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Implementing Simultaneous Localization and
Mapping

Eric Quist, Randy Beard

I. INTRODUCTION

FOR autonomous agents to successfully navigate, they
must be able to recognize their current position in the

world. While many systems rely on the Global Positioning
System (GPS) for absolute positioning, there are many GPS-
denied environments such as indoors or in urban areas where
GPS reception is severely degraded or not available.

The vision community has developed a Simultaneous Local-
ization and Mapping (SLAM) framework[8], [7], [4], [35] that
utilizes laser range finders and vision sensors to both recognize
previously viewed locations and use successive images to
estimate changes in an agent’s pose[29]. The SLAM approach
provides a valuable framework that allows for other non-
optical sensors in addition to, or in place of, the optical sensors
for which it was designed.

This paper will provide an overview of existing SLAM
techniques and a brief review of several implementations. This
will be done by describing the SLAM problem formulation,
followed by the details involved in implementing both the
image recognition and motion estimation approaches. The
application of SLAM using other sensors, such as radar, will
also be discussed.

II. AN OVERVIEW OF SLAM

A. SLAM formalization

The SLAM problem formalizes a method for simultane-
ously estimating position and error of the controlled agent to
observed, stationary objects. While many algorithms have been
proposed to perform simultaneous localization and mapping,
the probabalistic formulation of each algorithm is relatively
consistent. The problem consists of multiple observed states
and landmarks (as shown in blue in Figure 1). The intent of
SLAM is to estimate the true states and landmark positions
from the observations (as seen in white).

The precise formulation of this problem involves the fol-
lowing quantities:
• xt - The true state vector of the unmanned vehicle at time
t

• mi - The true position vector of landmark i
• ut - The control vector applied at time t
• cit - The observation of landmark i at time t. In the event

of a single landmark observation at time t, ct is used.
The collection of the above quantities can be represented in
the following sets:
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Figure 1. SLAM Problem Diagram: The true states and landmark positions
are shown in white triangles and stars respectively. The measured states and
landmarks positions are shown as blue arrows and stars respectively.

• X0:n = {x0, x1, ..., xn} - The set of all unmanned
vehicle states from start to time n

• M = {m0, m1, ..., ml} - The map, describing the set
of all l landmark states

• U1:n = {u1, u2, ..., un} - The set of all unmanned
vehicle controls applied from start to time n

• C0:n = {c0, c1, ..., cn} - The set of all landmark
observations from start to time n

The problem involves seeking to estimate the vehicle state and
map states using the observations, controls, and initial state.
Let

P (xn, M | U0:n, C0:n, x0) (1)

be the probability of state and the current map, given the
applied controls, landmark observations, and initial state. It is
assumed that the vehicle motion model, P (xk |xn−1, un), is
a Markov model, which results in the Time-Update predictive
step

P (xn, M |U0:n, C0:n−1, x0) =∫
P (xn|xn−1, un)P (xn−1,M |U0:n−1, C0:n−1, x0)dxn−1 ,

(2)

which predicts the next state. An application of Bayes Rule
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shows that Equation1 can be refactored as

P (xn, M | U0:n, C0:n, x0) =

P (cn |xn, M)P (xn, M | U0:n, C0:n−1, x0)

P (cn |C0:n−1, U0:n)
,

which is referred to as the Measurement Update. The Mea-
surement Update describes the predicted vehicle and map
states as a function of the prediction estimate and the new
landmark observation(s). Combining the Measurement Update
with the Time Update, results in Equation 1 being reordered
to be

P (xn, M | U0:n, C0:n, x0) =

P (cn|xn,M)
∫
P (xn|xn−1, un)

P (cn |C0:n−1, U0:n)

· P (xn−1,M |U0:n−1, C0:n−1, x0)dxn−1, (3)

which allows for the recursive nature of the state esti-
mation to be seen, as the new state estimate becomes a
function of the vehicle model, the observation model, the
new landmark observations, and the previous state estimate,
P (xn−1,M |U0:n−1, C0:n−1, x0).

While this formulation allows for accurate estimation, if
landmarks are never revisited, the accuracy of the estimate
will diverge. By re-visiting and recognizing previously viewed
landmarks, loop-closure occurs, which results in convergence
of the estimated vehicle and landmark states, significantly
increasing the estimation accuracy.

It is important to note that landmark recognition may in-
volve map landmarks that the agent has never visited, but were
stored in the agents memory to provide absolute positioning.
When these landmarks are visited, any inaccurate biases in
the map may be resolved by correlating the map to these
landmarks where the position is precisely known.

B. SLAM Implementations
The liturature provides a variety of SLAM implementations.

Accordingly, a brief discussion of several, more common, im-
plementations allows for better understanding of the strengths
and weaknesses of SLAM as a whole.

1) EKF-SLAM: The most common SLAM implementation
is the Extended Kalman Filter SLAM (EKF-SLAM) algo-
rithm which models the noise as Gaussian, and implements a
Kalman Filter to estimate the system state. It’s main limitation
is its inability to overcome initial motion estimates and it’s
inability to perform in real-time scenarios. Additionally, EKF-
SLAM is well known to be inconsistant, allowing for a
converging covariance matrix, while the data may not justify
such confidence.

2) FastSLAM: FastSLAM[26] was the first SLAM algo-
rithm to implement a particle filter heuristic to estimate the
motion. FastSLAM simplifies the model by means of a Rao-
Blackellised (RB) Filter, which allows for real-time, direct
representations of non-linear process models involved. Even
with the simplification allowed by the RB Filter, FastSLAM
is still unable to handle the large datasets that often occurs in
GPS-denied environments. FastSLAM has also been shown to
be inconsistant in its estimation.

3) GraphSLAM: GraphSLAM[36] poses SLAM in
information-state form, which allows for large data samples
while also taking advantage of the sparsity of the covariance
matrix. In the information matrix, each vehicle state is
described. Each landmark is also represented in reference to
the vehicle state where it was visible. Initially, the algorithm
populates the information matrices for all positions using
only control data u1:n.

Once initial position estimations are in place, GraphSLAM
updates the information matrices using the observation model
for each observed landmark for each location at which it was
observed. This update step linearizes the non-linear dynamics,
while taking into account all measurement data. GraphSLAM
then temporarily reduces the size of information matrices,
eliminating all landmark observations. Once the observations
are removed, the algorithm uses least-squares optimization to
calculate the precise vehicle position. The vehicle position
estimates are in turn used to estimate the landmark locations.

For loop closure, GraphSLAM iteratively uses the SLAM
posterior and the current position estimate to calculate the
probability that the newly acquired landmark has been pre-
viously viewed. If the probability exceeds some threshold,
the relationship between the newly acquired data and previ-
ously viewed landmark is recorded. By identifying previously
viewed landmarks allows, the constantly updating information
matrices converge.

4) FrameSLAM: Konolige’s FrameSLAM[14], [15] ap-
proach varies from EKF-SLAM, FastSLAM, and GraphSLAM
in that it was designed to be able to use only visual data
to localize and map an area. Using Visual Odometry (VO)
for motion estimation, FrameSLAM compares features from
successive images, calculating the state changes that would
correspond to the changes is the imagery. Minor modifications
to the VO algorithm provides a baseline for matching revisited
landmarks.

To correlate imagery, a Bayes net is formed containing all
frames as features. Reduced versions, or skeletons[34], are
then created to simplify the estimation step, while maintain-
ing accuracy. A FrameSLAM Bayes nets consists of image
frames represented as point transformation from world to
camera coordinates ci = [xi, yi , zi, φi, ψi, θi]

T , features
qj = [xj , yj , xj ]

T represented by their 3-D position, and the
system states zij . The same state transformations that represent
VO transformations can be similarly used to describe other
sensor measurements such as IMUs. To create a skeleton,
FrameSLAM reduces the graph, marginalizing coordinates,
features, and/or states into synthetic constraints that represent
the accumulative affect of the removed variables.

For loop-closure, FrameSLAM uses a combination of image
features and VO to determine if a feature is revisited. While
pose prediction is relied upon to consider similar landmarks,
the features are relied upon as well, thus resulting in a
significantly more accurate SLAM model.

5) VSLAM: VSLAM[17], [16], an algorithm developed by
Konolige et al uses the VO and skeletons found in FrameS-
LAM, while adding Nister’s vocabulary tree[30]. Rather than
limiting the considered re-visited features to those in the
predicted area, it uses a vocabulary tree and image database
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to perform the place recognition (PR).
The vocabulary tree provides a methodology to describe

features. The image comparison uses the Term Frequency
Inverse Document Frequency (TF-IF) approach[30], [32] to
compare the newly acquired image to previously acquired
images resulting in multiple candidate images. The relative
geometric positioning of the features of both the candidate
images and the newly acquired image are then compared to
validate that the images are truly the same.

Additionally VSLAM addresses the memory concerns in-
volved with SLAM. It adds a methodology for image deletion,
thus removing duplicate images. His deletion method also
considers the age of the acquired image, thus allowing for
long-term scenery changes as well as short-term occlusions.

III. PLACEMENT RECOGNITION USING AN IMAGE
DATABASE

A. Feature Descriptors

Understanding image recognition for placement recognition
relies on the ability to describe attributes, or features, con-
tained in an image. Such descriptors can be grouped into two
classes. Point descriptors describe changes around individual
image points. Lowe [19] proposed such a descriptor, termed
a Scale Invariant Feature Transform (SIFT). SIFT repeatedly
uses a smoothed version of an image, comparing it to an even
more smoothed version of the same image. The descriptor is
the vector describing the differences between each smoothing
level. Bay et al [5] recently developed a related descriptor,
termed SURF (speeded up robust features), which improves
computational efficiency and transformational invariance. The
Gradient Location-Orientation Histogram (GLOH), proposed
by Mikolajczyk[23] more directly extends SIFT by creating a
log-polar location grid using the SIFT descriptor.

Region descriptors emphasize regions that contain areas of
similar or differing contrast, color, or other characteristics.
The Harris-Affine detector and Hession Affine Detectors[25]
both create an elliptical region for each detected interest
point. A maximally stable extremal region (MSER) detector,
developed by Matas et al[22], describes a threshold that
maximizes or minimizes the differences between external and
internal intensities for a specified region. Tuytelaars and Van
Gool [23]proposed the extrema-based region detector, EBR,
which describes the intensity function of rays emanating from
instensity extremum.

Each descriptor, both point and region, offers its own set
of advantages and disadvantages. Significant work[24], [23]
has been done to fully characterize the many descriptors, thus
providing a base-line comparison of each. The results suggest
that using multiple descriptors concurrently often allows for
more accurate image recognition,.

B. A “Bag of Words” model

Building on feature extraction, early work involved com-
paring all features of all database images to that of the
query image, identifying the database image with the most-
similar features. While this is often accurate, it cannot be
done real-time on possibly small agents. To address this,

Sivic[33] proposed a “bag of words” approach similar to the
way internet searches are performed. In his implementation,
a representative set of training images is collected. Using
the k-means clustering algorithm[21], the features from these
images are used to partition the feature space into k clusters, or
“words.” Each feature in the image database is then assigned
to its most similar word. The same word assignment is then
performed on the features extracted from the query image.

Once features are described by a finite set of words, the
images are compared using a weighted tf-if vector[3], or “term
frequency-inverse frequency” vector. This involves creating a
vector Vi = [ t0 t1 ... tk−1 tk ] describing each image,
i. Each element tj is defined as

tj =
nji
Ni

log
M

mj
. (4)

It weighs nji, the number if times descriptor j is found in
image i, in comparison to Ni, the total number of words
found in image i, and M , the number of images in the
map, in comparison to mj , the number of and occurances
of descriptor j in the map. This emphasizes the occurance
and non-occurance of repetitive words in individual images or
areas. The tf-if vector from the query image is then compared
to the tf-if vector from each image in the database. The most
similar image is identified as the match.

The bag of words model has performed remarkably well.
Its main limitation is its inability to perform real-time image
description, as each feature must be compared to each word,
prior to image comparison.

C. Scalable Recognition with a Vocabulary Tree
Nistér and Stewénius addressed the computational com-

plexity involved in image comparison using their Vocabulary
Tree [30] approach. It is built on Sivic’s work using visual
words, but rather than clustering all words into a single,
flat set of visual words, they iteratively cluster the words
resulting in a vocabulary tree. To do this, they first group
the entire set of image descriptors D, into m clusters (where
m is much less than the k used in Sivic’s algorithm). Each
descriptor di, di ∈ D, is then assigned to the word wj with
the closest cluster center. This results in m disjoint subsets
of D = d1 ∪ d2 ∪ ... ∪ dm. Each word cluster dj is then
subdivided into m new clusters. Again, each descriptor di ∈ dj
is assigned to the word closest word center from the newly
created clusters, such that dj1∪dj2∪ ...∪djk = dj . The depth
L of the tree is user-selectable, and as the vocabulary tree is
generated from training data, it can be generated prior to an
agents mission.

The use of weighting for a tree structure is more compli-
cated as the use of the tree leaves or leaves and branches
must be considered. In Nistér’s paper, many comparison
methodologies were explored, such as altering L, m, the
comparison metric, discarding very common or uncommon
words, and the precise weighting approach. The results can
be summarized as indicating that the use of a vocabulary tree
in image recognition performed in a similar fashion than that
of a flat vocabulary. It also indicates that using only leaf nodes
in the image vector results in better recognition.
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By using a vocabulary tree, the hierarichal nature decreases
the feature comparisons required to identify the most similar
word. While recognizing the most similar word using a flat
vocabulary tree has k∗NI complexity, using the same number
of leaf-words (ie. mL = k) results in word recognition
complexity of only LNIm = LNIk

1/L. Both Nistér[30] and
Konolige[16] report to have real-time database creation and
localization using the Vocabulary Tree algorithm.

IV. MOTION ESTIMATION USING OPTICAL IMAGERY

The use of optical imagery to estimate motion seeks to
extract the 3-Dimension change in motion from at least two,
2-Dimension images. This is done by correctly identifying
multiple features in each image. The feature locations are then
used to estimate the motion required to generate the sequence
in imagery.

A. Feature Comparison and Correspondence

Correctly identifying common features in multiple images
requires a much more precise comparison methodology than
that found in the vocabulary tree. While the vocabulary tree
seeks to find similar words, accurate motion estimation hinges
on the ability to precisely identify specific, common features
in each image. Many methodologies exist for such comparison
including kNN Classification, k-Means, randomized trees, and
others. For any methodology to function, a metric must be used
for comparison.

Lowe discusses much of this presentation of the SIFT
descriptor[20]. He indicates that the use of Euclidean distance
to compare features yields the best results. The dimensionality
(64 or 128 elements) of both SURF and SIFT descriptors
prohibit them from benefiting from many of the existing
comparison algorithms, though Lowe successfully used a
Best-Bin-First (BBF) algorithm[2] which essentially sorts the
descriptors in the feature space. Descriptors are then compared
to the closest features. Rather than an exhaustive approach,
comparing features that have the same vocabulary tree word
classification[9], [6] yields similar results, while limiting the
number of required comparisons.

While finding the best feature is useful, using such a com-
parison exclusively can result in incorrect matches. Nistér’s
original approach was a dating scheme where a match only oc-
curs when both parters believe the other is the best match[29].
Lowe, on the other hand, suggested the use of a distance
ratio[20], also discussed by Amato[1]. He defines the distance
δ from a feature fi to it’s nearest neighbor NN1 (fi, dj) in
image dj as compared to the distance to it’s second nearest
neighbor NN2 (fi, dj). When the resulting distance ratio

σ (fi, dj) =
δ (fi, NN1 (fi, dj))

δ (fi, NN2 (fi, dj))

is greater than some threshold T (Lowe and Amato use 0.8),
the features are judged to be indescernible. On the other hand,
when σ (fi, dj) < T , the features NN1 (fi, dj) and fi are
considered the same feature.

B. Visual Odometry

Performing VO relies on a set of acquired Images I0:n =
{I0, I1, ..., In}. The m feature points found in image Ij are
defined to be Fj = {fj,1, fj,2, ..., fj,m}, where the location
of the feature fj,k is defined as fj,k =

[
x y z

]T
. The

camera’s intrinsic parameters

K =

 αu 0 u0
0 αv v0
0 0 1


is used to map the features to the 2-D image, resulting in

pj,k = λ

 u
v
1

 = KLj,k =

 αu 0 u0
0 αv v0
0 0 1

 x
y
z

 ,

where λ is a scaling factor, u and v represent the 2-D location
in image Ij of feature fj,k. The resulting features (in 2-D) at
time j are Pj = {p0, p1, ..., pk}.

The intrisic parameters matrix K is also used to generate
the normalized image coordinates

p̃ =

 ũ
ṽ
1

 = K−1

 u
v
1

 .
The Rigid-body transformation matrix is defined as

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
for the rotation matrix Rk,k−1 ∈ SO (3) and the translation
matrix tk,k−1 ∈ R3x1. The resulting collection of trans-
formations T0:n = {T0,1, T1,2, ..., Tn−1,n} correspond the
estimated movement by the agent. Each camera pose Ck is
the result of the prior camera pose and the cooresponding
transformation,

Ck = Tk,k−1Ck−1

resulting in a collection of camera poses C0:n =
{C0, C1, ..., Cn}.

C. Representing Dimensionality

Handling the dimensionality, whether 2-D or 3-D, of the
problem often involves range calculations. For this, stereo
vision naturally provides some depth information, yet as the
distance between the observer and the observed features grows,
the range accuracy deteriorates. Many other difficulties exist
such as rough terrain, blurred imagery, and non-stationary
image features.

1) Motion Estimation for 3-D-to-3-D: 3-D-to-3-D com-
parisons require that both previously acquired and newly
acquired features already have 3-D positions defined prior to
motion estimation. Such representations are almost exclusively
performed using stereo vision systems.
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2) Motion Estimation for 2-D-to-3-D: 2-D-to-3-D compar-
isons rely on previous 3-D feature position estimates generated
by triangulation of previous images (or information gleaned
from other sensors). These 3-D features are compared to to
the newly acquired 2-D image, estimating the pose change
that would result in the 2-D image. The solution of the 3-D-
to-2-D problem requires at least three feature correspondences,
resulting in at most four possible solutions (using four feature
correspondences results in a single, unique solution).

The model calculates the transformation Tk, using the
previously viewed, and localized, features Fk−1and the newly
acquired features Pk. It is important to recognize that using a
monocular camera requires the use of at least three prior fea-
ture observations to calculate the range information necessary
to represent Fk−1 accurately[12], [31].

The Tk selected minimizes the re-projection error between
each new feature pk,i and the transformed, previously viewed
feature p̂k−1,i = Tkfk−1,i, selecting the most similar features

arg minTk

∑
i

‖pk,i − p̂k−1, i‖2 .

The number of features used to calculate the translation, or
change in perspective, is often referred to as the perspective
from n points (PnP) problem. Considerable work has been
performed both in minimizing the number of points needed,
as well as increasing the accuracy given a fixed number of
features, resulting in a wide variety of solutions[13], [27]. For
visualization, a single, linear PnP solution using n ≥ 6 can be
found using a problem, where each fk−1,l =

[
x y z

]T
point has the form[31], [11]

A1P
′

k =



0 x
0 y
0 z
0 1
−x 0
−y 0
−z 0
−1 0
xṽ −xũ
yṽ −yũ
zṽ −zũ
ṽ −ũ



T

 P 1
k

P 2
k

P 3
k

 = 0 ,

where P j
T

k is the jth row of Pk = [Rk|tk]. The 2-D feature
coordinates are represented in their homogenous homogeneous
coordinates p̃k−1,l = [ũ, ṽ, 1]

T . Combining the equations from
all six features results in

A1

A2

A3

A4

A5

A6

P
′

k = 0 ,

where solving for Pk results in the desired motion estimate.
While the P6P is linear, the minimal solution (for 2-D-to-3-

D) involves three points[10], resulting in the perspective from

three points (P3P) algorithm. Kneip et al has developed an
approach that performs the estimation very efficiently[13]. All
approaches to the P3P implementation results in 4 possible
pose solutions, which can be reduced to a single solution using
another single feature.

3) Motion Estimation for 2-D-to-2-D: 2-D-to-2-D ap-
proaches do not estimate the position of the features in 3-D,
but rather seek to estimate the motion using only 2-D image
comparison. Using only the dimensionality of the involved
images, there is no need to triangulate across multiple, prior
features. This approach focuses on calculating the essential
matrix

Ek = λ ˆtkRk ,

where tk =
[
tx ty tz

]T
and the skew-symmetric matrix

t̂k '

 0 −tz ty
tz 0 −tx
−ty tx 0


for some scalar λ. The normalized feature points p̃k,i and
p̃k−1,i are then be used to calculate Ek, where p̃Tk,iEkp̃k−1,i =
0.

A simple, brute-force approach to solving for Ek involves
using a Least-Square Estimator for all matched feature points.
For a single feature, this involves re-factoring

[
ũk,i ṽk,i 1

]
Ek

 ũk−1,i
ṽk−1,i

1

 =

[
ũk,i ṽk,i 1

]  e11 e12 e13
e21 e22 e23
e31 e32 e33

 ũk−1,i
ṽk−1,i

1

 (5)

as

Ak,ie =



ũk,i
ũk−1,i

ũk,iṽk−1,i
ũk,i

ṽk,iũk−1,i
ṽk,iṽk−1,i
ṽk,iũk−1,i
ṽk−1,i

1



T


e11
e12
...
e33

 . (6)

Combining the Ak,i for each of the m common features
selected in images Ik and Ik−1results in

Ak =


Ak,1
Ak,2
...

Ak,m

 .

Using Ak, Ek can now be estimated using the least-square
estimation equation

ê = minee
TATAe .

The least-squared approach, while simple is computationally
complex, as Ak is 9 by m. It also heavily weights incorrect
correspondence pairs. Recognizing that Ak is only rank 8, the
9th dimension is loss as Ak as it is only calculated to scale,
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allows for the use of only eight point correspondences being
necessary[18]. While this decreases the complexity, the heavy
weighting of errors remains. Running RANSAC on top of the
eight-point algorithm allows for the essential matrix with the
largest number of inliers to be the chosen matrix.

Nistér developed a 5-feature algorithm[28] for a calibrated
camera, which will estimate motion. The resulting motion
estimate does not result in a single solution, but four 4 possible
solutions of R and t̂, defined as

R = U
(
±WT

)
V T

and

t̂ = U
(
±WT

)
SUT ,

where

W =

 0 ±1 0
∓1 0 0
0 0 1

 .

The correct solution is chosen by comparing the resulting
point positions. Only one solution allows for both 3-D point
positions to be viewed by both cameras.

The actual pose rotations can be extracted by noticing from
the Rotation matrix

Rbv =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


=

 r11 r12 r13
r21 r22 r23
r31 r32 r33


by noting that r13 = − sin θ. The other elements may then be
used as cos θ =

√
r211 + r212. Knowing both sin θ and cos θ

allows for the precise value of θ. Once known, cθ can be used
in conjunction with r11 and r12 to calculate ψ. φ can also be
calculated using cθ, r23, and r33. In the event θ happens to be
0 or π, the trigonometric identities sin (u± v) = sinu cos v±
cosu sin v and cos (u± v) = cosu cos v∓ sinu sin v can be
used along with the values found at r21, r22, r31, r32 to solve
for φ and ψ.

4) Resolving the Scale Factor in 2-D-to-2-D: The use
of the 2-D-to-2-D approach, involves ignoring the unknown
scale found in the homogenous representations of each point,
rather than a precise Euclidean reconstruction. To accurately
propagate motion across multiple, consecutive image pairs,
it is necessary to calculate the scale factor resolution. One
approach[31] to resolving the scale factor involves selecting
two image feature pairs fk−1,i,fk−1,j and fk,i, fk−1,j and
defining the distance ratio

rk,i =
‖fk−1,i − fk−1,j‖
‖fk,i − fk,j‖

.

While the distance ratio from a single pair of features may
result in large error, using the mean value of all ratiosrk =
avgi rk,i may resolve the error. Alternatively, RANSAC
can be used to eliminate the outliers, resulting in rk =

mediani∈inliers rk,i. The scale can then be used to calculate
the image translation tk = rk t̂k.

D. Bundle Adjustment

Previous approaches assume that only two consecutive im-
ages are being compared. Bundle adjustment[11] enhances the
Maximum Likelihood (ML) algorithm to minimize the projec-
tion matrices and 3D feature points, while also minimizing the
distance between the measured and projected feature points. It
considers common features across multiple images and results
in a projective reconstruction in three dimensional space.

The implementation of bundle adjustment is computation-
ally intensive as it is estimating over the camera’s 11 degrees
of freedom and each 3-D point’s 3 degrees of freedom,
resulting in 14 parameters. Some work has simplified its com-
plexity, yet a large amount of computation is still necessary.
Bundle adjustment is also limited by the accuracy of the initial
pose estimate. For these reasons, it is often used as a local
optimization step performed after the motion estimation.

The main limitation for implementing bundle adjustment
with graph-based SLAM is that for accuracy, it requires many
consecutive images, which complicates the state estimation
that would be used for pose estimation.

V. CONCLUSIONS AND FUTURE WORKE FORMU

In this paper, the existing research Simultaneous Local-
ization and Mapping is explored. SLAM allows for agents
to estimate their pose while exploring new terrain. While
the probabalistic formulation of SLAM is similar across all
approaches, each algorithm has different benefits and liabil-
ities. Using a Vocabulary Tree in conjunction with a bag of
words allows for real-time image recognition. Visual Odometry
allows for either 2-D-to-3-D or 2-D-to-2-D image and feature
comparison.

The formulation of SLAM provides an architecture that
allows for a variety of sensors, including radar. Specifically,
we intend to replace the vision sensor in SLAM with a
Synthetic Aperture Radar (SAR). Using radar also adds range
information that cannot be obtained from vision alone. SAR,
unlike optic sensors, provides an active sensor that remains
unaffected by night, fog, or even rain, thus providing a more
robust solution than optics.
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