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1. Introduction to Derivatives: 
Financial derivatives have been in existence as long as the invention of writing. The first 
derivative contracts—forward contracts—were written in cuneiform script on clay 
tablets. The evidence of the first written contract was dates back to in nineteenth century 
BC in Mesopotamia on a tablet that promised delivery of 30 wooden [planks] of specific 
dimension to client at a future date. [11] There are many other written accounts of such 
contracts in various pre BC civilizations in Indus Valley, Greece and Rome. [11]  
 
Financial derivatives are used extensively in various financial markets to effectively and 
economically hedge different risks. The semiannual over-the-counter derivative statistic 
produced by Committee on the Global Financial System (CGFS)—collected for G10 
countries, Switzerland, Australia and Spain—estimates that the gross market value of 
$25.4 trillion. [8] Derivatives are used for speculation and make also very attractive 
investment opportunity. Since it is cost effective, corporations use derivatives to gain 
protection from currency risk, interest rate risk etc.  
 
The standard derivatives contracts are called plain vanilla options. They traded on 
exchanges such as the Chicago Board Options Exchange (CBOE) and have a wide 
variety of underlying assets such as oil, natural gas, stock equity, bonds, currency, 
interest rates etc. Sometimes there are no underlying assets e.g. weather options. As the 
name, standard, suggests terms of these contracts cannot be customized.  
 
However, most of the trading is done over-the-counter (OTC). In an OTC market the 
buyers and sellers enter into transactions directly with the banks and dealers. McDonald 
comments, in his book Derivatives Markets, that the Securities and Exchange 
Commission (SEC), Financial Accounting Standard Board (FASB), and International 
Accounting Standard Board (IASB) have increased the reporting requirements on the 
usage of derivatives but to no avail. There is little to no knowledge about the actual usage 
of the derivatives in operations.   
 
Options give the right but not an obligation to purchase or sell the underlying asset at the 
strike price. This is the peculiar difference than forward or futures contracts making them 
more lucrative.  
 
There are different types of exercise styles such as European, American, or Bermuda. 
European and American options are the most basic exercise styles. In a European-style 
option the exercise can only happen at the expiration. In an American-style option the 
buyer of the option can choose to exercise when it is favorable to do so during the life of 
the option. A Bermuda-style option can be exercised specific intervals during the life of 
the option. There is no connection between the geographic location of the option trade 
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and the exercise style. There are both put, right to sell, and call, right to buy, options for 
each styles. 
 
2. Exotic Options:  
Today’s global financial markets are so complex that there is an acute demand for options 
with a tailored term structure. They allow investment strategies that could be difficult or 
costly or both to achieve with traditional (standard) options and securities.  Options with 
such characteristics are called exotic options.  There are numerous types of exotic options 
in existence with different functionalities, pay-off functions and term structures. Some of 
the examples of exotics are barrier, binary, lookback, and Asian etc. Most of these 
options are traded OTC, however, the use of exotics is getting increasingly mainstream 
and hence are increasingly getting listed on different exchanges. For instance, CBOE has 
listed binary options that have VIX and SPX as the underlying asset. [2]  
 
2.1 Introduction to Asian Options:  
This paper will mainly focus on a path-dependent option—Asian options. The value of a 
path-dependent option is affected by how the price of the underlying asset was reached at 
the time of maturity. Unlike a vanilla European option, the pay-off of an Asian option is a 
function of multiple points up to and including the price at expiry. Asian options are 
some of the most common exotic options traded. As P. Wilmott (2006) and E. G. Haug 
(2007) both point out, Asian options are popular in the OTC energy markets and in other 
commodity markets lacking liquidity. [9] 
 
The eight basic kinds of Asian calls and puts are listed below: [9] 

- Average strike option vs. average rate option 
- Arithmetically vs. geometrically averaging 

- Discrete vs. continuous averaging 
- American vs. European exercise 

 
This paper will focus on discrete average price calls and puts that use arithmetic and 
geometric averaging.  
 
The means can be calculated using the following formulas: [3] 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀,𝐀𝐀(𝟎𝟎,𝐓𝐓) =
𝟏𝟏
𝐍𝐍
�𝐒𝐒(𝐀𝐀𝐀𝐀)
𝐍𝐍

𝐀𝐀=𝟏𝟏

 

 

𝐆𝐆𝐀𝐀𝐆𝐆𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀,𝐆𝐆(𝟎𝟎,𝐓𝐓) = 𝐀𝐀𝐞𝐞𝐞𝐞 �
𝟏𝟏
𝐍𝐍
�𝐥𝐥𝐆𝐆𝐥𝐥 �𝐒𝐒(𝐀𝐀𝐀𝐀)�
𝐍𝐍

𝐀𝐀=𝟏𝟏

� 

 3 



Pricing and Hedging Asian Options 
 

Where,  
S(ti) = Spot price at time t,  
N   = number of equally distributed sample points  
T   = time to maturity 

 
In reality, most average price Asian options use arithmetic averaging over geometric 
averaging.  
 
 
3. Option Pricing Methodologies: 
Fischer Black and Myron Scholes [1] were pioneers in option pricing. The Black-Scholes 
(BS) formula was published in the Journal of Political Economy (JPE) in 1973 
[Derivatives Markets pg. 376]. Their paper described the mathematical framework for 
valuation of option price for a plain vanilla European style option.  
 
Option valuation has become more complex with the engineering of exotic options. It has 
also become more robust with the development of computing power. Plain vanilla 
European calls and puts have an analytical closed form solution, so do some European 
style exotics such as geometric Asian, lookback and barrier. [7] However, other options do 
not have an analytical solution to calculate an arbitrage-free price. Numerous 
econometric and statistical models are employed to find prices of such options. This 
paper will discuss the two most commonly used techniques viz. Binomial Option Pricing 
Model and Black-Scholes Model.  
 
3.1 Binomial Option Pricing Model (BOPM): 
BOPM employs binomial trees to calculate the price given the characteristics of the 
underlying asset. The BOPM assumes that in a no arbitrage market, over a period of time, 
the price of the underlying can only move up or down by a specified amount. In other 
words, the asset price has a normal distribution [Derivatives Markets pg. 313]. This 
simple yet effective model is used amongst market professionals due to its versatility in 
application to vanilla and more complex options. Cox, Ross and Rubenstein introduced 
this technique in the famous paper Option Pricing: A simplified Approach that was 
published in The Journal of Financial Economics.  
 
 
 
The price of a call option for a one period model is given by the following equation: 

𝑪𝑪 = 𝒆𝒆−𝒓𝒓𝒓𝒓 �𝑪𝑪𝒖𝒖
𝒆𝒆(𝒓𝒓−𝜹𝜹)𝒓𝒓 − 𝒅𝒅
𝒖𝒖 − 𝒅𝒅

+ 𝑪𝑪𝒅𝒅
𝒖𝒖 − 𝒆𝒆(𝒓𝒓−𝜹𝜹)𝒓𝒓

𝒖𝒖 − 𝒅𝒅
� 

Where,  
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𝑢𝑢  = up movement  
𝑑𝑑   = down movement  
𝐶𝐶𝑢𝑢 = option value when underlying asset goes up 
𝐶𝐶𝑑𝑑 = option value when underlying asset goes down  
 𝑟𝑟  = risk free rate 
𝛿𝛿   = continuously compounded dividend yield 
ℎ   = time step 

 
The up and down movements are parameterized by the following equations [Derivatives 
Markets pg. 322]: 

𝒖𝒖 =  𝒆𝒆(𝒓𝒓−𝜹𝜹)𝒓𝒓+𝝈𝝈√𝒓𝒓 
𝒅𝒅 =  𝒆𝒆(𝒓𝒓−𝜹𝜹)𝒓𝒓−𝝈𝝈√𝒓𝒓 

 Where,  
 𝜎𝜎 = standard deviation of the continuously compounded stock return 
 
One of the shortcomings of the BOPM is that the stock prices can only have two 
movements ignoring the intermediate price movements. This may not be an accurate 
representation of the price path. One solution is to shorten the time steps. A computer aid 
can do this with relative ease and efficiency.  
 
 
3.2 Black-Scholes (BS) Model: 
McDonald discusses the mindset of Black and Scholes in Derivatives Markets (2006). He 
suggests that Black and Scholes examined the problem faced by a delta-hedging market 
maker. They assumed that the stock follows geometric Brownian motion and used Ito’s 
Lemma to describe the option price behavior [Derivatives Markets pg. 679]. This paper 
will follow the derivation of the BS model as described by Richardson (2009). [7] 
 
The following Stochastic Differential Equation (SDE) can describe the asset prices: 
 

𝒅𝒅𝒅𝒅 = 𝝈𝝈𝒅𝒅𝒅𝒅𝑺𝑺 + (𝝁𝝁 − 𝜹𝜹)𝒅𝒅𝒅𝒅𝑺𝑺       (𝟏𝟏) 
Where,  

𝑆𝑆 = asset value 
𝜎𝜎  = volatility 
𝜇𝜇   = drift or expected return 
𝛿𝛿   = continuous dividend yield on the underlying asset 
𝑑𝑑𝑆𝑆 = incremental changes in asset value 
𝑑𝑑𝑑𝑑 = Weiner process 
𝑑𝑑𝑑𝑑  = incremental changes in time 
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McDonald [Derivatives Markets pg. 650] defines the Wiener process, also called 
Brownian motion, as a stochastic (random) process that is a random walk occurring in 
continuous time with movements that are continuous rather than discrete. If 𝑑𝑑(𝑑𝑑) 
represents a Brownian motion at time 𝑑𝑑 then 𝑑𝑑(𝑑𝑑)is a martingale. As McDonald defines it, 
the process 𝑑𝑑(𝑑𝑑) is called a diffusion process. 
 
Ito’s Lemma is a product rule for SDEs. Applying it for 𝛿𝛿 = 0, we can say that if 𝑆𝑆 
solves equation (1) then 𝑉𝑉(𝑆𝑆, 𝑑𝑑) solves the following: 
 

𝒅𝒅𝒅𝒅 = 𝝈𝝈𝒅𝒅𝒅𝒅𝒔𝒔𝒅𝒅𝒅𝒅 + �𝝁𝝁𝒅𝒅𝒅𝒅𝒔𝒔 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒅𝒅𝑺𝑺�𝒅𝒅𝑺𝑺        (𝟐𝟐) 

 
 
3.2.1 Black-Scholes PDE Derivation: 
Lets construct a portfolio, Π, where we are long one option 𝑉𝑉(𝑆𝑆, 𝑑𝑑) and short a Δ fraction 
of the underlying asset.  
 

∴  𝚷𝚷 = 𝒅𝒅 − 𝚫𝚫 ∙ 𝒅𝒅     (𝟑𝟑)         ⟹          𝒅𝒅𝚷𝚷 = 𝒅𝒅𝒅𝒅 − 𝚫𝚫𝒅𝒅𝒅𝒅          (𝟒𝟒)    
 
Substituting equations (1) & (2) into (4) and after simple algebraic manipulation, we 
get: 
 

𝒅𝒅𝚷𝚷 =  𝝈𝝈𝒅𝒅(𝒅𝒅𝒔𝒔 − 𝚫𝚫)𝒅𝒅𝒅𝒅 + �𝝁𝝁𝒅𝒅𝒅𝒅𝒔𝒔 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒅𝒅𝑺𝑺 − 𝝁𝝁∆𝒅𝒅�𝒅𝒅𝑺𝑺         

 
For ∆= 𝑉𝑉𝑠𝑠, we get: 

𝒅𝒅𝚷𝚷 =  �𝝁𝝁𝒅𝒅𝒅𝒅𝒔𝒔 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒅𝒅𝑺𝑺�𝒅𝒅𝑺𝑺         

 
The above portfolio is independent of the randomness exhibited by the underlying asset. 
Black and Scholes assumed a no-arbitrage market and made portfolio adjustments by 
investing and divesting at the risk-free rate. Hence from the equation above:  
 

𝒓𝒓𝚷𝚷𝚷𝚷𝐀𝐀 =  �𝝁𝝁𝒅𝒅𝒅𝒅𝒔𝒔 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒅𝒅𝑺𝑺�𝒅𝒅𝑺𝑺         

⟹  𝚷𝚷 =
𝟏𝟏
𝒓𝒓

 �𝝁𝝁𝒅𝒅𝒅𝒅𝒔𝒔 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒅𝒅𝑺𝑺�     (𝟓𝟓) 

  
Substituting ∆= 𝑉𝑉𝑠𝑠  and (5) in (3) we get the following equation called Black-Scholes 
Equation (BSE): 
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𝒅𝒅𝑺𝑺 +
𝟏𝟏
𝟐𝟐
𝝈𝝈𝟐𝟐𝒅𝒅𝟐𝟐𝒅𝒅𝒔𝒔𝒔𝒔 + 𝒓𝒓𝒅𝒅𝒅𝒅𝒔𝒔 − 𝒓𝒓𝒅𝒅 = 𝟎𝟎     (𝟔𝟔) 

 
 
The assumptions made by Black and Scholes in the above derivation are as follows: [10] [5] 

1. The underlying asset follows GBM with constant volatility 
2. The number of outstanding stocks is constant  
3. No dividends 
4. The price of the stock is log-normally distributed with mean 𝜇𝜇  and standard 

deviation 𝜎𝜎 
5. There is a constant risk-free rate  
6. Market participants can borrow or lend at the risk-free rate 
7. No transactions cost 

 
3.2.2 Black-Scholes Formula: 
As McDonald points out that the BS formula require two conditions: the pricing formula 
must satisfy the BSE and it must satisfy appropriate boundary conditions. In other words, 
to price the option we solve the BSE using some boundary conditions.  
 
The payoff function for a European call option with a strike price is:  
 

𝑪𝑪(𝒅𝒅,𝑻𝑻) = 𝐀𝐀𝐦𝐦𝐞𝐞 (𝟎𝟎,𝒅𝒅 − 𝑲𝑲) 
 
The value of the option is known at the time of maturity computed by the equation above. 
For a strike price, 𝐾𝐾 > 0 , max(0, 0 − 𝐾𝐾) = 0 . Conversely, for an underlying price 
growing without a bound will payoffmax(0, 𝑆𝑆 − 𝐾𝐾) = 𝑆𝑆. Thus the boundary conditions 
are: 

𝑪𝑪(𝟎𝟎, 𝑺𝑺) = 𝟎𝟎                 (𝒊𝒊) 
𝑪𝑪(𝒅𝒅 → ∞, 𝑺𝑺) =  𝒅𝒅      (𝒊𝒊𝒊𝒊) 

 
Using the above boundary conditions in BSE, we can derive the BS formula for a non-
dividend paying European option with a maturity date 𝑇𝑇 and 𝛿𝛿 = 0 as the following: 
 

𝑪𝑪 = 𝒅𝒅𝑺𝑺(𝒅𝒅𝟏𝟏) −𝑲𝑲𝒆𝒆−𝒓𝒓𝑻𝑻𝑺𝑺(𝒅𝒅𝟐𝟐)     (𝟔𝟔) 
Where, 

𝑑𝑑1 =
ln�𝑆𝑆 𝐾𝐾� � + �𝑟𝑟 + 1

2𝜎𝜎
2� 𝑇𝑇

𝜎𝜎√𝑇𝑇
 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇                           
𝒩𝒩(𝑋𝑋) = 𝑐𝑐𝑢𝑢𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑟𝑟𝑐𝑐𝑑𝑑𝑢𝑢𝑑𝑑𝑐𝑐𝑛𝑛𝑛𝑛 𝑓𝑓𝑢𝑢𝑛𝑛𝑐𝑐𝑑𝑑𝑐𝑐𝑛𝑛𝑛𝑛 
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BS formula is a special case of BOPM where the number of steps is ∞. Even though the 
step size is infinitesimal small, the probability measure is discrete and hence the BS 
formula provides a more accurate approximation of the movement of the underlying 
asset. [14] As shown in the Table 1 the two prices converge as the number of steps, 𝑛𝑛 → ∞.  
However, this comes at an increasing computational cost. Needless to say that binomial 
trees are not an efficient way to obtain option pricing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Asian Options Pricing: 
There are numerous methods that are implemented to price options. This paper will 
utilize the Black-Scholes model to calculate the option price. Moreover, there are 
different techniques to calculate option prices. This paper will compare, contrast and 
analyze Geometric Avg. Asian and Vanilla European option prices obtained using closed 
form solution from Black-Scholes model and Monte Carlo simulations.  
 
4.1 Closed Form Solution (Black-Scholes Formula): 
Since the payoff of an Asian option is based on the average of stock (or strike) price, the 
BS PDE needs a term reflecting the evolution of the average. Wiklund (2008) in his paper 
Asian Option Pricing and Volatility presents the BS formula of geometric and arithmetic 
averaging Asian option.  
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Using the same nomenclature from the previous sections, the option prices with 
geometric averaging are as follows for 𝛿𝛿 = 0: [12] 

 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝒅𝒅𝑨𝑨𝒋𝒋𝑺𝑺�𝒅𝒅𝒏𝒏−𝒋𝒋 + 𝝈𝝈�𝑻𝑻𝟐𝟐,𝒏𝒏−𝒋𝒋� − 𝑲𝑲𝒆𝒆−𝒓𝒓𝑺𝑺𝑺𝑺�𝒅𝒅𝒏𝒏−𝒋𝒋�        

𝑷𝑷𝒖𝒖𝑺𝑺 = 𝑲𝑲𝒆𝒆−𝒓𝒓𝑺𝑺𝑺𝑺�−𝒅𝒅𝒏𝒏−𝒋𝒋� − 𝒅𝒅𝑨𝑨𝒋𝒋𝑺𝑺�−𝒅𝒅𝒏𝒏−𝒋𝒋 − 𝝈𝝈�𝑻𝑻𝟐𝟐,𝒏𝒏−𝒋𝒋� 

Where, 

𝑑𝑑𝑛𝑛−𝑗𝑗 =
𝑐𝑐𝑛𝑛�𝑆𝑆 𝐾𝐾� � + �𝑟𝑟 − 1

2𝜎𝜎
2�𝑇𝑇1,𝑛𝑛−𝑗𝑗 + 𝑐𝑐𝑛𝑛�𝐵𝐵𝑗𝑗�

𝜎𝜎�𝑇𝑇2,𝑛𝑛−𝑗𝑗
 

𝐴𝐴𝑗𝑗 = 𝑐𝑐−𝑟𝑟�𝑇𝑇−𝑇𝑇1,𝑛𝑛−𝑗𝑗�−
1
2𝜎𝜎

2�𝑇𝑇2,𝑛𝑛−𝑗𝑗−𝑇𝑇1,𝑛𝑛−𝑗𝑗� 

𝑇𝑇1,𝑛𝑛−𝑗𝑗 =
𝑛𝑛 − 𝑗𝑗
𝑛𝑛

�𝑇𝑇 −
(𝑛𝑛 − 𝑗𝑗 − 1)ℎ

2
� 

𝑇𝑇2,𝑛𝑛−𝑗𝑗 = �
𝑛𝑛 − 𝑗𝑗
𝑛𝑛

�
2

𝑇𝑇 −
(𝑛𝑛 − 𝑗𝑗)(𝑛𝑛 − 𝑗𝑗 − 1)(4𝑛𝑛 − 4𝑗𝑗 + 1)

6𝑛𝑛2
ℎ 

𝐵𝐵𝑗𝑗 = ��
𝑆𝑆𝑇𝑇 − (𝑛𝑛 − 𝑗𝑗)ℎ

𝑆𝑆

𝑛𝑛

𝑗𝑗=1

�

1 𝑛𝑛�

,𝐵𝐵0 = 1 

𝑛𝑛 is the number of observations to form the average, ℎ is the observation frequency, 𝑗𝑗 is 
the number of observations past in the averaging period.  
 
This can be reduced to:  
 

𝑮𝑮𝒆𝒆𝑮𝑮 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 =  𝒆𝒆−𝜹𝜹𝑻𝑻𝒅𝒅𝑺𝑺(𝑫𝑫𝟏𝟏) − 𝒆𝒆−𝒓𝒓𝑻𝑻𝑲𝑲𝑺𝑺(𝑫𝑫𝟐𝟐)          
(𝟕𝟕) 

𝑮𝑮𝒆𝒆𝑮𝑮 𝑷𝑷𝒖𝒖𝑺𝑺 =  𝒆𝒆−𝒓𝒓𝑻𝑻𝑲𝑲𝑺𝑺(−𝑫𝑫𝟐𝟐) − 𝒆𝒆−𝜹𝜹𝑻𝑻𝒅𝒅𝑺𝑺(−𝑫𝑫𝟏𝟏)   
where: 
 

𝑉𝑉 = 𝑐𝑐−𝑟𝑟𝑇𝑇𝑆𝑆𝑐𝑐�
(𝑁𝑁+1)𝜇𝜇

2  + 𝑎𝑎𝑇𝑇𝜎𝜎
2

2𝑁𝑁3 � 

𝜇𝜇 =  𝑟𝑟 − 𝑞𝑞 +
1
2
𝜎𝜎2 

𝑐𝑐 =
𝑁𝑁(𝑁𝑁 + 1)(2𝑁𝑁 + 1)

6
 

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝜎𝜎�
2𝑁𝑁 + 1

6(𝑁𝑁 + 1) 

𝐷𝐷1 =
1

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎√𝑇𝑇
�𝑐𝑐𝑛𝑛�𝑉𝑉 𝐾𝐾� � + �𝑟𝑟 − 𝛿𝛿 +

1
2
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2 � 𝑇𝑇� 
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𝐷𝐷2 = 𝑑𝑑1 − 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎√𝑇𝑇 
 
Since the arithmetic means does not follow lognormal distribution, there is no closed 
form analytical solution for arithmetic averaging Asian options. Hence Wiklund presents 
the following approximation: [12] 
 

𝑨𝑨𝒓𝒓𝒊𝒊𝑺𝑺𝒓𝒓 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 ≈ 𝒆𝒆−𝒓𝒓𝑻𝑻 ��
𝟏𝟏
𝒏𝒏
�𝒆𝒆�𝝁𝝁𝒊𝒊+

𝟏𝟏
𝟐𝟐𝝈𝝈𝒊𝒊

𝟐𝟐�𝑺𝑺�
𝝁𝝁 − 𝐥𝐥𝐥𝐥�𝑲𝑲��

𝝈𝝈𝒙𝒙
+
𝝈𝝈𝒙𝒙𝒊𝒊
𝝈𝝈𝒙𝒙
�

𝒏𝒏

𝒊𝒊=𝟏𝟏

� − 𝑲𝑲𝑺𝑺�
𝝁𝝁 − 𝐥𝐥𝐥𝐥�𝑲𝑲��

𝝈𝝈𝒙𝒙
��     

𝑨𝑨𝒓𝒓𝒊𝒊𝑺𝑺𝒓𝒓 𝑷𝑷𝒖𝒖𝑺𝑺 ≈ 𝒆𝒆−𝒓𝒓𝑻𝑻 �𝑲𝑲𝑺𝑺�−
𝝁𝝁 − 𝐥𝐥𝐥𝐥 (𝑲𝑲�)

𝝈𝝈𝒙𝒙
� − �

𝟏𝟏
𝒏𝒏
�𝒆𝒆�𝝁𝝁𝒊𝒊+

𝟏𝟏
𝟐𝟐𝝈𝝈𝒊𝒊

𝟐𝟐�𝑺𝑺�
𝝁𝝁 − 𝐥𝐥𝐥𝐥 (𝑲𝑲�)

𝝈𝝈𝒙𝒙
+
𝝈𝝈𝒙𝒙𝒊𝒊
𝝈𝝈𝒙𝒙
�

𝒏𝒏

𝒊𝒊=𝟏𝟏

�� 

Where, 

𝜇𝜇𝑖𝑖 = ln(𝑆𝑆) + �𝑟𝑟 −
1
2
𝜎𝜎2� (𝑑𝑑1 + (𝑐𝑐 − 1)∆𝑑𝑑) 

𝜎𝜎𝑖𝑖 = 𝜎𝜎�(𝑑𝑑1 + (𝑐𝑐 − 1)∆𝑑𝑑) 

𝜎𝜎𝑥𝑥𝑖𝑖 = 𝜎𝜎2(𝑑𝑑1 + (𝑐𝑐 − 1)∆𝑑𝑑) −
𝑐𝑐(𝑐𝑐 − 1)

2𝑛𝑛
 

𝜇𝜇 = ln(𝑆𝑆) + �𝑟𝑟 −
1
2
𝜎𝜎2� �𝑑𝑑1 +

(𝑛𝑛 − 1)∆𝑑𝑑
2

� 

𝜎𝜎𝑥𝑥 = 𝜎𝜎��𝑑𝑑1 +
(𝑛𝑛 − 1)(2𝑛𝑛 − 1)∆𝑑𝑑

6𝑛𝑛
� 

𝐾𝐾� = 2𝐾𝐾 −
1
𝑛𝑛
�𝑐𝑐

�𝜇𝜇𝑖𝑖+�𝜎𝜎𝑥𝑥𝑖𝑖(ln𝐾𝐾−𝜇𝜇)�/𝜎𝜎𝑥𝑥2+�𝜎𝜎𝑖𝑖
2−𝜎𝜎𝑥𝑥𝑖𝑖

2

𝜎𝜎𝑥𝑥2
� �0.5�

𝑛𝑛

𝑖𝑖=1

 

 
 𝑑𝑑1is the time to first average point and ∆𝑑𝑑 is the time between averaging points 
 
Needless to say, there is a less cumbersome way to get the option prices for the arithmetic 
averaging option. Simulations such as Monte Carlo can be conducted to obtain prices 
more accurately. This paper will use the option price obtained from closed-form 
analytical solution as the baseline to compare the price obtained from simulations.  
 
4.3 QuantLib/Boost: 
Joshi introduces Boost and QuantLib open source libraries in the “bible” for quants C++ 
Design Patterns and Derivatives Pricing. [4] The source codes are heavily peer-reviewed 
and are versatile amongst different compilers. According to their website, QuantLib 
project is aimed at providing a comprehensive software framework for quantitative 
finance. QuantLib offers tools that are useful both for practical implementation and for 
advanced modeling, with features such as market conventions, yield curve models, 
solvers, PDEs, Monte Carlo (low-discrepancy included), exotic options, VAR, and so on. 
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Compiling QuantLib requires installation of Boost libraries. [6] Most dealers have 
proprietary software that uses such libraries at their derivatives desk.  
 
4.4 Monte Carlo Simulations: 
As defined in Exotic Option Trading, the principle of a Monte Carlo process is to 
generate a large number of finite paths, compute the payoff at each iteration, aggregate 
those payoffs, and subsequently divide that aggregated sum by the total number of 
simulated paths. [14] Most exotic option are priced using Monte Carlo simulations with a 
framework such as the BS model which assumes that the underlying asset prices evolve 
according the SDE following geometric Brownian motion shown in equation (1) under 
risk-neutral distribution [Derivatives Markets pg. 617]. The main benefit of a Monte 
Carlo is that it is pretty easy to implement and versatile enough to use for various 
European style exotics.  As MacDonald points out, Monte Carlo is useful under the 
following circumstances [Derivatives Markets pg. 627]:  

• The number of random components are too many to obtain a direct numerical 
solution 

• Where a direct solution is not possible due to the distribution of the underlying 
variables (arithmetic averaging Asian option) 

• Path-dependent options 
 
 
The Black-Scholes framework uses the geometric Brownian motion, and since 
𝑑𝑑(𝑑𝑑)~𝒩𝒩(0,1) a lognormal stock price evolves according to the following equation: 
 

𝒅𝒅𝑺𝑺 = 𝒅𝒅𝟎𝟎𝒆𝒆�𝒓𝒓−𝜹𝜹−𝟎𝟎.𝟓𝟓𝝈𝝈𝟐𝟐�𝑺𝑺+𝝈𝝈√𝑺𝑺𝑺𝑺     (𝟖𝟖) 
 
We can generate N random future stock prices by generating Z, standard random 
variables, and using equation (8) in N trials. For each trial we compute the pay-off for an 
Asian call option with geometric average for ith trial equal to 𝐺𝐺𝑡𝑡𝑖𝑖 as follows: 
 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷𝑪𝑪𝑪𝑪𝑮𝑮𝑪𝑪𝑪𝑪 =  𝒎𝒎𝑪𝑪𝒙𝒙(𝟎𝟎,𝑮𝑮(𝑻𝑻) −𝑲𝑲) 
Where, 

               𝑮𝑮(𝑻𝑻) = (𝒅𝒅𝟎𝟎𝒅𝒅𝟏𝟏𝒅𝒅𝟐𝟐 …𝒅𝒅𝑴𝑴)𝟏𝟏 𝑴𝑴�  
 
Where, 𝑆𝑆𝑡𝑡 follows the price path from equation (7) and M is the number of time the stock 
prices are recorded. 
 
Averaging the resulting values for N simulations (trials) and discounting it using the risk-
free rate to the present to yield the option price as follows: 
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𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷𝒓𝒓𝒊𝒊𝑪𝑪𝒆𝒆 =  𝒆𝒆−𝒓𝒓𝑻𝑻
𝟏𝟏
𝑵𝑵
�𝒎𝒎𝑪𝑪𝒙𝒙(𝟎𝟎,𝑮𝑮(𝑻𝑻) −𝑲𝑲)
𝑵𝑵

𝒊𝒊=𝟏𝟏

     (𝟗𝟗) 

 
The method described above is called naïve Monte Carlo. Naïve Monte Carlo simulation 
is simple but not efficient. The accuracy is directly proportional to the number of 
simulations ran i.e. the higher the number of simulations, the more accurate the naïve MC 
price will be. MacDonald addresses this issue in Derivatives Markets. He presents the 
formula to calculate the standard deviation of one simulation, 𝜎𝜎𝐶𝐶 , in terms of standard 
deviation, 𝜎𝜎𝑛𝑛, of 𝑛𝑛 total simulations for a given independent and identically distributed 
spot prices as follows: 

𝝈𝝈𝒏𝒏 =  
𝟏𝟏
√𝒏𝒏

𝝈𝝈𝑪𝑪 

 
The Table 3 depicts the pricing progression for a European Call option. As the number of 
simulations increase, the price gets closer to the closed-form solution Black price at the 
expense of increasing computational cost.  
 
 

Stock price, S = $101 Time to maturity, T = 1  Volatility, σ = 30%
Strike price, K = $100 Risk-free rate, r = 8.0% Dividend Yield, δ = 0.0%

# of Simulations Sim Price Formula Price Simulation Time Price Difference
1                                  0.00 16.38 0 100.0%
5                                  10.09 16.38 0 38.4%

50                                18.18 16.38 0 -11.0%
500                              16.70 16.38 0.016 -2.0%

5,000                           16.46 16.38 0.14 -0.5%
50,000                         16.22 16.38 1.358 1.0%

Table 2: Simulated Pricing Accuracy 
Type = Euro Call

Number of steps =100

 
 
However, in a computer driven fast paced investment environment, efficiency is critical. 
This paper will examine the following methods to improve pricing efficiency:  
 

1. Control Variate Method: This method uses the price of a related option whose 
value can be computed using a analytical solution to estimate the error. The error 
is subsequently reduced in following simulation. Examples of control variables 
are European options, Geometric Avg. Asian options, and American options.  

2. Antithetic Variate Method: This method uses the idea that the estimation 
variance would reduce if the simulated paths were perfectly negatively correlated.  
Two paths are generated, the primary path and its antithesis.  [15] 
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3. Stratified Sampling: Investopedia defines it as a method of sampling that 
involves the division of a population into smaller groups known as strata. In 
stratified random sampling, the strata are formed based on members' shared 
attributes or characteristics. A random sample from each stratum is taken in a 
number proportional to the stratum's size when compared to the population. These 
subsets of the strata are then pooled to form a random sample. [16] 

 
Figure 2 is a quick snapshot that compares the robustness of the different techniques 
discussed above. Note that all but stratified sampling provided the most accurate 
European call price with the least number of simulations.  
 

 
 
It is also important to examine the computational cost (processing time) of these different 
techniques. The figure 3 shows that stratified sampling has the least tick time—
processing time of the computer—compared to the other candidates when the number of 
simulations increase. Control-Variate method took 2.48 seconds to run 75,000 
simulations to compute Euro call option price equal to $16.36, which is $.02 less than the 
closed form price. Stratified sampling took 0.00 seconds to run 100 simulations to obtain 
the price $16.38 which equals the closed form price.  
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There are other techniques such as importance sampling—generations of random 
numbers where they have most value for pricing a particular claim—and low discrepancy 
sequences which uses selected deterministic points to create a uniform coverage of 
distribution that also provides efficient pricing, but they are outside the scope of this 
paper. [5]   
 
4.2 Price Characteristics: 
Due to the difference in the type of averaging, Arithmetic Asian options are always more 
expensive than their geometric counter part. This is a result due to Jensen’s inequality 
where the geometric mean produces a lower underlying price, hence a lower option price 
[Derivative Markets pg. 629]. As seen in Figure 3, a comparable European option is still 
more expensive than both types of Asian option. McDonald points out the fact that Asian 
Options are worth less at issuance than the equivalent European option. 
 
The intuition is that since the payoff of an Asian option is based on an average price of 
the underlying asset, it is less volatile than the asset price itself, and the option on a lower 
volatility asset is worth less. Figure 1 confirms this intuition for a call option. 
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Table 3 lists the pricing behavior of an Asian call option when number of averages (N) 
increase. The more the averages, the lower the price. The intuition is that the pricing 
fluctuations are averaged more frequently hence the volatility is reduced.  Arithmetic 
price is still higher than the geometric price due to Jensen’s inequality discussed earlier.  
 

Stock price, S = $100 Time to maturity, T = 1  Volatility, σ = 30% Number of Simulations = 100,000
Strike price, K = $100 Risk-free rate, r = 8.0% Dividend Yield, δ = 0.0% Number of steps = 100 Confidence Level = 99%

Number of avg. (N) Sim. Arith Price ($) Sim. Geo Price ($) Exact Geo Price ($) Std Error
1 15.7995 15.664 15.7113 0.074
2 11.9526 11.749 11.76975 0.054
5 9.8428 9.563 9.54673 0.044

10 9.1397 8.871 8.825936 0.04
20 8.7843 8.456 8.468902 0.039
40 8.7689 8.316 8.291175 0.038

Table 3: Price Behavior in Number of Averages (N)

 
 
 
 
 
 

 15 



Pricing and Hedging Asian Options 
 

5. Hedging: 
Any market maker or investor faces, inevitably and inherently, the following two 
questions:  

• How to price an option efficiently and accurately?  
• How to hedge the risk of their portfolio? 

 
This paper has discussed different pricing mechanisms, models, and techniques to 
address the first question. MacDonald aptly addressed the second question in Derivatives 
Markets. Hedging is an insurance to reduce their exposure to an adverse event with a 
negative affect on the value of a portfolio or position.   
 
Figure 4 demonstrates the profit and payoff of a written put sold by a market-maker. 
Without hedge the market-maker is exposed to potential loss if the underlying asset, 
S&P500 index, goes down. This is called a “naked” put, in other words the market-maker 
has no position in the underlying.  
 

 
 
This section will focus on hedging the risk using option. Perilla & Oancea discuss the 
theory of dynamic hedging strategy by investing in units of risk-free asset and the 

 16 



Pricing and Hedging Asian Options 
 

underlying in order to mimic the payoff of the option hence reducing the exposure. [13] 
This strategy involves holding a “delta-neutral” portfolio discussed in the later sections.  
 
5.1 Option Greeks: 
Option Greeks measure the sensitivity of option price with respect to (w.r.t) different 
inputs. Greeks are used extensively to measure risk exposure and hedging. A key 
assumption is that only one parameter is changed at a time and the rest are held constant. 
The six different Greek measures in option pricing are defined as follows: 

• Delta,  Δ:  measures option price sensitivity w.r.t underlying price 
• Gamma, Γ:  change in delta w.r.t underlying price 
• Vega:   option price sensitivity w.r.t volatility 
• Theta,  θ: option price sensitivity w.r.t time to maturity 
• Rho,  ρ: option price sensitivity w.r.t risk-free interest rate  
• Psi,  Ψ: option price sensitivity w.r.t dividend yield 

 
Hence, in equation (6): 

𝑉𝑉𝑠𝑠   = option’s delta 
𝑉𝑉𝑠𝑠𝑠𝑠 = option’s gamma 
𝑉𝑉𝑡𝑡  = option’s theta 

 
The sign for put options Greeks is the opposite to that for call options. Please refer to 
Table 3 for a snap shot of signs of all Greeks: 
 

Table 3: Sign of Greek measures for call and put options  

   Greeks Call Put 
Delta,  Δ + - 
Gamma, Γ + + 
Vega 

 
+ + 

Theta, θ Depends* Depends* 
Rho, ρ + - 
Psi, Ψ - + 

 
* Time decay can be positive for deep-in-the-money calls and puts with high dividend yield, otherwise θ is 
generally negative [Derivatives pg.387] 
 
5.2 Characteristics of Option Delta (Δ): 
The formula for a call delta is given by the following equation: [Derivatives pg. 410] 
 

𝑬𝑬𝒖𝒖𝒓𝒓𝑮𝑮 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒅𝒅𝒆𝒆𝑪𝑪𝑺𝑺𝑪𝑪,𝜟𝜟 =  
𝝏𝝏𝑪𝑪(𝒅𝒅,𝑲𝑲,𝛔𝛔, 𝒓𝒓,𝑻𝑻, 𝛅𝛅  )

𝝏𝝏𝒅𝒅
=  𝒆𝒆−𝜹𝜹𝑻𝑻𝑺𝑺(𝒅𝒅𝟏𝟏)             
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(𝟏𝟏𝟎𝟎) 

𝑮𝑮𝒆𝒆𝑮𝑮 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒅𝒅𝒆𝒆𝑪𝑪𝑺𝑺𝑪𝑪,𝜟𝜟 =  
𝝏𝝏𝑪𝑪(𝒅𝒅,𝑲𝑲,𝛔𝛔, 𝒓𝒓,𝑻𝑻,𝛅𝛅  )

𝝏𝝏𝒅𝒅
=  𝒆𝒆−𝜹𝜹𝑻𝑻𝒅𝒅𝑺𝑺(𝑫𝑫𝟏𝟏)      

 
Where, 𝑑𝑑1 is defined in equation (6) and 𝐷𝐷1and V are defined in equation (7).  
 
As introduced in equation (3), delta can be interpreted as a share-equivalent of the option 
[Derivatives pg. 383]. Figure 5 demonstrates the behavior of delta for different types of 
options. A deep in-the-money call option is more sensitive to the price movements than a 
near-the-money or out-of-the money option. This fact holds for an Asian option as well.  
 

 
 
The intuition is that if the stock price is higher than strike price (deep in-the-money) 
option, then it is more likely to be exercised and hence the option exhibits the behavior 
much like that of a fully leveraged share. The effect is reversed for an out-of-the money 
counterpart. Note that the Asian delta is lower for out-of-the money and is higher for in-
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the-money than its European counterpart. The delta is a little higher of near-the-money 
and as the option deepens, there is an inflection. Due to the difference in averaging, the 
geometric Asian delta is lower than the arithmetic.  
 
Figure 6 demonstrates the behavior of delta as the frequency of averaging, N, increases. 
As expected, the delta gets higher as N increases. The intuition is that the likelihood of 
the option being exercised increases and hence it behaves more closely like a fully 
leveraged share compared to its European counter (N =1).  
 

 
 
5.3 Delta Hedging: 
Market-makers can mitigate risk by delta-hedging. The central idea is that a correctly 
hedged position should earn the risk-free rate [Derivatives pg. 414]. The formula in 
equation (10) can be used to calculate the price of the option and also suggest the 
position in the underlying and the borrowing equivalent of the option is. In other words, 
if we were to purchase Δ shares at the spot price, S, and borrow 𝐾𝐾𝑐𝑐−𝑟𝑟𝑇𝑇𝒩𝒩(𝑑𝑑2), then the 
cost of the portfolio will be: 
 

𝑆𝑆𝑐𝑐−𝛿𝛿𝑇𝑇𝒩𝒩(𝑑𝑑1) − 𝐾𝐾𝑐𝑐−𝑟𝑟𝑇𝑇𝒩𝒩(𝑑𝑑2)      
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This is the same as the call price calculated in the Black-Scholes formula for δ =  0. 
Hence we can synthetically create a call option buy purchasing underlying and borrowing 
at the risk-free rate.  
 
5.3.1 Delta-Hedging For 1 Day: 
Lets suppose that a market-maker (dealer) sells (writes) one put option (ticker 
SPXWT30132163000) listed on Marketwatch.com. This Euro put tracks the S&P500 
index with the parameters listed in Table 4. As discussed earlier, in practice most dealers 
hedge their position so that their portfolio is balanced. To hedge this position, the market-
maker is long in the underlying and will purchase Δ shares. For simplicity, we will 
assume that the dealer marks-to-market daily. This is an example of a dynamic hedging. 
In reality, the frequency could be higher depending on the dealer preferences.   
 
 
 
 
 

*Source: Implied Volatility calculator http://www.option-price.com/implied-volatility.php 
  ^30-year T-Bond rate: http://www.treasury.gov  

 
Day 0: Put Sale and S&P500 short-sale—On August 5th S&P500 closed 
at 1,707.14. Using Equation 11, the put price is $3,353.60 and the Δ =
 −0.4264. To hedge this sale, the dealer will short-sale the underlying and 
the net investment is: 
    

(−42.64 × $1,707.14) − $3,353.60 = −$76,146.05 
 
At a risk-free interest rate of 3.86%, overnight the dealer earns 
$76,146.05 × �𝑐𝑐0.0386/365 − 1� = $8.05.The investment is negative due to 
the proceeds from the short sale of the underlying and the sale of the put. 
 
Day 1: Marking-to-market—On August 6th S&P500 closed at 1,697.37. 
The put price is $3,735.5 computed using Equation 11 with T = 24 days. 
The overnight profit calculation is given by:  
 
 
 
 
 

 20 



Pricing and Hedging Asian Options 
 

 
Day 1: Rebalancing—The new Δ = -0.4674, hence we need to short 47.74 
– 42.64 = 4.1 shares of underlying at $1697.37 generates: $1697.37 × 4.1 = 
$6,954.12 which will earn overnight interest at 3.86%.  

 
Interpretation: 
The example above is for an in-the-money put. The mechanism will be the opposite for a 
call. The profit in this calculation is the flux of cash generated due to short-selling the 
underlying. In this example, one key assumption is that the dealer can short at no 
expense, in reality there is a small premium paid to the owner if the underlying shares are 
borrowed from another dealer. For a call option it may be necessary to borrow funds to 
purchase additional shares to keep the portfolio Δ neutral. In that case, an over-night 
interest expense will be incurred. That scenario is discussed in the latter section of the 
paper. Another assumption made is that a fractional purchase of stock is possible. The 
interest earned is on the proceeds from the short-sale of the underlying.  
 
Figure 7 compares the profit and loss of a naked put and a dynamically hedged Δ neutral 
put discussed in the example above. In the graph, naked put profit is the exposure of the 
dealer if the buyer was to exercise the option. It is evident that with a dynamically hedged 
position, the profitability is much higher than the unhedged position. The drop in profit 
occurred on August 15th when the loss on put price was more than the proceeds from the 
short-sale as seen in Table 5.  
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However, as shown in Table 5, the cumulative profits on that day after rebalancing were 
$570.30. Note that in Figure 7, in order to maintain the details on the graph scaled the 
cumulative profits down were scaled down by 3. 

 
 
5.4 Hedging Asian Option: 
In order to maintain a Δ neutral portfolio, market-makers dynamically hedge by infusing 
money in order to purchase (long) the underlying or by selling (short) the underlying as 
discussed in section 5.3.  
 
Lets consider another example where, the financial institution bought two call options 
with the same strike price and date to maturity (T = 1 year) listed on Chicago Mercantile 
Exchange (CME). The two options are:  

1. Light Sweet Crude Oil European Financial Option (Euro Call) [17] 
2. WTI Average Price Option (Asian Call with monthly geometric averaging) [17] 

 
The underlying asset, in both cases, is Light Sweet Crude Oil Futures contract (CL), 
which is trading at $107.93 as of August 1st.  
 
Now lets consider three scenarios where the options are in-the-money (K = $102.00), 
near-the-money (K = $107.00) and out-of-the money (K = $112.00).   The market-maker 
is long in the underlying, Oil Futures, in this example. Lets use the market parameters 
from Table 4 and assume that the market-maker Δ hedges as shown in 5.3. Table 6 
demonstrates the profit (loss) calculation from a market-maker’s perspective for Asian 
and European the near-the-money options with strike price, K = $107.00.  
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Following observations were made in Table 6:  

1. Asian option price is lower than its European counterpart 
2. Asian call requires less investment to keep the portfolio Δ neutral than European 
3. Asian delta is marginally higher with option is at-the-money, as shown in Figure 5 
4. Cumulative profit (loss) of European call is higher than its Asian counterpart. The 

volatility affects Euro price more than Asian which uses monthly averages 
 

Figure 8 compares the daily profit and loss of NTM, ITM and OTM Asian call option 
from a market-maker’s perspective. It demonstrates that the ITM (K = $102.00) option 
price is most susceptible to a price shock in the underlying. In Figure 8, the bars depict 
the daily profit (loss) and the lines track the cumulative profit (loss). ITM option also 
makes the most profit for the market-maker which is explained by a higher delta as 
described in Figure 5. However, this profit (loss) is still lower than its European 
counterpart, which is consistence with the inference from Table 6.   
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Figure 9 demonstrates the relationship between the cumulative profit (scaled down by 10) 
and loss of a market-maker and the moneyness of both European and Asian option. As 
the option moves more into money, i.e. the buyer is more likely to exercise the option, the 
profit of the market-maker declines. ITM profit declines more rapidly compared to NTM 
and OTM. This is consistent with the fact that typically, it is more profitable to buy 
options with high deltas than to write since the greater the percentage movement - 
relative to the underlying's price and the corresponding little time-value erosion - the 
greater the leverage and vice-versa. [16]  
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A hedged portfolio that never requires additional cash investments to remain delta hedged 
is self-financing [Derivatives Markets pg. 419]. In this example, there was an initial 
investment requirement and then the portfolio generated cash, hence it was self-financed.  
 
The option in this example used geometric averaging, however the same logic applies to 
arithmetic averaging. The pricing behavior will be higher than geometric averaging but 
lower than its European counterpart. Delta hedging of an arithmetic Asian is outside the 
scope of this paper.  
 
4.5 Other Strategies: 
Path-dependent options such as Asian options have high gammas. In other words, the 
sensitivity of delta with respect to the underlying price is high, so it may be cheaper to 
hedge them statically using strategies like straddle or strangle. Perilla & Oancea present 
“semi-static” approach that consists in buying a simple European option with the same 
strike, but with expiration one third of the averaging period. This will offset the effect of 
gamma and the volatility exposure up to a certain point. Similar to delta hedging, market-
makers can hedge can use gamma to dynamically hedge. However, these strategies are 
out of scope for this paper.  

 
 

 25 



Pricing and Hedging Asian Options 
 

6. Conclusion: 
This paper introduced the binomial option-pricing model (BOPM) that uses binomial 
trees to derive the price of an option. This paper also derived Black Scholes model from 
Black Scholes equation and compared it to BOPM. The analysis confirmed the fact that 
as the number of steps, n, in the binomial tree reaches ∞ the binomial price is equal to 
that derived from the Black Scholes formula.  
 
This paper also compared and analyzed European option price with geometric and 
arithmetic averaging Asian option price using Black Scholes formula and Monte Carlo 
simulations. Four different Monte Carlo techniques were compared and analyzed. The 
stratified sampling technique emerged as the most efficient to obtain option prices. 
 
The analysis concluded that the European option prices were higher than its Asian 
counterpart. Asian options that use arithmetic average were more expensive than those 
that use geometric average. The paper analyzed the behavior of prices as the number of 
averages increased and concluded that the price decreases as the number of averages 
increased. This is due to the reduction in the effects of volatility in option pricing.  
 
The paper also discussed and dynamically hedged written European and Asian call 
options with oil futures as the underlying asset over a 7-day period. The market-maker 
profit and loss analysis concluded that the European written call profits were higher than 
its Asian counterpart. Moreover, an in-the-money option is more responsive to 
underlying price shock than near-the-money and out-of-the money option. This applied to 
both European and Asian option.  
 
As the options moved more in-the-money, the market-maker’s profitability decreased. 
This result was true for all written options. This is consistent with the fact that it is more 
profitable to buy options with high deltas than write since the greater the percentage 
movement - relative to the underlying's price and the corresponding little time-value 
erosion - the greater the leverage and vice-versa. 
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Appendix: 
 

i. Tables for all the figures 
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iii. Code: Black-Scholes Formula For European & Asian (Geometric) Option 

 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
#define PI 4.0*atan(1.0) // other way to define pi: const double pi=4.0*atan(1.0); 
double CDF(double); 
 
 
double bsCall(double S, double K, double r, double v, double q, double T) 
{ 
 double d1 = (log(S/K)+(r-q+0.5*v*v)*T)/(v*sqrt(T)); 
 double d2 = d1 - v*sqrt(T); 
 double N1 = CDF(d1); 
 double N2 = CDF(d2); 
     
 double C = S*N1*exp(-q*T)-K*N2*exp(-r*T); 
     
 return C; 
} 
double Delta(double S, double K, double r, double v, double q, double T) 
{ 
 double d1 = (log(S/K)+(r-q+0.5*v*v)*T)/(v*sqrt(T)); 
 double N1 = CDF(d1); 
    double del= exp(-q*T)*N1; 
 return del; 
} 
 
double GeometricAsian(double S, double K, double r, double v, double q, double T, int N) 
{ 
    double dt = T / N; 
    double nu = r - q - 0.5 * v * v; 
    double a = N * (N + 1) * (2.0 * N + 1.0) / 6.0; 
    double V = exp(-r * T) * S  * exp(((N + 1.0) * nu / 2.0 + v * v * a / (2.0 * N * N)) * dt); 
    double vavg = v * sqrt(a) / (pow(N, 1.5)); 
    double val = bsCall(V, K, r, vavg, q, T); 
     
    return val; 
} 
 
double GeometricAsianDelta(double S, double K, double r, double v, double q, double T, 
int N) { 
    double dt = T / N; 
    double nu = r - q - 0.5 * v * v; 
    double a = N * (N + 1) * (2.0 * N + 1.0) / 6.0; 
    double V = exp(-r * T) * S  * exp(((N + 1.0) * nu / 2.0 + v * v * a / (2.0 * N * N)) * dt); 
    double vavg = v * sqrt(a) / (pow(N, 1.5)); 
     
    double d1 = (log(V/K)+(r - q + 0.5*vavg*vavg)*T)/(vavg*sqrt(T)); 
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    double N1 = CDF(d1); 
     
    double delta = exp(-r*T)*exp(-q*T)*N1*exp(((N + 1.0) * nu / 2.0 + v * v * a / (2.0 * N * 
N)) * dt); 
     
    return delta; 
} 
 
int main() 
{ 
 double S = 106.04; 
 double K = 102; 
 double r = .0386; 
 double v = .22; 
 double T =   0.9778   ; 
 int N = 12; 
    double q = 0.0; 
     
    double DeltaA = GeometricAsianDelta(S,K, r, v, q, T, N); 
 cout.precision(4); 
     
 double CallPrc = GeometricAsian(S,K, r, v, q, T, N); 
 cout.precision(5); 
     
    double Prc = bsCall(S, K, r, v, q, T); 
    double delta = Delta(S,K,r,v,q,T); 
     
    double put = Prc + K*exp(-r*T)- S*exp(-q*T); 
     
    cout << "S = " << S << endl; 
    cout << " " << endl; 
     
    cout << "Call Price = " << Prc << endl; 
    cout << "Call Delta = " << delta << endl; 
    cout << " " << endl; 
     
    cout << "Asian Call Price = " << CallPrc << endl; 
    cout << "Asian Call Delta = " << DeltaA << endl; 
    cout << " " << endl; 
     
    cout << "Put Price = " << put << endl; 
    cout << "Put Delta = " << delta - exp(-v*T) << endl; 
    cout << " " << endl; 
     
     
     
 
return 0; 
} 
 
 
double CDF(double X) 
{ 
 const double a1=0.319381530, a2=-0.356563782, a3=1.781477937, a4=-
1.821255978, a5=1.330274429; 
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 double x=0, k=0; 
 double N, CDF, n; 
  
 x=fabs(X); // x is theabsolute value of X 
  
 // Standard formula to approximate normal density function - very precise 
 k=1/(1+0.2316419*x); 
 n=(1/sqrt(2*PI))*exp(-0.5*x*x); 
 N=1-n*(a1*k+a2*k*k+a3*pow(k,3)+a4*pow(k,4)+a5*pow(k,5)); 
  
 if (X>=0) 
  CDF=N; 
 else 
  CDF=1-N; 
 return CDF; 
} 
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