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INTRODUCTION 

Linear prograITlITling was first developed by George B. Dantzig, 

Marshall Wood, and associates of the U. S. Air Force, in 1947. At 

that tiITle, the Air Force organized a research group under the title of 

project SCOOP (Scientific COITlputation of OptiITluITl PrograITls). This 

project contributed to the developing of a general interindustry ITlodel 

based on the Leontief input-output ITlodel, the A ir Force prograITlITling 

and budgeting probleITl, and the probleITls which involved the relation

shi.p between two-person zerO-SUITl gaITles and linear prograITlITling. 

The result was the forITlal developITlent and application of the linear 

prograITlming ITlodel. This project also developed the slITlplex 

cOITlputational ITlethod for finding the optiITluITl feasible prograITl. Early 

applications of linear prograITlITling were ITlade in the ITlilitary, in 

econoITlics, and in the theory of gaITles. During the last decade, 

however, linear prograITlITling applications have been extended to such 

other fields as ITlanageITlent, engineering, and agriculture. 

A s the application of linear prograITlITling has extended to ITlany 

other fields, Dantzig (1955), Tintner (1955), Beale (1955), Madansky 

(1960), and others have been responsible for the forITlulation and 

developITlent of stochastic linear prograITlITling. The stochastic linear 

prograITlITling problem occurs when SOITle of the coefficients, in the 

objective function and/or in the constraint systeITl of the linear 



pro~ramming model, are subject to random variation. 

In the litera tur~, several me-thods are indieated for forrnulatil'lg 

the linear programming problem with random r~quirements to arrive 

at a solution. Thj:! intention of this study is to review some of these 

methods, and to compare one with another in terms of the optimum 

value of the objective function which results from ea~h method. There 

are three methods that wUl be considE1rfild, The 'first; method is to 

replace the random element with its expected V'a.lue and solve the 

resulting linear programming problem (Hadley, 1964). 

The second method is Dantzig's two - stage Hnear programming 

problem with a random reqQ.irement (Oanbig, 1955). SQ.ppose the 

following linear programming problem is considered:. 

min. (or max.) C'X X ~ 0 

subject to: AX =:; b, 

where C and X are n by 1 vectors, b an m by 1 vector, and 

A an m by n matrix, and C' is C transpose. If vector b is 

random and matrix .A is known, then in the first sta.ge, a decision is 

made on X, the random vector b is observed, and AX is compared 

with b. In the second stage, inaccuracies in the first decision are 

compensated for by a new decision variable Y with some penalty 

cost F. The problem then becomes, 

E min. (or max. ) C'X + F'Y, X ~ 0, Y::= 0, 

subject ~o: AX + BY :;: b, 

2 



where B is an m by 2n matrix with elements ones, minus ones, 

and :zeroes, anq Y is a 2n by 1 vector with elements Y'i and y -i. 

E denotes an expectation. 

In the third method, the constraintI' with random req~irements 

are set to satisfy a given probability level. The problem then il!f to 

find valuefil of the decisi.on variables whi.ch optimize the expeQted 

objective fll;nction without violating the given p:r;'ol;>abtlity meMi\l1"e 

(Charnes aI'ld Cooper, 1962). 

This report surveYEl the Hterature on basic linear progll'am.ming 

af1,d the simplex method of solution, describes random req.uirements, 

and illustrates three methods of solution. Finally, the optimal value 

of the objective function of each method is ~ornpared with the others. 

3 
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LINEAR PROGRAMMING AND ITS SOLUTION METHODS 

DescriEt ion 
i 

Linear programming is concerned with ~he p;J.'oplern of iinQing 

that mixture of decision variable s which opttmizfi!s a lil'lrea:J;' objective 

fu.nction subject to a given system of linea~ restrictipn&!. 

To solve a linear programming problem, the solution to a ~et 

of Siimultaneous linear equations is req\lired. There are vario1,11;j 

cri~eria which can be applied to determine whether one 01," more 

SQluti'ons exh;t to the problem. Suppose there are three lipear equations 

with three decision vadables. If a solution e~ists, ~t will be unique. 

B"t if there are two li~ear equatiotls and three decilSion v~riables, 

then, in. general, there exists either no solutions or an in,fh;lite number 

of solutions. One method of determining a set of solutiOtls is to reduce 

the problem to two equations in two decision variables by letting one 

decision variable equal zero. This would then result in three solutions 

which $atisfy the two equations. Decision variables are restricted to 

be nonnegative. Therefore, in choosing the opti:r;num solution, only 

solutions with nonnegative variables will be considered. 

A mathematical expression of the linear programming problem 

is as follows: 



• 

subject to the constraints 

• • • • it • • • • • • • • 

+ . . t a x 
mn n 

Xl' X:Z ' • • • x n ~ 0 

:c b , 
m 

wheJ,'e the a.. the c. ~n.d the b. ~ 0 are known constants, ilnd the 
1J J 1 

~. are unknown decision variables to be determined. Among $lome 
) 

solutions x. may be negative. but one is only concerned with. the 
J 

solution set with nop.negative x.' 
J 

The first equation represents the objective lunctipn while the 

re~ail'l,ing equations fO:l;"m the constraipt system. 'l'he ~bove ¢'OlI,traiot 

system and objective function can be written more simply by usi.ng 

matrix notation. Let A be the m by p. matrix of a,,! X and C 
1J 

be n by 1 vectors of X. and c. and let b represent the m 1:>y 1 
J J 

right.,.hand s~de vector of b.. Then the above problem may be written 
1 

as follows: 

min. (or max.) Z = C'X (1 ) 

subject to: Ax :: b (Z) 

x ~ 0 (3 ) 



.. 

Formqla,tion of the problem 

In practic:al applications of line;a.r programm.ing, some problems 

are complex and difficult to expre ss in ~unctiona,l forms. H;owever, it 

is possible to define certa.in pr~ncipal pa:rts of the system which define 

the separate steps fOr formulating the linear prQ~ramming problem 

(Daq.t:?;ig, 1963). The procedure is ~s follows. 

The first step is to defipe the dedsion vadables and write the 

constraint system in terms of the decision variables. 

The second step is to write the objective f~nction in terms of 

the decision vadables. This function may either be l'X1-aximb;ed or 

m.inimized. 

The third step is to determine the coef£i.cient~ of the c;Q~;$-j;r.int 
":;;:, 

system, i. e., the a... Suppose a produ~tion model is COllsidered in 
tJ 

w'hich the decision variables x. represent dUferent types of products, 
J 

and b. the total amount of ith resource ~vai1able. Then a.. is the 
l ~ 

6 

amount of ith resource required to produce one unit of the jth product. 

The fourth step is to write the constraint system so t}iat the sum 

of every reSOUrce which is used for the product plus the relilource s that 

are left over equal the total available reSOurceS. After these steps 

are followed and the nonnegativity restriction is satisfied, the problem 

can be expressed in mathemati~al form. 



801ution13 a~~ the $implex mfi!thod 
i II 

Lineal" pro~l"amming solutions C;:Qn$ist t;)£ sets of valuelll for th~ 

decision variables which sa.t~sfy m simultap,eoul5 Hnear eqq.a~ionl!! in 

n variables where m < n. Using the matrix form giv~n in 

Equations 2 and 3, the following three types of ~p~utions caJ;'l he 

identiHed (Galils, 1964). 

Fea$ible solution- -an n eomponent c-ol1,;unn vector X that 

satiS£i~s Equations Z aJ;ld 3 or a set of speeitic;: values. of the f?, 

vilriables, which are nonnegative, and which ~imultaneoul!lly sa~isfy 

the m linear equations. 

Basic feasible solution- -a feasible soh.;ltion ~hat h~s mc;> more 

than m positive components. 

Optimal so~ution- ... either a feasible solution or a ba.sic- fea.sible 

s~luticm that also optimiZiel5 the value of the linear objective function. 

1:0. the linear programming problem a feasihle solution is sought 

which opti:r:n.i~es the pbjective function, But the most liiignifical'lt 

prop,rty of the set of ~easible solutions is that it forms a convex set 

(GaslS, 1964). Since the convex nature pf tMs set is important the 

following description is included. 

A SS1,lme that Xl aJ;ld Xz are two arbitrafY feas\ble solutions 

such that AX 1 :; b, and AXl ;!:l b. Let ;X be any convex com

binationo! Xl and Xl' Le., X = a1x 1 +a2x Z' where aI' o,z ~ 0, 

and °1 +0.2 = 1, Then,AX;:; A(a. 1 ;Xl+<lZXZ);::; Aalxl+,Aa.~Xl' 

7 



.. 

• 

Uppn the substitution of o.Z :;; 1 • 0. 1 into the above eq~ation, 

.A~ :c 0.1 AX 1 + (1 - 0. 1) AXZ :: Ct.1 b.,. (1 - <l1)b ~ Q • 

Thus X is also a point i:Q the set of feasible eplutiClJ'ls. Since 

X land X2 are any two points in the set of feA-liJible solutioqs, the 

set is a convex set. ThifiJ convex set is formed by the intersection of 

the linear cona~raints given in Equations 2 and 3. The boundarie s of 

8 

thJs set will be sections of the corresponciins hyperplanes, a,nd the 

~onvex ~et will be a region in n-dimensional Euclidian space. lt can 

either be void, a convex polygon, or a convex region which is unbounded 

in some direction. If the set le void, there is no solu~ion to the pJ;"oblem; 

if the set is a conve,x: polygon, tlaere is a finite· number of solutio~s. 

If the convex eet is unbounded, the optimum value of ~he objective 

functi.on ma,y also be unbounded. 1£ the convex set i8 a eOlP1ex polygon, 

the feas~ble solution set is a convex hull (Gasa, 19(4). ~t is, every 

fea·sible solution in the convex set can be represented as a convex 

combina,tion of the extreme feasible solutions in the set. Any extreme 

point of the set of feasible solutions is alsO a basic solution. Further, 

a consideration of these basic feasible soluHone will yield the optimum 

solution. 

A computationi'll scheme which evaluates the extreme point 

sQlutions in terms of the objective function u:rJtil a final stage is 

reached is called the simplex method. While this method searches 

only the extreme point solutions, the final etage ehows: (a) that a 
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finite optimal solution is found, (b) that an unbounded solution is 

pos sibly ide;ptified, 0]," (c) that the solution o~ the problem is not 

feasible. The first step of the simplex method is tq start with a basis 

(a set of vectors which span the vector space and a~e independe.Qt) that 

yi/illds a bas-ic feasible solution. The next iteration mOves on to a new 

ba!$is liI-ssodated with a better ba'sic feasible solution by way of replacing 

one of the present basis vectorlS with a nonbasis vector. The reason 

fOf selecting this nonbasis vector is its potential cOJ;'l,tribu.tion to the 

improvement of the objective function, whiCh can be determined before

hand. On the other hand, the present basis vectol; eelected to be 

replac;(!!d ie determined according to a rule which insures the continued 

feasibility of the pew solution. Once the new pasis is constructed, it 

forms the new starting point for repeating the same process to 

deterrq,ine a better basi-c feasible solution. This continu.es until the 

final stage is reached. 

The rule for selecting a vector to be replaced and the method fol' 

eva~uating the vectors not currently in the ba~is is discq,sl;!ed below 

(Gass, 1964). Consider the linear programming problem of 

Equations 2 and 3. Suppose there is an extreme P9iQ.t solution 

X :;: (xl' x2 , .•• , "'m' 0, •.• , 0) in terms of m cplumn vectors 

out of n odginal colur;nn vectors of matrix A. Then there are In 

linearly independent vee-~~~, 

(4:) 



all all aIm. 

aZI a ZZ azm. 

In this equation PI c: Pz :I!: P -I . . -
m. 

a 
ml i!lr m2 

a mrp 

and ~ll Xj :t: O. Sinee PI' PZ ' ... Pm are linearly inqependent, 

they form a basis in m·dimensional VCi!lC~Or IIlpace. Thereiore, every 

v~ctor in n given ve~tol's can be expr~ssed al\l a linear combination 

q£tbese m vectors as follows! 

m 

I: .:x:'J' Pi = p. 
i== J '" J 

(5 ) 

j = 1, . , " o. 

Suppose there is some vector, Pmtl which is not in the basis, and 

thil:;l vectpr has at lea!;lt one eleme:o.t ~i +1 > 0 ip. the expression, . ,m 

Let e be any number, and multiply Equation 6 by e and subtract the 

result fro!l;1 Equatior). 4 then, 

t e P +1 ;: b m 0 
(7) 

Now if values are auigned to xi, mtl' an infinite number of solutions 

result. Mowever, the optimal solution must be a baaic feasible 

solutioll,i. e., it mUl;lt contain or).ly m. ele~ents. 

10 
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This means that one of the basis vectors PI' PZ ' .. Pm must 

equal ~ero. Which p. will be set to zero depends upon the nonnegative 
J 

valu.e of x. +1 
1, m 

If all x. 1 = 0, then all the p. will be positive 
1, m+ J 

anq the same solution as Equation 4 is obtained. As x. + 1 increases, 
1,m 

then (x. - x. 1) increases or decrease s dependil'lg on whether 9 is 
1 1, m+ 

negative or positive. In the case where e is positive, the minimal 

x. +1 which will make some (x. - ax. +1) zero must be determined. 
1/ In 1 1, m 

If it is assumed that this occurs for i = k, then 8 
o 

= 
~ 

x 
k,m+l 

By 

S\,lbstituting e i,p Equation 7, there is a new ba~ic feasible solution, 
o 

x . .,. 9 x. +1' and e, in terms of a new basis vector, PI' PZ' 
1 0 1, m 0 

., Pk - l , Pk+I' . , , , Pm' Pro+I ' where i ;: 1, 2, ... , k - 1, 

k + 1, ... , rn+I. This, then, shows the rule for obtaining a new basic 

feasible solution by the inclusion of the vector Pm+l in place of a 

current vector Pk selected to maintain teas ibility of the solution. 

Now consider the method for evaluating nonbasis vectors to 

determine whether their inclusion in the basis would improve the 

objective function, and if so, by how much. In the above discussion, 

an extrer;ne point solution X :;: (xl' x z' .. ., x ,0, ... , O)was 
m 

assumed. If the objective function (Equation 1) is evaluated at this 

point, then 

Further, assume tlf} Pj is the new basis vector. Tl1e new value of 

eo' denoted 8~, .. ~9-n be determined by the rule discus sed above. The 
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values of th~ new basi.s variables b,come x. ~ a ' x.. and e'. The 
~ 0 1J 0 

new objective {unction l;>eco',tTlEls 

Z' :;:< c(x: 1 - e 'x 1.) + c2 (X., ~ a 'x2 .) + ... + c (x - a 'x . ) + c. a ' 
Q J w 0 J In m 0 mJ J 0 

= z-e'(cl~1.+c2X2'+'" +1: x . -c.) 
o J J In mJ J 

1£ the objectiv~ function is to be maximizeq, im.provement of the 

objective function occurs o:nly when Z' > 2. This implies that 

a ' (Z ... c.) rrl.\lst be negative. But a' cannot be negative if feasibility 
o J J <;> 0 

is maintained. 'Iherefore, (Z. ~ G.) has to be negative to make 
J J 

9' (Z. - a.) negative. This means that if Z is to be maximized, the 
o J J 

incoming vector mqst be selected from those p. whose (Z. - c.) is 
J J J 

negative. On the other hand, if the objective function is to be 

minimized, the ind~cation of improvement is Z' < Z. This then 

implies ~hat a' (Z." c.) m1,lE;lt be posiHve. In order for a' (Z. - c,) to 
o ~ J 0 J J 

be po~it~ve, (Z ... c.) mUI;;Jt be positive. If Z is to be minimized, the 
J J 

incoming vector must be selected from those p. whose (Z. - c.) is 
J J J 

positive. With these pl'ocedures, one continues to change the basis so 

lon~ as {Z. - cJ =:; 0 for ;maxi:J;nizing the objective function, and 
J J 

(4. - c.) ~ 0 for mif.l.imizing the objective function. 
J J 



The dual problem 

Suppose the;re ts a Hnlilar prograrn.rn.ing problem, 

min. Z ::;: C'X 

sq.bject tq: AX ~ b, and X ~ O. 

One wishes to find a minimum feasible solution X. The solution so 
o 

obtained is called the primal soluUon. The d\,lal problem is to find q. 

solution W whioh maximizes the linear function. 

max. g I: Wb 

subject tq: WA $ c, 

where W is a 1 by m vector without the nonnegativity restriction 

on the W.. The following desGribes the relationship betw~en the 
1 

primal an,d dual solutione. 

If either the primal pr the dual pl,"oblem has a finite 
optimum solution, then the other problem p.as a finite 
optimum solutipn, and the extremes of the linear fqnctions 
are equal, i. e. ~ min. Z ;:;: max. g. If either problem has 
an unbounded optimum solution, then the other problem 
has no feasible solutions. (Gass, 1964, p. 84.) 

13 

Thus the linear programming problem is to find a paired vector (X, W) 

which satisfies AX $ b, WA =:; c at the same time. 



D~scription 

LINEAR PROGRAMMING WITH 

RANDOM REQUIREMENTS 

The introduction of ranqom requirements produces a special 

type of linear prpgramming prob\em. It involves uncertain right-hand 

side coefficients in tl;1e conS1traint equations, In the period 1955 -1966, 

various individllals, such as Dantrz;ig (1955), Madan~ky (1960), Tintner 

(1955), Beale (1955). and othE:rs tried to extend linear programming 

methods to deal with the problem of optimizing an objectiv~ function, 

subject to random variation, in the requirements. 

Consider the lineq.r programming problem 

min. (or max.) Z = C'x 

Ax $ b 

x ~ 0 (9) 

If vector b is subject to random variation, the re suiting problem is 

14 

one with a random requirement. Since the Elet of basic vq.riab~es, which 

determines the optimum value of the objective function depends, on the 

values of the coefficient!;! in the constraint equations, the optimum. 

value of the optimum obj ective function become s a function of the random 

variables. Therefore, th~ objective becomes one of optimizing the 

expected value of the objective function (Hadley, 1964). One of the 

basic difficulties of optimizing an objective function of a programming 
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problem with random requirements is that the problem is capable of 

several formulations with different results for each formulation. 

Formulation methods and solutions 
\ , 

When random elements are introdll~ed into the constraints of 

the linear programming problem, the nature of the problem changes. 

However the bas~c linear programming re strietions must still be 

maintained in the problem with random requirement!;!. 

Three basic methods of formulating and 1301vin~ the problems will 

be discussed below. 

The first method replaces the random coefiiciE1nts with their 

expected value. This method provides only· an approximate solution to 

the problem (Dantzig, 1955). Since the elements of th~ right-hand side 

of the constraints are replaced with their expe~ted values, the 

formulation is still an ordinary lineq.r prog;ramming problem. 

min. (or max.) E(Z) :c E(c::'x) 

subject to: Ax = E(b), x ~ 0 (l0) 

Therefore, the solution can be obtained directly from the simplex 

method. The values of the decision variables so obtained will be 

feas ible. 

The second method is Dantzig's two-stage linear programming 

problem with random requirements (Dantzig, 1955). The essential 

nature of this method is that the decision varia1;>les are determined in 

stages. Formulation of this method is as follows. 
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ConsidE;lr a constraint system wUh a random right~hand side 

vector b. 

Ax "" b, and x ;:: O. 

In the first stage, ~he decision maker chooses a p.onnegative X 

arbitrarily, and then observes the random b. Now if Ax is compared 

to the observed b, the equ~lity may not hold. Therefore ip. the second 

stage, a nonnegative variable Y comptfPsates for inaccurades ofthe first 

decision x, but with some penalty cost (D;:l..ntzig, Madansky, 1961). 

This penalty cost is incorporated in the objective function. 

Now consider the ith constraint equation in order to discuss 

the problem in detail and gep.eralize all of the cop.stl'aint equations. 

In the first stage the first constraint equation will be written as 

~ a .. x., denoted by q.. Next, observe a random b.. In the second 
l ~ l 1 1 

stage, compare b i with U c If b. ::s u., thel'l add a nonnegative 
1 1 

varia'Qle, denoted Yi; and if b i ;:: u i ' subtract a nonnegative variable, 

denoted y ., to maintain an equality between b. and U., Since the 
-1 1 1 

choice of y. and y . 
1 -1 

depend on the x. and the random variable b., 
l 1 

the ith constraint can be written as, 

u. + y. - y . ::;: b. 
1 1 -1 1 

(11 ) 

Thus the matrix form of the constraint sy~tem with random b 

can be generalized as follows: 

AX + BY c b, X ;:: 0, Y ;:: 0 . (12 ) 



II [~ 
-1 0 0 

Yl 

OJ 
Y-l 

0 1 -1 
where B = al'l.d Y = . , , . . . 

0 0 o . • -1 Ym 

y -m 

Now consider an objeGtive function which corresponds to the 

above ranoom constraints. In the above discus~ion if b i ~ u. , 
1 

U. 
1 

falls short of the random observation b. and the decision make;!;" must 
1 

make up the shortage with shortage cast, denoted f .; if b. :S \1., U. 
-1 1 1 1 

exceeds the random obs~:rvatiol'). b. and the decision maker must 
1 

accept the exoe s~ cost, denoted ii' Since Y. Glncl y . rep:resent a 
1 -1 

shortage and an excess respectively, these variables with thei.r cost 

coefficients must be added tq the objective fu.nction. ';rherefore the 

objective function cap be written as, 

min. (or max.) E(C'X + :flY), where F = (13) 

f m 
f 
-m 

In this problem it is assumed that for every possible b and x, 

there exists a f~asible solution which will optimize Equation 13. It is 

further assumed that X € K > 0, where K is a convex set (Dantzig, 

Madansky, 1961). The problem, then, is to fip.d X € 1): which 

minimizes Equation 13 t;lubject to Equation l2. Furthermore, assume 

that the random b. are independently and normally distributed with 
1 

2 
the mean !!i and varianoe cr i' From Equation 11, ith second 

17 



.. 

• 

stag~ decision variable can be expressed as iQllQvve: 

Yi = b. .. u., y . = 0 for b. ie u. . 
1 1 .. 1 1 1 

and 

y . :c U ... b., y. :;: 0 for h. !$ U. 
-1 1 ~ 1 1 1 

(15) 

~xpre sseQ in summation notfltion,Equation q p~cGme ~ 

rpin. (01' max.) E(Il c .x. + ~ f. y. + .~ f . 'f ;) . 
j J J ill i 1"1. ~., 

(16) 

for j ..,. 1 ~ Z, 1'1 

i = 1, Z, III 

l'Iesp~crtively. If b ... u. is sUQstituted for y. and u ... b. i, 
1 1 ~ !. ~ 

followiI;\g exprl2f;sio1'l Jiesults: 

r:p.in .. (01' max.)[I:~.x. + E I;f. (1;1 . .,. u.) + E ~f . (~i .. b,)] 
j J J ill 1 1 ",I" 1 

(17) 

SinGe b. was assllmed tQ be normally dist:ributeQ, the ~~pectati~n 
1 

1~ 

for the ith 'express\on of Equation 17 is the evaluat~on of the fp1l9wiq.g 

integral: 

E f. (b. - u.) + E£ . (u. - b.), denoted g(q..). 'I'lV,ln 
1 1 1 -1 1 1 1 

00 U. 

g(ll.) = i. S (b. - u.) p (b') obi + f . S ~ (u ... b'> p (b') OQi 1 1 1. 1 1 -1. 1 1 1 
, U. - C¥l 

1 

00 ~ 

= f. S (b. - u.) P (b. )<;H;i. + i . (\,\. - \.I..) + i . ~ (bi ." U.) db. 
1 1 1 1 1 ..,1 1 1 -1' ~ 1 

U. • 
1 1 



!:: (f. + £ .) 
l -1. 

where p(b.) :::; 
1 

00 

s 
U. 

1 

(b. - u.) p (b.) db. + f . (u. - f.!.) 
1 1 1 1 -1 1 1 

But g{u.) is 9- convex function of u. (Carr ar,td HOWEl, 19(4). 
1 1 

Differentiate the above expression with respec~ to u. to obtain 
1 

dg(u. ) 
00 2 

S 
d g{u.) 

1 
(f. + f .) p (b.) db. + f . and 1. (f. +f ,) p (u.) :::; :::; 

duo 1 -1 1 1 -1. 2 1 -1 1. 
1 u· duo 

1 1 

dg(u. ) 
2 

d g(u.) 

19 

(18 ) 

(19 ) 

Therefore 
1 

duo 
1 

is a nop-decreasing function of u. with 
1 duo 

1. 

~ 
~ 0, 

and hence g(u.) is a cop-vex function of u.. Since g(u.) involves 
1 1 1 

nonlinear te rms, a polygonal approximation technique Cf-Iadley, 1964) 

must be used to linearize the objective function. 

The following approximation procedure is applicable only in the 

case where the functions are continuous and separaple: 

If ° < u. < (3, then select k + 1 points qf u., where u. :::; 0, 
1 1 10 

and u' k is the uppe r 1 imit of u .. 
1 1 

For 

eaeh u ik compute ~. (u· k )· 
1 1 

.6.U ik :::; u ik - u ik - 1 ' and a S d ik S 1. Hence the polygopal 



approxiInation to g.(u.) can pe written as g. (u.) = g'1r 1 + Ag.kd.k , 
1 1 1 1 lL)- - 1 1 

where ~gik = g(uik) - g (uik _1)· Next im.pose the condition that if 

d ik > 0 the n <;l il = 1, fo r t = 1, 2, . . ., k - 1. Then u. can be 
1 

written as, ~. (u.) 
1 1 

= :E~g·k+g·· 
1 10 

Let \k = ~uikdik' so that the upper bound of tik becom.es, 

o ::5 tik ::5 ~uik' then u i :;: ~tik' where, if tik > 0, ti~ = ~uit' for 

~ = 1, 2, ... , k -1. In term.s of t ik , gi (u i ) becom.es, gi (u i ) 

~gik 
::: 4 a ' k tOk + g. , where a.k ::: ~ Since the set t 1. k which 

1 1 10 1 .u.uik 

satisfies l;!.i = ~tik is a convex set with a finite num.ber of extrem.e 

points, any solution can be expressed as a convex com.bination of the 

extrem.e points (HC\.dley, 1964)~ Hence :E tik = ~ x'ik tik and ~i (ui ) 

= :E \k a ik \k + gio' where ~ x'ik = 1 for every i and x'ik ~ 0 for 

every i and k, now g. (u.) replaces g. (uJ and U o = :Ex"k t. k in 
11 11 1 11 

the original problem.. Finally, Equations 12 and 17 becom.e, 

m.in. (or m.ax.) [:E c.x. + ~:E x'°ka'k t' k + :E1o gOl.] . 
j J J ik 1 1 1 

(20) 

subject to: u. - :Ex'.kt'k ::: 0 
1 1 l 

(21 ) 

(22 ) 

for every i and k, 

x. ~ 0, for j = 1, ~, • • ., n. 
J 

This m.ethod increases the num.ber of constraints and variables. 
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lp the third method. th~ coq.straint system with a randpm righk 

hand side m~st s~tisfy spme givEln probability lpvel. This methoQ , 

was first int:roduced by Charl'u:ls and C~oper (1959) fOf c;l~.,.H~g with 

probabilistic conetraints. .A ssume the fonpwin~ linear p!l:'ograp:1fU~ng 

problem: 

min. (or ma~.) C'X' 

s\lbjej:t tOt .AX ~ b, X C: 0, 

where veGto+, b is randow. and each el~rnent c;>f b is independently 

Z 
and normally distributecl with mean I-I-i and (I" i . The liI)t;:ar 

prQgramP'lin~ problem with random b caR then be f~rmplat~d as 

follows: 

min.. (or Wftx.) ~'HC'X) 
" 

(2J) 

su1?je¢t to: prob. (A" :$ b) ~ q, ;x ~ 0 (24) 

:fI~re q is.a vElctor of giv~p. probabtHty le,vels whiqh. I=Orresponds to 

the constraints. Consider now ju~t the ith constraipt: 

prob. 
n 

(2:; 

j=l 
a .. :x;. :$ b.) C: q. 

1J J 1 1 

This means that the ~th constraint would not be satisfied with 

(24a) 

probability (1 - q.) in any adtp.~s~ible choice of the x. vp.lue R • The 
1 - J T 

probability in Equation 24a cal;'l be traP.d01lll1ed hy simple subtraction 

and divisio.n as follQw~: 

P110Q. ( ~ a .. x. :oS b.) = 
j ~J J 1 

p;rob. (
b. -I-'-. 

1 1 
-""""""jr--" C: 

0". 
1 

~a .. x. - 1-1-.) 
• 1J ~ i 1 

0". 
~ 
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• 

Since it is as sumed that b. follows a normal distdbut~on 
1 

b. - fJ.. 
1 1 

r:r. 
1 

is 

the standardized normal variable with m.ean zero and unit va.rianc~. 

Hence EquMion 24a c;an be written c;l.S, 

or 

(
!:a .. x. -~.) 

_ cI> 1J J, i 1 
r:r, 

1 

(
!:a .. x. - fJ..~ 1J J 1. ~ 

(1'. 
1 

z 

~ q. 
1 

(26) 

(2'7 ) 

1 2 
expo (-1/2 Y ) dy. In this equation y is a 

dummy variable. Since q. 
1 

is predetermined, cI> -1 (q.) Gan be eaa~ly 
1 

evaluated from a standard normal table. 
..,1 

Let cI> (qi):C hi' then 

Equation 27 can be traQ.sformed as, 

!:a .. x. ~fJ..-h.(1'. 
lJ J 1 1 1 

(28) 

Thus the problem becorn.el'l a typical linear programming problem, 

min. (or max. ) C'X 

subject to: !:a .. x. ~ fJ.. -h.O'., 
lJ J 1 ~ 1 

x.2t 0, for i = 1, 2, ... , m 
J 

j ::r 1, 2, ., n (29) 

22 
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NUMERICA L EXAMPLES 

In the previous chapter the discussions about the thre~ basic 

methods of fo;rmulating and solving the linear programming proqlem 

with random requirements were restricted to theory. The purpose 

of numerical examples is to illustrate the methqds with simple 

hypothetical problems. Assume the following linear programming 

problem: 

subject to: - 2xl + 1{2 + 3x3 = b 1 

(30) 

where the ~j are the decision variable s, b 1 and b2 are random, 

Further assume that hI and b2 are eGl-ch inde~ende:p.tly and normally 

d istributeq with means, f.l1 ::: 2, f.l2 ::: 4, and var ian~e s, CT 12 ::: 0.25, 

2 
CTZ ::: 2.25. 

Method I 

Since this method replaces the random variable with its expected 

value the problem can be formulated as follows: 

subject to: -2x1 + x 2 + 3x3 = E(b l ) ::: 2 

2xl + 3x2 + 4x3 = E(bZ) ::: 4 



Since the random elem~nts of b 1 and b2 are replaced by the 

constants, it is no differept thaljl an qrdinp,ry lipear programroin~ 

problem. 

(Or ) 

The solution can be obtained as follows: 

- 2x + x :;: 2 
1 2 

2xl + 3x2 :;;: 4 

xl:;: - O. 2 5 , x 2 :;: 1. 5. 

This solution is not fep,sible, since Xl :s; O. 

(b) - 2x + 3x3 :;: 2 
1 

2xl + 4x3 :;: 4 

Xl :;:2/7, x3 :;: 6/7. 

This solution is feasible with the val].:te of the objective function eRual 

to 2.857, but it is not opti1)1.Cl-l. 

This solution is feasible with the value of the objective function equal 

to - O. 4. 

Since the value of the objective function for (c) is less than the 

value of the objective function for (b), the optimum objective value 

is -0.4, with xl:;: 0, x Z :;: 0.8 and x3 :;: 0.4. 

Method II 

Since in this method the penalty costs are to be known, iI' 

f_ 1 , f2' and f_2 must be a/?sumed. If fl :;: 1, f_l :;: 0.5, f2 :;: 0.5, 
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and f = 0.5, the problem can be formqlated as follpws: 
-2 

min. E[x i -2x2 + 3x3 + YI + (I).5Y_ I + 0'~Y2 +- 0.5Y_2] 

subject to: -2x I + x 2 + 3x~ + Y I 

2xI + 3xZ + 4x3 + Y2 

.,.y 
-1 

= b 
1 

Let u l = ,..2~1 + X z + 3x3 , and Uz = ZX l + 3x2 + 4x3' 

If u l ~ b l , then Yl = b l ,.. u l ' and Y-I = 0 

If u l ~ b l , then Y- I = u l - b l , and YI = 0 

If U 2 5 b2 , then Y2 = b 2 - u2 ' ang Y-z = 0 

If u 2 ~ b 2 , then Y -2 = U,2 - b 2 , ang YZ ::; 0 

Since YI , V_I' Y2 , Y-z are functiops of the ralildom. variables b i 

and b 2 respectively, the optimum exp~cted value of the objective 

function can be written as, 

25 

00 u l 

min. xl -2x2 + 3x3 + S (b i -uI)p(bl)dbl + 0.5 i (u l -bI)p(bl)dbl 
u l 

co u2 

+ 0.5 S 
u 

2 

(b2 - uZ ) P (b2 ) db2 + O. 5 S (uZ - b2 ) P (b2 ) db2 • 
_00 

where p(b l ) ::l 
1 

expo 
.JZ; 0.5 

p(b2 ) :!;: 
1 

expo 
..J'2rr . 1.5 

But since, 
U I I (U l -bl)p(bl)db l 0: 

_00 

[ (b -2 J 
-1/2 ~'5) and 

[ (b -4 2J 
-1/2 i.5) . 

00 

(31) 



.. 

u2 

f (uz -b2 )p(b2 )db2 
_00 

the proble:m beco:mes 

00 

~ (u - IJ. ) _ r 
2 2 J 

Uz 

26 

. (32) 

00 

:min. xl - 2x2 + 3x3 + (u1 - 2) + (u2 - 4) + ~. 5 f (b1 - u 1 ) P (b 1 ) dbl 
u 1 

00 

~ o. 

The proble:m is now formulated with nonlinear ter:ms. 

The next task is to lineari;z;e the nonlinear ter:ms by polygonal 

approxi:mation (Hadley, 1964). Since Equations 31 and 32 are: 

functions of u1 and u2 re spectively, Equation 31 is depoted as 

si:mplified as follows: 

By letting K 1 :: 
b - 2 

1 
O. 5 

00 

and hence -~-:: q. 5 db 1 ' 
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00 

g(u l ) = (u l - 2) + I. 5 Su -2 (0. 5K I + 2 - u l ) .J'i'/. 0.5 expo (-1/2 K12) 0.5dK! 

1 -0.5 

00 

= (u 1 -2) + 1.5 S (Z'-u1)..--1.- expo (- 1/2 K12) dK l 
1.11-2 ~ 

'"'Q.5" 

co 

+ 0.75 S Kl 
u 1,,2 

0.5 

Since Kl is a standard normal variable with mean zero and un.it 

variance, if u 1 is l,<nown, the first integral in the above can be 

evaluateq from a sta,.ndard normal table. The second integral in the 

above equation m.ust be evaluated. 

00 

Let f(K 1)::; 0.75 J K -.--L- expo (-1/2 K12) dK 1, a,nd 
u l -2 1 ,.[zTr 
~ 

0.5 

2 
Z = 1/2 K 1 , then dZ = Kl dK 1" 

If f(K 1) is transformed into f (Z), 

00 

f(Z) :: 0.75 SKI 
u -2 

1 
0.5 

00 

= 0.75 S!.(~)2 
2 0.5 

1 
----.... expo ( .. Z) dZ. 
~ 
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Hence, f(Z) 
0.75 --- expo 
~ 

Therefore, 

= (u _ 2) + 0.75 expo 
1 ..J2;r 

00 

+ 1. 5 S (2 -u )--L..-
u -2 1..rz.; 

1 
----,,--

O. 5 

Since the procedure for g(u2 ) is the same as for g(u1 ), the final 

expression for g(u2 ) is given ali/, 

Next select six points in the domain of u 1 and u2 and then 

g(u 1 ), g(u2 ). Clk1 , and Clk2 can be computed as follows: 

Uk1 uk2 gk~ gk2 Clk1 Clk2 

0.0 0.0 -1. 999 -3.938 
0.5 LO -1. 487 -Z.865 O. 513 1. 073 
1.0 Z.O -0.879 -1. 613 1. Z17 1. Z 52 
1.5 3.0 +0.044 -0.19a 1. 846 1.4Z1 
2.0 4.0 +0.897 +0.997 1.706 1. 187 
2.5 5.0 +1.044 + 1. 808 0.Z94 0.811 

where Cl 

Agki 
Let ~ tkl vk1 and Uz = 'E tk2 v k2 ' = u 1 ::! 

ki AUki 

where o $ tkl 1$ AUkl and o $ tk2 $ A uk2 ' then the polygonal 

approximate to g(u1 ) ancl g(uZ ) can be written as, 



g(u 1) :t: ~a.kl tk1 v1d + gl (0). and 

g(u2 ) = ~a.k2 tkZ vk2 of, g20 (0), whl'lre ~ vki = 1. 

The approximate function achieveS! its minimum when tl<i i$ the 

upper bound. Ther~f0re A '\i replace s tki • 

FiIlaUy the prqbJem 'becomes 

min. [xl ~2x2 + 3~3 t 0.513 v p + 1.217vZ1 + 2.76~v31 

subject to: 

+3.401v41 +O.73SvS1 + 1.073v12 +Z.504v~? 

+4.264v3Z + 4.756v4Z + 4.056vS2 - 5.937] 
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- 2x 1 + x2 + 3 x3 - O. 5 v II - 1. 0 v 20 ~ - 1. 5 v 3 l' - Z. ° v 41 - ? 5 v S 1 = P 

ZX 1 + 3x2 + 4x3 .. 1.0vIZ·2.pvZZ"'3.0V32 -'il:.Pv4Z - 4.0v52 ::;0 

V ll + v2l + v~1 + v4l + vB1 = ~ 

v1Zof,va2+v32+v42+vS2 = 1, 

vki ~ 0, i=~,?, ;3.nd 

k:t:1, •.• ,S. 

The minim1,:lm value of the o~jective function is 4.9788· with x;1 ::: 0, 

x 2 = O.S, x3 = 0, v ll e 1.0, v Z2 :::1 0.875, and v52:!1 0.125~ 



Method III 

This method require!;! preassigned probability levels on the 

random constraints. In this problem assume that qI and qz ar~ 

both 0,95. Then the problem can be formulated as fQHows: 

min. E(x I - 2x2 + 3x3 ) 

subject to: prob. (-2xI + X z + 3x3 ::: b I ) ::: 0.95 

prob. (2x I + 3x2 + 4x3 ::: b2 ) ::: 0.95, and 

Now subtract the mean values from both the right and left hand sides, 

of the random constraints and divide each constraint by its standarq 

deviation, then the constraints become 

prob, 
( -2x I + x 2 + 3"3 - 2 

::: b l - 2) ::: 0.95 O. 5 O. 5 

( 2x I + 3"2 + 4"3 - 4 s b2 - : ) 
::: 0.95 

1.5 1.5 
prob. 

b - 2 
S . 1 ince ----

0.5 

bZ - 4 
and 1. 5 are each standard no;r:rr).a~ variable s, the 

probability constraints can be written as: 

2xI + 3x2 + 4x3 - 4 
::: - 1.65. 

1.5 

-, Therefore the problem is reduced to the following linear program:ming 

problem: 
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min. xl - 2x2 + 3x3 

subject to: 

-2x1 + X z + 3x3 ::; 1. 175 

2xl + 3x2 + 4x3 15 1. 525, p.nd 

In solving this problem, an ord~na:ry U:p.ear p;rogramming 

optimizing method, the simplex m.ethod, can be used. 

(a) -2x + x ::; 1. 175 
1 4 

2xl + Ox4 ::; 1. 525 

xl::; O. 7625, x 4 ::; 2. 7 ! 

This and the next three solutions are ~easible. 

(b) x 2 + x 4 ::; 1. 1 75 

3x2 + Ox4:c 1. 525 

x 2 ::; 0.5083, x 4 ::;: 0.6667 

(c) 3x3 + x 4 ::; 1.175 

4x3 + OX4 ::; 1. 525 

x3 ::; 0.3812, x 4 ::; 0.0314 

( d) x 4 + Ox 5 :r; 1. 1 75 

Ox 4 + x5 ::; 1. 525 

However the rem.aining six solutions are not feasibl~!. 

(e) -Zxl + x 2 ::; 1. 175 

2x 1 + 3x2 ::; 1. 525 

xl ::; - 0.25, x 2 ::; 0.675 
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(£) -2x1 + 3x3 t: 1.175 

2xl + 4x3 = 1.525 

Xl = - 0.041, x3 = 0.386 

(g) x 2 + 3x3 = 1.175 

3x2 + 4x3 0= 1. 525 

x 2 = - o. OJ?. 5 , x3::: O. 4 

(h) -2x1 + x5 = L ~ 75 

2xl + x5 =1. 525 

Xl = - 0.588, x 5 ;:: 2.7 

(i) x 2 + OX5 = 1.175 

3x2 + x5 = 1.525 

X = 1 175 X = -2 2 . , 5 

(j) 3x3 + OX5 = 1.175 

4x3 + x5 = 1.525 

x3 = 0.3917, x5 = -0.0418 

Hence the optimum solution is the set Xl ::I 0, x 2 ::: 0.51983, 

x3 = 0, X 4 = O. 667, and x5:o: 0, with the optimum value ~£ the 

objective iunctton equal to - 1.0166. 
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COMPARISON OF OPTIMUM VALUE$ OF THE OBJECTIVE 

FUNCTION UNDER DIFFERENT METHODS OF LINEAR 

PROGRAMMING WITH RANDOM REQUIREMENTS 

So far three different m.ethods of form.ulCl-ting and solving the 

linear program.m.ing problem. with random. requirerpents have been 

discussed. Since each :rn.eth.od descril;>es random.ness differently, one 

would expect some differences in the optimum. value of the objective 

function. In this chapter the methods will be compared to ~how how 

each method effects the optimum value of the objective fQl1.ctioq. 

First compare the optim.um value of the objective function for 

33 

the first and second methods. Madansky (1960) shows that, in gener<;l.l, 

an unequal re latiQnship exists between the two values, but under certain 

conditions, eql,lality m.ay hold. The following is a review and summary 

of Madansky's discus sion, Only the m~nimizing problem will be 

considered, however. Consider the linear programming problem: 

min. (C'X + Fly) with respect to X and Y 

subject to: AX + BY = b 

X ~ 0, ~nd Y ~ 0. 

Suppose vector X is given, then the objective function (C'X + Fly) to 

be minimized with re spect to Y for a given X, is denoted Z (b, X). 

If b is assum.ed random, the above problem. becoD;les a linear 

program.ming problem with random requirements. In the two-stage 
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problem, the decision maker must det~rmin~ the vector X in the 

first stage. After the vector X i~ determined, the expec;:ted value 

of the function (CIF + Fly) is minimizc;Jd with respect to the second 

decision variable y, i. e., E Z(b, X) COantzig, Madansky, 1961). 

Consider a lin~a:r programming problem with random require .. 

ments where the decision maker first <;>bserve$ a random b and then 

solves the resulting nonlinear programming problem. ';rhat is, for 

each observation on b., one can obtain the minimum value of Z(b, X). 
1 

Therefore, the problem is 1;0 Hnd the expected minimum value of 

Z(b, X) with respect to X, i. e. , E min.. 
X 

Z(b, X) (Tintner, 1955). 

First compare min. E Z(b, X) with E min. Z(b, X). Since Z(b, X) 
X X 

, 
;: min. (C'X + FlY), then, 1Jlin. E Z(b, X) ::;: min. E min. (C'X + Fly) 

Y X X Y 

and E min. Z(b, X) ::;: E min. min. (C'X + F'Y), 
X X Y 

Let X 1 (b) be the decision vadable which miniJ1'lizes E m~n. 

(C'X + F'Y) and let Xz (b) be the decision variable that minimizes ~n. 

(C'X + F'Y). 'then :min. E min. (C'X + F'Y) ;: E (C'X + F'Y), and 
X Y 

E min. min. 
X Y 

(C'X + F'Y) :: E (C'X 1 (b) + F'Y). Since X 1 (b) is the 

decision variable that is r~stricted for only the b which yields the 

expected value of min. (C'X + F'Y); Xz (b) is the decision variable 

that minimizes for any b, m~n. (C 'X 1 (b) + F'Y) 2= rrvn. (C'XZ (b) 

+ Fly). Therefore E 

+ F'Y); hence min. E 
X 

+ Fly). 

min. 
Y 

min. 
Y 

(C'X 1 (b) + F'Y) 2= E m~n. (C'XZ (b) 

(C'X + F'Y) 2= E min. min. (C'X 
X Y 



Next compare the min. E min. (C IX + Fl Y) with min. min. 
X y X y 

(CIX (Eb) + F'Y) in order to compare E min. min.1C 'X + Fly) with 
X Y 

min. min. (CIX (Eb) + Fly). Consider the dual problem of Inin. min. 
X Y X Y 

(C'X + Fly), then, 

max. W'b, 

subject to: WIA :5 C, 

where W is dual solution vector. 

Let W~< be the optimum dual solution, then min. min. (C'X 
X Y 

+ Fly) = W*'b, and W>:Clb ~ Wlb for any feasible W. If the expected 

value of min. min. (C'X + Fly) is taken then E min. min. (C'X 
X Y X Y 

+ Fly) = W* I E(b) ~ WI E (b). 

Let W** be the vector which maximizes W'E (b) subject to 

W*>:d A = C, and W ~ 0, then, E min. min. (C'X + F'Y) ~ 
X Y 

W~<*' E (b) ::; min. min. (C'X (Eb) + Fly). Hence E min. min. 
X Y X Y 

(CIX + F'Y) ~ min. min. (C'X (Eb) + FlY), and since min, E min. 
X Y X Y 

(CIX + Fly) ~ E min. 
X 

(CIX + Fly) as shown above, min. 
X 

E min. 
Y 
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(C'X + Fly) ~ min. min. 
X Y 

(C'X (Eb) + Fly). Thus the unequal relation-

ship holds between the two values, but equality holds if and only if, 

min. min. (CIX + Fly) is a linear function of b. 
X Y 

Next compare the second anq third method s. Thompson, Cooper, 

and Charnes (1963) suggest that the two -stage problem would be 

considered as special case of the problem with probability constraints. 

The probability constraints are written as, probe (AX:5 b) = q. If 
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BY (second stage variable of two- stage problem) is added so that 

AX + BY = b, than q becomes one. This implies that when q = 1 

the two-stage problem is, in fact, a special case of the problem with 

probability constraints. In the third method (the probability constraint 

problem), the second stage qecision variables of the second method 

(the two-stage problem) are included. Hence all decision variables 

in the objective function of the probability const;raint problem depend 

upon a random vector whereas the first stage decision variable in the 

two-stage problem does not depend upon a J;'andom vector. As 

Thompson, Cooper, and Charnes (~963) noted, actual co:mparison 

between the optimum value of the obj ective function of the two- stage 

problem and the probability constraint problem depends upon the value 

of q. in the probability constraint Problem. 
1 

Finally, compare values of the objective function derived by the 

first and third methods, Expressions of the ith constraint for the 

first and second methods are, 

~ a .. X. S E (b.) = I.l. and 
1J J 1 1 

-1 
;E a .. X. S I.l. - cP (q.) CT •• 

1J J 1 1 1 

Note that the only difference between the above two constraints is 

-1 
cP (q.) CT.. It was assumed above that random b. is distributed 

1 1 1 

normally with mean I.l. and variance 
1 

z 
CT •• 

1 
In Equation Z 7 if q. = O. 5, 

1 

-1 
cP (q.) = 0, this implies a 50 percent chance that the ith constraint 

1 



will not be satisfied for any admissible choice of the X .. 
J 

In the case where q. = 0.5, the ith constraint of the first 
1 
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method will equal the ith constraint of the third method. Now suppose 

q. > 0.5; then 
1 

-1 
<P (q.) will certainly not equal zero. 

1 
Therefore, the 

-1 
only way to make <P (q.) CT. equal to zero is for CT. to be zero. This 

1 1 l ' 

means there is no variability in b.. That is, b. is equal to IJ. •• 
1 1 1 

Hence, due to the difference of the right-hand s ide in the constraints 

between the first and third methods, a difference between the optimum 

value of the objective function will be expected unless the variance of 

b, is as minimal as to be ignored. 
1 

Summary 

In summary, although the three methods compare with one 

another, each method possesses its own advantage and disadvantage 

in formulating or solving linear programming problems with random 

requirement vectors. 

The first method. This method is easy and simple to apply in 

both formulating and solving the problem. After the random right-hand 

side coefficients are replaced with their expected values, the resulting 

problem is a regular linear programming problem. But this method 

can only be an approximation. However, the method will be a fairly 

good approximation when there is not too much variability in the 

random coefficients in the linear programming problem. 
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The second method. This method seems quite idealistic, 

II 
especially in describing the random nature of the coefficiel'lts in tbe 

" linear programming pro'Qlem such as the penalty co~t in. the objective 

function. The penalty cost occurs as a result of the randoml'lef$S of 

the right-h~nd side coefficients in the constraints. FUl'thel"mo1"e, as 

was seen in chapter three, the solution method is comp1icat~d by th~ 

use of polygonal approximation. 

The third method. 'Ihis method seems to be more practical 
I 

because there are only linear terms involved in the h>rmulation of the 

problem. In some case s this method may requ~re polygopal 

approximations in solving the problem, but the solution, when the 

random right-hand side coefficients are normally Qist1"ibuted, is 

straightforward. Furthermore, the right-hand side values of the 

constraints are partly determined by the parameters Q£ the probability 

distribution of the random variable. The solution is less desira1?le 

when sample estimators are poor representatives of pop\.l.lation 

parameters. 
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