

*
 was calculated in the control group and 

used in the experimental group to predict the individual patient’s ROR.   ER values were also calculated 

for times after surgery. 

 

Experimental simulations 

For the experimental simulations, PK and PD calculations were performed in a fashion similar to 

the control simulation.  However, after tracheal intubation, the optimization algorithm was employed to 

recommend changes in the propofol and remifentanil infusion rates every 10 minutes, yet would 

maintain the same anesthetic PD effects that were computed in the control condition. A conceptual 

“virtual anesthesiologist” complied with the suggested changes provided by the optimization algorithm.   

While the optimization algorithm was active, the virtual anesthesiologist maintained WROR and 

WRON constant at 0.85 and 0.15 respectively.    A wide range of weights were experimented; WROR = 0 to 1 

with WRON = 1 to 0 both by increments of .05, only results for the combination WROR = 0.85 and WRON = 

0.15 will be presented.  The other weights either increased TRON or decreased TROR but were not 

significantly different.    

Each patient’s optimized anesthetic was assumed to emerge at the same model predicted 

probability of ROR as the value observed in the control anesthetic, ES
*
.  The CeR, CeP, ES, EL, and EA were 

calculated as the optimized experimental values during and after surgery.  Note, the ES and EL are equal 

to or greater than the control ES and EL. 

This research was to test the viability of an optimization of remifentanil and propofol 

administrations; however the fentanyl contribution greatly changes the effect of analgesia.  The control 
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simulations administered the fentanyl as boluses as administered by the anesthesiologists’.  The fentanyl 

was administered starting after induction targeted to either 0, 1.5, or 2.5 ng/ml.  The average fentanyl 

infusion Ce at the end of surgery from the control administered boluses was 1.5 ng/ml with a max at 4 

ng/ml.   

 

Metrics and Statistical Analysis 

 Two metrics were compared between the control and experimental conditions of this simulation 

study: the time difference between the end of surgery and the return of responsiveness (TROR), and 

secondly, the time difference between the return of responsiveness and the point of inadequate post-

operative analgesia as predicted by the PD postoperative analgesia models (TRON). A two-tailed, paired, 

student’s t-test (Matlab version, R2008b,  Mathworks Inc., MNatick, MA) was used to assess differences 

between groups.  A p value of 0.05 was considered a statistically significant difference.  However, a 

Bonferroni correction was applied due to the presence of multiple measures.  The ER was calculated for 

comparison between the control and experimental group. 

   

RESULTS  

Computer simulations were performed on the anesthetic administrations from elective surgeries 

for 21 patients.  The observed times, patient’s demographics, and the model predicted probability for 

sedation at ROR (ES
*
) for the patients are shown in table 3.  Figures 4 and 5 show the control and 

optimized simulation experiment for a selected patient #4.  Figure 4 has the effect site concentrations 

and figure 5 has the model predictions for sedation and post-operative analgesia.  

 

Figure 4 –The two panels 

show the effect site 

concentrations for the 

control and optimized 

simulations in solid and 

dotted lines respectively 

from patient #4. The top 

window shows the 

remifentanil and fentanyl 

effect site concentrations 

while the bottom panel 

shows the propofol effect 

site concentration.   
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Figure 6 shows the difference in times between the control and optimized simulations with 

respect to ROR and RON.  The control averages and standard deviation are green and the optimized are 

in blue.  The standard deviations for ROR and RON in both simulations were decreased from the control 

simulations.  Figure 6 shows the optimized simulation that administered the fentanyl infusion starting 

after induction.  The standard deviations are decreased with the optimization algorithm, but the major 

change is in the average times.  The standard deviations for the TROR from control simulations to 

optimized simulations were 5.6 minutes to 4.2 minutes and TRON from control simulations to optimized 

simulations were 5.8 minutes to 3.4 minutes.  
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Figure 5 – Above is shown 

the expected PD model 

prediction for sedation 

and post-surgical analgesia 

for both control and 

optimized simulations in 

solid and dotted lines 

respectively from patient 

#4.  After surgery, this 

patient was observed to 

regain consciousness 

when the probability of 

unconsciousness = 20.4%.  

The end of surgery, ROR, 

and RON times are 

displayed on the figure 

Figure 6 – The time to ROR 

and RON for the control 

(green) and the optimized 

(blue) groups.  The average 

(ROR and RON) times are 

indicated by the circles; one 

standard deviation is shown 

by the lines.   
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 The optimized algorithm decreased ROR time by 2.7+- 2.2 min (p <0.001) and increased the RON 

time by 3.9+-2.4 min (p<0.00001).  The post-anesthetic respiratory depression (RD) percentages are 

listed in table 5 for the control and optimized study conditions.   On average the probability of RD 

increased from control to optimized anesthetics by a few percent at ROR and extubation times, but at 15 

minutes after the end of surgery the RD probability was slightly decreased.   

Respiratory Depression 

Simulation RDROR (%)  RD Extubation (%) RD EOS + 15 min (%) 

Control 50.8+-25.5 (5.3 to 96.8) 33.6+- 21.3 (3.6 to 77.0) 23.8+- 17.2 (5.3 to 77.7) 

Optimized 52.4+-27.7 (7.4 to 97.0) 34.6+- 24.2 (6.6 to 89.0) 21.8+- 10.0 (5.8 to 45.3)  

 

Table 5 – Respiratory depression listed at the time of extubation as the average +- std dev (minimum value to 

maximum value) for the control simulations and the optimized simulations during three different post-anesthetic 

points; at the time of ROR, at the time of extubation, and 15 minutes after the end of surgery (EOS).   

 

DISCUSSION 
Vuyk et al. found optimal infusions for a rapid return of consciousness.  Analgesia was never 

addressed in the optimization, but is critical to anesthesia.  Interpretation of the results from figure 6 

indicates that changing infusions can decrease the TROR and increase the TRON.  The improvement of 

decreasing TROR is limited by the minimum propofol effect site concentration to maintain sedation intra-

operatively and avoid PONV post-operatively.14  The improvement in increasing TRON is limited by the 

prohibition to administer sufentanil (a long lasting opioid), high levels of fentanyl, or opioids post-

operatively.  The results of the optimization did not significantly change the model predicted probability 

of respiratory depression.   

The results indicate that increasing the remifentanil concentrations and decreasing the propofol 

concentrations will result in better post-anesthesia outcomes for both focuses of minimizing ROR and 

maximizing RON.  The optimization algorithm tended towards higher remifentanil target Ce and lower 

propofol Ce because the remifentanil elimination kinetics are very rapid when compared with the 

propofol elimination kinetics.  The algorithm is based on the PD response model thus the same effect for 

sedation and surgical analgesia can be obtained by lowering the propofol Ce and raising the remifentanil 

Ce.  However adverse side effects may occur, increasing the remifentanil concentrations may induce 

respiratory depression13 or decreasing propofol may increase the probability of PONV.15  

For our simulation experimented algorithm, we used a single set of weights for WROR = 0.85 and 

WRON = 0.15.  Real time clinical use of the algorithm might allow the clinician to choose a different 

weighting combination to allow for specification in focusing either on decreasing ROR or increasing RON.    

In most of the control administrations the anesthesiologists terminated the propofol infusion at 

the end of surgery while continuing the remifentanil infusion for 2 to 8 more minutes. We assume this is 

to extend the TRON because of the insufficient post-anesthetic analgesic effect.  The algorithm was 

confined to terminate both infusions at the EOS. 

Assumptions 

The algorithm is based on the assumption that the current levels of sedation and surgical 

analgesia were requisite for that patient during surgery and are respectively quantified by the response 

surface models with respect to sedation and laryngoscopy.      The PD model is a population based 

average and will correctly predict events for very few patients.  We do not assert the model prediction 

will correctly predict the events; ROR, RON, nor RD.  We do assume that the elimination using optimal 

administration will be more beneficial to the patient and anesthesiologist.  Other variability that was not 
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considered was: individual drug tolerance would change the actual C50 values and PD models and 

individual cardiac output and blood flow alter the rate constant ke0.16   
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