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ABSTRACT

Probability Estimation in Random Forests

by

Chunyang Li, Master of Science

Utah State University, 2013

Major Professor: Dr. Adele Cutler
Department: Mathematics and Statistics

Random Forests is a useful ensemble approach that provides accurate predictions for

classification, regression and many different machine learning problems. Classification has

been a very useful and popular application for Random Forests. However, it is preferable

to have the probability of a membership rather than the simple knowledge that one belongs

to whichever group. Votes and the regression method are current probability estimation

methods that have been developed in Random Forests. In this thesis, we introduce two

new methods, proximity weighting and the out-of-bag method, trying to improve the cur-

rent methods. Several different simulations are designed to evaluate the new methods and

compare them with the old ones. Finally, we use real data sets from UCI machine learning

repository to further evaluate and compare those methods.
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CHAPTER 1

INTRODUCTION

1.1 Classification

Classification is the problem of predicting which class a new observation belongs to,

given a training set of data from K known classes. One way to think about classification is

that it’s like regression but we have a categorical response variable instead of a continuous

response.

Assume we have a sample (x1, y1), . . . , (xN , yN ) of independent and identically dis-

tributed observations, where xi = (xi1, . . . , xiM )T ∈ X ⊆ RM and yi ∈ {1, . . . ,K} for

i = 1, . . . , N . The values of yi refer to the classes and the problem is to classify a new

observation xnew into one of the K classes, i.e. to estimate ŷnew. No formal distributional

assumptions are made, although there are implicit assumptions that “nearby” values of x

provide information about y.

1.2 Probability Estimation

Most machine learning approaches only provide a classification result. However, it is not

enough and probabilities are essential in some cases like predicting diseases. It is important

to estimate the probability of belonging to each of the groups rather than making a simple

statement that a patient is in one group or another. Therefore, our research problem is

using Random Forests to get the most accurate probability estimates.

More formally, let fk(x) denote the density function for observations in class k. Then

f(x) =
k∑

k=1

πkfk(x)

where 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. We can view the data (x1, y1), . . . , (xN , yN ) as

realizations of random variables (x, y), where

P (y = k) = πk

and

f(x|y = k) = fk(x)
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so

f(x) =
∑
k

πkfk(x)

As well as predicting y when X = xnew, we would like to estimate

pk = P (y = k|X = xnew)

=
πkfk(xnew)

f(x)

1.3 Trees

A classification tree is usually grown by firstly considering a “root” node containing

all the observations. Observations in the node are sent to the descendant nodes, using a

“split” on a single predictor variable. The initial (“root”) node contains the data of interest

and nodes that can’t be split are called “terminal” nodes. At any stage of the tree-growing

process, a node contains observations in some or all of the classes {1, . . . ,K} and the y-

values in the node can be summarized by a vector n = (n1, . . . , nK)T where nk is the

number of observations of class k in the node.

Considering every possible split on every predictor variable, a particular split of a node

is chosen. The predictor and split combination giving the “best” value according to some

criterion, such as Gini index, entropy, etc., is used to partition the node. In this report, we

use the Gini Index.

For continuous predictors, each split is of the form xj < c for some c and j ∈ {1, . . . ,M},

where xj denotes the value of variable j. Observations that have xj < c go to the left

descendant node, and the others go to the right. The values of j and c for each node are

found by minimizing a measure of the “badness” of the split based on the Gini index. For

a node whose y-values are summarized by n = (n1, . . . , nK)T of size S =
∑K

k=1 nk, the Gini

index is

G(n) =
∑
k 6=k′

(nk
N

)(nk′
N

)
.

A particular choice of c and j will give left and right nodes summarized by nL = nL(c, j)
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and nR = nR(c, j) with size SL and SR where SL + SR = S. The values of c and j are

chosen to minimize

SLG(nL) + SRG(nR).

Denoting the sorted sample values of variable j in the node by x(1)j , . . . , x(S)j , the

minimization is performed over

c ∈
{

(x(i)j + x(i+1)j)/2, i = 1, . . . , S − 1
}
.

For stand-alone trees, the minimization is performed over j ∈ {1, . . . ,M}. In random

forests, the minimization is performed over j in a random subset of {1, . . . ,M}, chosen

independently at each node. Typically, the size of the subset is close to
√
M .

The minimization over both j and c is performed using an exhaustive search over all

combinations of c and j as described above. For a given variable j, the Gini index is updated

as we move through the possible values of c from smallest to largest.

The trees are usually grown until a stopping criterion is met, or the nodes contain a

small enough number of cases.

To predict the class of xnew, we start from the root node and move down the tree. At

a node, if the jth component of xnew satisfies the appropriate condition, it goes to the left,

otherwise it goes to the right. In this way, xnew ends up in a terminal node. The predicted

class at the terminal node is the most popular class among the training data at the node

with ties broken at random.

1.4 Random Forests

The Random Forest method was introduced by Leo Breiman in 2001 [1] and is a very

useful tool for machine learning. It is a combination of tree predictors such that each tree

depends on the information of a bootstrap sample from the original data (training set). It

can be used for classification and regression. Here, we are only considering Classification

Random Forests.
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Trees like those described in sections 1.3 are used in Random Forests as described

in the following. The parameters ntree and m (the number of must be chosen. The value

of ntree, the number of trees in the forest, can be chosen as large as desired. There is no

penalty, in terms of fit, for choosing ntree too large, but the fit may be poor if it is too

small. The default value of ntree in the R implementation is 500. The value of m, which

controls the number of randomly chosen predictors at each node (as described in Section

1.3), is usually taken to be an integer close to
√
M .

To construct the forest, suppose we have a training set (x1, y1), . . . , (xN , yN ) and let A =

{1, . . . , N}. Then for t in 1, . . . ,ntree:

1. Take a bootstrap sample from the data (sample N times, at random, with replace-

ment).

2. Denote the set of observations appearing in the bootstrap sample by Bt ⊂ A.

3. Denote the set of observations not appearing in the bootstrap sample by Bc
t = A\Bt.

4. Fit a classification tree (Section 1.3) to the bootstrap sample, splitting until all the

observations in each terminal node come from the same class (“pure”).

5. Find the predicted class at each terminal node (the class of members of Bt in the

node).

6. For each member of Bc
t , pass it down the tree.

7. Let qt(i) denote the terminal nodes for all i ∈ A.

The predicted class for observations in the training set is the most frequent class in the trees

for which the observation is a member of Bc
t . This process is often described as “voting”

the trees. For new observations, all the trees in the forest are used in the voting. The

observations in Bc
t are said to be “out-of-bag” for tree t. The “out-of-bag” error rate is the
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error rate of the Random Forest predictions for the training set. These predictions are also

used to give the “out-of-bag” confusion matrix.

Let the proximity between the ith and jth observations be the proportion of the time

observations i and j are in the same terminal node, where the proportion is taken over trees

for which i and j are in Bc
t (i.e. both out-of-bag):

prox(i, j) =

∑ntree
t=1 I(i ∈ Bc

t )I(j ∈ Bc
t )I(qt(i) = qt(j))∑ntree

t=1 I(i ∈ Bc
t )I(j ∈ Bc

t )

where I denotes the indicator function. To find the proximity between an observation from

the training set, and one from the test set, we use

prox(i, j) =
1

ntree

ntree∑
t=1

I(qt(i) = qt(j)).
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CHAPTER 2

PROBABILITY ESTIMATION METHODS

Let pi,k = P (Y = k|X = xi}. We compare four methods of estimating pi,k. The first

method, based on voting the trees, is the “standard” or “default” method. The second

method is a regression method introduced by Malley et al. [10]. The third and fourth

methods, labeled “Proximity Weighting” and “Out-of-bag” are new methods developed for

this research project.

2.1 Voting

For test data, p̂vote
i,k is the proportion of trees that predict class k when observation xi

is passed down the tree. For training data, the proportion is only taken over trees for which

xi is out-of-bag.

2.2 Probability Machines

This method only works for two-class problems (K = 2). The two classes are denoted

0 and 1 and Random Forests is run in regression mode. Random Forests for regression

are analogous to Random Forests for classification, except that the splits are chosen to

minimize the mean squared error instead of Gini, the predictions for a tree are the average

of the y-values of Bt in the nodes, and the predicted values for the forest are obtained

by averaging over the trees for which the observation is in Bc
t . Once the Random Forests

regression predictions {ŷ1, . . . , ŷN} are obtained, we set p̂
reg
i,1 = ŷi and p̂

reg
i,0 = 1− ŷi.

2.3 Proximity Weighting

The motivation for this method comes from the fact that Random Forests can be

thought of as a “nearest neighbor” classifier [4] and proximities are believed to correspond

to the neighborhoods of the nearest neighbor classifier. The proximity weighting method

uses the proximities defined above to find a weighted average:
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p̂
prox
i,k =

∑
j∈A,j 6=i prox(i, j)I(yj = k)∑

j∈A,j 6=i prox(i, j)
.

The weighted average means that observations that are “close” have more impact on

the probability estimate than observations that are not “close” (where “close” is defined

using the Random Forest proximities). For more information about proximities, see A.

Cutler et al.[2]

2.4 Out-of-bag Method

The motivation for this method comes from the fact that when fitting a classifier using

a single tree, the terminal nodes are not pure and the relative frequency of class k in a

terminal node can be used to estimate the probability of class k for observations in that

terminal node. In Random Forests, the terminal nodes are pure so the information from

members of Bt is not useful. However, the out-of-bag observations (those in Bc
t ) do give

information about the underlying class probabilities.

For tree t, if a node contains members of Bc
t , we use the relative frequency of class k

observations in Bc
t in node qt to estimate the probabilities for the node:

p̂qt,k =

∑
j∈Bc

t
I(qt(j) = qt)I(ŷj = k)∑
j∈Bc

t
I(qt(j) = qt)

.

and denote the set of nodes that do not contain members of Bc
t by Q0

t . The out-of-bag

estimates of the probabilities are found by averaging over the nodes that contain out-of-bag

observations:

p̂oob
i,k =

∑ntree
t=1 I(qt(i) /∈ Q0

t )p̂qt(i),k∑ntree
t=1 I(qt(i) /∈ Q0

t )
.

2.5 Software

We coded everything in R and used R package ”randomForest” [9] and ” Rcpp” [3].
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CHAPTER 3

SIMULATION

The simulation designs are used to represent scenarios where a binary response variable

Y is predicted from a set of predictor variables.

We used five simulation models in order to compare the probability estimation methods.

The first one is the XOR model. The second and the third one are from Mease et al. [11],

where they considered a simple two-dimensional circle model and 10 dimensional model.

The fourth one is a bivariate normal mixture model and the last one is a mixture of normal

clusters taken from the Elements of Statistical Learning [5]. We also make the plots for

each model to visualize them.

3.1 XOR model ( XOR1 and XOR2 )

Let X = (X1, X2) be a two-dimensional random vector uniformly distributed on the

square [−1, 1]2 and let y be a categorical variable with values 0 or 1 defined as

y =

{
0 x1x2 ≤ 0;
1 x1x2 > 0.

Y = 0 corresponds to class 0 and Y = 1 corresponds to class 1.Therefore, the conditional

probability of Y = 1 given X is

P (y = 1|X = x) =

{
0 x1x2 ≤ 0;
1 x1x2 > 0.

A second case of the XOR model is overlapping 10% based on the the model described

above. We sample 10% observations from class 0 without replacement and switch it with

the same number of observations from class 1. The conditional probability Y = 1 given X

is:

P (y = 1|X = x) =

{
0.1 x1x2 ≤ 0;
0.9 x1x2 > 0.

.



9

Figure 3.1. XOR Model

3.2 2-dimensional Circle Model (2D Circle)

Let X be a two-dimensional random vector uniformly distributed on the square [0, 50]2and

Y be a categorical variable with values 0 or 1 depending on X. We construct level curves

of p(x) to be concentric circles with center (25, 25). The conditional probability of Y = 1

given X = x is defined as:

P (Y = 1|X = x) =


1 r(x) < 8;
28−r(x)

20 8 ≤ r(x) ≤ 28;
0 r > 28.

where r(x) is the distance from x to the point (25, 25) in R2. This is called the 2-Dimensional

Circle model. The right panel of figure3.2 shows these probabilities for a hold-out sample

with that is a grid 2000 evenly spaced points on [0, 50]2. The greyness of the plot shows

the probabilities: the lighter the color is, the smaller the probabilities are.

3.3 10-dimensional Model (Friedman)

Let X be a 10-dimensional random vector X = (X1, X2..., X10) distributed according

to N10(0, I) and let Y be a categorical variable with values 0 or 1 depending on X. The
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Figure 3.2. Training data (left) and true probabilities of being in class 1 (right) for the
2-Dimensional Circle Model

conditional probability that Y = 1 given X = x (which we denote p(x)) is defined as

follows:

log
p(x)

1− p(x)
= r[1− x1 + x2 − x3 + x4 − x5 + x6]

6∑
j=1

xj

We choose r=10, which mimics the simulation of Friedman’s model exactly. [6]

3.4 Bivariate Normal Model (Binorm)

Let X be a random matrix consisting of two classes that belong to two different bi-

variate normal distributions with mean µ0 and µ1 and covariance Σ0 and Σ1. Let Y be

a dichotomous dependent variable with Y = 0 corresponding to class 0 and Y = 1 cor-

responding to class 1. The conditional probability that Y = 1 given X = x is defined

as:

f(Y = 1|X = x) =
π1f1(x)

π0f0(x) + π1f1(x)

where π0 and π1 are the probabilities that Y = 0 and Y = 1 respectively, f0(x) and f1(x)

are the probability density functions of class 0 and class 1.

We simulate 3 different representative cases for this model, labeled as binorm1, binorm2
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and binorm3. Binorm1 has class 0 with mean µ0 = (0, 0)T , covariance Σ0 =

(
1 0.55

0.55 1

)
and class 1 with mean µ1 = (0, 2.5)T , covariance Σ1 =

(
1 −0.55

−0.55 1

)
. Binorm2 has

class 0 with mean µ0 = (0, 0)T , covariance Σ0 =

(
1 0.47

0.47 1

)
and class 1 with mean

µ1 = (1, 1)T , covariance Σ1 =

(
1 −0.47

−0.47 1

)
. Binorm3 has class 0 with mean µ0 =

(0, 0)T , covariance Σ0 =

(
1 −0.8
−0.8 1

)
and class 1 with mean µ1 = (1, 1)T , covariance

Σ1 =

(
1 −0.8
−0.8 1

)
. Class 0 is generated with probability π0 = 2/3 for the three cases.

3.5 Normal Cluster Mixtures (Clusters)

Let a 2-dimensional vector X = {X1, X2}. Firstly 10 means µj = {muj1, . . . , µj10} are

generated from a bivariate normal distributionN2((1, 0)T , I) and 10 more means µi{mui1, . . . , µi10}

are drawn from another bivariate normal distribution N2((0, 1)T , I). We are generating a

sample with N observations in total and the sample sizes for class 0 and class 1 are n0 and

n1. Then for each class, we generate n0 and n1 observations as follows: for each observation,

a mean µ is picked at random with probability 1/10 from {muj1, . . . , µj10} for class 0 and

from {mui1, . . . , µi10} for class 1. Then the observation is drawn from a new bivariate nor-

mal distribution with the selected mean and covariance Σ = I/5. Y is the binary response

variable, where Y = 0 corresponds to class 0 and Y = 1 corresponds to class 1.

The conditional probability that Y = 1 given X = x is calculated using the same

formula given above in the multivariate normal model. However, f0(x) and f1(x) are not

directly given and they are the average of the pdf’s of 10 different bivariate normal distri-

butions.

In our simulation, class 0 is generated with probability π0 = 2/3. The plot below is a

sample with N=500.
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Figure 3.3. Bivariate Normal Model

3.6 Method to Measure the Performance of Class
Probability Estimators

3.6.1 Mean Squared Loss Function

We choose mean squared loss function to quantify the accuracy of the probability

estimates for the simulations. It is defined:

1

N

N∑
i=1

(p(xi)− p̂(xi))2
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Figure 3.4. Normal Cluster Mixtures

3.6.2 Misclassification Error Rate

Another way we use to measure the accuracy of the probability estimates for the

simulations is misclassification error rate. We give the classification results according the

the probability estimations, i.e. an observation belongs to the class with bigger probability.

The trees are built based on the simulation training data with sample size N. There are

500 trees in total for each case, i.e. ntree=500. Changing ntree didn’t change the squared

loss for each method from the early experiments we did (Section 3.7.3), therefore, we are

only showing the results when ntree=500. We use the test data from 100 independent

sample with sample size 1000 to evaluate the probability estimates. The final mean squared

loss of the sample is the average of the losses for the 100 times’ simulations. So does the

misclassification error rate.
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3.7 Simulation results

3.7.1 Results for Mean Squared Loss

Table 3.1. Mean Squared Loss N=100

Data Dim vote prox regrf oob

XOR1 2 47.42 40.25 49.68 47.42
XOR2 2 97.29 92.16 94.51 84.65
2D Circle 2 38.26 32.21 32.63 29.82
Freidman 10 204.72 215.53 205.21 215.35
Binorm1 2 42.67 50.20 40.36 38.33
Binorm2 2 84.86 91.83 80.04 68.25
Binorm3 2 41.35 59.72 41.50 47.51
Clusters 2 131.2791 140.1213 124.6173 108.87

Table 3.2. Mean Squared Loss N=500

Data Dim vote prox regrf oob

XOR1 2 7.85 4.89 7.99 7.72
XOR2 2 80.09 74.65 77.09 66.39
2D Circle 2 28.93 21.74 24.18 13.36
Freidman 10 164.46 168.69 165.19 184.75
Binorm1 2 37.94 43.02 35.60 30.23
Binorm2 2 77.3477 86.0702 72.7500 60.79
Binorm3 2 23.78 32.54 22.66 22.88
Clusters 2 135.38 144.36 130.67 115.27

Table 3.3. Mean Squared Loss N=1000

Data Dim vote prox regrf oob

XOR1 2 3.35 2.00 3.41 3.27
XOR2 2 79.33 64.89 76.37 60.50
2D Circle 2 26.96 20.25 22.36 10.34
Freidman 10 147.14 146.15 148.17 167.81
Binorm1 2 35.95 40.27 33.86 28.40
Binorm2 2 75.45 86.41 71.20 59.81
Binorm3 2 21.40 27.78 20.18 19.24
Clusters 2 138.87 150.15 134.50 120.74

The data in the tables are all in 10−3 scale, i.e. the real mean squared lost should

be the value in the table times 0.001. All the simulation data only have two classes, i.e.
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response variable with 2 categories. The bolded value is the smallest mean squared loss in

a row.

3.7.2 Results for Misclassification Error Rate

Table 3.4. Misclassification Error Rate N=100
Data Dim vote prox regrf oob

XOR1 2 0.0419 0.0412 0.0423 0.0344
XOR2 2 0.1898 0.1802 0.1856 0.1651
2D Circle 2 0.2669 0.2585 0.2595 0.2542
Freidman 10 0.3742 0.3984 0.3760 0.4009
Binorm1 2 0.1098 0.1028 0.1067 0.1026
Binorm2 2 0.2041 0.1853 0.1972 0.1855
Binorm3 2 0.0915 0.1103 0.0917 0.0946
Clusters 2 0.3053 0.2841 0.2992 0.2826

Table 3.5. Misclassification Error Rate N=500
Data Dim vote prox regrf oob

XOR1 2 0.00561 0.00524 0.00563 0.00523
XOR2 2 0.12767 0.11224 0.12136 0.11089
2D Circle 2 0.25486 0.23485 0.25008 0.23645
Freidman 10 0.27142 0.29845 0.27217 0.28879
Binorm1 2 0.10727 0.09887 0.10532 0.09888
Binorm2 2 0.00547 0.00477 0.00545 0.00501
Binorm3 2 0.06632 0.06742 0.06460 0.06407
Clusters 2 0.18684 0.17452 0.18284 0.14952

Table 3.6. Misclassification Error Rate N=1000
Data Dim vote prox regrf oob

XOR1 2 0.00253 0.00237 0.00248 0.00244
XOR2 2 0.11813 0.10576 0.11225 0.10507
2D Circle 2 0.25325 0.23293 0.24806 0.23373
Freidman 10 0.22937 0.25090 0.22952 0.24129
Binorm1 2 0.10508 0.09629 0.10304 0.09676
Binorm2 2 0.19406 0.17520 0.18878 0.17495
Binorm3 2 0.06390 0.06156 0.06248 0.06006
Clusters 2 0.30566 0.28914 0.30232 0.29025

The results given by misclassification error rate are a little different from the ones
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measured by mean squared loss function. See chapter 5 for detailed conclusions.

3.7.3 Normal Cluster Mixtures with Different
Ntrees

We set N=500 as the sample size for training data set to build the tree. We also use the

test data from 100 independent sample with sample size 1000 to evaluate the probability

estimates. The final mean squared loss of the sample is the average of the losses for the 100

times’ simulations. So does the misclassification error rate.

Table 3.7. Mean Squared Loss for Normal Cluster Mixtures with Different Ntrees

ntree vote prox regrf oob

100 139.75 150.10 133.81 118.46
500 135.38 144.36 130.67 115.27
1000 130.79 140.17 126.08 111.14
1500 134.41 144.23 129.58 113.97
2000 135.95 146.20 131.29 116.67

Table 3.8. Misclassification Error Rate for Normal Cluster Mixtures with Different Ntrees
ntree vote prox regrf oob

100 0.32301 0.30157 0.31923 0.30653
500 0.18684 0.17452 0.18284 0.14952
1000 0.29892 0.28013 0.29689 0.28419
1500 0.3092 0.28997 0.30695 0.29367
2000 0.29299 0.27547 0.29019 0.27854
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CHAPTER 4

DATA EXAMPLES

4.1 Brier Score

The Brier score is calculated by the original definition according to Wikipedia [13]. It

is defined:

BS =
1

N

N∑
n=1

K∑
i=1

(fti − oti)2,

where N is the number of cases and K is the number of the classes for the events. fti is the

estimated probability, oti is the actual outcome of the event at case t (0 if it doesn’t occur

and 1 if it occurs). For binary response variables, there is an alternative definition, which

would give results half as big as ours.

4.2 10-fold Cross Validation

Cross validation is a useful statistical technique to access the performance of a statistical

model or algorithm. The general idea of cross validation is dividing the data into two parts:

one is the training data set and is used to build the model; the other one is testing data set

or validation set and is used to validate and evaluate the model.

10-fold cross validation is mostly commonly used in machine learning. The original

data set is randomly separated into 10 subsets with equal sample size N/10. 1 subset is

chosen as the testing set and the other 9 are the training sets. Each time we choose a

different testing set and repeat the procedure 10 times, therefore all the observations are

tested exactly once. The estimation is obtained by combining the results from each testing

set. [12]

4.3 Missing Values

There are many ways to deal with missing values and we replace them in two ways:

4.3.1 Na.roughfix

Na.roughfix is an R function in the Random Forests package which replaces the NAs

with column medians if the variables are numeric, or the most frequent levels if the variables
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are categorical. [8]

4.3.2 RfImpute

There is another function to deal with missing data called “rfImpute” in the Random

Forest R package. The algorithm starts by imputing NAs using na.roughfix. Then there

aren’t any missing values in the data set and randomForest is used to obtain the proximity

matrix, therefore updating the imputation of the NAs. For continuous variables, the im-

puted value is the weighted average of the non-missing values, in which the weights are the

proximities. For categorical variables, the imputed value is the category with the largest

average proximity. The process is iterated 5 times. [7]

4.4 Results for Real Data

The methods are compared on 23 datasets from UCI Repository. We use 10-fold cross

validation to estimate the Brier score for each data set.

We used ntree=500 for all the datasets. The regression method only works for a binary

response variable, therefore, we put NAs in the tables when there are more than 2 classes.
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Table 4.1. Brier Score(Missing values are replaced using rfImpute)

Data Classes N Dim vote prox regrf oob

Appendicitis 2 106 8 0.2149 0.2064 0.2153 0.2142
Pima 2 768 8 0.3178 0.3216 0.3163 0.3139
Wcancer 2 569 30 0.0633 0.0752 0.0635 0.0728
Iris 3 150 4 0.0720 0.0715 NA 0.0704
Glass 7 214 9 0.3202 0.3646 NA 0.3628
Spectf 2 80 44 0.3145 0.3245 0.2949 0.3747
tic 2 958 9 0.1166 0.1151 0.1284 0.1225
Ilpd 2 583 10 0.3486 0.3641 0.3470 0.3521
Wine 3 178 13 0.0558 0.0571 NA 0.0709
Balance 3 625 4 0.2221 0.1848 NA 0.2201
Contraceptive 3 1473 9 0.5649 0.5409 NA 0.5417
ecoli 8 336 7 0.2282 0.2536 NA 0.2302
Fertility 2 100 9 0.2426 0.2197 0.2367 0.2218
Vote 2 435 17 0.0053 0.0025 0.0031 0.0051
Car 4 1728 6 0.0900 0.1161 NA 0.0926
Flag 6 194 28 0.4019 0.3954 NA 0.4347
Haberman 2 306 3 0.3840 0.3743 0.3757 0.3664
Roth 3 132 5 0.2729 0.2671 NA 0.2651
lens 3 24 5 0.3475 0.3730 NA 0.3531
Lung 3 32 57 0.3916 0.3528 NA 0.3737
Post-operative 3 90 9 0.3365 0.3250 NA 0.3322
Zoo 7 1484 16 0.0583 0.0899 NA 0.0743
Yeast 10 101 8 0.5141 0.5317 NA 0.5232
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Table 4.2. Brier Score(Missing values are replaced using na.roughfix)

Data Classes N Dim vote prox regrf oob

Appendicitis 2 106 8 0.2149 0.2064 0.2153 0.2142
Pima 2 768 8 0.3178 0.3216 0.3163 0.3139
Wcancer 2 569 30 0.0633 0.0752 0.0635 0.0728
Iris 3 150 4 0.0720 0.0715 NA 0.0704
Glass 7 214 9 0.3202 0.3646 NA 0.3628
Spectf 2 80 44 0.3145 0.3245 0.2949 0.3747
tic 2 958 9 0.1166 0.1151 0.1284 0.1225
Ilpd 2 583 10 0.3669 0.3786 0.3661 0.3568
Wine 3 178 13 0.0558 0.0571 NA 0.0709
Balance 3 625 4 0.2221 0.1848 NA 0.2201
Contraceptive 3 1473 9 0.5649 0.5409 NA 0.5417
ecoli 8 336 7 0.2282 0.2536 NA 0.2302
Fertility 2 100 9 0.2426 0.2197 0.2367 0.2218
Vote 2 435 17 0.0703 0.0720 0.0698 0.0683
Car 4 1728 6 0.0900 0.1161 NA 0.0926
Flag 6 194 28 0.4019 0.3954 NA 0.4347
Haberman 2 306 3 0.3840 0.3743 0.3757 0.3664
Roth 3 132 5 0.2729 0.2671 NA 0.2651
lens 3 24 5 0.3475 0.3730 NA 0.3531
Lung 3 32 57 0.6009 0.6124 NA 0.5920
Post-operative 3 90 9 0.8570 0.8551 NA 0.8610
Zoo 7 1484 16 0.0583 0.0899 NA 0.0743
Yeast 10 101 8 0.5141 0.5317 NA 0.5232
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CHAPTER 5

CONCLUSIONS

For the Simulations, sample sizes have some effects on the performance of each methods.

For the third case of the bivariate normal model: when N = 100, vote gives the smallest

mean squared loss; when N = 500, the regression method makes the mean squared loss

smallest; when N = 1000, the proximity weighting method turns out to be the best. For

the Freidman model, vote is the best probability estimation method when the sample size is

100 and 500, however, when the sample size increases to 1000, proximity weighting performs

better.

Regardless of the sample size effects, the out-of-bag method performs better than other

methods in XOR with 10% over lap, 2-dimensional circle model, two bivariate normal models

and normal cluster mixtures. Proximity weighting does best in the XOR model without

overlap. Proximity weighting does better than votes or regression in 2-dimensional circle

model.

The misclassification error rate criterion gives a little different results: When N = 100

and 500, the out-of-bag method is slightly better than the proximity weighting method for

XOR model without overlap; when N = 500 and 1000, the proximity method gives smallest

misclassification error rate instead of the out-of-bag method for 2-dimensional circle model

and the Binorm1; The proximity weighting method performs best instead of the out-of-bag

method for Binorm2 when N = 100 and the normal cluster mixtures when N = 1000.

Only considering the misclassification error rate measurement, the out-of-bag method

gives the smallest misclassification error rate. However, when the sample size of training

data set increases, the proximity method tends to be better. Both the two methods ap-

parently perform better than other methods, however, either of them can beat the other

consistently.

Testing all the methods on real datasets, however, no methods did consistently better

than all other methods. When we replace missing values with the rfImpute method, prox-

imity weighting does best in more data sets. When we replace missing values with the
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na.roughfix method, among the three methods, vote, proximity weighting and oob, no one

is consistently better than the others. However, the regression method doesn’t perform well

when it is applicable, no matter what method we use to deal with missing data.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

The two new methods, proximity weighting and out-of-bag method, outperform the

current methods in almost all the simulations. However, experimenting on the real data

sets, the the out-of-bag method doesn’t perform as well as it performs in the simulations

and proximity weighting isn’t significantly better than votes, based on the 23 data sets from

the UCI machine learning repository. I would like to experiment on more data sets to have

more confidence in the conclusions in the future.

In the simulations, sample size has very significant influence on the third case of the

bivariate normal model according to mean squared loss measurement. I would like to

further explore why this happens by doing more different simulations for the binorm model

and thinking about it theoretically. Sample size has even more influence according to the

misclassification error rate measurement, it is worthwhile to find out the reasons. Also

I would like to figure out why proximity weighting performs better than the out-of bag

method in XOR model without overlap. The 10-dimensional model is another simulation

I would like to do more theoretical research on to figure out why the out-of-bag method

performs so bad on this model.

The current version of the code for the out-of-bag method only works for numeric pre-

dictors, we have to convert the non-numeric predictors into numeric ones. Hence, we would

like to improve the code for categorical predictors.

One interesting feature of the real data comparisons is that the missing value imputation

method makes such a big difference.
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