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ABSTRACT 

 

 

Late Prehistoric Technology, Quartzite Procurement, and  

Land Use in the Upper Gunnison Basin, Colorado:  

View from Site 5GN1.2 

 

by 

 

Jonathan M. Peart, Master of Science 

Utah State University, 2013 

 

Major Professor: Dr. Bonnie Pitblado 

Department: Sociology, Social Work and Anthropology 

 

 

 This thesis presents the results from archaeological test excavations at site 

5GN1.2. The focus of this research is to evaluate Stiger’s Late Prehistoric settlement-

subsistence hypothesis. According to this hypothesis, post-3000 B.P. occupations of the 

Upper Gunnison Basin were limited to logistically organized big-game hunting forays 

originating from residential camps located outside of the basin. Since Stiger’s model is 

based on Binford’s forager-collector continuum model, archaeological test implications 

of his hypothesis include hunter-gatherer settlement mobility, site types, feature types, 

artifact assemblage characteristics, and the organization of lithic technology. 

 Test excavations at 5GN1.2 revealed intact archaeological deposits reflecting 

aboriginal occupation during the Late Prehistoric between about 3000 and 1300 B.P. Late 

Prehistoric features include four hearths associated with abundant debitage, small-game 

faunal remains, burnt seeds, and lithic tools. Identified lithic tools include ground stone, 



 
 
 

iv 
 

 

projectile point fragments, cores, and bifaces. Individual flake attribute analysis of the 

debitage assemblage provides evidence lithic reduction activities were dominated by 

bifacial reduction of local and non-local raw materials. 

 Archaeological evidence rules out site 5GN1.2 as a Late Prehistoric logistical big-

game hunting site. Site 5GN1.2 contains all the hallmarks of a residential base camp, 

including constructed hearths, rock art, evidence of plant resource processing, small-

game procurement, comparatively high tool diversity, high proportion of locally available 

tool-stone, late-stage tool manufacture, and tool maintenance debitage. Site 5GN1.2 

likely served as a short-term residential base camp occupied by whole family groups 

during the Late Prehistoric. 

 The Late Prehistoric occupations of site 5GN1.2 represent a more diverse 

settlement-subsistence adaptation than envisioned by Stiger’s culture history. Some 

hunter-gatherers may have occupied the UGB on long-range logistical big-game hunting 

forays, but at 5GN1.2 this is simply not the case. This lithic technology research project 

represents the first published comprehensive debitage analysis of an archaeological 

component at 5GN1.2 and 5GN1. These results and data can serve as a database for later 

archaeological research within the UGB. 

 

(169 pages) 
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PUBLIC ABSTRACT 

 

Late Prehistoric Technology, Quartzite Procurement, and Land Use in the  

Upper Gunnison Basin, Colorado: View from Site 5GN1.2 

 

Jonathan M. Peart 

 

 

 This thesis presents the results from archaeological test excavations at site 

5GN1.2. The focus of this research is to evaluate Stiger’s Late Prehistoric settlement-

subsistence hypothesis. According to Stiger, post-3000 B.P. occupations of the Upper 

Gunnison Basin were limited to big-game hunting forays originating from base camps 

located outside of the basin. Test excavations at 5GN1.2 documented archaeological 

deposits reflecting aboriginal occupation during the Late Prehistoric between about 3000 

and 1300 years ago. Archaeological features include four hearths associated with 

abundant small-mammal remains, burnt plant seeds, stone tools and stone tool 

manufacturing debris. 

 Archaeological evidence rules out site 5GN1.2 as a focused Late Prehistoric big-

game hunting site. Site 5GN1.2 contains all the hallmarks of a residential base camp, 

including constructed hearths, rock art, both plant and animal resource procurement, 

comparatively high tool diversity, and evidence of bifacial late-stage stone tool 

manufacture. Site 5GN1.2 likely served as a short-term residential base camp occupied 

by whole family groups during the Late Prehistoric. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

This thesis presents the results from archaeological test excavations at site 

5GN1.2 and a detailed individual flake attribute analysis of the recovered assemblage. 

The goal of this research is to evaluate Stiger’s (2001) hunter-gatherer settlement-

subsistence hypothesis for Upper Gunnison Basin (UGB) occupations post-3000 

radiocarbon years before present (B.P.). For the purposes of this thesis, I refer to this 

period (post-3000 B.P.) as the Late Prehistoric.  

The UGB covers about 11,000 km² in the southern Rocky Mountains of Colorado 

and represents a high altitude (elevation ranging from 2200 to 4300 m) mid-continental 

interior mountainous basin (Johnston et al. 2001). Stiger (2001) suggested that at about 

3000 B.P., hunter-gatherer prehistoric occupations shifted to logistically organized big-

game hunting forays originating from residential bases located outside of the basin. This 

hypothesis suggests that environmental degradation led to the end of residential 

occupations within the basin and a specialized adaptation to short-term and long-range 

big-game hunting (Stiger 2001). 

Stiger’s model represents a significant departure from other archaeological 

interpretations of UGB prehistory (e.g., Black 1991; Reed and Metcalf 1999). Aside from 

Stiger’s hypothesis, archaeological interpretations of the basin’s culture history suggest 

over 10,000 years of diverse, but always mobile, prehistoric hunter-gatherer occupations 

(e.g., Baker et al. 1981; Black 1991; Jones 1984; Reed and Metcalf 1999). Moreover, 

nowhere else in the Rocky Mountains do archaeologists argue that an area comparable to 
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the size of the UGB and time-scale of the Late Prehistoric (nearly three millennia) are 

limited to simply hunter-gatherer logistical big-game hunting forays (e.g., Benedict 1999; 

Bender 1983; Bender and Wright 1988; Bettinger 2008; Kornfeld et al. 2009).  

If Stiger’s model is accurate, then the Late Prehistoric archaeological record 

within the UGB can provide a relevant data source applicable to a number of 

archaeological research questions focused on big game hunting in high elevation settings. 

For example, recent archaeological research focusing on logistical big game hunting 

prompted a series of lively debates involving economic transport modeling (e.g., 

Grimstead 2010, 2012; Whitaker and Carpenter 2012), and applications of Costly 

Signaling Theory (e.g., Broughton and Bayham 2003; Codding and Jones 2007; 

Hildebrandt and McGuire 2002; McGuire and Hildebrandt 2005; McGuire et al. 2007). 

Additionally, UGB archaeological research could provide a test case for Grove’s (2010) 

assertion that long range logistical mobility could reduce subsistence risk in patchy 

environments. 

 Although archaeologists have conducted numerous archaeological research 

programs in the basin, most of this research has focused on Paleoindian and Early 

Archaic sites (e.g., Andrews 2010; Cooper and Meltzer 2009; Euler and Stiger 1981; 

Jones 1986a; Meltzer and Cooper 2006; Pitblado and Camp 2003; Pitblado et al. 2001; 

Stamm et al. 2004; Stiger 2006). On the other hand, archeologists have reported on 

comparatively few post-3000 B.P. site components (e.g., Dial 1989; Hutchinson 1990; 

Peart 2011; Rossillon 1984). Contemporary views of the basin’s culture history, 

including Stiger’s hypothesis, are almost exclusively based on open-air shallow lithic 
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scatters (e.g., Black 1991; Reed and Metcalf 1999; Stiger 2001). Archaeological research 

in the basin is also hampered by the fact that quartzite raw materials often exceed over 90 

percent of individual site chipped-stone assemblages (Pitblado et al. 2013). Inferring 

prehistoric mobility and land use patterns across time and space through an 

archaeological record dominated by shallow lithic scatters presents a considerable 

archaeological research challenge (Pitblado et al. 2013; Stiger 2001). As a result, Pitblado 

et al. (2013:2198) and others (e.g., Moore and Firor 2009; Reed and Metcalf 1999) noted 

that archaeological reconstructions of basin prehistory can be characterized as 

rudimentary.  

Archaeological research at site 5GN1.2 is well suited to test Stiger’s hypothesis. 

Sheltered archaeological sites are rare in the UGB, especially rockshelter sites with intact 

hearth features, subsistence remains and components dating to the Late Prehistoric. 

Furthermore, site 5GN1.2 is located within site 5GN1, a large locally significant multi-

occupation quartzite procurement location utilized for thousands of years (Black 2000; 

Liestman 1985; Stiger 2001). Local quartzitic bedrock exposures of the Junction Creek 

Formation and alluvial cobbles provide an abundant local source of fine-grained quartzite 

raw material (Andrews 2010; Black 2000; Liestman 1985; Pitblado et al. 2013; Stiger 

2001).  

In July 2010, Jonathan Peart (author) and Dr. Bonnie Pitblado (principal 

investigator) conducted limited controlled excavations at 5GN1.2. The 2010 excavations 

identified four distinct subsurface hearth features containing burnt seeds, faunal remains, 

and a diverse artifact assemblage. Recovered artifacts include chipped-stone tools (e.g., 
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bifaces, projectile point blanks, and scrapers), ground stone, and 3565 pieces of lithic 

debitage. Site 5GN1.2 contains a sheltered archaeological assemblage encompassing 

intact hearth features, rock art, ground stone and a diverse chipped-stone assemblage 

suggestive of prolonged hunter-gatherer residence during the Late Prehistoric (Peart 

2011). These initial excavation results are difficult to reconcile with Stiger’s view of the 

basin’s culture history (2001). For instance, hunter-gatherer occupations dating to the 

Late Prehistoric within the UGB are not expected to contain evidence of plant processing 

(e.g., ground stone and burnt seeds), small-game procurement, large hearth features, or 

extensive use of locally available quartzite raw material in formal tool production (Stiger 

2001).  

As previously stated, the focus of this thesis is to evaluate implications of Stiger’s 

model with the archaeological evidence from 5GN1.2. Stiger generated specific 

archaeological expectations for his hypothesis, including site types, assemblage 

characteristics, hunter-gatherer organization of technology and land use patterns; and 

those are tested in this thesis. A selected list of these expectations is included as Table 1-

1. Not all of the implications listed in this table can be adequately tested through an 

analysis of a single site, and fully characterizing hunter-gatherer settlement-subsistence 

organization for the Late Prehistoric in the UGB is beyond the scope of this thesis. 

Nevertheless, the research presented here provides a single-site case-study evaluation of 

Stiger’s hypothesis.  
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Table 1-1. Archaeological test implications of Stiger’s post-3000 B.P. hypothesis. 

 
Characteristic Expectations 

Site type 

-“later occupations are present, but they are generally smaller” (Stiger 2001:11)  

-“used by small numbers of people” (Stiger 2001:50) 

-“after 3000 BP were occupying temporary hunting camps” (Stiger 2001:50) 

Mobility 

organization 

-“used by hunters residentially based outside the basin” (Stiger 2001:50) 

-“winter residential sites outside the Upper Gunnison Basin but continued to exploit 

game seasonally inside the basin” (Stiger 2001:115) 

Technology 

organization 

-“they brought lithic materials and food provisions from outside to maintain 

themselves until they could acquire needed Basin resources” (Stiger 2001:50) 

-“relatively high percentages of nonlocal raw materials” (Stiger 2001:115) 

-“relatively high frequencies of CCS tools” (Stiger 2001:162) 

-“occupied by people coming into the basin and bringing tools made with raw 

materials from outside areas” (Stiger 2001:163) 

Features 

-“They built some ephemeral structures” (Stiger 2001:50) such as “temporary 

sunshades or windbreaks and small-shallow fire-cracked-rock features” (115) 

-“amorphous stains and game drives appear only in the last 3000 years” (Stiger 

2001:163) 

Subsistence 

-“they brought … food provisions from outside to maintain themselves until they 

could acquire needed Basin resources” (Stiger 2001:50) 

-“Perhaps while searching for bison, they encountered sheep or deer that they took for 

use in camp” (Stiger 2001:50) 

 

 

Stiger’s hypothesis, and most recent archaeological research in the UGB and the 

region (e.g., Metcalf and Black 1997; Pitblado 2003; Reed and Metcalf 1999), are 

theoretically grounded in the forager-collector continuum developed by Binford (1980). 

Binford proposed a continuum of hunter-gatherer adaptive mobility strategies for coping 

with disparities between hunter-gatherer populations and resource distribution in both 

time and space. At the core of the forager-collector model are two idealized settlement-

subsistence systems representing opposite ends on this continuum: foragers (low 

logistical and high residential mobility) and collectors (low residential and high logistical 

mobility). Foragers move their residential camps (whole groups) to exploit resource 
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patches. They collect food on a daily basis near residential camps and generally do not 

practice food storage (Binford 1980). In short, they bring people to the resources they 

exploit. 

 On the other end of the continuum are collectors, who send small, logistically 

organized, task groups to acquire resources that are brought back to residential base 

camps (Binford 1980). Essentially, in contrast to foragers, collectors bring resources to 

people and often practice resource storage. Stiger’s hypothesis represents a task-specific, 

collector-type mobility strategy with high logistical mobility and no residential mobility 

within the UGB. According to this hypothesis, hunter-gatherer land use during the Late 

Prehistoric consisted of focused male-dominated big-game hunting long-range forays 

(Stiger 2001).  

The basic premises and archaeological consequences of the forager-collector 

model are straightforward; however, hunter-gatherer behavior rarely reflects the precise 

definition of either the forager or collector strategy. Rather, actual behaviors reflect a 

combination of both strategies that vary in response to environment, season and other 

conditions (Binford 1980, 1990; Kelly 1983, 1992, 1995). Binford (1980) and others 

(e.g., Bleed 1986; Cowan 1999; Kelly 1988; Metcalf and Black 1997) generated a host of 

test implications based on the forager-collector continuum, including site types, 

archaeological site assemblages and the organization of technology.  

The organization of technology generally refers to how the procurement, 

manufacture, maintenance and discard of stone tools were structured within the lives and 

adaptive choices made by hunter-gatherers (Andresfky 2008:4). In this theoretical 
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framework, hunter-gatherers select between alternative technological strategies to meet 

tool-stone needs within different environmental and settlement-subsistence contexts 

(Hayden et al. 1996). Archaeologists have shown that debitage analysis can effectively be 

used to infer the organization of technology represented within archaeological 

assemblages and to interpret settlement-subsistence structuring (e.g., Andrefsky 2005; 

Cowan 1999; Hayden et al. 1996; Patterson 1990; Prentiss 1998, 2001; Sullivan and 

Rozen 1985).   

 Individual flake attribute analysis provides the principle analytical strategy for 

this thesis research, although other pertinent sources of archaeological data receive 

consideration, including features, subsistence remains and lithic tools. This research 

employs multiple analytical strategies to interpret the debitage and understand the 

organization of technology. These include flake completeness (Prentiss 1998; Sullivan 

and Rozen 1985), size grades (Patterson 1990), application load typology (Andrefsky 

2005), flake platforms, and dorsal scar counts (e.g., Magne 1985; Magne and Pokotylo 

1981), and others. Different analytical methods provide different kinds of information 

about site assemblages. Archaeologists continue to improve on a host of diverse 

techniques, although no one particular approach is considered standard (Andrefsky 2005; 

Carr and Bradbury 2001). Multiple analysis methods also provide a check and balance 

approach to the interpretation of lithic data. For the purposes of this research project, I 

followed the excavation and debitage analysis methods employed by Dr. Pitblado’s 

continuing archaeological research program in the UGB (e.g., Merriman et al. 2008; 

Pitblado and Camp 2003; Pitblado et al. 2001). By following these established and 
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thorough methods the results presented in this thesis become directly comparable with 

other analyzed site assemblages from the basin. 

This thesis contains seven chapters. Following the introduction, Chapter 2 

provides a more in-depth theoretical orientation for this thesis project including 

discussions of hunter-gather mobility, mountain adaptations, organization of technology 

and debitage analysis to provide the necessary methodological and theoretical 

justification for the work. Chapter 3 presents a general environmental context for the 

UGB and, more specifically, a context for site 5GN1.2. This context summarizes 

geography, modern/past climate, lithic raw materials and subsistence resources to 

highlight environmental constraints influencing hunter-gather land use.  

Chapter 4 discusses important foundational archaeological research in the UGB 

followed by a summary of current views of the basin’s culture history. Chapter 5 

introduces site 5GN1.2, focusing on the 2010 test excavations and summarizing the 

project’s initial findings. Debitage analysis methods and results are found within Chapter 

6. The final chapter, Chapter 7, provides an evaluation of Stiger’s hypothesis and 

research implications in light of the excavation and debitage analysis results. The last 

chapter also contains project conclusions and suggestions for future research. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

 

The research presented here links archaeological excavation data, including 

debitage analysis results, with prehistoric hunter-gatherer land use and mobility 

strategies. Similar contemporary studies employ a host of related theoretical perspectives. 

However, Stiger’s Late Prehistoric hypothesis, and nearly all of the archaeological 

research in the UGB, is theoretically framed within the forager-collector continuum 

developed by Binford (1980).  As such, the forager-collector model provides the primary 

theoretical framework for this thesis project. This chapter discusses three essential and 

interrelated theoretical research domains relevant for this research: hunter-gatherer 

mobility, mountain adaptations and the organization of technology. This chapter 

introduces major trends within these theoretical perspectives as they pertain to the 

research goals of this thesis. 

 

Hunter-gatherer Mobility 

 

Archaeologists consider mobility, the structure and form of settlement movement, 

as one of the distinguishing characteristics of hunter-gatherers (e.g., Bettinger and 

Baumhoff 1982; Binford 1980; Brantingham 2006; Kelly 1983, 1992, 1995). 

Ethnographic research shows considerable variation in how far and how often hunter-

gatherers move (Kelly 1983, 1995). As is the case with most aspects of human behavior, 

developing meaningful typologies for mobility remains an important anthropological 
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research issue (e.g., Brantingham 2006; Kelly 1995; Marlowe 2005; Perreault and 

Brantingham 2011).  

Early mobility models employed typologies based on an ordinal measure of 

mobility, recognizing types, such as fully nomadic, semi-nomadic, semi-sedentary, and 

fully sedentary (Beardsley et al. 1955; Murdock 1967). Binford’s “Willow Smoke and 

Dogs’ Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation” 

improved on these early models when he devised the now-familiar forager-collector 

continuum. This model emphasizes mobility form, rather than simply the degree of 

mobility. Binford argued that short-term and seasonal mobility among hunter-gatherers 

correlates with environmental structure and especially temporal and spatial resource 

distribution. He described a continuum with two mobility types defining opposite ends: 

residential (whole group relocation to new base camps) and logistical mobility 

(movement of organized task groups on short-term excursions from base camps). The 

model identified two general settlement-subsistence systems based on mobility: foragers 

(low logistical and high residential mobility) and collectors (low residential and high 

logistical mobility). Binford argued that the forager strategy represents an adaptation to 

landscapes with homogeneous resource distribution. Whereas, collector strategies are 

associated with environments with spatially or temporally irregular distributions of 

subsistence resources, typically those associated with seasonal, middle latitudes. 

The forager-collector continuum describes idealized and relatively short-term 

mobility patterns keyed to generalized environmental conditions (Binford 1980). Kelly 

(1992) and others (e.g., Bettinger 2001; Bettinger and Baumhoff 1982; Binford 1990; 
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Grove 2009) argued that long-term mobility patterns (multiple year), as well as cultural 

factors such as trade, territoriality, division of labor and demography also influence 

mobility adaptations and the formation of archaeological assemblages. Further, actual 

behaviors of hunter-gathers rarely if ever adhere to the precise definitions of either 

logistical or residential mobility, and often reflect a combination of several behavioral 

options available within this continuum (Binford 1980).  

Despite its simplification of hunter-gatherer decision-making, the forager-

collector model contributes a useful heuristic device for comparison across regions, 

environments and across time. Within the UGB, nearly all prehistoric archaeological 

research following the 1980s employs the forager-collector model (e.g., Metcalf and 

Black 1997; Pitblado 2003; Reed and Metcalf 1999; Stiger 2001). The remaining 

discussion is structured around these central concepts established by Binford (1980) as 

they relate to site types, mountain adaptations and the organization of technology. 

Binford’s (1980) forager-collector model specified archaeological expectations of 

hunter-gatherer behavior in terms of site types and assemblage characteristics, promoting 

applications of the model in a wide range of archaeological and ethnographic cases. 

Binford recognized two basic site types associated with foragers: residential bases and 

locations. Residential bases serve as the “hub of subsistence activities” and the place 

where most resource processing, tool manufacturing and related activities take place 

(Binford 1980:9). Location sites are where hunter-gatherers extract resources from the 

environment (Binford 1980). Collector-strategy site types include these two essential 

types, residential bases and locations, and three additional site types resulting from the 
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logistical nature of their provisioning strategy (Binford 1980:10). These additional site 

types include field camp (temporary camp away from the residential base), stations 

(special purpose information gathering posts), and caches.  

Metcalf and Black (1997) tailored Binford’s (1980) forager-collector site types to 

reflect the environmental conditions and site expectations for the southern Rocky 

Mountains. A list of these site types and archaeological expectations are provided in 

Table 2-1. Normative site type definitions must be invoked with caution when 

interpreting the archaeological record and land use patterns. Factors used to assign site 

type, such as tool diversity, artifact density, and site size, are undoubtedly influenced by 

more factors than simply site type or mobility pattern. Site preservation, multi-occupation 

assemblages, and cultural factors, such as occupation length/span or occupation intensity, 

can blur these site types, rendering behavioral interpretations questionable (e.g., Cannon 

et al. 2004; Surovell 2009). Nevertheless, site type definitions provide a common 

vocabulary in the discussion of hunter-gatherer land use and mobility patterns by 

contributing a useful conceptual device. 

Stiger’s hypothesis specifically postulated a collector-type mobility pattern where 

big-game hunters occupied only station and location sites in the UGB during the Late 

Prehistoric. According to Stiger (2001), these site types should reflect short-term 

occupations made by small groups of hunters (Stiger 2001). Sites should not contain 

evidence of structures, long term occupations, small-game procurement, floral resource 

processing or intensive tool manufacture. 
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Table 2-1. Site types and archaeological expectations. 

 
Site Type Assemblage Expectations 

 

Residential Base 

 

 

-Structures, hearths, and storage facilities 

-Faunal/floral subsistence remains 

-Patterned refuse disposal 
-High tool assemblage diversity with task-specific work areas 

-Late-stage tool manufacture and tool maintenance debitage 

 

     Winter occupations -Substantial structural remains with interior hearths and storage 

-Accumulated trash  middens 

Field Camps -Hearths and structures present but no storage facilities 

-Faunal/floral subsistence remains 

-Low to medium tool diversity 

-Late-stage tool manufacture and tool maintenance debitage 

-Little secondary refuse 

Locations -Lack of domestic features 

-Low tool diversity and greater tool specificity 

-Facilities indicative of function (game drives, ground stone) 
 

     Lithic procurement -Dense chipped-stone accumulations with high incidence of debris and 

core reduction flakes dominated by local raw materials 

-Low tool diversity 

Stations -Selected site locations with extensive view sheds 

-Minimal assemblages (low tool diversity and density) 

-Debitage either absent or casual knapping in late-stage manufacture or 

maintenance 

-Subsistence resources (if present) represent immediate consumption 

 

Note: Adapted from Metcalf and Black (1997). 

 

 

 

Mountain Adaptations 

 

The UGB is a high-altitude southern Rocky Mountain basin with vegetation zones 

ranging from Foothills-Semidesert Shrub on the valley floor through Alpine communities 

along the mountain peaks (Johnston et al. 2001). The enclosed nature of the basin 

coupled with its relatively small size produces many economically productive floral and 

faunal resources varied by elevation and season within relatively short distances 

(Andrews 2010; Pitblado et al. 2013). As such, archaeologists typically frame 
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interpretations of UGB prehistory within hunter-gatherer mountain adaptations (e.g., 

Andrews 2010; Black 1991; Pitblado 2003; Schroeder 1953; Stiger 2001).  

Two main perspectives guide most archaeological interpretations of hunter-

gatherer mountain adaptations. The first body of theory emphasizes that high elevation 

settings are comparatively economic resource poor and that occupations incur higher 

energy costs and are risky (Aldenderfer 2006; Benedict 1992; Hevly 1983; Winter 1983). 

Within mountain settings, hypoxia begins to take its first substantive effect above about 

2500 m (8200 ft); both temperature and mean biotic productivity are reduced, caloric 

requirements increase, and the environment becomes more variable (Aldenderfer 2006; 

Andrews 2010; Thomas 2012; Winter 1983). From this perspective, some sort of impetus 

(e.g., environmental degradation or demography) is required to force people to assume 

the risks and higher workload of mountain settings (Alderderfer 2006; Benedict and 

Olsen 1978; Winter 1983).    

Husted (2002) wrote that early archaeological research viewed mountain settings 

under this first perspective where mountains were considered marginal resource areas. 

This is particularly true of early interpretations of UGB prehistory (e.g., Schroeder 1953) 

and more recently Stiger’s interpretation of the Late Prehistoric (2001). Stiger’s (2001) 

Late Prehistoric hypothesis can be characterized as a task-specific logistical model of 

land use driven by the availability of big-game. Archaeologists working under these 

assumptions believed that long-term or substantial occupations of the southern Rocky 

Mountains would increase when the surrounding regions experienced environmental 

stress (Benedict and Olsen 1978). 
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Benedict and Olsen (1978) tested this hypothesis by reviewing radiocarbon-dated 

archaeological components on the Plains and in adjacent higher elevation regions, 

including the southern Rocky Mountains and Great Basin. They constructed population 

curves based on radiocarbon-dated archaeological components that span the Altithermal 

(Antevs 1948, 1954) and generalized within 500-year (rcybp) intervals. Benedict and 

Olsen postulated that the Altithermal consisted of two shorter drought periods (about 

7000 to 6500 B.P. and 6000 to 5500 B.P.) and by comparing regional population curves 

with this climatic cycle, they concluded that arid regions, including the Great Basin, 

experienced reduced population during these Altithermal droughts. At the same time, 

surrounding regions less affected by drought served as refugia, such as the southern 

Rocky Mountains and the Pacific Northwest (Benedict 1979; Benedict and Olsen 1978).  

Subsequent archaeological (e.g., Bender and Wright 1988; Sheehan 1995) and 

paleoenvironmental research (e.g., Meltzer 1995, 1999) cast some doubt on the 

Altithermal Refugium model. Nevertheless, most archaeologists working in the UGB 

after the 1980s, particularly for the Curecanti and Mount Emmons Projects, invoked the 

model to interpret the marked increase in early-to-middle Archaic radiocarbon-dated 

components (e.g., Baker et al. 1981; Jones 1986a, 1986b; Stiger 1993, 2001). This 

perspective continues to play an important role in more recent interpretations of regional 

culture history (see Stiger 2001; Reed and Metcalf 1999). For example, Stiger’s (2001) 

version of UGB culture history argues that following the more favorable conditions of the 

middle Archaic, conditions substantially worsened to the point that long-term 

occupations in the UGB became unsustainable.  
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The second perspective focuses on the idea that while mountain settings eliminate 

some foraging opportunities, it fosters others (Thomas 2012; Wright et al. 1980). For 

example, the geographic and environmental variability of the southern Rocky Mountains 

yields seasonally productive habitats and importantly forage for large ungulates 

(Andrews 2010; Black 1991). In some mountain settings, as Wright et al. (1980) 

observed, the local abundance of plant resources fluctuates by elevation and time of year 

such that higher elevation plant communities become available when lower elevation 

resources fall out of season. Under this perspective, archaeologists view mountain 

settings as integral rather than marginal components to regional prehistoric land use (e.g., 

Bender and Wright 1988). Some mountain environments possibly even served as a 

distinct cultural homeland apart from surrounding lowland traditions (Black 1991).  

Archaeological research in mountain settings continues to document considerable 

variation in site types, land use patterns, subsistence economies and other hunter-gather 

activities at higher altitude, including extensive lithic quarry sites (e.g., Bamforth 2006), 

large game drive systems (e.g., Benedict 1996; Hutchinson 1990), and large residential 

sites (e.g., Andrews 2010; Bettinger 1991; Metcalf and Black 1991; Morgan et al. 2012; 

Thomas 1982). The UGB, in particular, contains possible Folsom residential structures 

(Stiger 2006), a cribbed log Archaic structure (Euler and Stiger 1981), Archaic structures 

constructed with poles and adobe (Euler and Stiger 1981; Stiger 1981), extensive game 

drive systems (Hutchinson 1990), large lithic procurement locations (e.g., Liestman 

1985) and other sites that suggest a rich and diverse cultural history. 
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 To further illustrate this point, Pitblado (2003) conducted an interregional 

comparison of Late Paleoindian projectile point technology sampled from the southern 

Rocky Mountains, eastern Great Basin, southwestern Great Plains, and Colorado Plateau. 

Through an investigation of the organization of technology, Pitblado (2003) observed at 

least three distinctive patterns in the southern Rocky Mountain projectile point 

technology during the Late Paleoindian. Based on these patterns, Pitblado concluded the 

southern Rockies supported at three distinct land use adaptations, including year-round, 

seasonal/short-term, and sporadic forays (Pitblado 2003:235). The adaptive variability 

identified by Pitblado (2003) during the relatively temporally confined Late Paleoindian 

in the southern Rocky Mountains suggests land use patterns may have dynamically 

fluctuated throughout prehistory. 

 

Organization of Lithic Technology 

 

The organization of lithic technology generally refers to a body of archaeological 

theory that investigates how the procurement, manufacture and maintenance (e.g., tools 

use life cycle) of lithic technology are structured within the lives and adaptive choices of 

hunter-gatherers (Andrefsky 2008:4). Lithic procurement is a logical starting point for an 

introduction to the organization of technology as investigated here, because site 5GN1 is 

a lithic procurement site. Additionally, all technological decisions are constrained by the 

decisions made by hunter-gatherers at procurement sites (Beck 2008; Beck et al. 2002; 

Wilson 2007).  

At 5GN1 quartzite exposures of the Junction Creek Formation and secondary 

cobbles provide an abundant local source of fine-grained quartzite (Andrews 2010; Black 
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2000; Pitblado et al. 2013; Stiger 2001). Liestman (1985) and others (e.g., Stiger 2001) 

describe these quartzite raw materials at 5GN1 as medium to high quality. More 

generally, the UGB contains numerous other quartzite raw material sources as well as 

cryptocrystalline-silicate (CCS), basalt and some obsidian sources (Black 2000; Liestman 

1985; Pitblado et al. 2008, 2013).  

Ethnographic and archaeological research document considerable variation in 

how hunter-gatherers procured raw lithic materials (e.g., Bamforth 2006; Binford 1979; 

Gould 1978). Typically, archaeologists view lithic procurement along a continuum with 

embedded strategies (low cost) on one end and direct procurement (high cost) on the 

opposite end. Embedded procurement represents a minimal energy investment strategy 

where hunter-gatherers acquired lithic material during trips made for other purposes 

including trade through unplanned encounters (Bamforth 2006; Binford 1979; Smith et 

al. 2012). Embedded strategies, also termed gradual replacement, are best suited for 

wide-ranging mobile populations living in regions with adequate toolstone sources 

(Thomas 2012).  

Direct procurement strategies incur an independent cost to acquire lithic resources 

(Bamforth 2006). For example, lithic materials often do not conveniently occur near 

subsistence resources and lithic procurement can require adjustments to settlement 

locations, dedicated procurement trips or even formal planned exchange (e.g., Gould 

1978; Smith et al. 2012). Binford described direct procurement strategies as hunter-

gatherers gearing up with toolstone that reflects planning (Binford 1980; Thomas 2012). 

Gearing up ensures that sufficient high-quality toolstone will be available at some 
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anticipated future time (Thomas 2012). Highly mobile foragers are expected to employ 

direct procurement lithic procurement strategies in regions with inadequate or scattered 

toolstone sources. 

Direct procurement can also include quarrying (Burton 1984; Findlow and 

Bolognese 1984; Holmes 1890, 1891, 1894, 1919; Jenney 1891). Sometimes suitable 

lithic raw materials are not readily available on the ground surface and require time 

consuming quarrying, as is the case at Windy Ridge in north-central Colorado. At Windy 

Ridge, Bamforth (2006) argued prehistoric groups acquired quartzite raw materials by 

first quarrying through sandstone.  

Activities at lithic procurement sites can include material extraction, quality 

testing, initial reduction, preparation for transport (field processing), and even formal tool 

manufacture and use (Burke 2007; Jones et al. 2003). Not all procurement sites retain 

evidence of all or any of these activities. For example, lithic material might be removed 

as unworked surface cobbles, leaving no trace of lithic reduction or quarrying (Ross et al. 

2003). Three primary factors - lithic abundance/quality, hunter-gatherer mobility and 

technological considerations - primarily influence hunter-gatherer decisions at lithic 

procurement sites (e.g., Andrefsky 1994a,b; Bamforth 1986, 2006; Beck et al. 2002; 

Kamp and Whittaker 1986).  

High quality raw material refers to stone that permits controllable flintknapping, 

maintains a consistent sharp edge, and occurs in large enough nodules to produce tools 

(e.g., Andrefsky 1994a,b; Ricklis and Cox 1993). Kamp and Whittaker (1986) 

investigated prehistoric reduction activities at chalcedony procurement sites near Lake 
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Mead, Nevada, to evaluate the relationship between tool-stone quality and the level of 

reduction at procurement sites. They concluded that hunter-gatherers chose to spend more 

time and effort reducing higher quality lithic materials at procurement sites. However, 

procurement site assemblages also indicated that hunter-gatherers minimally reduced the 

highest quality materials, typically only removing cortex, before it was transported to 

residential sites (Kamp and Whittaker 1986). 

Metcalfe and Barlow (1992) expanded the procurement site expectations 

generated by Kamp and Whittaker (1986). Metcalfe and Barlow’s research focused on 

the economic tradeoffs, derived through principles of evolutionary ecology, between 

subsistence resource field processing and transport among central place foragers. Field 

processing is the act of dividing a resource package into components and selecting only 

those components with high-utility value (Metcalfe and Barlow 1992). Lithic reduction 

represents a means of field processing raw material that both reduces weight and 

increases the utility of transported products. 

Metcalfe and Barlow (1992) generated a mathematical formula that considered 

two primary factors in structuring optimal field processing behavior at procurement sites. 

The first variable is transport distance. The farther the transport distance between 

procurement site and consumer site, the more field processing is expected. The second 

variable is the change in utility of a resource through field processing. The greater this 

change, taking into account time costs, the more field processing is expected at 

procurement sites (Metcalfe and Barlow 1992). 
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Andrefsky (1994a) tested the hypothesis that raw material abundance and quality 

condition the organization of technology. Andrefsky (1994a) studied ethnographic lithic 

procurement and archaeological data from Australia and three regions in North America. 

He observed that hunter-gatherers generally employed low quality raw materials for 

informal tool production regardless of raw material abundance. Conversely, groups used 

high quality materials to produce formal tools, and when those materials were highly 

abundant they also produced informal tools. Andrefsky’s results are summarized in Table 

2-2.  

 

 

Table 2-2. Raw-material availability, quality and tool production. 

 

  Lithic Quality 
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Primarily formal 

tool production 

 

Primarily informal 

tool production 

Note: Adapted from Andrefsky (1994a:30). 

  

 

Site 5GN1.2 is adjacent to extensive sources of fine-grained quartzite raw 

material in both bedrock and cobble forms. These sources provided abundant tool-stone 

for prehistoric site occupants. Liestman (1985) and others (e.g., Andrews 2010; Stiger 

2001) have observed that these fine-grained sources, especially Junction Creek quartzite, 
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represent medium-to-high quality material suitable for manufacturing a broad array of 

tool types. Following Andrefsky (1994a), 5GN1.2 should contain evidence for both 

formal and informal tool manufacture, because raw material is both abundant and of 

sufficient quality. Additionally, if prehistoric site occupants are highly mobile (either 

residential or logistical), then they are expected to field process raw quartzite material at 

5GN1.2 by producing reduced blanks and tools, as opposed to large amorphous cores. 

According to Stiger’s hypothesis, Late Prehistoric hunter-gatherers at 5GN1.2 are also 

expected to maintain a curated toolkit made of mainly non-local materials. 

 

Technological Considerations 

 

If the organization of technology is an adaptation to mobility and environmental 

context, then what factors influenced the prehistoric acquisition, mode of reduction, tool 

form, and maintenance of lithic technology? At the most basic level, hunter-gatherers 

employ two primary technological design strategies. These strategies include curated and 

expedient technologies. Generally, curated technologies refer to transported tools that are 

manufactured in anticipation of use, are maintained, multifunctional and recycled (e.g., 

Bamforth 1986; Binford 1979; Nelson 1991). On the other hand, expedient tools are 

produced when needed or through minimal time and energy investment in manufacture 

(Gould 1980; Nelson 1991).  

 Nelson (1991) differentiated two categories of expedient tools. The first type 

reflects a minimal technological investment for planned tasks, where the tools are used 

for only a short period of time and discarded at the activity locale. The second type, 

called opportunistic expedient tools, represents an unplanned technological response to 
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unanticipated tasks (Nelson 1991). The distinction here may be extremely difficult to 

recognize based on artifact morphology alone (Bousman 1993). But in both cases, 

expedient-based technology minimizes production time, creates tools with a short-

expected use life and generally requires abundant sources of raw material (Bousman 

1993; Nelson 1991).  

 In this theoretical framework, hunter-gatherers select between alternative 

technological strategies to meet tool-stone needs within differing contexts. 

Archaeologists commonly approach the organization of technology through identifying 

tool-production trajectories (e.g., Cowan 1999; Hayden et al. 1996). The tool-production 

trajectory approach is particularly important when the culture history is poorly 

understood (e.g., Cowan 1999; Shott 1986), as is the case with the Late Prehistoric in the 

UGB. For the purposes of this research, three common and archaeologically 

differentiable tool-production trajectories - expedient core-flake, portable long-use and 

the biface trajectory – are discussed and evaluated. Each trajectory refers to a specific set 

of tool production techniques, goals and tool types that exhibit different economic costs 

and benefits (Hayden et al. 1996).  

 

Expedient Core-Flake Trajectory 

 

For hunter-gatherers who employ the expedient core-flake, also called amorphous 

or unpatterned, reduction trajectory, the main technological objective is the production of 

simple flake edges and retouched flake tools (Bousman 1993; Cowan 1999). Expedient 

flake technology requires a minimal time investment, thereby emphasizing quicker tool 

production time (Bleed 1986). Core-flake reduction is represented by irregular cores 
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without patterned flake removal, a high occurrence of larger and thicker flakes, utilized 

flakes, and simple retouch flake tools, among other characteristics (Hayden et al. 1996). 

Flake tools have a short expected use life compared to formal tools such as bifaces and 

places fewer demands on material quality. As such, hunter-gatherers typically produce 

expedient flake tools as needed and abandon them at use locales.  

Compared to formal tools, simple flake tool production wastes raw material and 

requires readily available stone (Bousman 1993; Cowan 1999; Johnson 1986). Core-flake 

strategies are expected at more sedentary sites, where lithic raw material can be stored, or 

near sources of lithic raw material (Bleed 1986; Bousman 1993; Cowan 1999; Hayden et 

al. 1996).  

 

Portable Long-use Trajectory 

 

The goal of the portable long-use strategy, based on Kuhn’s (1994) mobile toolkit 

model, is for highly mobile hunter-gatherers to carry a mobile toolkit that maximizes tool 

utility (working edges) and minimizes transport costs (tool weight). Kuhn (1994) defined 

mobile toolkits as those artifacts that are carried by mobile individuals most or all of the 

time. Kuhn developed a formal model to investigate the technological tradeoffs within 

mobile toolkits. In short, the model addresses the issue of whether it is more 

economically efficient for mobile toolkits to contain a few cores or many small flake 

tools. 

Kuhn’s (1994) model generated two primary conclusions. First, efficient mobile 

toolkits should not include cores. Surovell (2003) explained that core reduction in all 

circumstances produces some waste. Therefore, to maximize transport efficiency mobile 
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hunter-gatherers will always carry finished tools or flake tool blanks. Second, Kuhn 

(1994) concluded that the most efficient mobile toolkit will consist of many small flake 

tools that are approximately 1.5 times the minimum usable length. Following these 

conclusions, mobile hunter-gatherers are expected to produce tools and tool blanks at or 

near raw material sources and to not transport cores. 

Hunter-gatherers employing the portable long-use strategy carry specialized flake 

tools as an adaptation to highly mobile land use strategies. These small flake tools should 

be made of the most durable materials, so they last as long as possible (Hayden et al. 

1996). Non-local flake tools within mobile tool kits will display extensive use-wear and 

retouch.  

 

Biface Trajectory 

 

  Bifacial reduction involves the regular flake removal from two alternative faces to 

create a single edge around a core (Jennings et al. 2010; Kelly 1988). This single edge 

serves as the platform from which flakes are progressively removed (Jennings et al. 

2010). The term “bifacial tools” as used here refers to relatively large, bifacially reduced 

tools that are not projectile points, drills or other small, often bifacially reduced tools 

(Hayden et al. 1996). Archaeologists typically view the production of a biface as a series 

of stages or as a continuum that begins with a blank and ends with a finished product 

(e.g., Andrefsky 2005; Callahan 1979). The technological stages that a blank must 

undergo to be manufactured into a biface are referred to as the bifacial reduction 

sequence. Each progressive stage of the bifacial reduction sequence, except the initial 

stage, depends on the previous stages having been accomplished (Callahan 1979). 
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Therefore, the production of a biface requires the knapper to employ a planned strategy 

and often employs specialized tools (e.g., hard hammer, soft hammer, pressure flakers) 

and methods to produce a final product with preferred features (Callahan 1979). 

Although archaeologists do not agree on the number of bifacial reduction stages, 

the necessary sequential tasks that are included in each stage are essentially identical 

(Andresfky 2005). Even if prehistoric knappers did not conceptualize bifacial reduction 

as stages identical to lithic analyst’s interpretations, bifacial reduction stages presents a 

useful tool for lithic analysts (Andrefsky 2005; Flenniken 1978). For example, stage-

based typologies can be used to indicate where in the reduction sequence a biface was 

rejected due to internal flaws in the raw material or mistakes in knapping. The presence 

or absence of stages of reduction in an assemblage provides an indication of the length of 

the manufacturing trajectory at a site (Andrefsky 2005). These data, along with raw 

material sourcing, can lead to inferences of whether the sequence was partially 

accomplished at the raw material source, finished at a particular site, or completed in its 

entirely at the source, at a lithic workshop, at a base camp, or some combination (Kotcho 

2009). This in turn can lead to inferences concerning the organization of technology, site 

function and settlement-subsistence structure. 

Andrefsky (2005) describes five stages within the bifacial reduction sequence 

based largely on Callahan’s (1979) and Whittaker’s (1994) models. Stage 1 is represented 

by a large flake blank, comprising an irregularly shaped spall or cobble with a high 

probability of cortical surfaces. In Stage 2, bifacial reduction of the blank begins by 

removing flakes around the block of material to form a rudimentary bifacial shape also 
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called an edged biface. During Stage 3, knappers remove large flakes to at least the center 

of the biface. By this point, most of the cortical material is removed and the biface 

appears relatively flat in cross-section and uniform in shape. Stage 4 represents a biface 

tool blank. Specific forms of bifacial implements are produced during Stage 5, often by 

pressure flaking, and can include preparation for hafting or serrating edges, among other 

final treatments (Andrefsky 2005). 

Bifacial reduction requires comparatively higher quality raw material, more time 

investment in manufacturing and greater knapping skills than simple flake-tool 

production (Cowan 1999; Kelly 1988). Bifacial tools can function as cores (source of 

flake edges), as long use life tools and can be resharpened or reshaped into various forms 

relatively easily with minimal material waste (Cowan 1999; Kelly 1988). The biface 

trajectory emphasizes increased use life, increased effectiveness, and increased 

production volume design goals described by Bleed (1986). Highly mobile land use 

strategies constrain the amount of tool-stone that can be carried and increases the 

consequences of technological failure; therefore, highly mobile land use systems are 

expected to employ the biface strategy (Hayden et al. 1996). 

 

Debitage Analysis 

 

The purpose of this thesis is to use an individual flake attribute analysis to test 

Stiger’s interpretation of the Late Prehistoric. Debitage is among the most ubiquitous 

artifact type identified in hunter-gatherer assemblages and represents all non-tool lithic 

material generated through lithic reduction, tool production/repair and tool use 

(Andrefsky 2005; Cotterell and Kamminga 1979; Shott 1994). The interpretive value of 
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debitage for understanding the organization of technology is inherent in the way debitage 

is deposited in the archaeological record (Surovell 2009). While tools used by hunter-

gatherers are often made, utilized, repaired and discarded at different points on the 

landscape, most debitage is deposited at the time of lithic reduction (Bradbury and Carr 

1999; Magne 1985; Surovell 2009). Individual flakes retain attributes that provide a 

record of a discrete point in the lithic reduction process. For example, successive 

individual flakes produced through the bifacial reduction trajectory retain unique and 

identifiable characteristics often discernible by reduction stage. Generally, as bifacial 

reduction proceeds from blank to finished forms, the amount of cortex on the dorsal 

surface decreases, dorsal flake scars increase in numbers, platform preparation increases 

and flakes become thinner and smaller (Andrefsky 2005). 

Numerous debitage analysis studies focus on identifying robust flake attribute 

patterns to discern tool-production trajectories and stages of reduction (e.g., Ahler 1989; 

Crabtree 1972; Magne 1985; Magne and Pokotylo 1981; Patterson 1990; Prentiss 1998, 

2001; Shott 1994; Sullivan and Rozen 1985). Contemporary studies advocate a host of 

analytical methods and interpretive techniques, although no one method or set of methods 

is considered essential or standard (Andrefsky 2005; Carr and Bradbury 2001; Odell 

1980, 2004). This thesis research employs multiple analytical strategies to analyze and 

interpret the debitage assemblage recovered from site 5GN1.2. Multiple methods of 

analysis provide a balanced approach to the interpretation of lithic debitage data. 
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CHAPTER 3 

ENVIRONMENTAL CONTEXT 

 

This chapter presents an environmental context of the Upper Gunnison Basin 

(UGB) important for understanding the ecological conditions and resources available for 

prehistoric hunter-gatherers during the Late Prehistoric. The UGB is located within the 

southern Rocky Mountains of southwestern Colorado (Figure 3-1). The geographic extent 

of the UGB adopted in this thesis follows the hydrological definition used by ecologists 

(e.g., Johnston et al. 2001) and borrowed by archaeologists (e.g., Andrews 2010; Stiger 

2001). The basin includes over 11,000 km² (2.5 million acres) of land, covering about 

four percent of the state of Colorado, including most of Gunnison County and portions of 

Hinsdale and Saguache Counties. Elevation in the UGB ranges from about 2300 m (7500 

ft) on the west side of the basin along the Gunnison River up to several mountain peaks 

soaring over 4250 m (14,000 ft) along the basin rim. The UGB is surrounded by high 

elevation (at least 3050 m or 10,000 ft) mountainous terrain, except for a narrow corridor 

entering the basin from the west through the gorge of the Black Canyon of the Gunnison. 

Prominent mountain ranges frame the basin, including the West Elk and Elk Mountains 

(north), Sawatch Range (east), La Garita Mountains (southeast), and the San Juans 

(south).  

The enclosed nature of the UGB limits lower elevation adapted vegetation and 

animal species, culminating in unique biotic diversity (Armstrong 1972; Emslie 1986), as 

well as potentially distinctive aboriginal adaptations and culture history (e.g., Black 1991; 

Stiger 2001). Species such as Pinus edulis (pinyon pine) and Fraxinus spp. (ash) are rare 
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in the UGB, yet these species frequently occur in the surrounding region within similar 

elevation zones, climates and habitats (Johnston et al. 2001; Stiger 2001).  

Site 5GN1.2 is located less than a kilometer from the historic channel of the 

Gunnison River, currently covered by the Blue Mesa Reservoir. The Gunnison River 

drains the UGB through the Black Canyon of the Gunnison. During the 1960s and 1970s, 

 

 

 

 
 

Figure 3-1. Upper Gunnison Basin location map showing  

site 5GN1, prominent mountain ranges, and the Alkali Basin. 
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the Bureau of Reclamation constructed three major dams (Blue Mesa, Morrow and 

Crystal dams) on the Gunnison River as part of the Curecanti Project. These dams backed 

up nearly 65 km (40 miles) of the Gunnison River, mainly within the UGB. The Blue 

Mesa Reservoir measures over 32 km (20 miles) long with 154.5 km (96 miles) of 

shoreline and when full contains over 1.16 km
3
 (940,000 acre ft) of water (Zaenger 

2009). These reservoirs give a false impression of the landscape, by filling in deep 

canyons and lower parkland areas along the Gunnison River (Stiger 1980; Woodbury et 

al. 1962).  

Prior to the construction of these dams, archaeologists conducted a series of 

surface archaeological inventories within the proposed reservoirs and recorded relatively 

few archaeological sites (e.g., Breternitz 1974; Buckles 1964; Lister 1962). Subsequent 

research adhering to more rigorous archaeological survey and excavation standards 

continues to document numerous sites in more upland environments (e.g., Baker 1980; 

Baker et al. 1981) and notably along these reservoir shorelines (e.g., Jones 1986a,b; Peart 

2011; Stiger 1980). As a result, archaeological reconstructions of the basin’s prehistory 

are biased towards upland occupations away from the resource-rich riverine and parkland 

areas surrounding the former Gunnison River channel.  

 

Environment and Climate  
 

 Numerous published paleoenvironmental data sources are available for the UGB 

and the surrounding region, including glacial sequences in the San Juan Mountains 

(Pierce 2003), pollen and macrobotanical columns from the UGB and San Juan 

Mountains (Briles et al. 2012; Carrara et al. 1991; Fall 1997; Marksgraf and Scott 1981; 
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Petersen 1988), tree ring studies (e.g. Woodhouse 2003) and a pack-rat midden 

macrobotanical study (Emslie et al. 2005). Pollen core and plant macrofossil sequences 

documented by Fall (1997) provide the highest resolution published source of Holocene-

aged past environmental data for the UGB (Reed and Metcalf 1999). Fall (1997) 

compiled pollen and plant macrofossil data from eight sedimentary basins on the west 

slope of the southern Colorado Rocky Mountains. By tracking the extent of the largely 

moisture-controlled lower-timberline and temperature-controlled upper-timberline, Fall 

(1997) identified broad-scale past climatic patterns for the region beginning with the 

terminal Pleistocene.  

Topographic variability, as well as other factors, including prevailing wind 

direction and especially overlapping rain shadows produces highly variable localized 

diachronic weather patterns throughout the UGB (Reed and Metcalf 1999). Accordingly, 

the results from one location or paleoenvironmental data source may not seamlessly 

correlate with data collected in other areas. For the purposes of this thesis, this section 

discusses a generalized paleoclimatic model for the study area focused on the last 3000 

B.P. This discussion emphasizes the fine-grained pollen study results reported by Fall 

(1997) and pack-rat midden research conducted by Emslie et al. (2005). These two 

sources of environmental data provide the most applicable data available in the UGB as 

sample locations are nearest site 5GN1.2 and both span the Late Prehistoric.  

 Of the eight sample locations described by Fall (1997), the Alkali Basin I and II 

samples were collected at the lowest elevation (2750 m [9000 ft]) within the UGB and 

about 50 km from site 5GN1 (Figure 3-1). Several of the pack-rat middens sampled by 
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Emslie et al. (2005) are located within about 10 km of site 5GN1.2 (Figure 3-2). The 

findings of these two studies (Emslie et al. 2005; Fall 1997) are summarized in Table 3-1 

and provide a general broad-scale model for the past environment and climate of the 

UGB. Pollen and pack-rat paleoenvironmental studies provide fundamentally different 

sources of data. Pollen studies recover and interpret a near continuous record of pollen 

rain representing surface vegetation within both the local and regional environment 

(Kneller 2009). Conversely, pack-rat middens provide an episodic record of localized 

vegetation (Wells 1976).  

 

 

 

Figure 3-2. Map showing the location of site 5GN1.2 and  

Emslie et al. (2005) pack-rat midden sample locations. 
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Paleoclimatic data indicates a relatively gradual pattern of shrinking forests, 

decreasing temperatures, and decreasing precipitation through the Holocene (Table 3-3). 

Pollen data reported by Fall (1997) indicates that between 6000 and 4000 B.P. the lower 

limit of the subalpine forests retreated upslope, probably in response to drier conditions 

during the Middle Holocene (Briles et al. 2012) and roughly contemporaneous with 

Antev’s (1948, 1955) Altithermal (ca. 7000 to 4500 B.P.).  The upper timberline 

descended after 4000 B.P., suggesting temperatures cooled to about 1°C warmer than 

modern climate averages (Fall 1997). At the same time, the lower timberline retreated 

upslope. Fall (1997) suggested that modern climatic conditions were established by about 

2000 B.P. (Fall 1997).  

Paleoenvironmental reconstructions provided by Emslie et al. (2005) and Fall 

(1997) suggest that vegetation stabilized near modern distributions between 4000 and 

2000 B.P. across much of the UGB. Both also argued that by about the same time, 

climatic conditions became slightly warmer and drier akin to modern averages. To 

provide an accessible point of comparison for most of the last 3000 years B.P. in the 

UGB the following discussion presents a summary of present climatic conditions.  

The nearest weather station to site 5GN1.2 is located at Blue Mesa Lake at an 

elevation of 2316 m (7600 ft). Data collected at this weather station from 1967 to 2012 

records the average July maximum daily temperature at 28.3°C (minimum 8.2°C) and the 

average January maximum daily temperature at -2.3°C (minimum -18.0°C [Western 

Regional Climate Center 2012]). Annual average precipitation is 24.1 cm (9.5 in) with 
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Table 3-1. Past environment and climate summary table. 
 

k B.P. Vegetation 

(Fall 1997) 

Climate 

(Fall 1997) 

 k B.P. Pack-rat data 

(Emslie et al. 2005) 

      

 

1 

 

Artemisia steppe 

 

Modern conditions 

  

0.5 

---170--- 

Cooling period 

---660--- 

 

2 

 

 

------ 

  

1 

 

------ 

Warming period 

 

3 

 

 

Cooler, slightly moister 

  

1.5 

 

------ 

 

4 

 

 

-------- 

 

------ 

 

  

2 

 

5 

 

Artemisia steppe  

with Pinus on slopes 

 

 

Warmer (~1ºC) 

6 cm more moisture 

  

2.5 

Vegetation 

stabilizes near 

modern limits 

 

6 

 

    

3 

 

------ 

 

7 

 

Pinus forest 

 
Warmer (~2ºC) 

8-11 cm more moisture 

  
 

3.5 

Cooler and wetter 
Pinus in lower 

elevations 

 

8 
 

  

 

9 

 

 

 

 

 

10 

 

 

------ 

  

 

11 

 

Picea-Abies-Pinus Forest  

------ 

Max. winter moisture 

 

 

12 
 

 

------ 

 

Cooler (2-5ºC) 
7-16 cm more moisture 

 

 

13 

 

Picea parkland   

    

Notes: Adapted from Reed and Metcalf (1999). Bolded text highlights the period of interest (post-3000  

B.P.). 



 

 

 

36 
 

 

most of the precipitation occurring as snow (138.2 cm; 54.4 in). Table 3-2 lists historic 

weather station climatic data collected at the Blue Mesa Lake, Crested Butte, 

Powderhorn, and Taylor Park weather stations to highlight both temperature and 

precipitation variability across the UGB. At these weather stations, yearly precipitation 

varies from less than 24.1 cm (10.0 in) to over 59.6 cm (23.5 in) and average maximum 

daily temperature from 9.6°C to 13.6°C (Western Regional Climate Center 2012).  

 

Table 3-2. Selected historic weather station data. 
 

Climate Data Blue Mesa Lake 

1967-2012 

Crested Butte 

1909-2012 

Powderhorn 

1964-1971 

Taylor Park 

1940-2012 

Elevation         2316 m         2707 m      2470 m        2810 m 

Mean July Max. Temp  28.3 °C 24.4 °C  26.0 °C  22.1 °C 
Mean July Min. Temp    8.2 °C 3.6 °C    3.6 °C    4.9 °C 

Mean January Max. Temp   -2.3 °C -2.3 °C  -0.2 °C   -2.9 °C 

Mean January Min. temp -18.0 °C -20.2 °C -21.5 °C -23.6 °C 

Annual Precipitation   24.1 cm   59.6 cm   29.3 cm   42.6 cm 

Annual Snowfall 138.2 cm 501.7 cm 119.9 cm 278.4 cm 

Daily Snow Depth     5.1 cm   25.4 cm -    20.3 cm 

Note: Data source Western Regional Climate Center (2012). 

 

 

Generally, precipitation and temperature change proportionally to variation in 

elevation. Average daily July temperatures decrease about 6.9°C, mean daily recorded 

maximum temperature decreases 6.0°C, and mean annual precipitation increases at a rate 

of about 22.5 cm per 1000 m of elevation gain in the UGB (Fall 1997). However, 

localized factors produce widely different conditions within a few kilometers even at the 

same elevation (Reed and Metcalf 1999). Much of this variation arises from location-

specific topography, aspect, and the combined effects of prevailing wind direction and 

rain shadows. Rain shadows form behind the San Juan and West Elk Mountains and are 
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particularly prominent in the valleys of Cebolla Creek, middle Tomichi Creek, and along 

the upper Cochetopa Creek watersheds (Johnston et al. 2001). 

The modern climate of the UGB represents a relatively cold and dry mid-latitude 

continental-interior, high-elevation basin. According to existing paleoenvironmental 

research, the climate and distribution of major vegetation zones in the UGB compares 

well with modern features for most if not all of the Late Prehistoric (e.g., Emslie et al. 

2005; Fall 1997). Even though the record is incomplete and fragmentary, existing 

research does not provide evidence of an abrupt climatic shift at about 3000 B.P., as 

implied by Stiger’s (2001) interpretation of the archaeological record. It does suggest a 

gradual pattern of moderately decreasing temperatures and decreasing precipitation 

through the Holocene (Emslie et al. 2005; Fall 1997). As such, modern distributions of 

the biotic communities provide a reasonable analog in understanding the resources 

available to hunter-gatherers for the last 3000 B.P.  

 

Flora and Fauna 

 

 Johnston et al. (2001) published the results from a twenty-year cooperative 

ecological management study of the UGB conducted by the US Forest Service (Grand 

Mesa, Uncompahgre, and Gunnison National Forests), Bureau of Land Management 

(Gunnison Field Office), and the Colorado Division of Wildlife (Habitat Partnership 

Program). The study collected data on vegetation, soils, and landform distribution at over 

1500 points across the UGB. The study resulted in the classification of 97 Ecological 

Types grouped into the 33 Ecological Series. This complex and detailed classification 

system developed by Johnson and colleagues (2001) highlights the ecological variability 
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within the UGB. For simplicity, the basic vegetation zones defined by Johnston et al. 

(2001) include Alpine, Subalpine, Montane, Mountain Shrub, and the Foothills-

Semidesert Shrub. Elevation ranges and dominant vegetation of each zone are provided 

in Table 3-3. The UGB contains only a few small isolated stands of Pinyon-Juniper 

Woodlands in the Gunnison Uplift Area (Arnette 2002; Taylor 2000).  

Animal species found in the UGB include large mammals such as mule deer 

(Odocoileus hemionus), elk (Cervus canadensis), pronghorn antelope (Antilocapra 

americana), bighorn sheep (Ovis Canadensis) and bison (Bison spp. [now extirpated in 

the UGB). Other mammals include coyote (Canis latrans), gray wolf (Canis lupus), 

marten (Martes americanus), lagomorphs (Sylvilagus spp. and Lepus spp.), and 

chipmunks/squirrels (e.g., Eutamias spp. and Spermorphilus spp.) among other species 

(Armstrong 1972; Johnston et al. 2001). Other potential aboriginal prey species found in 

the basin include sage grouse, various migratory water fowl, fish, reptiles, and insects 

(Beals 1935; Fowler 1972; Johnston et al. 2001; Smith 1974; Stewart 1942). 

Stiger (2001) emphasized that big-game, particularly bison, dominated the 

prehistoric diet during the Late Prehistoric. Bison are primarily grazers that feed on a diet 

rich in grasses and sedges (McDonald 1981; Meagher 1986). Bison habitat includes 

sagebrush steppe, pinyon-juniper woodlands, and oak-brush at lower elevations and 

aspen/spruce forests and subalpine meadows at higher elevations (Armstrong 1972). 

Modern and prehistoric bison populations lived in high elevation (above 3000 m) settings 

within the region indicating that altitude does not represent a significant limiting factor 

for bison foraging (Beidelman 1955; Cannon 2004; Fryxell 1926, 1928).T 
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Table 3-3. Upper Gunnison Basin vegetation zones. 

 

Zone Dominant Plant Species 
North and  

east slopes 

South and  

west 

slopes 

Alpine 

Curly sedge (Carex spp.) 

Alpine avens (Acomastylis rossii spp.) 

Tufted hairgrass (Deschampsia cespitosa) 

> 3600 m > 3718 m 

Subalpine 

Subalpine fir (Abies bifolia) 

Engelman spruce (Picea engelmannii) 

Aspen (Populus tremuloides) 

Lodgepole pine (Pinus contorta) 

Douglas-fir (Pseudotsuga menziesii) 

Bristlecone pine (Pinus aristata) 

Planeleaf and Wolf willows (Salix spp.) 

2956- 

3600 m 

3078- 

3749 m 

Montane 

Douglas-fir (Pseudotsuga menziesii) 

Ponderosa pine (Pinus ponderosa) 

Lodgepole pine (Pinus contorta) 

Aspen (Populus tremuloides) 

Arizona fescue (Festuca arizonica) 

Saskatoon serviceberry (Amelancheir alnifolia) 

Gambel oak (Quercus gambelii) 

Yellow-Geyer-Bebb willows (Salix spp.) 

2774- 

3261 m 

2865- 

3382 m 

Mountain 

Shrub 

Douglas fir (Pseudotsuga menziesii) 

Big sagebrush (Artemisia tridentata spp.) 

Muttongrass (Poa fendleriana) 

Gambel oak (Quercus gambelii) 

Yellow-Geyer-Bebb willows (Salix spp.) 

2316- 

3078 m 

2316- 

3078 m 

Pinyon-

Juniper 

Rocky Mtn. juniper (Juniperus scopulorum) 

Pinyon pine (Pinus edulis) 
Very rare Very rare 

Foothills-

Semidesert 

Shrub 

Big sagebrush (Artemisia tridentate spp.) 

Indian rice-grass (Achnatherum hymenoides) 

Rocky Mtn. juniper (Juniperus scopulorum) 

< 2560 m < 2560 m 

Note: Data source, Johnston et al. (2001:6). 

 

 

The southwestern region of Colorado, including the UGB, contains few 

archaeological and paleontological bison faunal remains when compared with other 

regions of Colorado. Some researchers have argued that this may indicate that bison were 
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limited in the region (e.g., Armstrong 1972; Fitzgerald et al. 1994; McDonald 1981). 

While others, including Meaney and Van Vuren (1993), argued that the limited evidence 

for bison in southwest Colorado may be the result of heavy predation by Ute groups 

during the Protohistoric and early Euroamerican contact periods. Nevertheless, 

archaeologists have identified bison remains within several archaeological sites in the 

UGB (Andrews 2010; Stiger 2001).  

Historic accounts dating from the middle-to-late nineteenth century document 

bison at nearly every elevation zone within present-day Colorado and the southern Rocky 

Mountains (Meaney and Van Vuren 1993). For example, Captain John Williams 

Gunnison’s 1853 Union Pacific Railroad survey expedition noted the presence of bison 

herds in both the San Luis Valley and the UGB (Beckwith 1855). Gunnison’s expedition 

traveled west through the San Luis Valley into the UGB via Cochetopa Pass. Official 

records of the expedition described the San Luis Valley as “fine prairie-grass fields, 

directly in the course to the Coochepota [sic]” Pass (Beckwith 1855:44). The name 

Cochetopa is commonly translated from the Ute language as “the pass of the buffalo” 

(Meaney and Van Vuren 1993:5; Simmons 1979). After the expedition crossed over the 

pass into the UGB, Beckwith reported that “numerous elk-horns and buffalo-skulls lay 

scattered whitening on the hills, attesting to the former range of the latter animals to these 

pastures” (Beckwith 1855:49). During the early 1850s, bison herds occupied both the San 

Luis Valley and the UGB and the Cochetopa Pass may have served as a bison migration 

corridor. 
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Lithic Resources 

 

  Quartzite raw materials dominate archaeological site assemblages across the 

UGB, frequently representing over 90 percent of chipped-stone site assemblages 

(Pitblado et al. 2013; Stiger 2001). Consequently, archaeologists working in the UGB 

have conducted numerous archaeological and geologic surveys to identify procured 

quartzite sources (e.g., Liestman 1985; Pitblado et al. 2013; Stiger 2001). Quartzite 

procurement sites occur in many diverse locations across the basin as both bedrock 

outcrops and secondary sources (e.g., alluvial gravels and cobbles). Based on the 

abundance of these quartzite sources, Liestman (1985:34) argued that there are few if any 

places in the UGB that lithic procurement required extensive acquisition effort. 

Numerous non-quartzite sources also exist in the UGB with cryptocrystalline-

silicate (CCS) sources being the second-most-common raw material type (Black 2000). 

Exploited CCS sources tend to cluster in lower-elevation settings near quartzite sources 

(Black 2000). Named CCS procurement sites include Cochetopa Game Drive Quarry 

Site, Cochetopa Banana Quarry and Parlin Flats Quarry (Stiger 2001). Obsidian raw 

material occurs in the Cochetopa area east of Gunnison. Obsidian from this source is 

poorly represented in the archaeological record, presumably because nodules are often 

too small for tool production and other non-obsidian raw material sources are readily 

available (Stiger 2001). 

 Site 5GN1 is located in the Curecanti National Recreation Area (CURE), an area 

containing quartzite raw material so common and widespread that the area is virtually 

covered with quartzite sources (Black 2000). 5GN1 local exposures of the Junction Creek 
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Formation sandstone (locally quartzitic) and alluvial cobbles provide an ample source of 

fine-grained quartzite. The Junction Creek formation consists of well-sorted, fine-to-

medium-grained yellow and white quartz-rich sandstone which yields localized 

exposures of bedrock quartzite (Tully 2009). Jones (1986a, 1986b) suggested that the 

bedrock quartzite deposits at 5GN1 likely were procured and reduced at nearby sites, 

including 5GN191 (Kezar Basin Site), 5GN247 and others. According to Liestman 

(1985), Junction Creek formation quartzites represent high quality raw material often 

selected for formal bifacial tool production, especially during later periods in UGB 

prehistory.  

 

Summary  

 

The high degree of topographic variability within the UGB, coupled with its 

relatively small size, concentrates vertically stratified biotic zones. This characteristic 

provided aboriginal occupants of the UGB access to a wide variety of resources found in 

different ecological settings within relatively short distances. According to the published 

paleoenvironmental data (e.g., Emslie et al. 2005; Fall 1997), the Late Prehistoric does 

not represent a period of severe environmental degradation (c.f., Stiger 2001) as 

compared with the conditions the Middle Holocene. Therefore, it seems highly plausible 

that a single family or small extended family group could have residentially occupied the 

rockshelters at 5GN1 (and for that matter, other sites) and procured a variety of locally 

available subsistence resources during the Late Prehistoric. 
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CHAPTER 4 

ARCHAEOLOGICAL CONTEXT 

 

Despite the mountainous terrain and relatively small size of the UGB, it has 

received a considerable amount of archaeological research since the 1930s. Clarence 

Thomas Hurst conducted the first archaeological field research in the UGB during his 

tenure at Western State College in Gunnison, Colorado. During the 1930s, Hurst and his 

students conducted numerous archaeological surveys and excavations throughout the 

region (e.g., Brunswig 2006; Hurst 1940, 1941, 1947, 1948; Hurst and Hendricks 1952). 

Schroeder (1953) summarized the results of previous UGB investigations and provided 

the first synthesis of the archaeological record of the UGB. Schroeder characterized 

prehistoric occupations of the basin as short-term and nomadic with a preference for 

lower elevations near the Gunnison River. He assumed the basin was generally ignored 

prehistorically until later periods and theorized a close cultural association with 

Basketmaker groups from the American Southwest prior to the Ute (Schroeder 1953). 

Detailed archaeological reports and professional excavations in the UGB began 

during the 1960s. Among these early projects, the University of Colorado conducted an 

archaeological survey prior to the construction of the Blue Mesa Reservoir (Lister 1962), 

followed by a similar survey for the Marrow Reservoir (Buckles 1964) and later the 

Crystal Reservoir (Breternitz 1974). Of these surveys, only the Blue Mesa survey (Lister 

1962) identified archaeological sites. The Blue Mesa survey located ten prehistoric lithic 

scatters, two of which extended above the high water mark of the reservoir, notably 

5GN1. The surveys conducted by Lister (1962), Buckles (1964), and Breternitz (1974) 
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did not identify the high site densities observed by subsequent archaeological 

investigations above the reservoirs (e.g., Stiger 1980). This is possibly due to inconsistent 

and informal survey methods (15 m to greater than 30 m intuitively-spaced transects) and 

that site visibility may have subsequently increased as the reservoirs exposed sites along  

shorelines.  

During the 1970s and 1980s archaeological research in the basin flourished as a 

result of the Curecanti and the Mount Emmons Projects (Baker 1980, Baker et al. 1981; 

Black 1983; Dial 1989; Euler and Stiger 1981; Jones 1984, 1986a, 1986b; Jones and 

Anderson 1982; Rossillon 1984; Stiger 1980, 1981; Tipps 1976; Wilkins and Rapp 1982). 

Taken together, the Curecanti and Mount Emmons (located in higher elevation mountain 

environments) projects generated a wealth of archaeological information on the 

prehistory of the UGB within nearly every elevation zone. These projects provided the 

first intensive surface inventories, professionally documented excavations, and 

radiocarbon dates of archaeological components within the basin.  

More recent investigations, including both academic and cultural resource 

management (CRM) projects, expanded research into a broader range of geographic 

settings across the basin. In the early 1990s, Western State College’s Anthropology 

program began excavating archaeological sites in the UGB. Significant investigated sites 

include Tenderfoot (Stiger 1993, 2001), Chance Gulch (Pitblado et al. 2001) and others. 

Archaeologists at Western State College partnered with those at Southern Methodist 

University to conduct investigations at the Mountaineer Site (Andrews 2010; Stiger 2002, 

2006). After leaving Western State College, Pitblado continued excavations at Chance 
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Gulch (Pitblado and Camp 2003), conducted excavations at the Capitol City Moraine Site 

(Merriman 2005), the Heath Site (Merriman et al. 2008), and initiated an ongoing 

quartzite geochemical sourcing project (Pitblado et al. 2006, 2008, 2013). Most academic 

research in the UGB has focused on Paleoindian and Early Archaic sites (e.g., Andrews 

2010; Cooper 2006; Cooper and Meltzer 2009; Euler and Stiger 1981; Jones 1986a; 

Pitblado and Camp 2003; Pitblado et al. 2001; Stamm et al. 2004; Stiger 2006). On the 

other hand, archaeologists have reported on comparatively few post-3000 B.P. site 

components (e.g., Dial 1989; Hutchinson 1990; Rossillon 1984; Peart 2011). A selected 

list of major archaeological projects is provided in Table 4-1.  

 

 

Table 4-1. List of major archaeological projects in the UGB. 

 
Project Reference(s) 

Chance Gulch Site Excavations Pitblado et al. 2001; Pitblado and Camp 2003;  

Stamm et al. 2004 

Curecanti Project Inventory Stiger 1980 

Curecanti Project Excavations Dial 1989; Euler and Stiger 1981; Jones 1986a,b; 

Rossillon 1984; Stiger 1981 

Mount Emmons Inventory Baker 1980 

Mount Emmons Excavations Baker et al. 1981 

Mountaineer Site Excavations Andrews 2010; Stiger 2002, 2006 

Tenderfoot Site Excavations Stiger 1993, 2001 

 

 

 

Curecanti Project 

 

The National Park Service established the Curecanti National Recreation Area 

(CURE) in 1965 to manage the Blue Mesa, Morrow, Crystal Reservoirs and associated 

federal property (Mueller and Stiger 1983). As a result, federal and state funding 
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provided for nearly a decade of archaeological research associated with the Curecanti 

Project and produced the most extensive archaeological research program thus far in the 

basin (Stiger 2001). In 1976, archaeologists from the Midwest Archaeological Center 

(MWAC) conducted an intensive pedestrian inventory of the CURE (Stiger 1980). The 

survey recorded over 130 archaeological sites, temporally spanning from the Paleoindian 

to Protohistoric eras, based on temporally diagnostic projectile point types (Stiger 1980). 

This initial inventory project also reevaluated site 5GN1 and recorded many of the 

archaeological sites that would later receive additional archaeological research, including 

surface collections, testing and block excavations.  

Excavated sites within the CURE include 5GN41 (Pioneer Point), 5GN189 

(Haystack Cave), 5GN191 (Kezar Basin), 5GN1664 (Marion) and numerous others 

(Table 4-2). The Curecanti Project led to the nomination of the Curecanti Archaeological 

District in 1979 to the National Register of Historic Places (Jones and Anderson 1982). 

At the time of the nomination, the district included 79 archaeological sites and covered 

over 6750 acres in three discontinuous units (Jones and Anderson 1982). During the 

Curecanti Project, archaeologists from the MWAC generated an enormous quantity of 

data and collected impressive numbers of artifacts from these investigated sites. 

Extensive archaeological research associated with the Curecanti Project ended in the 

1980s, although smaller scale and more focused archaeological research in the CURE 

continues. 
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Table 4-2. Non-exhaustive list of Curecanti excavations. 

 
Site Field Season(s) Reference(s) 

5GN41 (Pioneer Point) 1981, 1982 Dial 1989 

5GN189 (Haystack Cave) 1978 Euler and Stiger 1981 

5GN191 (Kezar Basin) 1978, 1979, 1981 

 

Euler and Stiger 1981; Jones 1986a 

Stiger 1981 

5GN204/205 1978, 1980 Euler and Stiger 1981 

5GN207 1976, 1979, 1980 Stiger 1977, 1981 

5GN212 1979, 1980, 1981 Stiger 1981 

5GN222 1982 Jones 1986b 

5GN247 1979, 1982 Jones 1986b, Stiger 1981 

5GN1664 (Marion) 1983 Rossillon 1984 

 

 

Aside from excavation reports and a few peer-reviewed articles, archaeologists 

never produced a comprehensive document synthesizing all the findings of the Curecanti 

Project (Stiger 2001). One such article provided a detailed summary of the radiocarbon 

dates (Jones 1984) and another delivered a cross-site lithic analysis and technological 

summary (Liestman 1985). Radiocarbon dates generated by the Curecanti Project spike 

between about 8000 and 4000 B.P., possibly indicating a period of intensive occupation 

concurrent with Antev’s Altithermal (Jones 1984). Jones (1984) suggested that an 

increase in radiocarbon dates during the Altithermal may be related to a similar pattern 

observed by Benedict and Olsen (1978). Otherwise, the radiocarbon dates suggest 

essentially continuous use of the Curecanti area for the last 10,000 years (Jones 1984). 

Liestman (1985) conducted an independent cross-site comparative study of 

recovered prehistoric chipped-stone technology at CURE sites focused on raw material 

use, tool production, and bifacial technology. Liestman found that quartzite lithic raw 
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materials dominated archaeological site assemblages within CURE and quartzite sources 

are widespread in the area (1985). Based on a visual inspection and comparisons with 

raw materials from CURE, Liestman argued that prehistoric occupants preferentially 

selected high-quality quartzite raw materials from the Junction Creek Formation for tool 

manufacture (1985). Liestman further suggested that about half of the lithic tools 

randomly selected for analysis (including quartzite tools) exhibited evidence of heat-

treatment. To identify heat-treated artifacts, Liestman used scanning-electron microscopy 

and compared the assemblage with a sample of experimentally heat-treated materials 

(Liestman 1985). 

An important result of this study was that high quality quartzite lithic raw 

materials predictably occurred within areas of geologic faulting and/or volcanic venting 

(Liestman 1985:65). The location of large prehistoric sites with evidence of intensive 

quarrying activity concentrated near these finer-grained and arguably higher quality 

quartzite sources, such as 5GN1 (Liestman 1985). The only chronological pattern in lithic 

technology observed by Liestman is that post-2000 B.P. chipped-stone assemblages 

exhibit a higher “production index” than older sites (1985:39). Production index as used 

by Liestman (1985) measures the level of reduction and tool specialization, such that a 

higher production index correlates with more intensive bifacial knapping (smaller and 

thinner tools) and more specialization in tool function and form. 
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Contemporary View of UGB Culture History  

 

Archaeologists have recorded more than 3000 prehistoric sites within the UGB. 

Only a fraction of these sites have been tested or formally excavated. Stiger (2001) 

identified a total of 163 radiocarbon-dated archaeological features in the basin. These 

features range in age from about 10,500 B.P. to 250 B.P. and indicate Paleoindian 

through Ute occupations (Stiger 2001). Figure 4-1 provides a summed radiocarbon 

calibrated probability distribution chart of archaeological features reported in the UGB 

(Merriman et al. 2008; Moore and Firor 2009; Peart 2011; Pitblado and Camp 2003; 

Stiger 2001, 2006). Radiocarbon date probability distribution remains relatively even 

through time with two large spikes during the early Archaic (about 6600 cal. B.P. and 

8000 cal. B.P.) and a much later smaller spike dating to the Late Prehistoric (about 1500 

cal. B.P.). Jones (1984) first identified an increase in radiocarbon-dated features during 

the early Archaic and interpreted it as a possible indication of increased UGB occupation 

intensity.  

 For the larger Northern Colorado River Basin Region, Reed and Metcalf (1999) 

summarized the archaeological radiocarbon-date record and identified different patterns. 

They observed that radiocarbon-date frequency (both total number of dates and dated 

components) generally increases from the Paleoindian through the Archaic and peaks 

from about 2600 B.P. to 1200 B.P. This possible radiocarbon-date frequency discrepancy 

between the UGB and the surrounding region has led several researchers (e.g., Black 

1991; Jones 1984; Stiger 2001) to advocate a unique UGB culture history following the 

assumption that changing frequencies of radiocarbon dates over time correlate with 
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demographic patterns. However, identifying and extracting robust demographic patterns 

is complicated by the nature of radiocarbon calibration curves (Bamforth and Grund 

2012) and the complexity of acquiring datasets with an adequate number of radiocarbon-

dated occupations. According to Williams (2012), a minimum of 500 radiocarbon dates 

should be used in any form of summed probability analysis for statistical reliability.  

Neither Reed and Metcalf’s (1999) compiled dates nor the number of dated sites in the 

UGB exceeds the 500 radiocarbon age minimum established by Williams (2012) and as 

such any interpretations of demographic patterns should be regarded as tentative. 

 

 

Calibrated Radiocarbon Age Ranges 

 
Cal. B.P. 

Notes: Data sources include Stiger (2001) and amended with Moore and Firor (2009), Merriman et al. 

(2008), Peart (2011), Pitblado and Camp (2003), and Stiger (2006). Chart produced using CALIB 

Radiocarbon Calibration Program version 6.1.1 (Struiver et al. 2013; Struiver and Reimer 1993) using the 

intcal 09.14 calibration dataset (Reimer et al. 2009). 

 

Figure 4-1. Summed calibrated radiocarbon age range chart of 

radiocarbon-dated archaeological features in the UGB. 
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Reed and Metcalf (1999) synthesized the prehistoric cultural context for the 

Northern Colorado River Basin, which comprises much of western Colorado (Table 4-3). 

In his 2001 book, Stiger offered the most recent published synthesis of the archaeological 

record and his version of UGB cultural history. The cultural histories produced by Reed 

and Metcalf (1999), and Stiger (2001), contain many substantial differences. In the 

context of this thesis research, the most significant variation is that Stiger entirely 

replaces the Formative era with the term “post-3000 B.P.” and avoids any substantive 

discussion of Protohistoric or Ute occupations in the basin. To provide a context for post-

3000 B.P. hunter-gatherer adaptations proposed by Stiger, the following discussion 

begins with a summary of the Archaic. Following the Archaic, this chapter includes a 

discussion of Stiger’s version of post-3000 B.P. occupations and concludes with a 

summary of the Protohistoric and ethnographic context. 

 

 

Table 4-3.  Northern Colorado River Basin cultural chronology. 

Era Tradition, Phase or Period Calendar Age Range 

 

Paleoindian 

 

Clovis Tradition 

 

11,500 to 10,500 B.C. 

Goshen Tradition 11,000 to 10,700 B.C 
Folsom Tradition 10,800 to 9500 B.C. 

Foothill Mountain Tradition 9500 to 6400 B.C. 

 

Archaic 

Pioneer Period 6400 to 400 B.C. 

Settlement Period 4500 to 2500 B.C. 

Transitional Period 2500 to 1000 B.C 

Terminal Period 1000 to 400 B.C. 

 

Formative 

Gateway Tradition 400 B.C. to A.D. 1300 

Aspen Tradition A.D. 1 to 1300 

Fremont Tradition A.D. 200 to 1500 

Anasazi Tradition A.D. 900 to 1100 

Protohistoric Canalla Phase A.D. 1100 to 1650  

Antero Phase A.D. 1650 to 1881 

 

 Note: Data source Reed and Metcalf (1999:6). 
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Archaic Era 

 

 Within the Northern Colorado River Basin region, the Archaic Era represents a 

long period of relatively stable hunter-gatherer traditions (Reed and Metcalf 1999). 

According to Reed and Metcalf (1999), the Archaic contrasts with the preceding 

Paleoindian Era in that life ways were less mobile and more focused on the use of a 

broadening set of local resources collected on a scheduled seasonal basis. Technological 

adaptations observed during the Archaic include the transition from large lanceolate 

projectile points to smaller stemmed and notched point types and an increase in the 

overall point style variety (Reed and Metcalf 1999). During the Archaic, ground stone 

artifacts become more common, possibly indicating a more intensive use of plant 

resources (Reed and Metcalf 1999; Stiger 2001). Excavated archaeological sites in the 

UGB with Archaic Era components include Chance Gulch (Pitblado et al. 2001; Pitblado 

and Camp 2003), Checkers Site (Jones 1995), Elk Creek Village (Rood et al. 1996), 

Kezar Basin Site (Euler and Stiger 1981; Jones 1986a), Tenderfoot (Stiger 1993; 2001), 

5GN10 (Stiger 1981), 5GN212 (Jones 1986a), 5GN222 (Jones 1986a), 5GN344 (Black 

1983), 5GN2262 (Moore and Firor 2009), 5GN2405 (Moore and Firor 2009), and others 

(see Stiger 2001).  

Archaic archaeological site components in the UGB are well-represented 

compared to earlier and later occupations (Cooper and Meltzer 2009; Mueller and Stiger 

1983; Stiger 2001). Jones (1984) first recognized this pattern in summed radiocarbon-

dated archaeological components recorded as a result of the Curecanti Project and 

subsequent archaeological research in the UGB continues to conform to this general 
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pattern (Jones 1984; Figure 4-1). Archaic sites are associated with a proliferation of 

variable-sized hearth feature types, including slab-lined and “big deep fire-cracked-rock 

features,” as well as structural remains from possible wikiups, residences and sun shades 

(Stiger 2001). Early Archaic sites with structural remains probably represent both short-

term and long-term camps occupied in warmer months with possible evidence of winter 

occupations (Metcalf and Black 1997). Stiger (2001) concluded that the increase and 

diversification of hearths, structures and storage features during the Archaic indicates 

residential occupations with bulk-processed and stored resources.  

A few archaeological sites dating between about 8000 and 3000 B.P. contain 

pinyon wood remains and others contain a small number of pinyon nuts (Stiger 2001). 

Based on this evidence, Stiger (2001) concluded that pinyon likely went extinct in the 

basin around 3000 B.P. and did not contribute to later diets. The extirpation of pinyon, 

according to Stiger (2001), indicated deteriorating climatic conditions and it may have 

served as a catalyst that ended Archaic residential occupations within the basin.  

 

Post-3000 B.P. (Late Prehistoric) 

 

 Both Black (1983) and Stiger (2001) suggested that a drastic shift in the 

occupation and use of the UGB occurred at about 3000 B.P., spurred by possible 

environmental degradation. Stiger (2001) further argued that a reduction in radiocarbon 

dates, the higher proportion of scapula/pelvic big-game elements in archaeological 

assemblages, decreasing size and diversity of feature types, increased use of game drive 

sites, and increased frequency of non-quartzite tool-stone signaled the end of residential 

occupations in the UGB. Archaeological sites with post-3000 B.P. components include 
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those at Elk Creek Village (Rood et al. 1996), the Heath Site (5GN3418; Merriman et al. 

2008), Marion Site (Rossillon 1984), Mast Site (Bjordstad 2003), Tenderfoot (Stiger 

1993, 2001), 5GN1.2 (Peart 2011), 5GN247 (Jones 1986a), Monarch Pass game drive 

sites (Hutchinson 1990), and others (see Stiger 2001). 

Stiger (2001) characterized post-3000 B.P. occupations as short-term hunting 

camps and kill sites left by logistically organized and highly mobile big-game hunting 

parties originating from unidentified base camps located outside of the UGB. This 

narrative further advocated that these hunting parties entered the basin equipped with 

tools and food supplies to facilitate full-time hunting. The groups constructed temporary 

wickiup-type structures and small shallow hearth features while in the basin (Stiger 

2001). According to Stiger’s narrative, successful hunting parties field processed meat 

(e.g., jerky or pemmican), hides and bone grease for transport out of the basin (Stiger 

2001).  

 Stiger’s (2001) hypothesis is largely based on the rather incomplete and highly 

fragmentary Late Prehistoric faunal record. The vast majority of known archaeological 

faunal remains consist of unidentifiable, small and highly fragmented bone pieces, many 

from undated contexts (Stiger 2001). For example, at the time Stiger wrote his cultural 

history (2001) four sites (Tenderfoot, Elk Creek, Pioneer Point, 5GN204/205 and 

Marion) contained over 97 percent of all faunal artifacts recovered in the UGB. He 

further noted that the presence of highly fragmented faunal remains in the UGB, provided 

the fragments were produced through cultural rather than natural processes, suggested 

near complete exploitation of available faunal resources. He argued that the presence of 
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big-game scapula and pelvic elements on only four sites in the UGB, three of which date 

during the Late Prehistoric (Marion, Elk Creek Village, and Pioneer Point), indicated 

camp-maintenance food and dried meat prepared for transport.  

The first game drive sites in the UGB occur during the Archaic and continue into 

the Late Prehistoric. Stiger (2001) argued that the increased use of game drives during the 

Late Archaic and Late Prehistoric may indicate hunter-gatherers experienced resource 

stress as opposed to innovations in hunting technology. Monarch Pass contains the most 

prominent game drive sites within the UGB. These sites, Water Dog Divide and Garfield 

Game Drive, are located between about 3500 and 3700 m in elevation along the 

Continental Divide on the eastern edge of the UGB. Monarch Pass provides one the few 

favorable routes over the Continental Divide in the region (Hutchinson 1990).  

The Water Dog Divide Site (5CF373) contains the most extensive set of game-

drive walls along Monarch Pass. Hutchinson (1990) argued, based on projectile points, 

radiocarbon dates, and comparisons with other game drive sites in the region that the 

Water Dog Divide Site game drive features were heavily utilized between about 5000 and 

1000 B.P. Hutchinson found evidence of post-1000 B.P. occupations at the nearby and 

smaller Garfield Game Drive Site (5CF499). Hutchinson (1990) stated that these game 

drive systems at Monarch Pass indicated a planned and cooperative hunting strategy 

based on a sophisticated knowledge of animal behavior. Stiger (2001) argued that 

increasing use of game drive sites during the Late Prehistoric signaled a high level of 

group cooperation and focused big-game procurement.  
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Protohistoric 

Stiger’s (2001) version of UGB culture history combines the Formative Era and 

the Protohistoric Era, including Ute occupations, into one essentially continuous cultural 

period. Within the larger Northern Colorado River Basin region, Reed and Metcalf 

(1999) argued that the beginning of the Protohistoric Era can be identified by significant 

alterations to both subsistence and settlement patterns. According to Reed and Metcalf 

(1999), the Protohistoric Era began after the decline of the region’s Formative traditions 

(ca. A.D. 1300) and ended when the Ute were forcefully expelled from most of the 

southern Rocky Mountains to live on reservations (A.D. 1881). They further divide the 

Protohistoric into the Canalla (A.D. 1100 to 1650) and Antero phases (A.D. 1650 to 

1881).  

During the Canalla phase, Reed and Metcalf (1999) suggested that the ancestral 

Ute possibly migrated into the region. The timing and historicity of the initial Ute 

migration remains an important research arena and represents a significant data gap for 

archaeologists investigating regional cultural history (Baker et al. 2007, 2008; Buckles 

1971; Reed and Metcalf 1999). For example, Baker et al. (2008) suggested that old wood 

radiocarbon dates of Ute archaeological sites likely misrepresent the arrival of the Ute 

possibly up to several hundred years. 

Only a few excavated archaeological components dating to the Protohistoric are 

reported in the UGB. These include sites 5GN222, Pioneer Point, Heath Site, and 

possibly 5GN1.2 (e.g., Dial 1989; Jones 1986a,b; Merriman et al. 2008; Peart 2011). 

Jones (1986a) reported finding a tinkler cone or metal bangler at 5GN222. Pitblado 
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directed excavations at the Heath Site, located along a terrace above the Lake Fork of the 

Gunnison River (Merriman et al. 2008). Excavations unearthed a Protohistoric roasting 

hearth radiocarbon dated to 790 ± 40 B.P. and attributed to the Ute by the presence of 

brownware ceramics (Merriman et al. 2008). Additionally, site 5GN1.2 contains rock art 

that may indicate a Ute component. 

Despite the fact that the UGB contains relatively few Ute attributed 

archaeological sites, the record does indicate diverse occupations not specifically focused 

on big-game procurement. For example, Pioneer Point contains exposed probable hearths 

within concentrations of lithics, brown ware ceramics, ground stone and both floral and 

faunal remains (Dial 1989). She suggested that Pioneer Point represents a temporary 

seasonal occupation made by a small family group practicing a mixed hunting and 

gathering economy (Dial 1989). Archaeological materials recovered from the site provide 

evidence of big-game procurement (e.g., mule deer, bison and bighorn sheep), plant 

resource processing (Chenopodium and Gramineae seeds) and both chipped-stone and 

bone tool manufacture (Dial 1989). 

Regionally, the Ute represented a highly mobile population of hunter-gatherers 

who constructed wickiups for shelter, produced brown-ware ceramics, hunted with bow 

and arrow technology and manufactured Desert Side-notched and Cottonwood Triangular 

projectile points (Reed and Metcalf 1999). The introduction of horses from the Spanish 

and increased Euroamerican contact characterizes the Antero Phase. Expanded 

Euroamerican influence contributed to a greater reliance on trade goods and the 
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introduction of the horse promoted group solidarity and increased group regional 

mobility (Reed and Metcalf 1999).  

As previously stated in the Environmental Context chapter, existing 

paleoenvironmental data suggests that near modern vegetation and climatic conditions 

were established in the UGB at least by 2000 B.P. and possibly as early as 3000 B.P. or 

earlier (Emslie et al. 2005; Fall 1997). Without additional and finer-grained 

paleoenvironmental research to the contrary, it appears that most, if not all, of the last 

3000 B.P. represents comparable environmental conditions present during later Ute 

occupations. As such, Ute ethnographic information provides applicable data in 

understanding Late Prehistoric occupations within the UGB.  

 

Ute Ethnographic Context 

Existing Ute ethnographic data, particularly mountain adaptations in Colorado, 

represent an incomplete and relatively sparse record (Beals 1935; Steward 1938). Only 

about 20 years passed from when Euroamerican settlers arrived in western Colorado, ca. 

A.D. 1860, to when the Ute were forcefully removed to live on reservations (Brett 2003). 

Since the Ute of Colorado rapidly acquired the horse (becoming nearly fully equestrian 

by A.D. 1650) and upon Euroamerican settlement were relocated to live on reservations, 

ethnographic information does not provide the data quality necessary to fully characterize 

the pre-contact Ute diet, settlement pattern or much else (Brett 2003; Petersen 1977).  

Ute groups in Colorado, before they were removed to live on reservations, 

consisted of seven loosely defined bands distinguished by geographic range (Young 

1997). The Tabegauche Tribe historically lived along the Gunnison and Uncompahgre 
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River Basins in Colorado, including the UGB (Pettit 1990; Simmons 2000). The Ute 

maintained a simple kin-based social structure and followed an established mountain-

centered annual migration circuit that incorporated adaptations to both upland and 

lowland environments (Petersen 1977; Steward 1938). They often returned to the same 

hunting grounds in the high country each summer from winter villages along lowland 

river drainages (Baker et al. 2007). Where available, they occupied rockshelters and 

caves. Otherwise they erected temporary wickiup structures, and following the 

introduction of the horse, they commonly lived in portable tipis (Pettit 1990; Simmons 

2000). Ute groups manufactured ceramics, hunted with bow and arrow technology, 

processed plants and seeds with ground stone, fished with hooks and weirs, and captured 

small animals with traps and nets. They also participated in communal hunts and annual 

Bear Dances (Pettit 1990; Simmons 2000). 

Petersen (1977) summarized Ute camp location, elevation and occupation season 

for the Tabeguache and Elk Mountain Ute in western Colorado based on historic 

accounts dating from A.D. 1776 to A.D. 1868. He concluded that the first Euroamerican 

accounts documented that the Ute maintained a subsistence and settlement pattern 

heavily dependent on equestrian mounted mobility anchored to traditional mountain 

centers. The Ute maintained an annual mountain-centered mobility pattern with flexible 

and informal group territories (Petersen 1977). The Ute periodically occupied nearly 

every elevation zone in the mountains of Colorado, hunting and gathering a variety of 

subsistence resources. Winter camps typically were located at lower elevation and during 

the summer months Ute groups participated in large rendezvous in both mountains and 
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lowland settings (Petersen 1977). By the late 1800s, this mountain-centered exploitative 

pattern effectively ended when Euroamerican miners, ranchers, and farmers settled the 

area and the United States military expelled the Ute (Petersen 1977). 

The documented Ute diet included a wide variety of animal and plant food 

resources. The Ute hunted big-game, including antelope, bighorn sheep, mule deer, elk, 

moose, bear and bison (Albers and Lowry 1995; Beals 1935; Fowler 1986; Petersen 

1977; Smith 1974). They also acquired smaller mammals such as lagomorphs, marmots, 

squirrels and mice. Other ethnographically documented prey species include sage grouse, 

ducks, various fish, reptiles, and insects (Beals 1935; Fowler 1972; Smith 1974; Stewart 

1942).  

 Stiger (2001) argued that from about 3000 B.P. to European contact the main 

subsistence focus for groups living in the UGB was the procurement of big-game, 

specifically bison. Although not a universal focus of Ute occupations, ethnographic 

sources document that the Ute hunted bison using variable methods and technologies 

(Pettit 1990; Smith 1974; Stewart 1942). Hunting practices included individual hunters or 

hunting parties ambushing prey near salt licks or springs and in coordinated bison 

stampedes over cliffs or jumps (Stewart 1942). Following a successful hunt, the Ute often 

field processed bison by producing jerky and bone grease (Smith 1974). 

Smith (1974) suggested that in addition to animal protein, berries and roots were 

the basic foods eaten by Ute groups. Callaway et al. (1986) calculated that 40 percent or 

more of Ute subsistence came from plant resources. Many ethnographically documented 

plant species used by the Ute are available in the UGB within multiple vegetation zones 



 

 

 

61 
 

 

(Table 4-4). The Ute ate fruits and berries from bilberry, elderberry, blueberry, raspberry, 

huckleberry, buffaloberry, serviceberry, juniper, skunkbrush, chokecherry, whortleberry, 

and others (Chamberlin 1909, 1911; Palmer 1878a,b; Pettit 1990; Smith 1974). 

Additionally, the Ute consumed wild rose fruit and rose hips, the roots of arrowleaf 

balsamroot, leaves and bulbs of wild onion, and processed wild rye, Indian ricegrass and 

buckwheat (Fowler 1986; Pettit 1990; Smith 1974). The UGB also contains a variety of 

plants that the Ute used for medicinal purposes including kinnikinnik, Oregon grape, 

Colorado cough root and valerian (Fowler 1986; Smith 1974). Pinyon and camas 

represent the only major Ute plant food resources not available in the UGB during the 

Late Prehistoric or Protohistoric eras (Fowler 1986; Johnston et al. 2001; Smith 1974; 

Stiger 2001). 

 

Culture History Summary 

 

Radiocarbon-dated archaeological components within the UGB represent all 

culture history periods from Folsom to the Protohistoric (Reed and Metcalf 1999; Stiger 

2001). Shallow surface lithic scatters overwhelmingly dominate the archaeological record 

found within the UGB and sites often contain over 90 percent quartzite raw material 

(Stiger 2001). During the late Paleoindian and early Archaic, occupations within the 

basin flourished as evidenced by increased numbers of well-dated components, 

diversification of hearth features, presence of possible substantial structures and several 

sites with evidence of intensive reoccupation (Jones 1984; Stiger 2001). However, most 

previously conducted archaeological research projects within the UGB have focused on 
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these time periods, possibly biasing the archaeological record and interpretations of the 

basin’s culture history. 

 

 

Table 4-4. Non-exhaustive list of ethnographic plant resources in the UGB. 
 

 Species Elevation Species Elevation 

T
r
ee

s 

Rocky Mountain juniper 
(Juniperus scopulorum) 

2295 to 

2975 m 
Limber pine 

(Pinus flexilis) 

2579 to 

3060 m 

S
h

r
u

b
s 

Serviceberry 

(Amelanchier spp.) 
2316 to 

3209 m 
Raspberry 

(Rubus idaeus) 

2530 to 

3328 m 

Currants 
(Ribes spp.) 

2316 to 

3230 m 
Strawberry 

(Fragaria spp.) 

2319 to 

3615 m 

Kinnikinnick bearberry 
(Arctostaphylos uva-ursi) 

2380 to 
3243 m 

Dwarf bilberry, whortleberry 
(Vaccinium spp.) 

2743 to 
3755 m 

Oregon-grape 
(Mahonia repens) 

2401 to 

3236 m 
Elderberry 

(Sambucus spp.) 
~2720 m 

Prickly-pear 
(Opuntia spp.) 

2339 to 

2709 m 
Woods Rose 

(Rosa woodsii) 

2295 to 

3252 m 

Chokecherry 
(Padus virginiana) 

2316 to 

3041 m 
Russet buffaloberry 

(Shepherdia Canadensis) 

2636 to 

3310 m 

E
d

ib
le

 

R
o

o
ts

 

Pygmy bitterroot 

(Oreobroma pygmaea) 
- 

Biscuitroot 

(Lomatium spp.) 

2438 to 

2563 m 

F
o
r
b

s 

a
n

d
 G

r
a
ss

e
s Wild onion 

(Allium spp.) 
2560 to 

3541 m 
Solomon-plume 

(Maianthemum stellatum) 

2307 to 

3614 m 

Indian Rice-grass 

(Achnatherum hymenoides) 
2335 to 

3035 m 
Elkslip marsh-marigold 

(Psychrophilia leptosepala) 
2487 to 

3927 m 

Note: Data source Johnston et al. (2001). 
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After about 3000 B.P., archaeological sites within the basin contain smaller, more 

uniform hearth features, greater assemblage proportions of non-quartzite raw materials, 

increased utilization of game drives and other indicators of changing settlement-

subsistence organization (Black 1983, 1991; Stiger 2001). Stiger (2001) interpreted this 

change as a shift to logistical big-game hunting from residential base camps located 

outside of the UGB. Others have suggested that this shift indicated less intensive and 

shorter term use of the UGB (e.g., Black 1983, 1991; Reed and Metcalf 1999). 

During the regionally defined Protohistoric, Ute sites with rock art, ground stone, 

brown ware ceramics, Cottonwood Triangular and Desert Side-notched projectile points 

occur in the basin (e.g., Dial 1989; Reed and Metcalf 1999). Ute occupations at Pioneer 

Point may indicate short-term residential occupations made by a small family group 

practicing a mixed hunting and gathering subsistence economy (Dial 1989). 

Paleoenvironmental data suggests that although conditions undoubtedly fluctuated post-

3000 B.P. the distribution of vegetation communities and general climatic conditions did 

not drastically differ from modern equivalents (e.g., Emslie et al. 2005; Fall 1997; Reed 

and Metcalf 1999). Therefore, Ute ethnographic data provides a valuable context in 

understanding the available Late Prehistoric resources of the UGB. This ethnographic 

context suggests that during the Late Prehistoric the UGB contained a suite of 

ethnographically utilized plant and animal resources across multiple elevation zones.   
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CHAPTER 5  

 

SITE 5GN1.2 ROCKSHELTER 

 

 

Site 5GN1 (Big-game Hill Site) is located within the Curecanti National 

Recreation Area between the Blue Mesa Reservoir and US Highway 50 about 22 km  

west of Gunnison, Colorado. Vegetation within the site consists of Foothills-Semidesert 

Shrub community species with a few scattered Rocky Mountain juniper trees (Johnston et 

al. 2001). Buckles, working at the University of Colorado, originally recorded 5GN1 in 

1962 during an inventory of the Blue Mesa Reservoir (Buckles 1962; Lister 1962). He 

described it as a large multi-component prehistoric lithic procurement site containing 

scattered quartzite reduction workshop locations and thousands of surface artifacts. Later, 

Liestman (1985) identified several bedrock exposures of Junction Creek quartzite along 

Big-game Hill (within 5GN1) all associated with areas of geologic faulting and/or 

volcanic venting. Stiger (2001) and Andrews (2010) further investigated fine-grained 

quartzite exposures at 5GN1. They observed large flake scars on several quartzite 

bedrock outcrops, indicating bedrock lithic reduction and observed a high degree of color 

variability (white, gray, red, and brown combinations) among the bedrock exposures and 

cobble sources.  

In 2009, Utah State University (USU) archaeological field school, under the 

direction of Dr. Bonnie Pitblado, conducted archaeological and geological surface 

surveys at site 5GN1. Pitblado’s students found seven previously undocumented small 

rockshelters at an approximate elevation of 2340 m (7680 ft) along the southern edge of 

the site. The rockshelters are located along outcrops of the Junction Creek Formation 
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with a commanding view shed overlooking the Gunnison River (currently the Blue Mesa 

Reservoir) and valley. 5GN1.2 rockshelter (5GN1.2) is the most prominent of those 

recorded in 2009 and USU students named it Picasso’s Den referencing the shelter’s rock 

art (Figure 5-1). 5GN1.2 is located under a sandstone overhang extending over a 

crescent-shaped area measuring approximately 20 m long (east-to-west) by 4.5 m wide 

(north-to-south [Figure 5-2]). The rockshelter is located about 182 m (600 ft) to the north 

and 115 m (380 ft) above the historic channel of the Gunnison River.  

 

 

 
 

Figure 5-1. 5GN1.2 site location map. 
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Figure 5-2. 5GN1.2 east-facing overview with the Blue Mesa Reservoir in background. 

 

 

 

Surface Inventory 

With the assistance of Bonnie Pitblado (project Principal Investigator), we 

conducted archaeological investigations at 5GN1.2 in July 2010. Additional crew 

members included Jason Patten (USU student), Carl Haberland (volunteer), Barbara 

Haberland (volunteer), and Forest Frost (NPS archaeologist). The field crew conducted a 

supplemental pedestrian inventory from the rockshelter to the shoreline of the Blue Mesa 

Reservoir covering about three acres with transects spaced no more than five meters. We 

identified a total of 15 chipped-stone and ground stone tools, including a complete 
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quartzite corner-notched projectile point (possible Elko Corner-notched [Drager and 

Ireland 1986; Reed and Metcalf 1999]), five quartzite bifaces, eight sandstone manos and 

a non-diagnostic ground stone fragment (Table 5-1). Additionally, we estimated a surface 

assemblage of more than 450 flakes (over 95 percent quartzite), about 64 scattered fire-

affected rock fragments (FAR) and six surface charcoal stains interpreted as possible 

hearth features (Peart 2011). 

 

 

Table 5-1. Surface tools within 5GN1.2. 

 
Tool # Material L W Th Basic tool description Biface stage 

T01 Quartzite 2.9 2.2 .5 Biface fragment 3 

T02 Quartzite 5.8 2.4 .8 Biface base fragment 4 

T03 Sandstone 9.0 8.0 4.0 
Slab metate with one pecked and moderately-

utilized worked surface 
- 

T04 Quartzite 2.9 1.6 .3 
Complete corner-notched projectile point; 

possible Elko Corner-notched  
5 

T05 Sandstone 4.3 5.2 3.8 
Reddish-brown coarse-grained, lightly utilized 

mano fragment 
- 

T06 Sandstone 7.2 3.5 3.5 
Burnt dark-gray river-rounded cobble mano 
fragment 

- 

T07 Sandstone 16.0 10.0 3.6 
Burnt reddish-brown river-rounded cobble mano 

fragment 
- 

T08 Quartzite 5.0 2.5 1.0 Biface fragment 2 

T09 Sandstone 8.3 8.0 5.0 
Burnt reddish-yellow river-rounded cobble mano 

fragment  
- 

T10 Quartzite 3.5 2.2 .9 Biface fragment 3 

T11 Quartzite 7.0 4.5 1.5 Complete biface 3 

T12 Sandstone 12.0 7.5 4.5 
Burnt brown and dark gray river-rounded cobble 

mano with moderate use-wear 
- 

T13 Sandstone 9.0 9.5 5.0 
Reddish-brown and possibly burnt fine-grained 

coarse-grained sandstone mano or hammer stone  
- 

T14 Sandstone 7.0 3.5 3.0 Burnt dark-gray river rounded mano fragment - 

T15 Sandstone 10.6 7.7 4.5 
Complete reddened (possibly burnt) mano with 

formal shaping/pecking and heavy use-wear 
- 

Notes: Data source Peart (2011). L, W and Th refer to maximum length, width and thickness in cm 

respectively. Biface stages (1-5) based on Andrefsky (2005:187-189). 
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Along the 5GN1.2 rock face, we identified six petroglyph panels (Figure 5-3). All 

of the rock art elements were abraded or incised into the exposed Junction Creek 

sandstone formation and protected under the rockshelter overhang. Elements include 

possible starbursts, rectilinear elements, bird footprints, sets of incised vertical lines or 

possible sharpening grooves, vulvas and artiodactyl hoof prints (see Hays-Gilpin 2004; 

Patterson 1998; Patterson et al. 2006; Whitley 1998 [Figure 5-4]).  

 

 

 

 
 

Figure 5-3. Rock art Panels 1 through 5 at 5GN1.2, facing north. 

Panel 6 (not pictured) located about two meters to the right (east). 
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Figure 5-4. Selected rock art elements at 5GN1.2. 

 

 

 

Archaeological research in the UGB has identified only a few other sites with 

rock art, including 5GN7, 5GN928 and 5GN1275 (Scott 1981). Site 5GN7 contains linear 

and rectilinear petroglyphs incised into a boulder. At site 5GN928, archaeologists 

identified two white painted figures. One of the figures is geomorphic and the other 

consists of a broad-shouldered figure with a triangular body (arguably similar to Fremont 

styled rock art). Site 5GN1275 contains a series of pecked or incised petroglyphs on 

boulders near Sheep Gulch. In total, 5GN1275 contains 14 distinct petroglyph elements, 

including eight zoomorphic (probably representations of elk, deer, mountain sheep, hoof 

prints and a paw print), five linear elements and a single anthropomorphic hand print 

(Scott 1981). Rock art within the basin is poorly understood and most elements and styles 

remain undated (Reed and Metcalf 1999; Scott 1981). 
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Excavation Results 

Following the surface inventory, the 2010 field crew excavated a total of four 

units (three .5-x-1-m and one .5-x-.5-m unit) in 10 cm arbitrary levels until encountering 

bedrock (Figure 5-5). In the main excavation block (100N 100E, 100N 101E and 101N 

102E) bedrock occurred between about 5 to 25 cm below ground level (BGL). In Unit A, 

we reached bedrock at about 65 cm BGL. The crew used 1/8-inch nested mesh hand-

shakers to screen a total of about .6 m³ of matrix. We collected an additional 17 liters (.02 

m³) of feature fill for offsite aerated flotation to recover organic materials. 

 

  

 
 

Figure 5-5. Site 5GN1.2 rockshelter excavation plan view map. 
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We identified two primary stratigraphic components (Stratum 1 and 2) 

comparable across the main excavation block (Figure 5-9). Stratum 1 occurred between 

the surface and about 2 to 15 cm BGL and consisted of very loose light yellowish-brown 

(10YR6/4), medium to fine-grained sand mixed with roots, animal dung and other 

organic matter. The loose sediment composition coupled with possible krotovina and 

large amounts of organic matter indicated that bioturbation and other natural disturbances 

significantly impacted the depositional integrity of Stratum 1. Stratum 1a separated Strata 

1 and 2. It consisted of slightly darker (10YR5/4), more compact sandy sediment, 

containing more charcoal and less other organic detritus (e.g., twigs, roots and animal 

dung). Stratum 2 contained dark brown to black (10YR4/3) sandy sediments, rich in 

charcoal and loaded with burnt angular sandstone gravels and cobbles (Peart 2011).  

Units 100N 100E and 100N 101E contained evidence of bioturbation and 

sediment mixing, except within Feature 3. No evidence of any disturbances, such as roots 

or krotovina, were identified within Stratum 2 in Unit 101N 102E. Unlike the other units, 

Unit 101N 102E was set further back in the rockshelter, better protecting it from moisture 

and turbations, such as vegetation growth and animal burrowing (Peart 2011). Strata 1 

and 2 grade into each other and likely do not represent a significant change in deposition 

or site occupation. The main difference between them is that Stratum 2 is more compact 

and contains additional charcoal and fire-affected rock. Strata 1 and 2 likely do not mark 

a meaningful temporal or depositional change and artifacts present within excavation 

levels likely embody a mixed Late Prehistoric assemblage. 
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Figure 5-6. Units 100N 100E, 100N 101E and 101N 102E north side wall profiles. 

 

 

Unit A contained equivalent components for Strata 1, 1a and 2 as identified in the 

main excavation block (Figure 3-11). Stratum 1 in Unit A consists of very loose fine-

grained sands (10YR4/2) mixed with organic material including animal dung, twigs and 

grasses. Stratum 1a consists of compact, slightly darker sandy sediments (10YR3/1) 

mixed with more charcoal and organics. We identified roots and krotovina within Strata 1 

and 1a, suggesting mixed sediments. Stratum 2 consists of dark (10YR2/1) sandy 

sediments among large stacked FAR and contains Feature 4 (Peart 2011).  
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Figure 5-7. Unit A east profile diagram. 

 

 

Features 

The 2010 excavations documented four subsurface archaeological features 

(Figure 4-10). In all four units, the field crew noted the underlying bedrock retains 

evidence of intensive heat alteration, suggesting that prehistoric fire hearths were set 

directly on bedrock. Feature 1 is an undated, surface-exposed 75 cm-diameter half-circle 

of FAR fragments located in the east half of Unit 100N 100E and west half of Unit 100N 

101E within Strata 1 and 1a. This feature is very shallow (less than 10 cm maximum 

depth) and contains minimal charcoal staining. The field crew collected samples of 

charcoal from this feature; however, due to questionable feature integrity they were not 

submitted for radiocarbon dating.  



 

 

 

74 
 

 

 

 

 

Figure 5-8. Plan view of Features 1 through 4. 

 

 

 

Feature 2 is a subsurface scatter of small, less-than 5 cm maximum dimension, 

FAR fragments and charcoal-stained sandy sediment within the eastern half of Stratum 2 

in 101N 102E. This hearth feature measures at least 75 cm in diameter. Sagebrush 

charcoal (Alden 2011) recovered from the bottom of Feature 2 radiocarbon dated to 1520 

± 30 B.P. (Table 4-5). Feature 3 consists of large, 10 to 20 cm maximum dimension, 

stacked and heavily burnt sandstone FAR within Stratum 2 in the southeast corner of Unit 

100N 101E. This feature resembles a Big Deep FCR Feature, as defined by Stiger (2001), 

and may indicate more intensive site occupation and possibly bulk resource processing 
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(Stiger 2001). Sagebrush charcoal (Alden 2011) collected from the base of this feature 

dated to 1330 ± 30 B.P. (Peart 2011). For both Feature 2 and 3, sagebrush charcoal was 

selected for radiocarbon dating. Old tree wood can last on the landscape for hundreds of 

years (Baker et al. 2008) potentially biasing archaeological chronologies based on wood 

radiocarbon dates (Schiffer 1986). For this reason, sagebrush charcoal from Features 2 

and 3 were submitted for radiocarbon dating to minimize the effects of old wood 

radiocarbon dating (Schiffer 1986). Nevertheless, sagebrush wood can remain on the 

landscape for longer than 100 years and therefore is unlikely to completely avoid 

potential age estimation problems (Geib 2008).  

 

 

Table 5-2. 5GN1.2 radiocarbon dates. 
 

Sample Feature Measured age 13C/12C Conventional age Calibrated age 

 

Beta-293434 

 

F3 

 

1320 ± 30 B.P. 

 

-24.1 

 

1330 ± 30 B.P. 

 

CAL B.P. 1510-1460  

CAL B.P. 1430-1340 

 

Beta-393435 

 

F2 

 

1500 ± 30 B.P. 

 

-23.6 

 

1520 ± 30 B.P. 

 

CAL B.P. 1300-1240  

CAL B.P. 1200-1190 

 

Beta-293436 

 

F4 

 

2950 ± 40 B.P. 

 

-21.7 

 

3000 ± 40 B.P. 

 

CAL B.P. 3330-3070 
 

Note: Data source Peart (2011). 

 

 

 

Feature 4 is located within Unit A about 30 cm below the ground surface. This 

feature is very similar in composition to Feature 3 and likely represents a Big Deep FCR 

Feature or FCR-outside Feature according to Stiger’s feature typology (2001). Exact 

feature size measurements cannot be ascertained due to the limited excavation size of test 

Unit A (.5-x-.5-m). The hearth contained over 30 stacked, heavily-burnt and charcoal-
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stained angular sandstone FAR fragments and measures at least 30 cm tall. White Pine 

group charcoal (Alden 2011) from the bottom of this feature radiocarbon dated to 3000 ± 

40 B.P. (Peart 2011). 

 

Floral and Faunal Remains 

The field crew collected bulk feature fill sediment samples from each feature for 

aerated flotation processing and macrobotanical identification at the USU archaeological 

laboratory in Logan, Utah. Flotation processing allows for the recovery of nearly all 

classes of botanical material preserved in a sediment sample, making quantitative 

analysis possible (Pearsal 1989).  

I used the Flotation Device manufactured by William Sandy to process the 

collected samples. Following flotation processing, I sorted both the hard and soft matrix, 

using small hand tools, and when needed, under hand-lens magnification (5-20X). I 

conducted a preliminary visual identification of the recovered seed assemblage 

comparing seed shape and size (Pearsal 1989) with a private comparative collection of 

common Colorado plant seeds as well as seed identification manuals (Davis 1993; Delorit 

1970; Martin and Barkley 2000). This preliminary identification included 321 seeds, the 

majority of which were burnt or charred (about 65 percent) and include Achnatherum 

hymeniodes (Indian rice grass), Amaranthus spp. (pigweed), Chenopodium spp. 

(goosefoot), Opuntia spp. (prickly-pear cactus), Physalis spp. (ground cherry), Rosa 

Woodsii (Wood’s Rose) seeds within the assemblage as well as a burnt Juniperous 

scopulorum (Rocky Mountain juniper) berry (Peart 2011).  



 

 

 

77 
 

 

Due to National Park Service project stipulations for this test excavation, we were 

unable to collect an off-site sediment sample for botanical comparison. As a result an 

unknown portion of the recovered seed assemblage associated with these hearth features 

may represent natural seeds (Pearsal 1989). Nevertheless, greater than 60 percent of the 

recovered seed assemblage appeared burnt or charred and owing to the paucity of 

identified seeds elsewhere in the UGB (e.g., Stiger 2001) these preliminary results 

warrant additional research and consideration.  

 

 

Table 5-3. Recovered seeds. 

 

Species 100N 100E 

Feature 1 

100N 101E 

Feature 3 

101N 102E 

Feature 2 

Unit A 

Feature 4 

Total 

Achnatherum hymenoides  1 0 8 25 34 

Amaranthus spp.  4 0 5 2 11 

Chenopodium spp.  20 1 88 76 185 

Juniperous scopulorum berry 0 0 1 0 1 

Opuntia spp. 1 0 0 0 1 

Physalis spp.  2 1 4 2 9 

Rosa woodsii  0 1 0 1 2 

Unidentified 16 5 46 11 78 

Total 44 8 152 117 321 

 

 

In addition to floral ecofacts, the excavation and flotation processing recovered 

highly fragmented and burnt faunal remains in nearly every level of each unit, totaling 

1356 bone fragments. Of these bone fragments, 1255 showed evidence of heat-alteration 

(93 percent). We recovered the vast majority (98 percent) of bone fragments from Unit 

101N 102E associated with Feature 2. The size and fragmented nature of the faunal 

remains prohibited identification by species or even specific bone element. The largest 
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bone fragment measured 29.9 mm in maximum length and identified long bone shaft 

fragments averaged 12.5 mm in maximum length (n = 64). Long-bone shaft diameter 

averaged 6.8 mm (n = 43; minimum = 2.0 mm; maximum = 15.9 mm; standard deviation 

= 3.7) and long bone cortical thickness averaged 2.9 mm (n = 43; minimum = 1.1 mm; 

maximum = 5.4 mm; standard deviation = 1.1). Based on these size characteristics, the 

faunal remains recovered from 5GN1.2 represent small mammals or birds and not big-

game such as bison.  

 

 

Table 5-4.  Recovered faunal remains. 

 
Unit Unidentifiable Tooth enamel Bone bead Quantity Mass (g) 

100N 100E 15 2 0 17 .53 

100N 101E 3 1 0 7 .12 

101N 102E 1310 13 1 1324 99.77 

Unit A 8 0 0 8 2.12 

Totals 1336 16 1 1356 102.54 

 

 

 

Stone Tools 

 

 The excavation recovered a total of 15 chipped-stone tools, six ground stone tools 

(five manos and one slab metate fragment) and 3565 pieces of lithic debitage. Debitage 

analysis methods and results are presented in the following chapter. Five of the ground 

stone artifacts were recovered from Unit 101N 102E and one was recovered in Unit 100N 

101E (Table 5-5). Five of the manos represent river-rounded cobbles, of which three 

exhibits moderate to heavy use-wear indicated by pecking, striations, and polish. 
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Table 5-5. Recovered ground stone artifacts. 

 
FS# Material L W Th g Description 

2-09 G-1 Sandstone   46.6 28.7 34.3 54.5 Heavily utilized river rounded cobble mano 

fragment 

4-02 G-1 Sandstone 111.9 85.9 25.0 200.0 Slab metate fragment with light use-wear on 

one surface 

4-05 G-1 Sandstone   38.7 20.3 26.4 19.4 Moderately utilized river rounded cobble 

mano fragment 

4-05 G-2 Quartzite 39.4 30.0 26.6 30.5 Mano fragment with light use-wear 

4-12 G-1 Sandstone 58.1 35.2 17.4 40.2 Mano fragment with light use-wear 

4-28 G-1 Quartzite 34.9 25.5 15.5 13.7 Moderately utilized river rounded cobble 

mano fragment 

Note: L, W and Th refer to maximum length, width and thickness in mm respectively. 

 

 

Recovered subsurface chipped-stone tools include seven quartzite bifaces or 

biface fragments, one CCS biface, one CCS possible tested cobble or hammer stone, four 

non-diagnostic projectile point fragments, one CCS flake scraper and a quartzite 

amorphous core (Table 5-6). Of the projectile point fragments, three are quartzite and one 

is made of CCS. Two of the quartzite bifaces (4-7.1 and 4-28.1) appeared heavily 

polished from use and may represent broken hafted knifes. 

 

Summary 

 

 Test excavations at 5GN1.2 revealed deposits reflecting aboriginal habitation 

dating between about 3000 and 1300 B.P. Radiocarbon-dated features suggest at least 

three site occupations, two occurring between about 1300 and 1550 B.P. and an older 

occupation at about 3000 B.P. Rock art elements may represent a fourth occupation 

dating to the Protohistoric; however, the chronology of rock art elements and styles in the 

UGB is poorly understood and more research is needed to affiliate the rock art with a 

culture or time period. 
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Table 5-6. Recovered chipped-stone tools. 

 
FS# Material L W Th g Description Biface stage 

1-1.1 Quartzite 48.1 33.5 12.3 19.8 Biface 2 

1-2.1 Quartzite 38.4 25.4 8.8 6.2 Biface fragment 3 

1-3.1 CCS 56.2 40.6 27.3 51.6 Possible tested cobble - 

1-3.2 Quartzite 11.9 14.9 3.0 .8 Projectile point medial fragment 5 

4-4.1 Quartzite 25.6 10.0 3.1 .9 Biface edge fragment 4 

4-5.1 CCS 30.5 23.1 10.0 7.6 Well-worn bifacial scraper - 

4-6.1 Quartzite 40.1 40.0 14.2 18.7 Biface fragment 2 

4-6.2 CCS 7.9 12.3 5.1 .5 Biface edge fragment 3 

4-6.3 CCS 14.9 15.6 2.5 .6 Projectile point fragment 5 

4-7.1 Quartzite 18.0 13.3 2.8 .4 Biface tip; utilized 5 

4-11.1 Quartzite 55.1 46.4 23.9 73.2 Amorphous core; exhausted - 

4-14.1 Quartzite 6.2 6.2 2.5 .1 Biface edge fragment 4 

4-28.1 Quartzite 24.5 17.7 5.1 2.5 
Biface tip fragment; use-polish, 

possibly hafted biface 
5 

4-29.1 Quartzite 15.3 14.6 2.7 .6 
Projectile point tip and medial 

fragment 
5 

A11.1 Quartzite 16.4 12.2 2.5 .4 
Projectile point tip and medial 

fragment 
5 

Notes: L, W and Th refer to maximum length, width and thickness in mm respectively. Biface stage 

(1-5) based on Andrefsky (2005:187-189). 

 

 

 
 The shallow and unconsolidated stratigraphy within the rockshelter indicates that 

it may be difficult if not impossible to tease apart individual occupations. It is possible 

that these shallowly buried deposits have mixed through bioturbation and other post-

depositional disturbances. Multiple occupations across at least 1500 years, and perhaps 

3000 years, are conflated within a single deposit. Still, the site contains charred floral and 

faunal remains within protected hearth features. Two of these hearth features are 

constructed with stacked and heavily burnt fire-affected rock and were set on bedrock. 

Floral and faunal remains provide evidence of plant resource use and small-game 

procurement. Hearth features, particularly Feature 2, contain numerous burnt faunal 

fragments possibly as a byproduct of bone grease production. However, the faunal 
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remains at 5GN1.2 likely only include small mammals and birds not commonly used to 

produce bone grease (Enloe 1993). 

 Recovered artifacts include several bifaces, non-diagnostic projectile point 

fragments, manos and metate fragments, a bifacial scraper, a tested cobble and an 

amorphous core. Bifacial tools (not including the scraper or projectile point fragments) 

represent all major stages of bifacial reduction and generally increase in number by stage 

(Figure 5-9). The 2010 test excavations of site 5GN1.2 recovered a total of 3565 pieces 

of lithic debitage. Subsurface debitage density within 5GN1.2 is high, about 600 flakes 

per .1 cubic meters of matrix (or 600 flakes per 1-x-1-m by 10 cm level). Debitage 

represents the most common artifact class recovered from the site. The following chapter 

provides a detailed discussion on debitage analysis methods employed for this project and 

associated results.  

 

 

 

Figure 5-9. Surface and excavation biface reduction stage 

count of 5GN1.2 bifaces, based on Andrefsky (2005:187-189). 
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 Judging from the small but diverse collection of chipped-stone tools and ground 

stone, coupled with the floral and faunal evidence, this site likely represents a series of 

intermittent aboriginal residential occupations during the Late Prehistoric. Site occupants 

procured a variety of floral and faunal resources, constructed features and maintained a 

chipped-stone tool kit dominated by quartzite materials. Dense accumulations of quartzite 

lithic debitage at this site also may indicate lithic procurement and intensive reduction of 

local quartzite raw material from the surrounding quarry site. Surface survey research at 

5GN1 described the site as a prominent lithic procurement site with dense accumulations 

of primary lithic reduction debris. The relatively high number of later stage bifaces and 

formed tools is inconsistent with the site simply functioning as a special-use lithic 

procurement location and suggests a comparatively prolonged residential site function.   
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CHAPTER 6 

 

 DEBITAGE ANALYSIS METHODS AND RESULTS 

 
 

This chapter begins with a summary of the debitage analysis methodology 

employed in this thesis research followed by analytical sections that provide more 

specific details of individual analysis methods and associated results. The following 

sections are organized in six parts: raw material selection, flake size, flake completeness 

(Sullivan and Rozen [1985] interpretation-free typology), application load typology, flake 

platform, and dorsal flake scar count.  

I conducted the majority of the debitage analysis for this project with the 

assistance of fellow archaeology graduate students at USU (Ryan Breslawski, Jessica 

Dougherty, Tod Hildebrant, Ashley Losey, Britt McNamara, Elizabeth Seymour, and 

Dayna Reale). Graduate students analyzed a total of 700 flakes (19.6 percent), while I 

analyzed the remaining assemblage (80.4 percent). To maintain consistency among the 

lithic analysts, Dr. Bonnie Pitblado analyzed ten sets of ten flakes selected from the 

debitage assemblage. Each student practiced analyzing these sample sets until they could 

consistently reproduce the sample data with above 90 percent accuracy. 

As explained in the previous chapter, the entire assemblage recovered from 

5GN1.2 likely dates to the Late Prehistoric and the excavation levels likely do not mark a 

meaningful temporal change. For these reasons, the complete debitage collection was 

analyzed for this project. Rather than subjectively identifying flake types, such as 

early/late bifacial thinning or core reduction, this study uses combinations of individual 

flake attributes to identify flake removal techniques, tool-production trajectories and 



 

 

 

84 
 

 

stages of reduction. The analysis included a total of nineteen flake attributes (nominal, 

interval and metric data) for each of the 3565 pieces of lithic debitage recovered from site 

5GN1.2. This analysis research primarily employed flake attribute definitions contained 

in Andrefsky (2005) for common debitage-related terms, such as heat-treatment, platform 

type, platform lipping and bulb of percussion attribute.  

Recorded flake attributes include raw material type, color, evidence of heat-

treatment or alteration, flake completeness (Sullivan and Rozen 1985), flake tools and 

pressure flake types, platform type, platform condition, platform lipping, bulb of 

percussion prominence and dorsal surface longitudinal cross-section. Other recorded 

flake attributes include dorsal cortex percentage and dorsal flake scar count. We 

identified nominal flake attributes based on a visual inspection and aided, when needed, 

by 5-20X magnifying hand lenses. Using digital calipers we generated metric 

measurements, in .1 mm increments, on all flakes for maximum flake length and 

thickness as well as platform width and depth. We also weighed each flake using digital 

scales in .01 gram increments. To facilitate a host of data querying and quantitative 

techniques, I entered all collected flake attributes and project data into a Microsoft 

Access version 2010 relational database. I used SPSS version 21.0 to calculate all 

descriptive and inferential statistics presented in this thesis, with statistical inferences 

based on a significance value of p < .05.  
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Raw Material Selection 

 

Our team differentiated raw material types based on a combination of color, 

texture (grain size) and translucence using Andrefsky (2005:41-59) and Mottano et al. 

(1978) as primary terminology references. We used the more general category, 

cryptocrystalline silicate (CCS), to classify raw materials commonly identified in 

archaeological literature under the ambiguous terms chert, flint, chalcedony, opal and 

jasper (Andrefsky 2005). We identified 3400 quartzite (95 percent), 139 CCS (4 percent), 

18 basalt (less than 1 percent), six rhyolite (less than 1 percent) and two flakes of 

unknown material type (less than 1 percent). Table 6-1 lists the raw material counts by 

excavation unit.  

 

 

Table 6-1. Debitage raw material type counts by unit. 

 
Unit Quartzite CCS Other Totals 

100N 100E 555 5 2 562 

100N 101E 208 2 - 210 

101N 102E 2576 131 24 2731 

Unit A 61 1 - 62 

Total 3400 139 26 3565 

Percent of total 95% 4% < 1%  

 

 

 

The close proximity of several sources of quartzite raw material to site 5GN1.2 

lends support to the assumption that identified quartzite artifacts represent locally 

procured raw materials. Sources of non-quartzite, while widely available within the UGB, 

do not occur within a typical hunter-gatherer daily foraging radius of less than 10 km 

(e.g., Kelly 1995; Morgan 2008) encircling 5GN1.2, and therefore are considered non-
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local raw material types. Locally available quartzite raw material dominates (over 95 

percent) the debitage assemblage at 5GN1.2.  

 

Quartzite Flake Color 

Both Stiger (2001) and Andrews (2010) observed that quartzite bedrock outcrops 

at 5GN1 contain a variety of colors and color combinations, but primarily include gray, 

red and brown varieties. Andrews (2010) noted that individual chunks of quartzite from 

5GN1 derived from bedrock or cobbles often contain these primary colors banded or 

blended together. Recovered quartzite flakes from 5GN1.2 exhibit a variety of colors 

including tan (n = 2168; 64 percent), gray (n = 506; 15 percent) and white flakes (n = 

125; four percent). While conducting the lithic analysis for this project, I found that these 

three colors (tan, gray and white) grade into each other, and despite my best efforts, were 

subjectively identified. Together these colors represent over 83 percent of the quartzite 

assemblage. Other quartzite flakes were made with red (n = 521; 15 percent), 

pink/pinkish (n = 29; less than one percent) and 52 flakes representing other colors or 

color combinations (one percent). 

 

Heat-treatment 

 

 We identified heat-treated materials based on the presence of any combination of 

the following characteristics: change in luster or texture, color shift (commonly towards 

red) and glossy flake surfaces that are smooth/waxy to the touch (Anderson 1979). 

Archaeologists view heat-treatment as a technological adaptation that alters the structural 

properties of lithic materials towards greater internal homogeneity, thereby facilitating 
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easier or more predictable knapping (Anderson 1979). Of the 3400 quartzite flakes, only 

241 (seven percent) appeared burnt, and about 17 (less than one percent) equivocally 

heat-treated, leaving about 92 percent (n = 3143) of the quartzite flake assemblage 

without any evidence of heat-alteration.  

 It is important to note here that Liestman’s (1985) previous attempt at identifying 

heat-treated quartzite materials within CURE concluded that macroscopic visual 

identification methods generated unreliable and inconclusive results. Alternatively, 

Liestman employed scanning electron microscopy to successfully identify evidence of 

heat-treatment. The analysis reported that about 55 percent of the randomly selected and 

analyzed bifacial tools bore evidence of heat treatment. Scanning electron microscopy 

was not employed in this study; consequently, the results presented in this thesis most 

likely underestimate the proportion of heat-treated quartzite materials. 

Non-quartzite flakes combined yielded 90 percent without any evidence of heat 

alteration, four percent appeared burnt and about six percent represent equivocally heat-

treated materials. The presence of only five non-quartzite pot lid fragments lends further 

support to the conclusion that site occupants likely did not heat-treat or reduce heat-

treated lithic material onsite. 

 

Cortex Retention 

 

Cortex represents the weathered exterior surface of a mass of lithic material 

(Andrefsky 2005). As lithic reduction proceeds, succeeding flakes retain less cortex and 

continued lithic reduction produces interior flakes without cortex. Archaeological 

debitage analysis methods often employ measures of cortex coverage as a means to infer 
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lithic reduction stage, especially when combined with other flake attributes (e.g., Amick 

et al. 1988; Andrefsky 2005; Magne and Pokotylo 1981; Odell 1989; Tomka 1989). 

Generally, higher proportions of cortex coverage indicate earlier reduction stages (e.g., 

Amick et al. 1988; Magne and Pokotylo 1981). Both nodule size and the nature of raw 

material sources influence the amount of cortex on lithics. For example, larger raw 

material nodules (especially bedrock sources) retain a lower proportion of cortical surface 

per volume than smaller raw material packages. As a result flakes derived from smaller 

nodules are inherently more likely to retain cortex.  

We recorded dorsal cortex amount by visual inspection and from 0 to 100 percent 

with 25 percent intervals. The vast majority of both quartzite and non-quartzite flakes 

show no cortex (94 percent and 93 percent, respectively), consistent with later stage 

reduction of interior lithic material (e.g., Amick et al. 1988; Magne and Pokotylo 1981). 

Cortex cover proportions for quartzite and CCS flakes are not statistically different  

(Pearson’s 
2 

= .191; df = 2; two-tailed p = .882; Fisher’s Exact Test = .182) when 

compared among three categories: no cortex, 1 to 50 percent and greater than 50 percent 

cortex coverage (Table 6-2). The low proportion of quartzite cortex coverage may result 

from observation error, since quartzite material contains coarse grains more difficult to 

visually differentiate from cortex.  

  

Flake Size 

 

Flake sizes produced by both core-flake and bifacial reduction become smaller as 

more flakes are removed (Andrefsky 2005). Based on this characteristic, most lithic 
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Table 6-2.  Cortex retention percentage results by material type. 

 

Material 

Type 

No 

Cortex 

  1 - 50% 

Cortex 

> 50% 

Cortex 

Quartzite 3206 169 25 

CCS   129    8  1 

Other     21    1  1 

Totals 3356 178 32 

 

 

 

analysts employ some measure of flake size in lithic analysis (Andrefsky 2005). Table 6-

3 provides summary descriptive statistics for the size variables recorded on quartzite and 

non-quartzite flakes. By nearly every measure, quartzite flakes are both larger on average 

and produce a more variable range of flake size measurements than non-quartzite flakes. 

The only contradiction is the ratio of complete flake length to thickness where complete 

non-quartzite flakes measure slightly larger on average than non-quartzite flakes.   

 Individual flakes of sufficient size can be used as expedient tools. For comparison 

with other lithic analysis projects, I used the minimum useable length of 2.5 cm to 

identify usable flakes (e.g., Rasic and Andrefsky 2001; Thomas et al. 2010). In total, only 

143 quartzite flakes (4 percent of total) and three non-quartzite flakes (less than 2 percent 

of total) are larger than 2.5 cm in maximum length. Of these flakes, only 17 quartzite, one 

CCS and one basalt flake displayed evidence of use-wear. The majority of usable 

quartzite flakes retained no evidence of use or retouch. However, the coarse grain 

structure of quartzite flakes makes it difficult to visually identify minor retouch and use-

wear (Toll 1978). 
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Table 6-3.  Complete flake size descriptive statistics. 

 
Material type Variable Mean Variance SD Min Max 

Quartzite Complete flake 

weight (g) 

.81 6.28 2.51 < .01 38.7 

Non-quartzite .33 1.16 1.08 < .01 6.3 

Quartzite Complete flake 

max. length (mm) 

14.30 122.18 11.05 2.9 126.1 

Non-quartzite 9.67 49.88 7.06 .7 36.9 

Quartzite Complete flake 

max. thickness (mm) 

2.77 6.51 2.55 .5 25.8 

Non-quartzite 1.78 1.35 1.16 .3 6.1 

Quartzite Ratio max. length : 

thickness 

6.06 11.97 3.46 .9 66.4 

Non-quartzite 6.25 8.50 2.92 .8 15.0 

Note: Complete flakes used in this analysis total 509 quartzite and 35 non-quartzite flakes. 

 

 

 

 Patterson (1978, 1982, 1990) argued that size-graded flake counts can be used to 

discern bifacial reduction from core-flake reduction. According to Patterson’s model, 

lithic assemblages generated by bifacial reduction produces an exponential decay curve 

when graphed. Additionally, when the size-grade results are plotted on a logarithmic 

scale it forms a characteristic straight-line. Non-bifacial reduction processes (e.g., core-

flake, bipolar reduction, or mixed assemblages) produce irregular patterns (Figures 6-1 

and 6-2). According to Patterson (1990), this pattern holds constant regardless of the 

number of bifacial reduction events contributing to the debitage and for each stage of 

biface reduction. 

Experimental tests and reviews of Patterson’s log-linear model (Gunn et al. 1976; 

Henry et al. 1976; Larson 2004; Newcomer 1971; Patterson and Sollberger 1978; Stahle 

and Dunn 1983) continued to identify this regular flake size distribution pattern even with 

different numbers and techniques of size grading an assemblage. Despite the potential 

problems with this methodology, most agree that assemblages produced primarily  
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Notes: Size grades: 1 (10-15 mm), 2 (15-20 mm), 3 (20-25 mm), 4 (25-30 mm), 5 (30-35 mm), 6 

(35-40 mm), 7 (40-50 mm), 8 (50-60 mm), 9 (60-70 mm) and 10 (greater than 70 mm). 

 

Figure 6-1. Experimental size-graded flake count percentage results  

for core-flake and bifacial reduction, based on Patterson (1990). 

 

 

 

 

            Note: Size grades begin at 5-10 mm and increase in 5 mm increments. 

 

Figure 6-2. Experimental size-graded bifacial reduction flake counts 

plotted on a logarithmic scale, based on Patterson (1990). 
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through bifacial reduction exhibit this characteristic exponential curve and logarithmic 

scale straight-line (e.g., Carr and Bradbury 2004; Stahle and Dunn 1983). 

For this project, I used the linear measurement of maximum individual flake 

length to divide the debitage assemblage into 5 mm size grades beginning at 5 mm. When 

the size-grade proportions are graphed by material type, all distributions approximate 

exponential decay curves (Figures 6-3 and 6-4). When quartzite and all non-quartzite 

size-grade count proportions are graphed on a logarithmic scale, both produced nearly 

straight-lines, indicating prehistoric 5GN1.2 occupants predominately employed bifacial 

reduction.  

 

 
 Note: Size grades begin at 5-10 mm and increase in 5 mm increments. 

 

Figure 6-3. Size-grade flake count results graph by material type. 
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 Note: Size grades begin at 5-10 mm and increase in 5 mm increments. 

 

Figure 6-4. Size-grade flake count results plotted on a logarithmic scale. 

 

 

 

Flake Completeness (Interpretation-Free Typology) 

 

 Analysts categorized each flake according to the Sullivan and Rozen (1985) flake 

typology (SRT). Sullivan and Rozen (1985:759) developed the “interpretation free” 

typology that places individual specimens into four distinct debitage categories based on 

flake completeness: complete, broken, flake fragment and debris. Complete flakes retain 

a discernible interior surface, a point of applied force and intact margins. Broken flakes 

have a discernible interior surface, a point of applied force, and broken margins. Flake 

fragments exhibit a discernible interior surface without a point of applied force. Debris 

consists of shatter without a discernible interior surface (Sullivan and Rozen 1985).  

Table 6-4 presents the results of this analysis differentiated by quartzite and non-

quartzite flakes. Flake completeness proportions of quartzite and non-quartzite are 
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statistically different (
2

.05 = 67.84; df = 3; two-tailed p = < .0001), but both maintain 

high proportions of flake fragments and low proportions of complete flakes. Bifacial 

reduction produces thinner and more fragile flakes than core-flake reduction. Therefore, 

according to Sullivan and Rozen (1985), bifacial reduction should generate fewer 

complete flakes and more flake fragments. Following Sullivan and Rozen (1985), these 

data suggest that the debitage assemblage represents bifacial reduction as the primary 

tool-production trajectory for both quartzite and non-quartzite materials.  

 

 

Table 6-4.  Quartzite and non-quartzite SRT flake type proportions. 

 

Flake Type 
Quartzite 

(n = 3385) 
Non-Quartzite 

(n = 161) 
Z-score 

Two-tailed  

p value 

Complete .150 .217 -2.300      .021        

Broken .143 .149  -.227      .821 

Fragment .672 .478  5.075   < .001 

Debris .352 .155 -7.540   < .001 

 

 

 

Sullivan and Rozen (1985) identified four technological groups (IA, IB1, IB2, and 

II) based on analyzed archaeological lithic assemblages. Technological Group IA 

represents un-intensive core reduction identified by a high proportion of cores (14.7 

percent) and complete flakes (53.4 percent). Groups IB1 and IB2 debitage results from a 

mixture of core reduction and tool manufacture. IB2 debitage is distinguished by a very 

high percentage of debris (23.0 percent), and according to Sullivan and Rozen (1985), 

signifies late-stage and exhausted core reduction. The debitage characteristics of 
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Technological Group II reflect tool manufacturing byproducts with a low percentage of 

cores (.6 percent) and complete flakes (21.0 percent).  

Using Sullivan and Rozen’s (1985) technological groups as a continuum model, 

both the quartzite and non-quartzite flake type proportions recovered from 5GN1.2 

suggest intensive core reduction (Group IB2) and/or bifacial tool production (Group II; 

Figure 6-5. Further, non-quartzite debitage exhibit a higher proportion of debris, 

suggesting a closer connection with Technological Group II, identified as late-stage 

intensive bifacial reduction. 

 

 
 

Figure 6-5. Proportion comparison bar graph between SRT technological group 

expectations and site 5GN1.2 quartzite (Qzt) and non-quartzite (Non-Qzt) flakes.  

 

 

 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

IA IB1 IB2 II Qzt Non-Qzt 

Debris 

Fragment 

Broken 

Complete 

            Site 5GN1.2              Sullivan and Rozen (1985:763)  



 

 

 

96 
 

 

 Sullivan and Rozen’s (1985) interpretation-free typology stimulated numerous 

lithic reduction studies to evaluate the model’s predictions (e.g., Baumler and Downum 

1989; Kuijt et al. 1995; Prentiss 1998, 2001). These studies indicated that flake breakage 

patterns are sometimes more variable than originally identified by Sullivan and Rozen. 

The studies also indicated that the observed variability is graded by size and raw material 

type among other parameters. In general, replication experiments have demonstrated 

some usefulness of the typology, sometimes with modification (e.g., Prentiss 1998, 

2001), to identify bifacial versus core-flake reduction when applied in specific contexts 

(Andrefsky 2005).  

Prentiss (1998, 2001) examined experimentally derived debitage assemblages 

size-graded into four categories (extra-large [greater than 64 cm²], large [16 to 64 cm²], 

medium [4 to 16 cm²] and small [.64 to 4 cm²]), and categorized all flakes according to 

the SRT typology with the added category of split flake. The study found that flake type 

proportions vary between size grades in ways not predicted by SRT (Prentiss 1998, 

2001). To incorporate experimental results, Prentiss (2001) developed a modified SRT 

(MRST) that incorporates size grades.  

I used the linear measurement of maximum flake length to size-grade the 5GN1.2 

assemblage to compare the assemblage with the experimental results reported by Prentiss 

(1998). I found that the majority of quartzite and non-quartzite flakes fall within the 

category of small (.64 to 4 cm squared) flake grade size (n = 1742) or smaller (n = 1534). 

Figure 6-6 compares the experimentally derived SRT flake proportions for small size-

grade debitage provided by Prentiss (1998) with those identified at 5GN1.2. Again, site 
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5GN1.2 debitage most closely matches that of prepared core and biface reduction with 

relatively high frequencies of complete flakes and low proportions of split flakes. Further, 

small-sized quartzite flakes nearly match the experimental results generated by Prentiss 

(1998) for bifacial reduction using hard-hammer percussion. Taken together, SRT and 

MSRT analysis results provide strong evidence of bifacial reduction as the principle tool-

reduction trajectory at 5GN1.2 for both quartzite and non-quartzite raw materials.  

 

 

Notes: UPC = unprepared core both hard and soft hammer percussion; PC = prepared core hard and soft 
hammer percussion; BF = biface; HH = hard hammer; SH = soft hammer. 

 

Figure 6-6.  Proportion comparison bar graph between Prentiss’s (1998)  

experimental data and site 5GN1.2 quartzite and non-quartzite flakes.  
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Application Load Typology 

 

 Under the application load typology, lithic analysts classify flakes by reduction 

technique with hard-hammer, soft-hammer and pressure as primary flake types 

(Andrefsky 2005). As previously stated in previous sections of this thesis, bifacial 

reduction can be thought of as a planned and staged process. Earlier stages of bifacial 

reduction, such as cortex removal and the production of an edged biface, can employ hard 

or soft-hammer percussion tools. Later stages, such as edge sharpening and final 

treatments, often require more controllable pressure flaking (Andrefsky 2005).  

No universal method or set of flake attributes are accepted as standard to 

differentiate flakes according to the application load typology (Andrefsky 2005; Cotterell 

and Kamminga 1979; Crabtree 1972). Lithic analysis research does suggest that even 

though soft and hard-hammer reduction produces flakes with attributes that overlap in 

their range of bulb morphology and amount of lipping; in most cases, these 

characteristics can be used to effectively discriminate between the two hammer types 

(Andrefsky 2005). Lithic analysts tend to agree that hard-hammer percussion flakes retain 

pronounced bulbs of force, no lipping and slightly crushed platforms (Andrefsky 2005; 

Odell 1989). Conversely, soft-hammer percussion flakes exhibit a diffuse bulb of force 

and a pronounced lip (Andrefsky 2005; Crabtree 1972; Odell 1989).  

For this lithic analysis project, we categorized each complete and broken flake’s 

bulb of percussion as prominent, semi-prominent or flat. We also coded platform lipping 

as either present or absent. Table 6-5 compares complete and broken quartzite flakes, 

measuring greater than 1 cm in maximum linear dimension, with bulb of percussion and 
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platform lipping attributes. The analysis of quartzite flakes identified 325 hard-hammer 

percussion flakes (lipping absent with either prominent or semi-prominent bulb of 

percussion) and 87 soft-hammer percussion flakes (lipping present with semi-prominent 

or flat bulb of percussion). Only 13 total non-quartzite complete and broken flakes 

measure greater than 1 cm in maximum length and of these flakes, eleven retain attributes 

associated with hard-hammer percussion and two may represent soft-hammer percussion 

flakes.  

 

 

Table 6-5.  Quartzite complete flake bulb of percussion  

and platform lipping attribute results. 

 
Bulb of Percussion Platform Lipping Totals 

 Present Absent  

Prominent 71 102 173 

Semi-prominent 68 223 291 

Flat 19 81 100 

Totals 158 406 564 

 

 

 

Pressure flaking removes flakes or chips by applying force directly to an objective 

piece without percussion striking (Andresfky 2005). Pressure load application directs 

energy to a specific point of applied force, thus increasing accuracy and minimizing flake 

production errors, such as flake step/hinge terminations or objective piece snap fractures 

(Andrefsky 2005). As such, pressure flakes become more common as lithic reduction 

proceeds towards finished products and/or as a result of edge retouch or tool sharpening. 

Experiments in pressure flake production generates small flakes, typically less than about 

1 cm in maximum length (e.g., Ahler 1989; Andrefsky 2005), except with specialized 
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pressure flaking techniques (e.g., Crabtree 1966). Andresfky (2005) noted lithic analysts 

have not generated a universally accepted definition or set of mutually exclusive flake 

characteristics specific for pressure flakes. However, most analysts agree pressure flakes 

can be distinguished from percussion flakes on the basis of general size characteristics 

(pressure flakes are smaller, thinner and weigh less).  

As a result of the debitage analysis for this project, I found that the coarse grain 

structure of the quartzite flakes rendered pressure flake categories impossible to identify 

consistently. For this reason, I am not including a discussion of the results from the 

pressure flake typology. However, since archaeologists typically identify pressure flakes 

using a combination of more objectively derived flake metrics (length, width, and 

platform size) the concept of pressure flake will be addressed in subsequent sections of 

this chapter. 

 

Flake Curvature 

  

Flake longitudinal curvature generally decreases as bifacial reduction approaches 

finished products, such as shaping projectile points (Andrefsky 1986, 2005). However, 

experimental bifacial reduction results presented by Hayden and Hutchings (1989) 

indicated that flakes produced through hard and soft-hammer bifacial reduction maintain 

comparable flake curvature characteristics throughout the reduction process. They also 

noted that flake curvature generally decreases in late bifacial reduction.  

For this project, we recorded flake curvature as curved or flat based on a visual 

inspection of each flake. Of the total number of quartzite flakes (n = 3400), 1242 

appeared curved (36 percent), 2017 flat (60 percent) and 141 indeterminate (4 percent). 
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Non-quartzite flakes total 162 and include 85 curved (52 percent), 52 flat (32 percent) 

and 25 indeterminate (15 percent). Non-quartzite flakes exhibit a statistically significant 

higher proportion (Pearson’s 
2 

= 31.6351; df = 1; two-tailed p < .0001) of curved flakes 

as compared with quartzite flakes. This may indicate non-quartzite flakes represent 

earlier stages of bifacial reduction. However, the smaller sample size and differing 

fracture mechanics between raw material types, quartzite and non-quartzite, may account 

for some of this variation.  

 

 
 

Figure 6-7. Flake curvature results. 
 

 
Flake Platforms 

 

 Flake platform is defined as the surface area of a flake that received the 

application of force to detach it from an objective piece (Andrefsky 2005; Crabtree 

1972). Lithic analysts consider flake platforms as a key attribute of debitage and employ 

a host of different platform typologies and measurements in individual flake attribute 

analysis research (Andrefsky 2005). As bifacial reduction progresses and a piece 
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becomes smaller and thinner, the risk of platform failure increases. As a result, knappers 

prepared platforms by grinding or by creating small platform flakes or chips. Lithic 

analysts call these small flakes platform facets (Andrefsky 2005). By counting the 

number of facets on flake platforms on both experimental and archaeological debitage 

assemblages, archaeologists have successfully separated bifacial and core-flake reduction 

(e.g., Magne and Pokotylo 1981; Morrow 1984; Shott 1994; Tomka 1989). However, as 

Andrefsky (2005) and Odell (1989) concluded, facet counts are difficult to precisely 

replicate among analysts. As a result, they advocate an ordinal classification of platform 

facet counts.   

For this lithic analysis project, we characterized flake platforms by an ordinal 

measure of facet count (cortical [zero facets], plain [one facet], dihedral [two facets], 

faceted [three or more facets], or crushed) and generated metric measurements of 

platform width and thickness. This approach is based on the methodology and definit ions 

suggested by Andrefsky (2005). Results from the typological analysis are presented in 

Table 6-6 and Figure 6-8. 

 

 

Table 6-6.  Flake platform type count results. 

 

Material Cortical Plain Dihedral Faceted Crushed 

Quartzite 61 237 29 602 44 

Non-Qzt 3 9 4 40 2 
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Figure 6-8.  Flake platform type count proportions bar chart. 

 

 

 Both quartzite and non-quartzite flakes exhibit a high proportion of faceted 

platforms (over 60 percent) and low proportions of plain platform types (24 percent for 

quartzite and 16 percent for non-quartzite). The greater proportion of quartzite plain 

platforms may indicate an earlier stage reduction signature of local quartzite materials 

from 5GN1. Additionally, cortical and crushed platform proportions are low indicating 

later stage reduction and limited use of hard-hammer percussion techniques that more 

often crush platforms (Andrefsky 2005). 

 We also recorded flake platform condition (ground or nibbled, worn or 

unmodified/un-impacted) for each flake. The results of this analysis are presented in 

Table 6-7 and Figure 6-9. Both quartzite and non-quartzite flakes exhibit a high 

proportion of ground/nibbled flake platforms, indicating time investment in platform 

preparation. Again, greater investment in platform preparation indicates later stages of 

lithic reduction expected with smaller and thinner pieces. Non-quartzite flakes are more 

likely to exhibit evidence of a worn platform edge, suggesting removal from a utilized 
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tool as opposed to platform preparation grinding. 5GN1.2 analysis results are consistent 

with the conclusion that non-quartzite tools represent a curated and maintained tool-kit 

(Andrefsky 2005). 

 

 

Table 6-7.  Flake platform condition at 5GN1.2. 

 

Material Ground/nibbled Worn Unmodified 

Quartzite 347 45 514 

CCS 19 7 29 

Totals 336 52 543 

Note: Quartzite and non-quartzite flake platform condition attribute proportions  

are statistically different (Pearson’s 2 = 6.11; df = 2; two-tailed p < .047). 
 

 

 
 

Figure 6-9.  Platform condition bar graph comparing quartzite to non-quartzite flakes. 

 

 

 

 Experimentally produced flakes exhibit a positive and predictable relationship 

between platform dimensions, flake dimensions, exterior platform angle and the 

necessary percussive force required to initiate a fracture (Dibble and Rezek 2009; Nonaka 

et al. 2010). In other words, the removal of larger flakes requires more energy and larger 

platforms. Flake platform metric measurements indicate that quartzite flake platforms are 
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on average slightly wider, deeper and more variable than non-quartzite flakes at 5GN1.2 

(platform area; Mann-Whitney U test, z = -3.624, p < .001 [Table 6-8]). Again, these data 

indicate greater range in flake size and earlier represented stages of reduction for 

quartzite debitage. 

 

 

Table 6-8. Flake platform size descriptive statistics. 

 
Material Variable n Mean Variance SD Min Max 

Quartzite 
Platform width 

919 6.38 15.34 3.92 .9 39.7 

Non-quartzite 50 4.54 3.52 1.89 1.6 9.9 

Quartzite 
Platform depth 

919 2.13 2.51 1.59 .1 17.8 

Non-quartzite 50 1.42 .91 .96 .3 4.7 

Quartzite Platform area 

(width times depth) 

919 18.37 1371.68 37.07 .46 706.7 

Non-quartzite 50 7.66 65.88 8.11 .6 36.6 

   Note: Both quartzite and non-quartzite flake platform area data are not normally distributed          

     (Kolmogorov-Smirnov test, p < .001; p = .006, respectively). 

 

 

 

Dorsal scars 

 

The number of dorsal flake scars generally increases through the reduction 

sequence (e.g., Andrefsky 2005; Magne 1985; Magne and Pokotylo 1981). Odell (1989) 

suggested dorsal flake scars only include scars with discernible flake attributes (e.g., 

point of applied force, negative bulb of percussion and terminations) that are separated by 

distinct dorsal ridges. Although this definition removes the majority of scars resulting 

from edge damage, platform preparation, flake breaks, or ridge scars, dorsal flake scar 

counts are known to be difficult to precisely replicate among lithic analysts (Andrefsky 

2005; Shott 1994). For this reason, analysts typically employ an ordinal measure of flake 

dorsal scar count (e.g., Andrefsky 2005; Magne 1985). 
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 For this flake attribute, we visually counted dorsal flake scars on each flake based 

on the definition provided by Odell (1989). Because flake completeness complicates the 

relationship between dorsal flake scar count, and inferred reduction stage, the following 

tables and figures presented in this section include only complete or broken flakes (Table 

6-9; Figure 6-10). Mauldin and Amick (1989) found that flake size also influences dorsal 

flake scar count, however, the vast majority of flakes recovered from 5GN1.2 fit within 

the same size grade. As such, the entire assemblage is considered in the following 

analysis of dorsal flake scar counts. 

 

 

Table 6-9. Dorsal flake scar counts by material type. 

 
Dorsal Scar Count Quartzite Non-Quartzite 

Cortical     7   1 

1 214   6 

2 352 16 

3 253 17 

4 + 114 14 

 

 

 
Figure 6-10. Dorsal flake scar count proportions by material type. 
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Experimental reduction results presented by Magne (1985) indicated that the 

number of dorsal scars increases from an average of one dorsal scar per flake to more 

than three scars over the reduction sequence. Subsequent reduction experiments 

conducted by Mauldin and Amick (1989) demonstrated that early stages in the reduction 

sequence (from nodule to bifacial preform) produced on average less than three dorsal 

scars per flake, while later reduction stages (blank to finished tool) produce greater than 

three dorsal scars per flake. These experimental results when compared with 5GN1.2 

debitage suggest that both quartzite and non-quartzite flakes reflect later stages of bifacial 

reduction and final tool production. Non-quartzite flakes exhibit roughly even dorsal 

flake scar count proportions (between about 27 and 32 percent) between the categories of 

two, three and four or greater flake scar counts as compared with quartzite flakes. 

Quartzite flakes exhibit a spike in the proportion of two flake scars (about 37 percent) 

that suggests a greater proportion of bifacial blank production debitage (Mauldin and 

Amick 1989). 

 

Debitage Analysis Results Summary 

The lithic raw materials represented within site 5GN1.2 chipped-stone assemblage 

are overwhelmingly dominated by quartzite (over 95 percent). Local cobble and bedrock 

sources of quartzite are readily available within a few hundred meters of the rockshelter. 

Based on the dense accumulations of quartzite flakes within these deposits, Late 

Prehistoric site occupants likely procured and reduced local Junction Creek formation 

quartzite at the rockshelter. The very low proportion of quartzite flakes with any cortical 
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surface material (about six percent) provides evidence of late stage reduction and 

possibly that prehistoric occupants preferentially selected local bedrock quartzite sources. 

The high proportion of gray, white and tan colored quartzite flakes (over 82 percent) may 

indicate a planned lithic procurement strategy focused on acquiring higher quality 

quartzite for bifacial reduction. 

Non-quartzite raw materials represent less than five percent of the chipped-stone 

assemblage. Although many non-quartzite raw material sources occur within the UGB, 

no known sources occur within a typical daily hunter-gatherer foraging radius of less than 

10 km. Therefore, these materials likely represent non-local raw materials carried to the 

site from some distance. On average, metric measurements indicate that non-quartzite 

flakes are on average shorter, thinner and less variable than quartzite flakes. Again, this 

suggests non-quartzite flakes represent raw materials transported greater distances (Beck 

2008; Beck et al. 2002; Newman 1994). 

To identify tool-production trajectories this research employs three fundamentally 

different debitage analysis interpretive methods: SRT flake completeness typology 

(Sullivan and Rozen 1985), Patterson’s size-graded log-linear model (1990) and flake 

platform attributes. All three methods identified bifacial reduction as the primary tool-

production trajectory for quartzite and non-quartzite debitage at this site. As explained in 

Chapter 2, lithic analysts view the production of a finished biface as a planned and staged 

process (e.g., Andrefsky 2005). Each bifacial reduction stage produces flakes that retain 

unique and identifiable characteristics. Generally, as bifacial reduction proceeds from 

blank to finished forms, the amount of cortex on the dorsal surface decreases, dorsal flake 
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scars increase, platform preparation increases and flakes become thinner and smaller 

(Andrefsky 2005). For the purposes of this project, four primary flake attributes (cortex, 

platforms, dorsal scar counts and flake metrics) provide the most meaningful evidence of 

represented bifacial reduction stages.  

The vast majority (over 92 percent) of both quartzite and non-quartzite flakes 

retain no cortex on the dorsal surface and no cortex on flake platforms. Typically, quarry 

site debitage assemblages include relatively large numbers of flakes with cortex 

representing early stage reduction. At 5GN1.2 this is not the case. The low proportion of 

cortex on quartzite indicates later-stage reduction of interior lithic material and possibly 

preferential reduction of bedrock raw materials (e.g., Amick et al. 1988; Magne and 

Pokotylo 1981). Alternatively, the lack of cortex may indicate that initial reduction 

occurred away from the rockshelter presumably near outcrops or cobble sources. 

Both quartzite and non-quartzite flakes exhibit a high proportion of faceted 

platforms (over 60 percent), relatively low proportions of plain platform types (24 

percent for quartzite and 16 percent for non-quartzite) and few crushed platforms. Both 

quartzite and non-quartzite flakes also exhibit a high proportion of ground/nibbled flake 

platforms, indicating time investment in platform preparation. Non-quartzite flakes are 

more likely to exhibit evidence of a worn platform edge, suggesting removal from a 

utilized tool. Both quartzite and non-quartzite flakes exhibit on average greater than three 

dorsal flake scars, indicating late-stage bifacial reduction as the dominant reduction stage 

(Magne 1985; Mauldin and Amick 1989). Taken together, these characteristics suggest 

quartzite flakes represent all stages of bifacial lithic reduction, from initial bifacial edging 
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to finished tool production. Conversely, non-quartzite raw flakes represent only late-stage 

bifacial reduction probably representing tool maintenance debitage. 

These debitage analysis results present a consistent account of the organization of 

Late Prehistoric lithic reduction activities. During the Late Prehistoric, occupants of site 

5GN1.2 procured locally available quartzite and bifacially reduced those materials. These 

occupants arrived at the site with a curated biface dominated toolkit that included non-

quartzite tools. While at 5GN1.2, these non-quartzite bifacial tools were maintained. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

 

 The purpose of this thesis is to use archaeological research and particularly 

debitage analysis at site 5GN1.2 to evaluate Stiger’s Late Prehistoric hypothesis. Stiger 

(2001) proposed that during the Late Prehistoric, aboriginal occupations of the UGB were 

limited to short-term and long-range logistical big-game, particularly bison, hunting 

forays originating from base camps located outside of the basin. Since Stiger’s hypothesis 

is based on the forager-collector continuum model, associated archaeological test 

implications include settlement mobility, site types, features, subsistence remains and the 

organization of technology (see Binford 1980; Metcalf and Black 1997; Stiger 2001). A 

summary of these basic test implications is provided in Table 7-1. 

 

 

Table 7-1. Test implications of Stiger’s Late Prehistoric hypothesis. 

Characteristic Expectations 

Mobility pattern -Logistically mobile collectors on task-specific forays 

Site types -Location or station (e.g., Binford 1980; Metcalf and Black 1997) 

but no residential sites (see Stiger 2001). 

Subsistence -No evidence of floral or small-game procurement or processing 

-Big-game butchering and processing  

Lithic tools -Assemblages dominated by projectile points and butchering tools 

-Low tool diversity and high tool specificity 

-No ground stone 

Organization of technology -Curated biface dominated tool-kit made of non-local materials 

-Embedded procurement of local quartzite raw materials 

-Debitage reflects tool maintenance of curated bifacial tools 

 

 

Test excavations at 5GN1.2 revealed intact archaeological deposits reflecting 

aboriginal occupation during the Late Prehistoric. Four subsurface hearth features with 
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radiocarbon dates reflect at least three site occupation episodes, one older occupation at 

about 3000 B.P. and two occurring between about 1550 and 1300 B.P. Taken together, 

these radiocarbon dates suggest the site was occupied during the Late Prehistoric but 

prior to Ute occupations (Reed and Metcalf 1999). Unfortunately, outside of the hearth 

features within the rockshelter, the loose sandy and shallowly buried deposits may have 

been mixed by bioturbation and other processes. These multiple occupations span at least 

1500 years (3000-1500 rcybp) and are contained within this single deposit, but do appear 

to be confined to the Late Prehistoric. For these reasons, the archaeological materials at 

5GN1.2 present an opportunity to test Stiger’s hypothesis. 

The 2010 test excavations at 5GN1.2 processed a total of about .6 m³ of site 

matrix, yet documented a dense accumulation of cultural material including hearths, 

debitage, chipped-stone tools, ground stone, subsistence remains and FAR. The four 

hearth features include an undated, surface-exposed, half-circle of FAR measuring about 

75 cm in diameter (Feature 1), a subsurface scatter of FAR fragments also measuring 

about 75 cm in diameter (Feature 2) and two features constructed with heavily burnt and 

stacked large (10 to 20 cm maximum dimension) sandstone FAR (Features 3 and 4). 

Aerated flotation processing of 17 liters of feature fill produced 320 seeds and one burnt 

Rocky Mountain juniper berry. Of these seeds, this research tentatively identified Indian 

rice grass (n = 34), Amaranthus spp. (n = 11), Chenopodium spp. (n = 185), Opuntia spp. 

(n = 1), Ground cherry (n = 9) and Wood’s rose (n = 2). The excavation and flotation also 

recovered highly fragmented and unidentifiable faunal remains in association with these 

features, totaling 1355 unidentifiable bone fragments and a single bird bone bead. As 
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explained in Chapter 5, these faunal remains are consistent with small-game and exclude 

big-game, based on long bone fragment size characteristics. 

The excavation recovered a diverse collection of chipped-stone and ground stone 

tools, including five manos, one slab metate, seven quartzite bifaces or biface fragments, 

four non-diagnostic projectile point fragments, a well-worn scraper, a tested cobble or 

hammer stone, an amorphous core and 19 utilized flakes. Although, the assemblage 

contained 3565 flakes, only 143 quartzite and three non-quartzite flakes are larger than an 

estimated minimum useable length of 2.5 cm (e.g., Thomas et al. 2010; Rasic and 

Andrefsky 2001). Of the debitage assemblage, use-wear or edge retouch was identified 

on 17 quartzite and two non-quartzite flakes (less than one percent of recovered 

debitage).  

Individual flake attribute analysis of the entire 3565 flake assemblage provides 

evidence that at 5GN1.2 Late Prehistoric lithic reduction activities were dominated by 

bifacial tool production of mostly locally procured quartzite but also a small amount of 

non-local raw materials. To identify tool-production trajectories this research employed 

three fundamentally different debitage analysis interpretive methods: SRT/MRST flake 

completeness typologies (Prentiss 1998, 2001; Sullivan and Rozen 1985), Patterson’s 

(1990) size-graded log-linear model, and flake platform attributes. All three methods 

identified bifacial reduction as the primary tool-production trajectory for quartzite and 

non-quartzite debitage at this site. Additionally, the quartzite debitage possibly represent 

the entire bifacial reduction sequence, minus initial edging and cortex removal that may 
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have occurred elsewhere. Non-quartzite flakes are dominated by late-stage bifacial 

reduction, probably representing tool maintenance debitage. 

The artifact and feature assemblage at 5GN1.2 is not consistent with specialized 

procurement of any particular subsistence resource. Nonetheless, dense accumulations of 

quartzite debitage and the close proximity of sources of quartzite raw material may 

indicate an emphasis on lithic procurement bifacial tool production. Prehistoric site 

occupants almost exclusively focused on the production of formal bifacial tools made 

from quartzite raw material. Archaeological research generally considers formal and 

curated technologies (e.g., bifacial technology) as an adaptation to the needs of highly 

mobile hunter-gatherers (see Gramly 1980; Kelly 1988; Thomas 2012). The benefits of 

bifacial technology principally rests in that bifaces can serve many functions, can be 

reshaped into a number of forms and reduction produces minimal material waste (e.g., 

Cowan 1999; Kelly 1988). The preponderance of bifacial technology at 5GN1.2 suggests 

Late Prehistoric site occupants may have geared up on bifaces in anticipation of an 

extended stay, perhaps seasonal, in the mountainous environments of the UGB (see 

Thomas 2012).  

Archaeological evidence effectively rules out this site as a specialized location or 

station site (Binford 1980; Metcalf and Black 1997). The site contains all the hallmarks 

of a residential site, including constructed hearths, rock art, plant processing, small-game 

procurement, high tool diversity, high proportion of locally available lithic raw materials, 

late-stage tool manufacture and tool maintenance debitage. These data support the view 

that site 5GN1.2 served as a residential site, possibly a short-term base camp, during the 
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Late Prehistoric. The Late Prehistoric occupation of site 5GN1.2 represents a more 

diverse adaptive pattern than envisioned by Stiger’s (2001) Late Prehistoric hypothesis. 

Stiger’s interpretation of the Late Prehistoric may accurately describe occupations made 

by some groups of hunter-gatherers within the UGB; however, at 5GN1.2 this is simply 

not the case. As a single site archaeological case study, characterizing land use or 

settlement mobility patterns for the region or for the Late Prehistoric is beyond the scope 

of this project. However, this project does provide evidence for several conclusions.  

After 3000 B.P. and prior to the Ute (ca. 1300 B.P. [Reed and Metcalf 1999]), 

hunter-gatherers residentially occupied 5GN1.2. This site likely served as a residential 

base camp for whole family groups of hunter-gatherers who procured local quartzite raw 

material, small-game and floral resources including small seeds. Site 5GN1.2 contains 

evidence of an organization of technology geared toward bifacial tool production and use. 

Taken together, site 5GN1.2 does not represent a logistical big-game hunting-related site 

as expected within Stiger’s (2001) view of the basin’s cultural history.  

This research on lithic technology represents the first comprehensive debitage 

analysis of a site component from 5GN1.2 or 5GN1. The results and data generated from 

this project can serve as a database for later archaeological research in the UGB. Finally, 

owing to the limited amount of Late Prehistoric archaeological research, particularly 

organization of technology research, this comprehensive analysis of a Late Prehistoric 

chipped-stone assemblage alone provides a meaningful contribution to UGB archaeology.  

Without additional archaeological research within the basin at other Late 

Prehistoric sites, it is unclear whether site 5GN1.2 represents a unique or typical site type 
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for this time period. Therefore, additional archaeological research is sorely needed to 

understand Late Prehistoric settlement-subsistence patterns in the UGB. Only a small 

fraction of the deposits within 5GN1.2 were test excavated and it is highly likely that 

several additional hearth features and associated archaeological materials exist at the site. 

Since the discovery and test excavation of site 5GN1.2, NPS archaeologists working for 

the CURE have identified several more rockshelters above the shores of the Blue Mesa 

Reservoir (Forest Frost, personal communication 2012). Test excavations at these sites 

may prove to be particularly fruitful. 

Archaeological comparisons between site 5GN1.2 and younger Ute sites may 

generate data important in addressing unresolved cultural history questions (Reed and 

Metcalf 1999). For example, this research may address the historicity and timing of the 

proposed initial ancestral Ute migration (e.g., Baker et al. 2008; Reed and Metcalf 1999). 

Furthermore, additional paleoenvironmental research is needed to understand climatic 

changes in the UGB during all periods of prehistory, especially during the last 3000 B.P. 

Existing paleoenvironmental data, albeit fragmentary and coarse-grained, provides no 

evidence of abrupt climatic shifts at 3000 B.P. (e.g., Emslie et al. 2005; Fall 1997; Reed 

and Metcalf 1999). Still, higher resolution paleoclimatic and environmental research is 

needed to understand past resources and conditions in the UGB.  

 Since the majority of archaeological sites within the UGB consist of quartzite 

dominated surface lithic scatters, continued quartzite sourcing research may prove to be 

beneficial (e.g., Pitblado et al. 2013). While conducting this lithic analysis project, I 

observed a high degree of variability in quartzite raw material characteristics including 
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color and graininess (Seong 2004). Future archaeological research projects employing 

lithic analysis methods would greatly benefit from experimentally produced and analyzed 

quartzite assemblages of raw materials from multiple source locations from the UGB. By 

comparing quartzite fracture mechanics and flake attributes, lithic analysts may generate 

more robust methods and debitage interpretive techniques tailored to these local quartzite 

raw materials.  
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