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1. Introduction to Derivatives:

Financial derivatives have been in existence as long as the invention of writing. The first
derivative contracts—forward contracts—were written in cuneiform script on clay
tablets. The evidence of the first written contract was dates back to in nineteenth century
BC in Mesopotamia on a tablet that promised delivery of 30 wooden [planks] of specific
dimension to client at a future date. [** There are many other written accounts of such
contracts in various pre BC civilizations in Indus Valley, Greece and Rome. [*]

Financial derivatives are used extensively in various financial markets to effectively and
economically hedge different risks. The semiannual over-the-counter derivative statistic
produced by Committee on the Global Financial System (CGFS)—collected for G10
countries, Switzerland, Australia and Spain—estimates that the gross market value of
$25.4 trillion. B Derivatives are used for speculation and make also very attractive
investment opportunity. Since it is cost effective, corporations use derivatives to gain
protection from currency risk, interest rate risk etc.

The standard derivatives contracts are called plain vanilla options. They traded on
exchanges such as the Chicago Board Options Exchange (CBOE) and have a wide
variety of underlying assets such as oil, natural gas, stock equity, bonds, currency,
interest rates etc. Sometimes there are no underlying assets e.g. weather options. As the
name, standard, suggests terms of these contracts cannot be customized.

However, most of the trading is done over-the-counter (OTC). In an OTC market the
buyers and sellers enter into transactions directly with the banks and dealers. McDonald
comments, in his book Derivatives Markets, that the Securities and Exchange
Commission (SEC), Financial Accounting Standard Board (FASB), and International
Accounting Standard Board (IASB) have increased the reporting requirements on the
usage of derivatives but to no avail. There is little to no knowledge about the actual usage
of the derivatives in operations.

Options give the right but not an obligation to purchase or sell the underlying asset at the
strike price. This is the peculiar difference than forward or futures contracts making them
more lucrative.

There are different types of exercise styles such as European, American, or Bermuda.
European and American options are the most basic exercise styles. In a European-style
option the exercise can only happen at the expiration. In an American-style option the
buyer of the option can choose to exercise when it is favorable to do so during the life of
the option. A Bermuda-style option can be exercised specific intervals during the life of
the option. There is no connection between the geographic location of the option trade
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and the exercise style. There are both put, right to sell, and call, right to buy, options for
each styles.

2. Exotic Options:

Today’s global financial markets are so complex that there is an acute demand for options
with a tailored term structure. They allow investment strategies that could be difficult or
costly or both to achieve with traditional (standard) options and securities. Options with
such characteristics are called exotic options. There are numerous types of exotic options
in existence with different functionalities, pay-off functions and term structures. Some of
the examples of exotics are barrier, binary, lookback, and Asian etc. Most of these
options are traded OTC, however, the use of exotics is getting increasingly mainstream
and hence are increasingly getting listed on different exchanges. For instance, CBOE has
listed binary options that have VIX and SPX as the underlying asset. 2

2.1 Introduction to Asian Options:

This paper will mainly focus on a path-dependent option—Asian options. The value of a
path-dependent option is affected by how the price of the underlying asset was reached at
the time of maturity. Unlike a vanilla European option, the pay-off of an Asian option is a
function of multiple points up to and including the price at expiry. Asian options are
some of the most common exotic options traded. As P. Wilmott (2006) and E. G. Haug
(2007) both point out, Asian options are popular in the OTC energy markets and in other
commodity markets lacking liquidity. [°]

The eight basic kinds of Asian calls and puts are listed below: !
- Average strike option vs. average rate option
- Arithmetically vs. geometrically averaging
- Discrete vs. continuous averaging

- American vs. European exercise

This paper will focus on discrete average price calls and puts that use arithmetic and
geometric averaging.

The means can be calculated using the following formulas: !

N
1
Arithmetic,A(0,T) = NZ S(ty)
im1

N
1
Geometric, G(0, T) = exp <ﬁz log(S(ti))>
io1
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Where,
S(t;) = Spot price at time t,
N =number of equally distributed sample points
T  =time to maturity

In reality, most average price Asian options use arithmetic averaging over geometric
averaging.

3. Option Pricing Methodologies:

Fischer Black and Myron Scholes M were pioneers in option pricing. The Black-Scholes
(BS) formula was published in the Journal of Political Economy (JPE) in 1973
[Derivatives Markets pg. 376]. Their paper described the mathematical framework for
valuation of option price for a plain vanilla European style option.

Option valuation has become more complex with the engineering of exotic options. It has
also become more robust with the development of computing power. Plain vanilla
European calls and puts have an analytical closed form solution, so do some European
style exotics such as geometric Asian, lookback and barrier. 'l However, other options do
not have an analytical solution to calculate an arbitrage-free price. Numerous
econometric and statistical models are employed to find prices of such options. This
paper will discuss the two most commonly used techniques viz. Binomial Option Pricing
Model and Black-Scholes Model.

3.1 Binomial Option Pricing Model (BOPM):

BOPM employs binomial trees to calculate the price given the characteristics of the
underlying asset. The BOPM assumes that in a no arbitrage market, over a period of time,
the price of the underlying can only move up or down by a specified amount. In other
words, the asset price has a normal distribution [Derivatives Markets pg. 313]. This
simple yet effective model is used amongst market professionals due to its versatility in
application to vanilla and more complex options. Cox, Ross and Rubenstein introduced
this technique in the famous paper Option Pricing: A simplified Approach that was
published in The Journal of Financial Economics.

The price of a call option for a one period model is given by the following equation:

e™®h _ g u— e(r—s)h>

— p—Th
C=e (cu G

Where,
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u = up movement

d =down movement

C, = option value when underlying asset goes up
C, = option value when underlying asset goes down
r =risk free rate

6 = continuously compounded dividend yield

h =time step

The up and down movements are parameterized by the following equations [Derivatives
Markets pg. 322]:

u= er-®htavh

d= e(r—S)h—m/ﬂ

Where,
o = standard deviation of the continuously compounded stock return

One of the shortcomings of the BOPM is that the stock prices can only have two
movements ignoring the intermediate price movements. This may not be an accurate
representation of the price path. One solution is to shorten the time steps. A computer aid
can do this with relative ease and efficiency.

3.2 Black-Scholes (BS) Model:

McDonald discusses the mindset of Black and Scholes in Derivatives Markets (2006). He
suggests that Black and Scholes examined the problem faced by a delta-hedging market
maker. They assumed that the stock follows geometric Brownian motion and used Ito’s
Lemma to describe the option price behavior [Derivatives Markets pg. 679]. This paper
will follow the derivation of the BS model as described by Richardson (2009). [']

The following Stochastic Differential Equation (SDE) can describe the asset prices:

dS = oSdZ + (u—8)Sdt (1)

Where,
S =asset value
o =volatility

u = drift or expected return

6 = continuous dividend yield on the underlying asset
dS = incremental changes in asset value

dZ = Weiner process

dt = incremental changes in time
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McDonald [Derivatives Markets pg. 650] defines the Wiener process, also called
Brownian motion, as a stochastic (random) process that is a random walk occurring in
continuous time with movements that are continuous rather than discrete. If Z(t)
represents a Brownian motion at time t then Z(t)is a martingale. As McDonald defines it,
the process Z(t) is called a diffusion process.

Ito’s Lemma is a product rule for SDEs. Applying it for § = 0, we can say that if S
solves equation (1) then V' (S, t) solves the following:

1
dV = oSV.dX + (usvs + Eazszvss + Vt> dt (2

3.2.1 Black-Scholes PDE Derivation:
Lets construct a portfolio, IT, where we are long one option V' (S, t) and short a A fraction

of the underlying asset.
~M=V-A-§ (3) = dll = dV — AdS 4)

Substituting equations (1) & (2) into (4) and after simple algebraic manipulation, we
get:

1
dll = oS(Vy,— A)dX + (uSVS + Eazszvss +V,— uAS) dt

For A= V;, we get:
1
di = (usvs + Eazszvss + Vt> dt
The above portfolio is independent of the randomness exhibited by the underlying asset.

Black and Scholes assumed a no-arbitrage market and made portfolio adjustments by
investing and divesting at the risk-free rate. Hence from the equation above:

1
rIidt = (usvs + Eazszvss + Vt) dt
1 1,
= Il = - (uSVS +EG S$“Vgs + Vt> (5)

Substituting A= V; and (5) in (3) we get the following equation called Black-Scholes
Equation (BSE):
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1
V,+ Eazszvss +rSVy—rV =0 (6)

The assumptions made by Black and Scholes in the above derivation are as follows: [ ]
The underlying asset follows GBM with constant volatility

The number of outstanding stocks is constant

No dividends

The price of the stock is log-normally distributed with mean p and standard
deviation o

There is a constant risk-free rate

Market participants can borrow or lend at the risk-free rate

7. No transactions cost

N =

o o

3.2.2 Black-Scholes Formula:

As McDonald points out that the BS formula require two conditions: the pricing formula
must satisfy the BSE and it must satisfy appropriate boundary conditions. In other words,
to price the option we solve the BSE using some boundary conditions.

The payoff function for a European call option with a strike price is:
C(S,T) = max(0,S — K)

The value of the option is known at the time of maturity computed by the equation above.
For a strike price, K > 0, max(0,0 — K) = 0. Conversely, for an underlying price
growing without a bound will payoffmax(0,S — K) = S. Thus the boundary conditions
are:

€0,t)=0 (i)

C(§ > oo, t)=8§ (ii)

Using the above boundary conditions in BSE, we can derive the BS formula for a non-
dividend paying European option with a maturity date T and § = 0 as the following:

C= SN(dl) - Ke_rTN(dz) (6)

Where,
In(S/x) + (r + %02) T
d, =
1 O'\/T
dz = d1 - O—\/T

N (X) = cumulative normal distribution function



Pricing and Hedging Asian Options

BS formula is a special case of BOPM where the number of steps is co. Even though the
step size is infinitesimal small, the probability measure is discrete and hence the BS
formula provides a more accurate approximation of the movement of the underlying
asset. [**1 As shown in the Table 1 the two prices converge as the number of steps, n — oo.
However, this comes at an increasing computational cost. Needless to say that binomial
trees are not an efficient way to obtain option pricing.

Table 1: Price Comparision Binomial Option Pricing Model and Black-Scholes
Stock price, S = $101 Time to maturity, T =1 Volatility, ¢ =30%
Strike price, K = $100 Risk-free rate, r=8.0% Dividend Yield, 6 = 0.0%
Black-Scholes Formula Price =$16.3789

Number of steps {n) Binomial Tree Price (§) Tick Time {sec)
1 1886100 0.000

5 1689270 0.000

10 16.19020 0.000

20 1630480 0.000

40 1635570 0.000

60 1637000 0.000

100 1637941 0.000

150 1638271 0.016
200 1638370 0.015
250 1638390 0.015
500 1638321 0.015
750 1638221 0.015
1,000 1638140 0.015
5,000 1637894 0.250
10.000 16.37910 1.264
20,000 1637900 5.913
50,000 1637893 43 961
100,000 1637891 191.746

4. Asian Options Pricing:

There are numerous methods that are implemented to price options. This paper will
utilize the Black-Scholes model to calculate the option price. Moreover, there are
different techniques to calculate option prices. This paper will compare, contrast and
analyze Geometric Avg. Asian and Vanilla European option prices obtained using closed
form solution from Black-Scholes model and Monte Carlo simulations.

4.1 Closed Form Solution (Black-Scholes Formula):

Since the payoff of an Asian option is based on the average of stock (or strike) price, the
BS PDE needs a term reflecting the evolution of the average. Wiklund (2008) in his paper
Asian Option Pricing and Volatility presents the BS formula of geometric and arithmetic
averaging Asian option.
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Using the same nomenclature from the previous sections, the option prices with
geometric averaging are as follows for § = 0: [*?]

Call = SA]N (dn_]' + 0 ’TZ,n—j> - Ke_rtN(dn_]-)
Put = Ke_rtN(—dn_j) — SA]N (—dn_]' — 0 ’TZ,TL—]'>

S+ ()i )

d._ ;=
" 0. Tz,n—j

1
Aj = e (T T1n-j)=30%(T2n-j=T1n-))

n—j n—j—1Dh
Tl,n—j=T<T—T
—\? —NDn—j—-1D@n—-4j+1
ro (M T_(n Nn—j—-1)Un—4j )h
Zn-j n 6n2
. n
ST —(n—j)h
j=1

n is the number of observations to form the average, h is the observation frequency, j is
the number of observations past in the averaging period.

This can be reduced to:

Geo Call = e TVN(D,) — e "TKN(D,)

(7
Geo Put = e "TKN(-D,) — e *TVN(-D,)
where:
(N+1)u  aTo?
V = e_TTSe< z 2N3)
1
p=r—q+ 502
N(N+1)(2N +1)
a =
6
| 2N+1
Gavg = 7 6N+ 1)

1 1
D, = (l 4 +( —5+=-0a2 )T)
! O'avg\/T n( /K) r 2 Tavg




Pricing and Hedging Asian Options

D, =d; — O-avgﬁ

Since the arithmetic means does not follow lognormal distribution, there is no closed
form analytical solution for arithmetic averaging Asian options. Hence Wiklund presents
the following approximation: 2

G Z (o) 5 <%(K) N «;_)) . (u —::(R))

KN<__ﬂ—ln<f(>>_<1Ze<m+%o%>w("_— ‘“<'”‘>+@>>]
(" n Oy Oy

Arith Call =~ e T

Arith Put ~ e T

Where, -
u; =In(S) + (r — %02) (t, + (i — DAD)
0; = 04/ (t; + (i — 1)At)
Oy = 02(ty + (i — 1DAL) — l(lz; D)
p = In(S) + <r — %02) (tl +@>

o J\/(tl L (= 1)(62: _ 1)At>

1% ( +(oxi(InK-p))/ 2+< U’%i/ )o 5)
~ wit(oxi(nK-p))/oz+( of - :
R =2K- —Z e o%

n

i=1
t1is the time to first average point and At is the time between averaging points

Needless to say, there is a less cumbersome way to get the option prices for the arithmetic
averaging option. Simulations such as Monte Carlo can be conducted to obtain prices
more accurately. This paper will use the option price obtained from closed-form
analytical solution as the baseline to compare the price obtained from simulations.

4.3 QuantLib/Boost:

Joshi introduces Boost and QuantLib open source libraries in the “bible” for quants C++
Design Patterns and Derivatives Pricing. ! The source codes are heavily peer-reviewed
and are versatile amongst different compilers. According to their website, QuantLib
project is aimed at providing a comprehensive software framework for quantitative
finance. QuantLib offers tools that are useful both for practical implementation and for
advanced modeling, with features such as market conventions, yield curve models,
solvers, PDEs, Monte Carlo (low-discrepancy included), exotic options, VAR, and so on.

10
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Compiling QuantLib requires installation of Boost libraries. 1 Most dealers have
proprietary software that uses such libraries at their derivatives desk.

4.4 Monte Carlo Simulations:
As defined in Exotic Option Trading, the principle of a Monte Carlo process is to
generate a large number of finite paths, compute the payoff at each iteration, aggregate
those payoffs, and subsequently divide that aggregated sum by the total number of
simulated paths. [** Most exotic option are priced using Monte Carlo simulations with a
framework such as the BS model which assumes that the underlying asset prices evolve
according the SDE following geometric Brownian motion shown in equation (1) under
risk-neutral distribution [Derivatives Markets pg. 617]. The main benefit of a Monte
Carlo is that it is pretty easy to implement and versatile enough to use for various
European style exotics. As MacDonald points out, Monte Carlo is useful under the
following circumstances [Derivatives Markets pg. 627]:
e The number of random components are too many to obtain a direct numerical
solution
e Where a direct solution is not possible due to the distribution of the underlying
variables (arithmetic averaging Asian option)
e Path-dependent options

The Black-Scholes framework uses the geometric Brownian motion, and since
Z(t)~N'(0,1) a lognormal stock price evolves according to the following equation:

S, = Soe(r—é'—O.Saz)Ha\/?Z (8)

We can generate N random future stock prices by generating Z, standard random
variables, and using equation (8) in N trials. For each trial we compute the pay-off for an
Asian call option with geometric average for i'" trial equal to G/ as follows:

CallPayoff = max(0,G(T) — K)
Where,

G(T) = (5951Sy ...Sp) /M

Where, S; follows the price path from equation (7) and M is the number of time the stock
prices are recorded.

Averaging the resulting values for N simulations (trials) and discounting it using the risk-
free rate to the present to yield the option price as follows:

11
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N
1
CallPrice = e‘rTﬁz max(0,G(T) —K) (9)
i=1

The method described above is called naive Monte Carlo. Naive Monte Carlo simulation
is simple but not efficient. The accuracy is directly proportional to the number of
simulations ran i.e. the higher the number of simulations, the more accurate the naive MC
price will be. MacDonald addresses this issue in Derivatives Markets. He presents the
formula to calculate the standard deviation of one simulation, o, in terms of standard
deviation, o,,, of n total simulations for a given independent and identically distributed

spot prices as follows:

1
0, = —O0¢

Vn
The Table 3 depicts the pricing progression for a European Call option. As the number of

simulations increase, the price gets closer to the closed-form solution Black price at the
expense of increasing computational cost.

Table 2: Simulated Pricing Accuracy

Stock price, S=$101 Time to maturity, T=1  Volatility, c = 30% Type = Euro Call
Strike price, K =$100 Risk-free rate, r =8.0% Dividend Yield, 5 = 0.0% Number of steps =100
# of Simulations Sim Price Formula Price Simulation Time Price Difference
1 0.00 16.38 0 100.0%
5 10.09 16.38 0 38.4%
50 18.18 16.38 0 -11.0%
500 16.70 16.38 0.016 -2.0%
5,000 16.46 16.38 0.14 -0.5%
50,000 16.22 16.38 1.358 1.0%

However, in a computer driven fast paced investment environment, efficiency is critical.
This paper will examine the following methods to improve pricing efficiency:

1. Control Variate Method: This method uses the price of a related option whose
value can be computed using a analytical solution to estimate the error. The error
is subsequently reduced in following simulation. Examples of control variables
are European options, Geometric Avg. Asian options, and American options.

2. Antithetic Variate Method: This method uses the idea that the estimation
variance would reduce if the simulated paths were perfectly negatively correlated.
Two paths are generated, the primary path and its antithesis. [*°]

12
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3. Stratified Sampling: Investopedia defines it as a method of sampling that
involves the division of a population into smaller groups known as strata. In
stratified random sampling, the strata are formed based on members' shared
attributes or characteristics. A random sample from each stratum is taken in a
number proportional to the stratum's size when compared to the population. These
subsets of the strata are then pooled to form a random sample. [2¢]

Figure 2 is a quick snapshot that compares the robustness of the different techniques
discussed above. Note that all but stratified sampling provided the most accurate
European call price with the least number of simulations.

19.00 T Figure 1: Pricing Accuracy of

Different Monte Carlo Methods

Stock price, S =$101
Strike price, K = $100
Time to maturity, T=1
Volatility. o = 30%

Type = Euro Call
Risk-free rate. r= 8.0%
Dividend Yield, § = 0.0%
Number of steps =100

18.00 +

£ 17.00 T

g

£

3 | A =

2 \ X———

2 16.00
—Closed Form
— Naive

15.00 Control

— Antithetic

— Stratified

14.00
IN) O NN NN £ O »H £ O £ O »H £
DRI S L L LS LSS

# of Simulations

It is also important to examine the computational cost (processing time) of these different
techniques. The figure 3 shows that stratified sampling has the least tick time—
processing time of the computer—compared to the other candidates when the number of
simulations increase. Control-Variate method took 2.48 seconds to run 75,000
simulations to compute Euro call option price equal to $16.36, which is $.02 less than the
closed form price. Stratified sampling took 0.00 seconds to run 100 simulations to obtain
the price $16.38 which equals the closed form price.

13
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3.000 T gigure 2: Tick Time Comparision of
Different Monte Carlo Methods
2.500 T stock price, S = $101 ——Closed Form
Strike price, K = $100
Time to maturity, T=1 ——Naive
- 2.000 T Volatility, 6 = 30%
g Type = Euro Call S;’g;zl'
2 Risk-free rate. r = 8.0% Late |
& 1500 1 Dividend Yield, 5=0.0% 7 Antithetic
2 Number of steps —%— Stratified
F

1.000 -

0.500 -

0.000 & B
R R - M P SR S S S T
~ V e N \? \c'? q,‘-? 5% ’\‘-? S ?

#f of Simulations

There are other techniques such as importance sampling—qgenerations of random
numbers where they have most value for pricing a particular claim—and low discrepancy
sequences which uses selected deterministic points to create a uniform coverage of
distribution that also provides efficient pricing, but they are outside the scope of this
paper. [l

4.2 Price Characteristics:

Due to the difference in the type of averaging, Arithmetic Asian options are always more
expensive than their geometric counter part. This is a result due to Jensen’s inequality
where the geometric mean produces a lower underlying price, hence a lower option price
[Derivative Markets pg. 629]. As seen in Figure 3, a comparable European option is still
more expensive than both types of Asian option. McDonald points out the fact that Asian
Options are worth less at issuance than the equivalent European option.

The intuition is that since the payoff of an Asian option is based on an average price of

the underlying asset, it is less volatile than the asset price itself, and the option on a lower
volatility asset is worth less. Figure 1 confirms this intuition for a call option.

14
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6000 ~ Yigure 3: Call Price Comparision
Strike price, K = $100
Time to maturity, T=1
| Volatility, 6 =30%
50.00 Number of averages= 10
Risk-free rate, r = 8.0%
Dividend Yield, 6 = 0.0%
Number of Simulations= 100,000
40.00 T Number of steps = 100
— Confidence Level = 99%
&«
[
-8
3000 +
=
@)
20.00 T
10.00 T
0.00
50 75 100
Spot Price ($)

Euro Price
—+—Geo Asian Price

—B— Arith Asian
Price

150

125

Table 3 lists the pricing behavior of an Asian cal
increase. The more the averages, the lower the

fluctuations are averaged more frequently hence
price is still higher than the geometric price due to

Table 3: Price Behavior in

| option when number of averages (N)

price. The intuition is that the pricing
the volatility is reduced. Arithmetic
Jensen’s inequality discussed earlier.

Number of Averages (N)

Stock price, S=$100 Time to maturity, T=1 Volatility, c = 30%
Strike price, K =$100 Risk-free rate, r = 8.0%

Dividend Yield, 6 = 0.0%

Number of Simulations = 100,000
Number of steps = 100

Confidence Level = 99%

Number of avg. (N) Sim. Arith Price ($) Sim. Geo Price ($) Exact Geo Price ($) Std Error
1 15.7995 15.664 15.7113 0.074

2 11.9526 11.749 11.76975 0.054

5 9.8428 9.563 9.54673 0.044

10 9.1397 8.871 8.825936 0.04

20 8.7843 8.456 8.468902 0.039

40 8.7689 8.316 8.291175 0.038

15
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5. Hedging:

Any market maker or investor faces, inevitably and inherently, the following two
questions:

e How to price an option efficiently and accurately?

e How to hedge the risk of their portfolio?

This paper has discussed different pricing mechanisms, models, and techniques to
address the first question. MacDonald aptly addressed the second question in Derivatives
Markets. Hedging is an insurance to reduce their exposure to an adverse event with a
negative affect on the value of a portfolio or position.

Figure 4 demonstrates the profit and payoff of a written put sold by a market-maker.
Without hedge the market-maker is exposed to potential loss if the underlying asset,
S&P500 index, goes down. This is called a “naked” put, in other words the market-maker
has no position in the underlying.

$25 +
| S&P 500 Index ($)

$0 : :
§ O D M D D
I\ N N} “ AN N
$2§3 _ RO ARG S A
$50 - —Put Payoff
—Put Profit
-$75 1
-$100 -
-$125 Figure 4: Naked Euro Put
$150 - TIK = SPXWT30132163000
Strike Price, K =$1,700
Volatility, o =22%
-$175 A Risk-free rate, r =3.86%
Dividend Yield, 8 =0.0%
-$200 - Expiration Date =8/30/13
Settle Date

This section will focus on hedging the risk using option. Perilla & Oancea discuss the
theory of dynamic hedging strategy by investing in units of risk-free asset and the
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underlying in order to mimic the payoff of the option hence reducing the exposure. ]
This strategy involves holding a “delta-neutral” portfolio discussed in the later sections.

5.1 Option Greeks:

Option Greeks measure the sensitivity of option price with respect to (w.r.t) different
inputs. Greeks are used extensively to measure risk exposure and hedging. A key
assumption is that only one parameter is changed at a time and the rest are held constant.
The six different Greek measures in option pricing are defined as follows:

Delta, A: measures option price sensitivity w.r.t underlying price

Gamma, I':  change in delta w.r.t underlying price

Vega: option price sensitivity w.r.t volatility

Theta, ©:  option price sensitivity w.r.t time to maturity

e Rho, p:  option price sensitivity w.r.t risk-free interest rate

e Psi, W: option price sensitivity w.r.t dividend yield

Hence, in equation (6):
V, =option’s delta
V.s = option’s gamma
V; = option’s theta

The sign for put options Greeks is the opposite to that for call options. Please refer to
Table 3 for a snap shot of signs of all Greeks:

Table 3: Sign of Greek measures for call and put options

Greeks Call Put
Delta, A + -
Gamma, T + +
Vega + +
Theta, 6  Depends* Depends*
Rho, p + -

Psi, ¥ - +

* Time decay can be positive for deep-in-the-money calls and puts with high dividend yield, otherwise 0 is
generally negative [Derivatives pg.387]

5.2 Characteristics of Option Delta (A):
The formula for a call delta is given by the following equation: [Derivatives pg. 410]

0C(S,K,0,7,T,8 ) B
as B

Euro Call delta, A = e 9TV (d,)
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(10)
J0C(S,K,0,1,T,8 ) B

—-6T
5 e STV N (D,)

Geo Call delta, A =

Where, d, is defined in equation (6) and D;and V are defined in equation (7).

As introduced in equation (3), delta can be interpreted as a share-equivalent of the option
[Derivatives pg. 383]. Figure 5 demonstrates the behavior of delta for different types of
options. A deep in-the-money call option is more sensitive to the price movements than a
near-the-money or out-of-the money option. This fact holds for an Asian option as well.

Figure 5: Delta (A) Comparision =

0.9000 + _
Strike price, K = $100
Time to maturity, T =1
Volatility, 6 =30%
Number of averages= 10 ,
0.7500 + Risk-free rate,r=8.0%
Dividend Yield, 6 = 0.0% /
Number of Simulations= 10,000
Number of steps = 100 /
Confidence Level = 99%
0.6000
fa!
©
[ Euro
5 0.4500 —+— Geo Asian
Artih Asian
0.3000
0.1500
0.0000 #¥—ps~~———-4 ——++—-—+—rr4-+r——"——+ -+ -4+ r+-—+——+—+r+—+r—+
50 75 100 125 150
Spot Price ($)

The intuition is that if the stock price is higher than strike price (deep in-the-money)
option, then it is more likely to be exercised and hence the option exhibits the behavior
much like that of a fully leveraged share. The effect is reversed for an out-of-the money
counterpart. Note that the Asian delta is lower for out-of-the money and is higher for in-
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the-money than its European counterpart. The delta is a little higher of near-the-money
and as the option deepens, there is an inflection. Due to the difference in averaging, the
geometric Asian delta is lower than the arithmetic.

Figure 6 demonstrates the behavior of delta as the frequency of averaging, N, increases.
As expected, the delta gets higher as N increases. The intuition is that the likelihood of
the option being exercised increases and hence it behaves more closely like a fully
leveraged share compared to its European counter (N =1).

1.00 T
Figure 6: A behavior in # of Averages (N)
Type = Geometric
Strike price, K =$100
Time to maturity, T=1
0.80 +  Volatility, o = 30%
Risk-free rate, r = 8.0%
Dividend Yield, 6 = 0.0%
0.60 +
&
]
= —N-=1
=
@) ——N=2
040 T
—4— N =40
020 +
0.00 T : T }
50 60 70 80 90 100 110 120 130 140 150 160 170

Spot Prices ($)

5.3 Delta Hedging:

Market-makers can mitigate risk by delta-hedging. The central idea is that a correctly
hedged position should earn the risk-free rate [Derivatives pg. 414]. The formula in
equation (10) can be used to calculate the price of the option and also suggest the
position in the underlying and the borrowing equivalent of the option is. In other words,
if we were to purchase A shares at the spot price, S, and borrow Ke™"" N (d,), then the
cost of the portfolio will be:

Se TN (dy) — Ke TN (dy)
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This is the same as the call price calculated in the Black-Scholes formula for § = 0.
Hence we can synthetically create a call option buy purchasing underlying and borrowing
at the risk-free rate.

5.3.1 Delta-Hedging For 1 Day:

Lets suppose that a market-maker (dealer) sells (writes) one put option (ticker
SPXWT30132163000) listed on Marketwatch.com. This Euro put tracks the S&P500
index with the parameters listed in Table 4. As discussed earlier, in practice most dealers
hedge their position so that their portfolio is balanced. To hedge this position, the market-
maker is long in the underlying and will purchase A shares. For simplicity, we will
assume that the dealer marks-to-market daily. This is an example of a dynamic hedging.
In reality, the frequency could be higher depending on the dealer preferences.

Table 4: SPXWT30132163000 Parameters

Strike Price, K = =$1,700 Dividend Yield, 6 =0.0%
Volatility, o =22%* Settlement = Aug 05, 2013
Risk-free rate,r =3.86%" Expiration = Aug 30,2013

*Source: Implied Volatility calculator http://www.option-price.com/implied-volatility.php
"30-year T-Bond rate: http://www.treasury.gov

Day 0: Put Sale and S&P500 short-sale—On August 5" S&P500 closed
at 1,707.14. Using Equation 11, the put price is $3,353.60 and the A =
—0.4264. To hedge this sale, the dealer will short-sale the underlying and
the net investment is:

(—42.64 x $1,707.14) — $3,353.60 = —$76,146.05

At a risk-free interest rate of 3.86%, overnight the dealer earns
$76,146.05 x (£%0386/365 — 1) = $8.05.The investment is negative due to
the proceeds from the short sale of the underlying and the sale of the put.

Day 1: Marking-to-market—On August 6 S&P500 closed at 1,697.37.
The put price is $3,735.5 computed using Equation 11 with T = 24 days.
The overnight profit calculation is given by:

Gain(loss) on Put $3,353.60-%3,735.50= $ (381.90)
Gain(loss) on 42.64 Shorted Shares  ($1,697.37 - $1,707.14)<(-42.685)= $§ 416.59
Cap gain (loss) $ 3469
Interest Earned (Expense) $ 8.05
Daily Profit (Loss) $ 4275
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Day 1: Rebalancing—The new A = -0.4674, hence we need to short 47.74
—42.64 = 4.1 shares of underlying at $1697.37 generates: $1697.37 x 4.1 =
$6,954.12 which will earn overnight interest at 3.86%.

Interpretation:

The example above is for an in-the-money put. The mechanism will be the opposite for a
call. The profit in this calculation is the flux of cash generated due to short-selling the
underlying. In this example, one key assumption is that the dealer can short at no
expense, in reality there is a small premium paid to the owner if the underlying shares are
borrowed from another dealer. For a call option it may be necessary to borrow funds to
purchase additional shares to keep the portfolio A neutral. In that case, an over-night
interest expense will be incurred. That scenario is discussed in the latter section of the
paper. Another assumption made is that a fractional purchase of stock is possible. The
interest earned is on the proceeds from the short-sale of the underlying.

Figure 7 compares the profit and loss of a naked put and a dynamically hedged A neutral
put discussed in the example above. In the graph, naked put profit is the exposure of the
dealer if the buyer was to exercise the option. It is evident that with a dynamically hedged
position, the profitability is much higher than the unhedged position. The drop in profit
occurred on August 15" when the loss on put price was more than the proceeds from the
short-sale as seen in Table 5.

Figure 7: SPXWT30132163000 PnL

250 T Date Range: 8/5-8/16
1 TIK = SPXWT30132163000
Strike Price, K~ =$1,700 / \ /
200 T wvolatility, o =220
Risk-free rate, r =3.86%
| DividendYield, 8 =0.0%
| Expiration = 8/30/13
150 Settlement =8/5/13
@
= 100 +
E
|
=
S
2 50 ¢
-9
0 F
q/‘\
N
-50 ~
S&P500 Spot
-100 — — Naked Put —— ANeutral =—"—Cumulative PnL ($)
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However, as shown in Table 5, the cumulative profits on that day after rebalancing were
$570.30. Note that in Figure 7, in order to maintain the details on the graph scaled the
cumulative profits down were scaled down by 3.

Table 5: Delia profii (Joss) calculation for 2 market maker for SPXWT301321630d0

5-Amg 6-Ang T-Ang 8-Ang 9-Ang 12-Ang 13-Ang 14-Ang 15-Ang 16-Ang
Stock Price 1,707.14 1,697.37 169091 1,69748 1,691.42 168047 1,694.16 1,685.39 166132 1,655.83
Pat Price(100 Shares) 3,353.60 3,735.50 398330 3,58530 3,810.10 367690 335330 3,728.40 512540 543190
Option Delta (0.43) 047) (0.50) (0.47) (050) (0.51) (0.49) (054) (0.67) (0.70)
Investment ($) (76,146.05)  (83.065.48) (87.91838) (83,33631) (88,.107.09) (90.62547) (87.065.13) (94946.76) (116031.80) (121,677.79)
Gam(loss) on Put (381.90) (247.80) 398.00 (224.80) 13320 32360 (375.10) (1,397.00) (30650)
Gain(loss) on Shares 416.59 30192 (326.13) 284.71 97.18 24037 433.34 1302.74 36650
Cap gain (loss) 34.69 5412 7187 59.91 23038 8223 58.24 (94.26) 60.00
Int. Bxpense 805 8.78 230 881 9232 9.58 221 10.04 1227
Daily Profit (L.oss) 4275 6291 81.17 68.72 239.70 9181 67.45 (84.22) 7227
Cumnulative Profit (§) 105.65 186.82 255.55 49525 587.06 654.51 57030 64257

5.4 Hedging Asian Option:

In order to maintain a A neutral portfolio, market-makers dynamically hedge by infusing
money in order to purchase (long) the underlying or by selling (short) the underlying as
discussed in section 5.3.

Lets consider another example where, the financial institution bought two call options
with the same strike price and date to maturity (T = 1 year) listed on Chicago Mercantile
Exchange (CME). The two options are:

1. Light Sweet Crude Oil European Financial Option (Euro Call) (7]

2. WTI Average Price Option (Asian Call with monthly geometric averaging) "]

The underlying asset, in both cases, is Light Sweet Crude Oil Futures contract (CL),
which is trading at $107.93 as of August 1%

Now lets consider three scenarios where the options are in-the-money (K = $102.00),
near-the-money (K = $107.00) and out-of-the money (K = $112.00). The market-maker
is long in the underlying, Oil Futures, in this example. Lets use the market parameters
from Table 4 and assume that the market-maker A hedges as shown in 5.3. Table 6
demonstrates the profit (loss) calculation from a market-maker’s perspective for Asian
and European the near-the-money options with strike price, K = $107.00.
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Table 6 : Daily Profit (loss) calculation for a markei-maker using A hedging

Eure Call: Light Sweet Crude il European Financial Option

Date 1-Aug 2-Aug 3-Aug 6-Aug 7-Aug 8 Aug 9-Aug
Unit Spot Price 107.93 106.94 106.61 10532 104.41 103.45 106.04
Unit Call Price 11.938 11.306 1105 10.265 9723 9.17 10.64
Call Price (1000 bamels) 11,938.00 11,306.00 11,050.00 10,265.00 9,723.00 9,168.70 10,635.00
Option Delta 0.58 0.61 0.61 058 0.57 055 0.60
Investment ($) 50,920.43 54,057.87 53,484.23 51,196.59 49,559.95 47.816.73 52A475.77
Gain(loss) on Call 632.00 256.00 78500 542.00 55430 (1,466.30)
Gain(loss) on Futures (576.58) (2017 (78.09) (53.10) (54.51) 142.67
Cap gain (loss) 5542 23583 70691 48890 49979 (1,323.63)
Int. Expensse (5.39) (5.72) (5.66) (5.41) (524) (5.06)
Daily Profit (Loss) 50.04 230.11 70126 48348 494 55 (1,328.69)
Cumulative Profit ($) 280.15 931.37 1,414.85 1,909.40 580.71
WTI Average Price Option (non-early exercisable)

Date 1-Aug 2-Aug S-Aug 6-Aug 7-Aug 8-Aug 9-Aug
Unit Spot Price 107.93 106.94 106.61 10532 104.41 103.45 106.04
Unit Call Price 70417 64621 6.2486 5.5477 50781 461 590
Call Price (1000 bamrels) 7,041.70 6,462.10 6,248.60 5,547.70 5,078.10 4,609.00 5,898.40
Option Delta 0.59 0.56 055 0.52 0.49 047 0.54
Investment ($) 56,470.79 53,678.82 52,739.78 49,009.11 46,350.09 43,537.66 51,091.74
Gain(loss) on Call 579.60 21350 70090 46960 46910 (1,289.40)
Gain(loss) on Futures (582.58) (18.56) (71.38) {47.14) (47.29) 120.54
Cap gain (loss) (2.98) 19494 62952 422 46 42181 (1,168.86)
Int. Expensse (397 (5.68) (5.58) (5.18) (1.90) (4.60)
Daily Profit (Loss) (8.95) 18926 62395 41728 41691 (1,173.46)
Cumulative Profit ($) 180.32 813.21 1,230.49 1,647.40 473.94

Following observations were made in Table 6:
1. Asian option price is lower than its European counterpart
2. Asian call requires less investment to keep the portfolio A neutral than European
3. Asian delta is marginally higher with option is at-the-money, as shown in Figure 5
4. Cumulative profit (loss) of European call is higher than its Asian counterpart. The
volatility affects Euro price more than Asian which uses monthly averages

Figure 8 compares the daily profit and loss of NTM, ITM and OTM Asian call option
from a market-maker’s perspective. It demonstrates that the ITM (K = $102.00) option
price is most susceptible to a price shock in the underlying. In Figure 8, the bars depict
the daily profit (loss) and the lines track the cumulative profit (loss). ITM option also
makes the most profit for the market-maker which is explained by a higher delta as
described in Figure 5. However, this profit (loss) is still lower than its European
counterpart, which is consistence with the inference from Table 6.
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Figure 8: WTI Average Price Option
2.000 + Daily and Cumulative PnL
of a market-maker
1.500 T
1.000 T IT™
S NTM
500 T
e OTM
0 —&—IT™M
=#=NTM
-500 T
=0=0TM
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Figure 9 demonstrates the relationship between the cumulative profit (scaled down by 10)
and loss of a market-maker and the moneyness of both European and Asian option. As
the option moves more into money, i.e. the buyer is more likely to exercise the option, the
profit of the market-maker declines. ITM profit declines more rapidly compared to NTM
and OTM. This is consistent with the fact that typically, it is more profitable to buy
options with high deltas than to write since the greater the percentage movement -
relative to the underlying's price and the corresponding little time-value erosion - the
greater the leverage and vice-versa. 6]
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Figure 9: Market-maker Cumulative PnL.
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A hedged portfolio that never requires additional cash investments to remain delta hedged
is self-financing [Derivatives Markets pg. 419]. In this example, there was an initial
investment requirement and then the portfolio generated cash, hence it was self-financed.

The option in this example used geometric averaging, however the same logic applies to
arithmetic averaging. The pricing behavior will be higher than geometric averaging but
lower than its European counterpart. Delta hedging of an arithmetic Asian is outside the
scope of this paper.

4.5 Other Strategies:

Path-dependent options such as Asian options have high gammas. In other words, the
sensitivity of delta with respect to the underlying price is high, so it may be cheaper to
hedge them statically using strategies like straddle or strangle. Perilla & Oancea present
“semi-static” approach that consists in buying a simple European option with the same
strike, but with expiration one third of the averaging period. This will offset the effect of
gamma and the volatility exposure up to a certain point. Similar to delta hedging, market-
makers can hedge can use gamma to dynamically hedge. However, these strategies are
out of scope for this paper.
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6. Conclusion:

This paper introduced the binomial option-pricing model (BOPM) that uses binomial
trees to derive the price of an option. This paper also derived Black Scholes model from
Black Scholes equation and compared it to BOPM. The analysis confirmed the fact that
as the number of steps, n, in the binomial tree reaches oo the binomial price is equal to
that derived from the Black Scholes formula.

This paper also compared and analyzed European option price with geometric and
arithmetic averaging Asian option price using Black Scholes formula and Monte Carlo
simulations. Four different Monte Carlo techniques were compared and analyzed. The
stratified sampling technique emerged as the most efficient to obtain option prices.

The analysis concluded that the European option prices were higher than its Asian
counterpart. Asian options that use arithmetic average were more expensive than those
that use geometric average. The paper analyzed the behavior of prices as the number of
averages increased and concluded that the price decreases as the number of averages
increased. This is due to the reduction in the effects of volatility in option pricing.

The paper also discussed and dynamically hedged written European and Asian call
options with oil futures as the underlying asset over a 7-day period. The market-maker
profit and loss analysis concluded that the European written call profits were higher than
its Asian counterpart. Moreover, an in-the-money option is more responsive to
underlying price shock than near-the-money and out-of-the money option. This applied to
both European and Asian option.

As the options moved more in-the-money, the market-maker’s profitability decreased.
This result was true for all written options. This is consistent with the fact that it is more
profitable to buy options with high deltas than write since the greater the percentage
movement - relative to the underlying's price and the corresponding little time-value
erosion - the greater the leverage and vice-versa.
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Appendix:
I.  Tables for all the figures

Figure 1: Pricing Accuracy of Different Monte Carlo Methods

Stock price, 5 =3%101  Time to matunty, T=1 Volatility, 6 =30% Type =Euro Call
Stoke price, K=%100 Risk-free mte, r=8.0%  Dividend Yield, 8 = 0.0' Number of steps =100

Number of simulations Closed Form Naive Control Antithetic Stratified
1 16.38 0.00 0.00 726 16.38
5 16.38 10.09 1027 783 16.32
50 16.38 18.18 15.69 15.51 1640
1060 16.38 1731 16.45 16.52 16.38
250 16.38 1543 15.93 15.78 16.37
500 16.38 16.70 16.44 16.62 16.37
750 16.38 1646 16.53 16.67 16.36
1,000 16.38 1695 16.64 16.84 16.39
1,500 16.38 1711 16.45 16.61 16.38
2,500 16.38 16.54 16.39 16.43 16.37
5,000 16.38 1646 1626 16.42 16.38
7,500 16.38 1612 1634 16.28 16.38
10,000 16.38 16.14 16.35 16.30 16.38
25,000 16.38 1613 16.28 16.21 16.38
50,000 16.38 1622 16.35 16.32 16.38
75,000 16.38 1635 1636 16.34 16.38
100,000 16.38 1631 16.38 16.37 16.38

Figure 2: Tick Time of Different Monte Carlo Methods

Stock price, 5 =$101 Time tomaturity, T=1 Volatility, 6 = 30% Type = Euro Call
Strike price, K =$100  Risk-free rate, = §.0% Dividend Yield, 3 = 0.0% MNumber of steps =100

Number of simulations Closed Form Naive Conirol-Variate Antithetic Siratified
1 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000

50 0.000 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.016 0.000

250 0.000 0.000 0.000 0.000 0.000

500 0.000 0.016 0.015 0.016 0.000

750 0.000 0.015 0.032 0.015 0.000
1,000 0.000 0.031 0.031 0.032 0.000
1,500 0.000 0.031 0.047 0.047 0.000
2,500 0.000 0.062 0.078 0.078 0.000
5,000 0.000 0.140 0172 0.140 0016
7,500 0.000 0.203 0.249 0.219 0.015
10.000 0.000 0.281 0.327 02381 0.015
25.000 0.000 0.686 0.827 0.718 0.031
50,000 0.000 1.358 1.638 1.435 0.063
75.000 0.000 2075 2 480 2.169 0.093
100,000 0.000 2746 3292 2.836 ¢.109
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Figure 4: Unhedged Written Euro Put
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Figure 5: Delta (A Comparision

Spot Prices Earo Geo Asian  Artih Asian
50 0.0291 0.0003 0004
55 0.0575 0.0017 ¢0018
60 0.0992 0.0068 ¢0077
65 0.1540 0.0205 00253
T 0.2200 0.0497 (0605
75 0.2938 0.1001 ¢.1112
80 03718 0.1739 01877
85 0.4502 0.2679 02773
90 0.5261 0.3745 03811
95 0.597¢ 0.4841 ¢A4879

100 0.6615 0.5878 05935
105 0.7188 0.6793 (6892
110 0.7686 0.7551 07641
115 0.8113 0.8148 08255
120 0.8472 0.8596 08704
125 0.8771 0.8921 09017
130 0.9017 0.9147 09227
135 0.9218 0.9301 (9383
140 0.9380 0.9403 09490
145 0.9511 0.9468 09550
150 0.9615 0.9510 09581

Figure 6: A behavior in # of Averages (N)

ot Prices ($) N=1 N=2 N =40
50 0.029 0.005 0.000
60 0.099 0.035 0.004
70 0220 0.121 0.039
80 0372 0270 0.155
90 0.526 0.450 0.358
100 0.662 0.620 0.582
110 0.769 0.754 0.757
120 0.847 0.846 0.864
130 0.902 0.904 0.918
140 0.938 0.937 0.941
150 0.961 0.955 0.950
160 0.976 0.965 0.953
170 0.986 0.970 0.954

Figure7: SPXWT30132163000 Pnl.

Daily PaL (3) Cumulative PaL (%)

Day S($) NakedPut ANeumtral Scaled down by 3
1 16974 3099 4275 0
3 16975 31.10 81.17 6227
4 16914 25.04 68.72 85.18
5 1.6895 2309 239770 165.08
6 1.6942 2778 91.81 19569
7 16854 19.01 67.45 21817
8 16613 (G.06)  (8422) 190.10
9 1.6558 (10.55) 1227 21419
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Figure 8: In-the-money Delta profit (loss) calculation for a market-maker

Pricing and Hedging Asian Options

Unit Spot Price

Unit Call Price

Call Price(1000 barrels)
Option Delta
Investment ($)

Gain(loss) on Call
Gain(loss) on Futures
Cap gain (loss)

Int. Expensse
Daily Profit (Loss)
Cumulative Profit

Stock Price

Unit Call Price

Call Price(1000 barrels)
Option Delta
Investment ($)

Gain(loss) on Call
Gain(loss) on Futures
Cap gain (loss)

Int. Expensse
Daily Profit (Loss)
Cumulative Profit

Eure Call: Light Sweet Crude Oil European Financial Option

1-Aug 2-Aug S5-Aug 6-Aug 7-Aug 8-Aug 9-Aug
107.93 106.94 106,61 10532 104.41 10345 106.04
14.747 14.037 13.756 12.865 12247 11.61 13.30
14,747.00 14,037.00  13,756.00 12.86500 1224700 11,6120  13,295.00
0.7062 0.6916 0.6865 0.6664 0.6518 0.6359 0.6775
6147317 5992057 5943070 5732341 5580431 54,16979 58,551.34
710.00 281.00 891.00 618.00 63500 (1,683.00)
(699.14) (22.82) (88.56) (60.65) (62.57) 164.69
10.86 25818 802.44 35735 57243 (1,51831)
(6.50) (6.34) 629) (6.06) (590) (5.73)
436 251.84 796.16 55129 566.53  (1,524.04)
25620 1,048.00 1,599.29 2,165.82 64178
WTI Average Price Option (non-early exercisable)
1-Aug 2-Aug 5-Aug 6-Aug 7-Aug 8-Aug 9-Aug
10793 106.94 106,61 10532 104.41 10345 106.04
10.008 93025 9.0479 8.1762 7.5835 6.98 8.62
10,008.00 9,302.50 9.047.90 8,176.20 7,583.50 6,982.50 8,624.40
07139 0.6915 0.6840 0.6525 0.6291 0.6036 0.6706
67,04539 6464437 6387547 60,53983 58,102.92 5545992 62488.14
705.50 25460 871710 592710 60100 (1,641.90)
(706.78) (22.82) (88.24) (5937) (60.40) 15633
(128) 231.78 783.46 53333 54060  (1,485357)
(7.09) (6.84) (6.76) (6.40) (6.14) (587)
(837) 22494 776.71 52692 53446  (1,49143)
216.57 99328 1,520.20 2,054.66 563.23

30



Pricing and Hedging Asian Options

Figure 8: Out-of-the money Delta profit (loss) calculation for a market-maker

Euro Call: Light Sweet Crude Oil European Financial Option

1-Aag 2-Aug S-Aug 6-Aug T-Aug 8-Aug 9-Aug
Unit Spot Price 10793 10694 106.61 10532 104 .41 103 45 106.04
Unit Call Price 9.5318 8.9806 8.7527 80741 7.608 713 839
Call Price(1000 ba 9.531.80 898060 8,752.70 8,074.10 7.608.00 7,13430 8.385.50
Option Delta 0.5467 0.5297 0.5233 0.5008 0.4846 0.4674 0.5123
Investment ($) 4946813 47,669.80 4703525 44.669.10 42.989.09 4121720 4594197
Gain(loss) on Call 55120 22790 678 60 466.10 47370 (1.25120)
Gain(loss) on Shares {541.18) {1748} (67.50) (45.57) {16.52) 121.05
Cap gain (loss) 106.02 21042 611.1¢ 420.53 42718 {1,130.15)
Int. Expensse {3.23) (5.04) {4.97) {4.72) (4.55) {4.36)
Daily Profit (Loss) 478 20538 60612 415 .80 42263 {1,134.51)
Cumulative Profi 210.16 811.50 1,22730 1,64993 51543

WTI Average Price Option (non-early exercisable)

1-Aag 2-Aug S-Aug 6-Aug T-Aug 8-Aug 9-Aug
Stock Price 16793 10694 106.61 10532 104 .41 103 45 106.04
Unit Call Price 4.7292 42799 41112 3.5813 3.2321 289 384
Call Price(1000 ba 4,72920 427990 4,11120 3.58130 3,232.10 2.88890 3.838.60
Option Delta 0.4575 0.4307 0.4211 0.3862 0.3616 0.3361 0.4046
Investment ($) 44,643 38 41,780.23 40,776 94 37.090.12 3452673 31,87858 3905938
Gain(loss) on Call 44930 168.70 52990 34920 34320 919.70)
Gain(loss) on Shares {452.88) (1421} (5432) (35.14) (34.72) 87.04
Cap gain (loss) (3.58) 154 49 47558 314 .06 30848 (862.66)
Int. Expensse {4.72) (4.42) {4.31) {3.92) (3.65) {3.37)
Daily Profit (Loss) {8.30) 150.07 47127 316.14 304.83 {866.03)
Cumulative Profi 141.77 613 .04 923.18 122801 361.98

Figure 9: Market-maker Cumulative PnlL (scaled down by 10)

Moneyness IT™M NTM OTM Euro ITM
1 20547 163.85 122 80 216.58
2 152.02 122.15 9232 159.93
3 9933 8043 61.30 104.80
4 5632 46.50 36.20 64.18
5 2166 18.03 14.18 2562
6 (0.34) (0.89) (0.83) 044
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Code: Black-Scholes Formula For European & Asian (Geometric) Option

#include <iostream>
#include <math.h>
using namespace std;

#define PI 4.0*atan(1.0) // other way to define pi: const double pi=4.0*atan(1.0);
double CDF(double);

double bsCall(double S, double K, double r, double v, double q, double T)
{

double d1 = (log(S/K)+(r-g+0.5*v*v)*T)/(v*sqrt(T));

double d2 = d1 - v*sqrt(T);

double N1 = CDF(d1);

double N2 = CDF(d2);

double C = S*N1*exp(-q*T)-K*N2*exp(-r*T);
return C;

}
double Delta(double S, double K, double r, double v, double g, double T)
{

double d1 = (log(S/K)+(r-g+0.5*%v*v)*T)/(v*sqrt(T));

double N1 = CDF(d1);

double del= exp(-gq*T)*N1;

return del,

}

double GeometricAsian(double S, double K, double r, double v, double g, double T, int N)
{

doubledt=T/N;

doublenu=r-q-0.5*v*y;

doublea=N*(N+1)*(2.0*N + 1.0)/6.0;

double V=exp(-r*T)*S *exp(((N+ 1.0) *nu /2.0 + v*v*a /(2.0 *N*N))*dt);

double vavg = v * sgrt(a) / (pow(N, 1.5));

double val = bsCall(V, K, r, vavg, q, T);

return val;

}

double GeometricAsianDelta(double S, double K, double r, double v, double g, double T,
int N) {
double dt=T/N;
doublenu=r-q-05*v*vy;
doublea=N*(N+1)*(20*N+ 1.0)/6.0;
double V=exp(-r*T)*S *exp(((N + 1.0) *nu /2.0 + v*v*a/ (2.0 *N*N)) *dt);
double vavg = v * sqrt(a) / (pow(N, 1.5));

double d1 = (log(V/K)+(r - g + 0.5*vavg*vavg)*T)/(vavg*sqrt(T));
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double N1 = CDF(d1);

double delta = exp(-r*T)*exp(-g*T)*N1*exp(((N + 1.0) *nu /2.0 + v*v*a /(2.0 * N *
N)) * dt);

return delta;

}

int main()

{
double S = 106.04;
double K =102;
double r = .0386;
double v = .22;
double T= 0.9778 ;
int N =12;
double g = 0.0;

double DeltaA = GeometricAsianDelta(S,K, r, v, g, T, N);
cout.precision(4);

double CallPrc = GeometricAsian(S,K, r, v, g, T, N);
cout.precision(5);

double Prc = bsCall(S, K, r, v, q, T);
double delta = Delta(S,K,r,v,q,T);

double put = Prc + K¥exp(-r*T)- S*exp(-q*T);

cout << '"S="<< S <<endl
cout << "" << endl;

cout << "Call Price = " << Prc << endl;
cout << "Call Delta = " << delta << endl;
cout << "" << endl;

cout << "Asian Call Price =" << CallPrc << endl;
cout << "Asian Call Delta = " << DeltaA << endl;
cout << "" << endl;

cout << "Put Price =" << put << endl;
cout << "Put Delta = " << delta - exp(-v*T) << endl;
cout << " " << endl;

return 0;

}

double CDF(double X)

{
const double a1=0.319381530, a2=-0.356563782, a3=1.781477937, ad=-
1.821255978, a5=1.330274429;
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double x=0, k=0;
double N, CDF, n;

x=fabs(X); // x is theabsolute value of X

// Standard formula to approximate normal density function - very precise
k=1/(14+0.2316419*x);

n=(1/sqrt(2*PI))*exp(-0.5*x*x);
N=1-n*(al*k+a2*k*k+a3*pow(k,3)+ad*pow(k,4)+a5*pow(k,5));

if (X>=0)
CDF=N;
else
CDF=1-N;
return CDF;
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