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ABSTRACT 

Modeling Overlapping and Heterogeneous Perception Variance in Stochastic User  

Equilibrium Problem with Weibit Route Choice Model 

by 

Songyot  Kitthamkesorn, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. Anthony Chen 

Department: Civil and Environmental Engineering 

In this study, a new SUE model using the Weibull random error terms is proposed 

as an alternative to overcome the drawbacks of the multinomial logit (MNL) SUE model. 

A path-size weibit (PSW) model is developed to relax both independently and identically 

distributed assumptions, while retaining an analytical closed-form solution. Specifically, 

this route choice model handles route overlapping through the path-size factor and 

captures the route-specific perception variance through the Weibull distributed random 

error terms. Both constrained entropy-type and unconstrained equivalent MP 

formulations for the PSW-SUE are provided. In addition, model extensions to consider 

the demand elasticity and combined travel choice of the PSW-SUE model are also 

provided. Unlike the logit-based model, these model extensions incorporate the 

logarithmic expected perceived travel cost as the network level of service to determine 

the demand elasticity and travel choice. Qualitative properties of these minimization 

programs are given to establish equivalency and uniqueness conditions. Both path-based 



iv 
 

and link-based algorithms are developed for solving the proposed MP formulations. 

Numerical examples show that the proposed models can produce a compatible traffic 

flow pattern compared to the multinomial probit (MNP) SUE model, and these models 

can be implemented in a real-world transportation network. 

 

(197 pages) 
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PUBLIC ABSTRACT 

Modeling Overlapping and Heterogeneous Perception Variance in Stochastic User  

Equilibrium Problem with Weibit Route Choice Model 

by 

Songyot  Kitthamkesorn, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Dr. Anthony Chen 

Department: Civil and Environmental Engineering 

Traffic assignment problem is an important component of the transportation 

planning model. State-of-the-practice traffic assignment models adopt the equilibrium 

principle to equilibrate the travel demand with the travel supply (e.g., highway and transit 

networks) under congestion. These models give the transportation network performance 

measures to compare among transportation alternatives for supporting the decision-making 

processes. The deterministic user equilibrium (DUE) principle is perhaps the most widely 

used in the traffic assignment problem. In this principle, all travelers are assumed to 

minimize their individual travel cost, such that only the lowest-cost route is used at 

equilibrium. However, this perfect knowledge assumption is unrealistic. Travelers do not 

know the exact travel costs of all possible routes in the transportation network, and some 

travelers do not always use the minimum travel cost criterion for their route selection. 

To relax this restrictive perfect knowledge assumption, the stochastic user 

equilibrium (SUE) principle was suggested. A random error term is incorporated in the 
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route cost function to simulate travelers’ imperfect perceptions of network travel costs, 

such that they do not always end up selecting only the minimum cost route. In the 

literature, two widely used random error terms are Gumbel and Normal distributions, 

corresponding to the multinomial logit (MNL) and multinomial probit (MNP) route choice 

models, respectively. The MNL model has a closed-form probability expression, and the 

MNL-SUE model can be formulated as an equivalent mathematical programming (MP) 

formulation under congestion. Several efficient algorithms can be applied to solve this 

MNL-SUE model in a real-size network. The two major drawbacks of this model are: (1) 

inability to handle route overlapping (or correlation) among routes, and (2) inability to 

account for heterogeneous perception variance with respect to different trip lengths. These 

two drawbacks stem from the underlying assumption of an independently and identically 

distributed (IID) Gumbel variate. The multinomial probit (MNP) model, on the other hand, 

does not have such drawbacks. This route choice model uses the Normal distribution to 

allow the covariance between random error terms for pairs of routes; however, due to the 

lack of a closed-form solution, the MNP-SUE model is computationally burdensome when 

the choice set contains more than a handful of routes. 

In this study, we provide a new SUE model using the Weibull random error terms 

as an alternative to overcome the drawbacks of these two classical SUE models. A path-

size weibit (PSW) model is developed to handle both route overlapping among routes and 

heterogeneous perception variance with respect to different trip lenghts, while retaining an 

analytical closed-form solution. Specifically, the PSW route choice model handles the route 

overlapping through the path-size factor and handles the route-specific perception variance 

through the Weibull distributed random error terms. Both constrained and unconstrained 
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equivalent MP formulations for the PSW-SUE model are provided. In addition, model 

extensions to consider the demand elasticity and combined travel choice of the PSW-SUE 

model are also provided. Unlike the logit-based model, these model extensions incorporate 

the logarithmic expected perceived travel cost as the network level of service to determine 

the demand elasticity and travel choice. Qualitative properties of these minimization 

programs are given to establish equivalency and uniqueness conditions. Both path-based 

and link-based algorithms are developed for solving the proposed MP formulations. 

Numerical examples show that the proposed models can produce a compatible traffic flow 

pattern compared to the MNP-SUE model, and these models can be implemented in a real-

world transportation network. 
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CHAPTER 1 

INTRODUCTION 

1.1 Transportation planning 

Transportation systems have a direct impact on economics and the quality of life. 

These systems provide mobility for people and goods, deliver accessibility to various 

locations (e.g., workplaces, schools, and recreational areas), and influence the economic 

activities and growth patterns of a region. With this crucial component of modern society, 

transportation planning is critical for efficient financing, managing, operating, and 

maintaining of the transportation system to achieve development goals.  

The most common paradigm for the transportation planning model in the United 

States, as used by the majority of Metropolitan Planning Organizations (MPOs), is known 

as the ―four-step‖ travel demand forecasting model, as shown in Fig. 1. This four-step 

model includes four modules—trip generation, trip distribution, modal split, and traffic 

assignment—as a mathematical representation of the demand and supply for travel in an 

area. The trip generation module takes socioeconomic information to estimate the travel 

demand within each Traffic Analysis Zone (TAZ). The trip distribution module connects 

the travel demand of each TAZ to determine the travel demand between a pair of TAZs 

as an origin-destination (O-D) pair. The modal split module predicts how a trip between 

an O-D pair will be taken on a given mode of transportation. The final step is the traffic 

assignment module. This module is used to simulate the routes travelers choose to reach 

their destination on a specific mode of transportation. State-of-the-practice traffic 

assignment models adopt the equilibrium principle to equilibrate the travel demand with 

the travel supply (e.g., highway and transit networks) under congestion. These models 
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give the transportation network performance measures, for example, vehicle miles 

traveled (VMT), vehicle hours traveled (VHT), trip length, and volume/capacity (V/C) 

ratio. These resultant model estimations would be used to compare among transportation 

alternatives for supporting the decision-making processes. This study focuses on the final 

step of the four-step travel demand forecasting model. New mathematical programming 

formulations are developed to relax the shortcomings of existing models and 

formulations. Algorithms for solving the proposed models and formulations are also 

provided for real-world implementation. 

 

 
Fig. 1. Four-step transportation planning model  
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1.2 Deterministic user equilibrium model 

The deterministic user equilibrium (DUE) is perhaps the most widely used principle 

for the traffic assignment problem. It is defined as follows: 

The journey costs on all the routes actually used are equal and less than those 

which would be experienced by a traveler on any unused route. (Wardrop, 

1952) 

Travelers in this principle are assumed to minimize their individual travel cost, such 

that only the lowest-cost route is used at equilibrium. In 1956, Beckmann et al. (1956) 

developed this DUE principle into a mathematical programming (MP) formulation. 

Several efficient solution algorithms (e.g., Frank and Wolfe, 1956; Dial, 2006) can be 

used to solve this DUE model in a real-size network. However, the assumption of perfect 

knowledge of network conditions is unrealistic. Travelers do not know the exact travel 

costs of all possible routes in the transportation network, and some travelers do not 

always use the minimum travel cost criterion for their route selection.  

 

1.3 Stochastic user equilibrium model 

To relax the restrictive perfect knowledge assumption, Daganzo and Sheffi (1977) 

suggested the stochastic user equilibrium (SUE) principle. It is defined as: 

No travelers can improve his or her perceived travel cost by unilaterally 

changing routes at SUE. (Daganzo and Sheffi, 1977) 

A random error term is incorporated in the route cost function to simulate travelers’ 

imperfect perception of network travel costs, such that they do not end up selecting only 

the minimum cost route. Therefore, the route choice behavior is probabilistic, as shown 

in Fig. 2.  
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Fig. 2. DUE and SUE models  

 

Two commonly used random error terms in the literature are Gumbel (Dial, 1971) and 

Normal (Daganzo and Sheffi, 1977) distributions, corresponding to the multinomial logit 

(MNL) and multinomial probit (MNP) (probabilistic) route choice models, respectively. The 

MNL model has a closed-form probability expression, and the MNL-SUE model can be 

formulated as an equivalent MP formulation (Fisk, 1980; Sheffi and Powell, 1982). Several 

efficient algorithms can be applied to solve the MNL-SUE MP formulation in a real-size 

network (e.g., Sheffi, 1985; Larsson and Patriksson, 1992; Damberg et al., 1996; Bell et al., 

1997; Leurent, 1997; Maher, 1998; Chen et al., 2005; Chootinan et al., 2005; Zhou et al., 

2012). The two main drawbacks of the MNL-SUE model are: (1) inability to account for 

route overlapping (or correlation), and (2) inability to account for perception variance with 

respect to different trip lengths. These two drawbacks stem from the underlying assumption 

of independently and identically distributed (IID) Gumbel variate (Sheffi, 1985). The MNP 

model, on the other hand, does not have such a drawback. It uses the Normal distribution to 

allow the covariance between random error terms for pairs of routes. However, due to the 

lack of a closed-form probability expression, solving the MNP-SUE model requires Monte 
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Carlo simulation (Sheffi and Powell, 1982), Clark’s approximation method (Maher, 1992), or 

numerical method (Rosa and Maher, 2002). 

To address the shortcomings of the MNL model, several closed-form route-choice 

models have been developed. These models can be classified into two categories: the 

extended logit models and weibit model, as shown in Fig. 3. The extended logit models relax 

the independently distributed assumption while retaining the Gumbel distributed random 

error terms. These models modify either the deterministic term or the random error term of 

the MNL random utility maximization (RUM) model. The models modifying the 

deterministic term include the C-logit (Cascetta et al., 1996), path-size logit (PSL) (Ben-

Akiva and Bierlaire, 1999), and implicit availability/perception (IAP) (Cascetta et al., 2002) 

models. All three models add a correction term to the deterministic term of the disutility 

function to adjust the choice probability. However, the interpretation of each model is 

different. The C-logit model uses a commonality factor to penalize the coupling routes, while 

both the IAP and PSL models use a logarithmic correction term to modify the disutility 

(hence, the choice probability). The IAP model aims at capturing travelers’ imperfect 

knowledge of available routes. Equivalent MP formulations for these models were recently 

provided by Zhou et al. (2012) and Chen et al. (2012). The models modifying the random 

error term include the paired combinatorial logit (PCL) (Bekhor and Prashker, 1999), cross-

nested logit (CNL) (Bekhor and Prashker, 1999), and generalized nested logit (GNL) 

(Bekhor and Prashker, 2001) models. These models use the Generalized Extreme Value 

(GEV) theory (McFadden, 1978) to incorporate route correlation, hence route overlapping. 

Equivalent MP formulations for these extended logit models were provided by Bekhor and 

Prashker (1999, 2001).  
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Fig. 3. Existing closed-form (probabilistic) route choice and MP SUE models  

 

Even though all the extended models discussed above can successfully capture 

route overlapping, the identically distributed assumption (i.e. homogeneous perception 

variance) is still inherited; all routes are assumed to have the same and fixed perception 

variance according to the logit assumption of the Gumbel distribution. Hence, Chen et al. 

(2012) suggested a practical approach to partially relax the assumption by scaling the 

perception variance of an individual O-D pair. The individual O-D specific scaling 

factors allow the perception variance to increase or decrease according to the travel 

distance of each O-D pair. Specifically, the systematic disutility in the logit-based SUE 

models can be scaled appropriately to reflect different O-D trip lengths in a network by 

replacing a single dispersion parameter for all O-D pairs with individual O-D dispersion 

parameters for each O-D pair. However, it should be noted that it is not possible to scale 

individual routes of the same O-D pair since it would violate the logit-based SUE 

Gumbel

MNL
(Dial, 1971)

GEV
M

P
 S

U
E

 f
o

rm
u

la
ti

o
n None

Overlapping

Route-

specific 

percept. var

C-Logit
(Cascetta et al., 

1996)

PSL
(Ben-Akiva and 

Bierlaire, 1999)

PCL
(Bekhor and 

Praskher, 1999)

CNL
(Bekhor and 

Praskher, 1999)

GNL
(Bekhor and 

Praskher, 2001)

Modified deterministic term

MNL-SUE
(Fisk, 1980;Sheffi 

and Powell, 1982)

PCL-SUE
(Bekhor and 

Praskher, 1999)

CNL-SUE
(Bekhor and 

Praskher, 1999)

GNL-SUE
(Bekhor and 

Praskher, 2001)

C-Logit-SUE
(Zhou et al., 

2012)

PSL-SUE
(Chen et al., 

2012)

P
ro

b
a

b
il

is
ti

c 
ro

u
te

 c
h

o
ic

e 

m
o

d
el

None

Overlapping

Route-

specific 

percept. var

Weibull

MNW
(Castillo et al. 

2008)



7 

 

models’ assumption of an equal variance across the routes within the same O-D pair. For 

a more comprehensive review of the extended logit models used in the SUE problem, 

readers are directed to the reviews given by Prashker and Bekhor (2004) and Chen et al. 

(2012). 

Recently, Castillo et al. (2008) proposed the multinomial weibit (MNW) model to 

relax the identically distributed assumption. Instead of the conventional Gumbel 

distribution, this route choice model adopts the Weibull distributed random error terms to 

handle the heterogeneous perception variance. Under the independence assumption, the 

MNW model has a simple analytical form with route-specific perception variance (i.e. non-

identical perception variances with respect to trips of different lengths). However, no 

equivalent MP formulation has been proposed for the MNW-SUE model in the technical 

literature. 

In this dissertation, an analytical closed-form route choice model and its MP SUE 

formulations are proposed to relax both independently and identically distributed 

assumptions. A path-size factor (Ben-Akiva and Bierlaire, 1999) is adopted to modify the 

MNW RUM model to create the path-size weibit (PSW) model, as shown in Fig. 4. 

Specifically, the route overlapping is captured through the path-size factor, and the route-

specific perception variance is handled through the Weibull distributed random error 

terms. Then, both constrained entropy-type and unconstrained MP formulations for the 

PSW-SUE model are developed. In addition, model extensions to consider the demand 

elasticity and combined travel choice of the PSW-SUE model are provided. Unlike the 

logit-based model, these model extensions incorporate the logarithmic expected 

perceived travel cost (EPC) as the network level of service to determine the demand 
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elasticity and travel choice. Qualitative properties of these minimization programs are 

given to establish equivalency and uniqueness conditions, and algorithms to solve the 

proposed models are presented. Numerical examples show that the proposed models can 

produce a compatible traffic flow pattern compared to the MNP-SUE model under 

congestion, and these models can be implemented in a real-size network. 

 

1.4 Objectives 

The objectives of this study were to provide: 

OBJ1. the PSW route choice model, 

OBJ2. an entropy-type MP formulation for the PSW-SUE model, 

OBJ3. a closed-form PSW EPC,  

OBJ4. an unconstrained MP formulation for the PSW-SUE model, 

OBJ5. an unconstrained MP formulation for the PSW-SUE model with elastic 

demand, 

OBJ6. an entropy-type MP formulation for the PSW-SUE model with elastic 

demand, and 

OBJ7. an entropy-type MP formulation for the combined travel choice of the 

PSW-SUE model with elastic demand.  

The first goal was to provide the PSW route choice model to handle both route 

overlapping and route-specific-perception variance problems. Then, an entropy-type MP 

formulation for the PSW-SUE model with route flows as the decision variables was 

developed in OBJ2. Next, a closed-form PSW EPC was derived in OBJ3, which can be 

used to develop an unconstrained MP formulation for the PSW-SUE model with link 

flows as the decision variables in OBJ4. 
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Fig. 4. Contributions of this study 

 

 

The different decision variables play a significant role in the development of the 

solution algorithm. In addition, the PSW EPC would also be used to develop both 

unconstrained and entropy-type MP formulations for the PSW-SUE model with elastic 

demand and combined travel choice of the PSW-SUE model, where the network level of 

service is explicitly incorporated through the PSW EPC, in OBJ5, OBJ6, and OBJ7.  
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Fig. 5.  Dissertation organization 

 

provides a link-based solution algorithm for solving the unconstrained MP formulation, 

and delivers the model extension to consider the demand elasticity. In Chapter 5, an 

entropy-type MP formulation for the PSW-SUE model with an elastic demand and the 

combined mode choice (or modal split) of the PSW-SUE model is presented, and it 

provides a path-based solution algorithm for solving the proposed model in a real-size 

network. Conclusions and remarks for future study are provided in Chapter 6.  
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CHAPTER 2 

LITERATURE REVIEW 

A strongly connected network  ,N A  is considered, where N and A denote the sets 

of nodes and links. Let IJ denote the subsets of N to represent a set of origin-destination 

(O-D) pairs ij. Let ijR  be a set of routes (or paths) between O-D pair ij, which may 

consist of several links a A . In this section, we review the route choice models with a 

closed-form probability expression, their corresponding mathematical programming (MP) 

stochastic user equilibrium (SUE) formulations, and solution algorithms. The section 

begins with the route choice models, including the well-known multinomial logit (MNL) 

model and five extended logit models. Then, the MP SUE formulations for these logit 

models under congestion are provided, followed by the solution algorithms to solve these 

MP SUE formulations in a real-case study.  

 

2.1 Route choice models 

2.1.1 Multinomial logit model 

The MNL model (Dial, 1971) assumes that the perceived route travel cost ij

rG  

follows the extreme value type I distribution or the Gumbel distribution. With this 

assumption, the cumulative distribution function (CDF) of 
ij

rG , mean route travel cost 

ij

rg , and route perception variance  
2

ij

r  can be expressed in Table 1. The mean travel 

cost 
ij

rg  is a function of the location parameter ij

r , the scale parameter ij

r , and the Euler 

constant . Note that the perception variance  
2

ij

r  is a function of ij

r  alone. 
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Table 1: Gumbel distribution 

CDF  ij
rG

F t      1 exp , ,
ij ij
r rt

e t
 

      (1) 

Mean route travel cost ij

rg  
ij

r ij

r





  (2) 

Route perception variance  
2

ij

r  2

2

6 ij

r




 (3) 

 

 

The MNL probability expression can be derived as follows: 

 Pr ; , ,ij ij ij

r r l ijP G G l r r R ij IJ       , (4) 

which corresponds to  

 .., ,..ij ij ij ij

r r r rP H t dt





   , (5) 

where ij

rH  is the partial derivative of the joint survival function w.r.t. 
ij

rt . Under the 

independently distributed assumption, the joint survival function for the Gumbel 

distribution is:  

  
 

exp

exp .

ij ij ij
r r r

ij

ij ij ij
r r r

ij

t

r R

t

r R

H e

e

 

 









 

  
  

  





 (6) 

Then, we have 

   
exp

ij ijijij ij ij
rr r r k k

ij

ttij ij

r rij
k Rr

H
H e e

t

  






   
    

   
 . (7) 

Substituting Eq. (7) into Eq. (5) gives 

   
exp

ij ijijij ij ij
rr r r k k

ij

ttij ij ij

r r r

k R

P e e dt
  








  
  

  
 . (8) 
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To obtain a closed-form probability expression, ij

r  needs to be fixed for all routes as  . 

With this, we have 

   

 

exp

exp .

ijijij ij
rr r k

ij

ij ij ijij
r r kr

ij

ttij ij

r r

k R

t t ij

r

k R

P e e dt

e e e dt

  

  











 



  
  

  

  
  

  





 (9) 

By integrating Eq. (9), we have the MNL probability, i.e., 

 
 

exp

exp
ij

ij

rij

r ij

k

k R

P









, ,ijr R ij IJ   . (10) 

According to Eq. (2), ij

r  is related to 
ij

rg  as follows: 

ij ij

r rg





  . (11) 

Substituting Eq. (11) into Eq. (10) gives the MNL model, i.e.,  

 
 

exp

exp
ij

ij

rij

r ij

k

k R

g
P

g










, ,ijr R ij IJ   . (12) 

Note that  is also known as the dispersion parameter (Dial, 1971). 

The joint Gumbel distribution in Eq. (6) with the fixed  further satisfies the 

stability w.r.t. the minimum operation (Castillo et al., 2008). This important property 

states that joint survival extreme value function at minimum is the same family as the 

marginal survival extreme value function (Castillo et al., 2005). From the joint Gumbel 

distribution with the fixed , the Gumbel survival function at minimum is also the 

Gumbel distribution, i.e.,  
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 
 

  
,0

min
exp

ij

ij
k

k Rij

t

G
H t e

 




  , (13) 

where  

 ,0 1
ln exp

ij

ij ij

k

k R

 
 

   . (14) 

With the stability property, travelers’ choice decisions are assumed to be based on 

their minimum perceived route travel cost, and the probabilistic route choice patterns can 

be determined by the multivariate extreme value distribution (Kotz and Nadarajah, 2000) 

with the Gumbel marginal. Further, we can use the Gumbel distribution to determine the 

EPC. From the stability property, substituting ,0ij  in Eq. (2) gives the MNL EPC: 

 
1

ln exp
ij

ij

ij k

k R


 

 

    . (15) 

Since the constant    will not have an impact on the mathematical programming 

(MP) formulation considered later in this review, we can omit the term   . From    

Eq. (11), the MNL EPC up to a constant can be expressed as a log-sum term as follows:  

 
1

ln exp
ij

ij

ij k

k R

g 
 

   ,  ij IJ  . (16) 

An important property of this EPC is that the partial derivative of the MNL EPC 

w.r.t. the route cost gives back the MNL probability (Daganzo, 1979; Sheffi, 1985), i.e., 

 

 
 

ln exp
1

exp
.

exp

ij

ij

ij

k

k Rij

ij ij

r r

ij

r

ij

k

k R

g

g g

g

g














 


 
 










 (17) 
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Moreover, the MNL model can also be interpreted as the Markovian process 

(Akamatsu, 1996). Travelers are assumed to make a decision at each node (or state) until 

they reach the destination (or final state) according to the MNL choice probability. With 

this, we can use the link-based loading mechanism for the MNL loading (e.g., Dial, 1971; 

Sheffi, 1985; Bell, 1995; Akamatsu, 1996). 

The drawback of the MNL model stems from its underlying assumption of the 

independently and identically distributed (IID) with Gumbel variate. The independently 

distributed assumption comes from the joint Gumbel distribution with independent variate in 

Eq. (6). The identically distributed assumption comes from the fixed θ to obtain a closed-

form probability expression in Eq. (9), since the Gumbel  
2

ij

r  is a function of θ alone (see 

Eq. (3)). As a result, the MNL model has difficulty in handling the route overlapping problem 

(i.e., independence assumption) and the homogeneous perception variance w.r.t. different trip 

lengths (i.e., identical variance assumption). Consider the loop-hole network shown in Fig. 6. 

In this network, all three routes have equal travel cost of 100 units. The two upper routes 

overlap by a portion x, while the lower route is distinct from the two upper routes. According 

to the independently distributed assumption, the MNL model gives the same probability of 

1/3 for each route, regardless of the overlapping portion.  

 

 
 

     1 2 3

exp 100 1

exp 100 exp 100 exp 100 3

ij ij ijP P P


  


   

    
 

Fig. 6. MNL probability on the loop-hole network 

i j

DestinationOrigin

(100-x)(x)

(100-x)

(100)

(Travel cost)
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a) Short network b) Long network 

Fig. 7. MNL probabilities on the two-route networks 

 

  
a) Short network b) Long network 

Fig. 8. MNL perception variances of the two-route networks 

On the other hand, consider a two-route network configuration as shown in Fig. 7. 

For both networks, the upper route travel cost is larger than the lower route travel cost by 

5 units. However, the upper route travel cost is two times larger than the lower route 

travel cost in the short network, while it is only less than 5% larger in the long network. 

The MNL model produces the same flow patterns for both short and long networks. This 

is because each route has the same perception variance of 
2 26   (see Eq. (3)) as shown 

in Fig. 8. As such, the MNL probability is solely based on the absolute cost difference 

irrespective of the overall trip lengths (Sheffi, 1985). 
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2.1.2 Extended logit models 

To relax the independently distributed assumption embedded in the MNL model, 

several closed-form extended logit models have been developed. These models can be 

classified in to two categories: 1) the models modifying the deterministic term of the 

MNL model, and 2) the models modifying the random error term of the MNL model. 

Recall that the MNL model can be written in the random utility maximization (RUM) 

model as (Sheffi, 1985) 

ij ij ij

r r rU g    ,  ,ijr R ij IJ   , (18) 

where ij

r  is the IID Gumbel distributed random error term on route r between O-D pair ij 

whose CDF is 

   1 expij
r

tF t e


   ,  ,ijr R ij IJ   . (19) 

The models modifying the deterministic term introduce a correction factor to ij

rg  to 

adjust the probability of choosing the routes coupling with other routes, and hence the 

route overlapping. These models include the C-logit model (Cascetta et al., 1996) and 

path-size logit (PSL) model (Ben-Akiva and Bierlaire, 1999). The models modifying the 

random error term adopt the Generalized Extreme Value (GEV) theory (McFadden, 

1978) to modify the random error term to allow the correlation, and hence the route 

overlapping. These models includes the cross nested logit (CNL) model (Bekhor and 

Prashker, 1999), generalized nested logit (GNL) model (Bekhor and Prashker, 2001), and 

paired combinatorial logit (PCL) model (Bekhor and Prashker, 1999). This subsection 

begins with the models modifying the deterministic term, followed by the models 

modifying the random error term (or GEV-based model). 
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2.1.2.1 Models modifying the deterministic term 

We start with the C-logit model followed by the PSL model. The C-logit model 

uses a commonality factor ij

rCF  to modify the deterministic term, i.e.,  

 ij ij ij ij

r r r rU g CF     ,  ,ijr R ij IJ   , (20) 

where ij

rCF can be expressed as 

ln

ij

ij
ij rl

r
ij ij

l r
r l

l R

L
CF

L L






 
  
 
 

 ,  ,ijr R ij IJ   , (21) 

ij

rlL  is the length of overlapping section between routes r and l between O-D pair ij, 
ij

rL  is 

the length of route r between O-D pair ij, and   and   are the calibrated parameters. This 

ij

rCF  increases as the overlapping increases. As such, the routes coupling with other routes 

have a higher disutility. Note that there are several forms of ij

rCF  (see Cascetta et al., 1996, 

for more information). From Eq. (20), the C-logit probability can be expressed as  

  
  

exp

exp
ij

ij ij

r rij

r ij ij

k k

k R

g CF
P

g CF






 


 
,  ,ijr R ij IJ   . (22) 

Since the C-logit model modifies the deterministic term, its EPC can be expressed as  

  
1

ln exp
ij

ij ij

ij k k

k R

g CF 
 

    ,  ij IJ  . (23) 

Similar to the C-logit model, the PSL model uses the path-size factor ij

r  to modify 

the deterministic term as follows: 

lnij ij ij ij

r r r rU g     ,  ,ijr R ij IJ   , (24) 

where ij

r  can be expressed as  
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L






 


,  ,ijr R ij IJ   , 
(25) 

al  is the length of link a, ij

rL  is the length of route r connecting O-D pair ij , and r  is the 

set of all links in route r between O-D pair ij. This path-size factor  0,1ij

r   accounts 

for different route sizes determined by the length of links within a route and the relative 

lengths of routes that share a link. Note that several studies have provided alternative 

formulations for ij

r  (e.g., Ramming, 2001; Bovy et al., 2008; Prato, 2009). From Eq. 

(24), the PSL probability can be expressed as 
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r rij

r ij ij
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g
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g

 
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
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,  ,ijr R ij IJ   . 

(26) 

Its EPC can be expressed as 

 
1

ln exp
ij

ij ij

ij k k

k R

g  
 

   ,  ij IJ  . (27) 

 

 

2.1.2.2 Models modifying the random error term 

Let  1,.., NG y y  (or G( ) for short) be the  GEV generating function, where 0ny  . 

This GEV generating function satisfies the following properties (McFadden, 1978):  

1) G( ) is non-negative. 

2) G( ) is homogeneous of degree  > 0; that is    1 1,.., ,..,N NG y y G y y       

3)  1lim ,..,
ny NG y y    for all n. 

4) The l
th

 partial derivative of G( ) w.r.t. any combination of l distinct yn’s, n = 1,..,N, 

is non-negative if l is odd and non-positive if l is even. 

With this generating function, the GEV-based probability can be derived by  
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where 1 ,..,
ij

ij
Rij

g
gij

rG e e



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 
 
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 is the partial derivative of 1 ,..,
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
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 
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 w.r.t. to 
ij
rg

e


. 

Further, the EPC of the GEV-based model can be derived by 

1
1

ln ,..,
ij

ij
Rij

g
g

ij G e e






 

   
 

,  ij IJ  . (29) 

We start this subsection with the CNL model followed by the GNL model and the PCL 

model. 

The CNL GEV generating function can be expressed as 

   
1

ij

ij

ij
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ijar r

a A r R
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
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 
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  
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 

  ,  ij IJ  , (30) 

where  0,1ij  , and  0,1ijar   could be defined as (Bekhor and Prashker, 1999) 

ija
ijar arij

r

l

L
  ,  , ,ija A r R ij IJ    . (31) 

Both parameters represent the overlapping degree, where a larger (smaller) ijar  ( ij ) 

indicates a higher overlapping degree. Using the principle in Eq. (28), the CNL 

probability can be expressed as 
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,  ,ijr R ij IJ   . (32) 

This CNL probability can be decomposed into two levels according to the two-level tree 

structure, i.e.,  
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The upper level is represented by the marginal probability ( ij

aP ) of selecting link a 

between O-D pair ij , and the lower level is represented by the conditional probability      

(
|

ij

r aP ) of selecting route r between O-D pair ij passing through link a. Then, using Eq. 

(29), the CNL EPC can be expressed as 
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  ,  ij IJ  . (36) 

The GNL model is a generalized version of the CNL model. Its GEV generating 

function can be expressed as  
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where ija  is specific to a link level. It could be defined as (Bekhor and Prashker, 2001) 

1
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
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(38) 

Using Eq. (28), the GNL probability can be expressed as  
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Similar to the CNL model, the GNL probability can be decomposed into the marginal and 

conditional probabilities as in Eq. (33). The GNL marginal probability (upper level) can 

be expressed as 
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and the GNL conditional probability (lower level) can be expressed as 
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By using Eq. (29), the GNL EPC can be expressed as 
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Unlike the CNL and GNL models, the PCL model uses the nest between route pairs 

to handle the route overlapping problem. Its GEV generating function can be expressed as  
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where  0,1ijrl   represents the degree of overlapping between routes r and l, which 

could be defined as (Bekhor and Prashker, 1999) 
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and   is a calibrated parameter. Following the same derivation as the CNL model, the 

PCL probability can be expressed as 
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It can be decomposed into marginal and conditional probabilities as follows: 
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The PCL marginal probability (upper level) is a multinomial logit probability of 

selecting a route pair rl among the 1ij ijR R   route pairs, and the PCL conditional 

probability (lower level) is simply a binary logit probability of selecting a route from the 

route pair.  
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Fig. 9. Extended logit probabilities on the loop-hole network 

When considering the route overlapping problem in Fig. 9, the extended logit 

models produce different route choice probabilities w.r.t. the overlapping portion x. Note 

that all models use =0.1.  and   are equal to one for the C-logit model, and  is equal 

to one for the PCL model. Each model gives a higher probability of choosing the lower 

route as x increases. When x=100 (i.e., only two routes with equal trip length exist), all 

the extended logit models produce the same probability of 0.5 in choosing two routes.  

 

2.2 Mathematical programming stochastic user equilibrium formulation 

In this subsection, we review a corresponding mathematical programming (MP) 

stochastic user equilibrium (SUE) formulation of the logit route choice models discussed 

in the previous subsection. The MP formulation can be classified into two categories: 1) 

the constrained entropy-type MP formulation and 2) the unconstrained MP formulation. 

The constrained formulation adopts an entropy term to handle the stochastic effect of 

route choice selection, while the unconstrained formulation incoporates the expected 

perceived cost (EPC) to develop a MP formulation. The subsection begins with the 
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constrained entropy-type MP formulation, followed by the unconstrained MP 

formulation. 

 

2.2.1 Constrained entropy-type MP formulation 

The constrained entropy-type MP formulation for the MNL-SUE model can be 

written as (Fisk, 1980)   
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0ij

rf  ,  ,ijr R ij IJ   . (51) 

where ij

rf  denotes the flow on route r between O-D pair ij, qij is a given demand between 

O-D pair ij, and va is the flow on link a. In Eq. (49), Z1 is the well-known ―Beckmann’s 

transformation‖. Z2 is the entropy term used to capture the probability flow pattern. It 

gives the exponential proportion in the equivalency conditions that is needed in the logit 

probability solution. Eq. (50) is the flow conservation constraint, and Eq. (51) is the non-

negativity constraint.  

To incorporate the route overlapping, both C-logit-SUE and PSL-SUE models add 

another entropy term (Chen et al., 2012; Zhou et al., 2012). The C-logit-SUE model 

incorporates the commonality factor through Z3, i.e.,  
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subject to the flow conservation constraint in Eq. (50) and the non-negativity constraint in 

Eq. (51). Similarly, the PSL-SUE model also incorporates the commonality factor 

through Z3, i.e., 
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 (53) 

subject to the flow conservation constraint in Eq. (50) and the non-negativity constraint in 

Eq. (51). 

On the other hand, the GEV-based models require a modified entropy term. This is 

because these models have a two-level tree structure (i.e., marginal and conditional 

probabilities). In addition, the decision variables are not the same as the MNL-SUE, C-

logit-SUE, and PSL-SUE models where the decision variables are the ordinary ij

rf . The 

decision variables for the GEV-based models also need to correspond the two-level tree 

structure of each model. The CNL-SUE model can be written as (Bekhor and Prashker, 

1999): 
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(54) 

s.t.

 
r ij

ij

ar ij

a r R

f q
 

  ,  ij IJ  , 
(55) 

0ij

arf  ,  , ,r ija r R ij IJ    , (56) 
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where ij

arf  is the flow on route r (from link a) between O-D pair ij as the decision 

variable corresponding to the CNL nested structure. Z2 is adopted to incorporate the CNL 

conditional probability (lower level), and Z3 is adopted to incorporate the CNL marginal 

probability (upper level). Similar to the MNL-SUE model, Eq. (55) and Eq. (56) are the 

flow conservation constraint and the non-negativity constraint, respectively. Since the 

GNL model is a generalized version of the CNL model, the GNL-SUE model can be 

expressed as (Bekhor and Prashker, 2001) 

 
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(57) 

subject to Eq. (55) and Eq. (56). Unlike the CNL and GNL models, the PCL model has a 

two-level tree structure according a route pair. With this, the PCL-SUE model can be 

written as (Bekhor and Prashker, 1999) 
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(58) 

s.t.

 

 
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r R k r

r R
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  0ij

r rk
f  ,  ,ijr k R ij IJ    , (60) 
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where  
ij

r rk
f  is the flow on route r (of route pair r and k) between O-D pair ij as the 

decision variable corresponding to the PCL nested structure. Z2 is adopted to incorporate 

the PCL conditional probability (lower level), and Z3 is adopted to incorporate the PCL 

marginal probability (upper level).  

 

2.2.2 Unconstrained MP formulation 

Unlike the constrained MP formulation where the corresponding optimization 

program is different for each individual route choice model, the unconstrained MP 

formulation for all logit models (discussed in the previously) can be written as 

   

1 2 3

0

min

.
av

a ij ij a a a

a A ij IJ a A

Z Z Z Z

h d q v h v  
  

  

     
 (61) 

Z1 is still the Beckmann’s transformation. Z2 is used to incorporate the EPC to obtain a 

particular logit flow solution. Z3 is the network performance. For example, if we use the 

EPC in (16), the above MP formulation is corresponded to the MNL-SUE model.  

Moreover, unlike the constrained entropy-type formulation, the unconstrained MP 

formulation has the link flow as the decision variables, regardless of the probability tree 

structure. with the link flow decision variables, the unconstrained MP formulation 

obviates the route storage in the entropy-type formulation when implementing some link-

based loading techniques (e.g., Dial, 1971; Sheffi, 1985; Bell, 1995; Akamatsu, 1996). A 

link-based algorithm can be applied to solve the unconstrained SUE problem (e.g., 

Sheffi, 1985; Maher, 1998). 
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2.3 Solution algorithms 

This subsection reviews the solution algorithm for solving the SUE MP problem. 

Generally, this algorithm has two main steps: search direction and line search. A search 

direction is obtained by solving a convex auxiliary problem through the equivalency 

conditions (i.e., the first-order approximation of the objective function). This can be done 

by performing a stochastic loading scheme that produces the flow pattern corresponding 

to the route choice model under consideration. A line search is computed in the search 

direction w.r.t. the original objective function, and then the resulting stepsize defines a 

new solution with a reduced objective value. Detail procedures are depended on the 

decision variables. The subsection begins with the path-based solution algorithm for 

solving the constrained entropy-type SUE MP formulation, followed by the link-based 

solution algorithm for solving the unconstrained SUE MP formulation.  

 

2.3.1 Path-based solution algorithm 

Several path-based solution algorithms has been developed to solve the entropy-

type logit-based SUE model (e.g., Damberg et al., 1996; Bell et al., 1997; Leurent, 1997; 

Chen et al., 2005; Chootinan et al., 2005; Zhou et al., 2012). A fundamental framework 

of this path-based solution algorithm is presented as follows. 

Step 0: Initialization  

 Set n = 0; perform the stochastic loading according to the free flow travel costs to 

obtain a feasible route flow solution  1
f ; 

Step 1: Direction finding 

 Increment n = n+1; update link/route travel costs; perform the MNL loading to 
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obtain auxiliary route flows  n
f , and search direction     1n n

f f ; 

Step 2: Line search 

 Solve 
        1 1

0 1
min

n n n n
Z




 

 

  
 
f f f  to obtain 

 n
  ; 

Step 3: Move  

           1 1n n n n n


 
  f f f f ; 

Step 4: Convergence test 

 If the stopping criterion is reached, terminate; otherwise go to Step 1. 

 

 

The stochastic loading would be according to the route choice model under 

consideration. For example, if we solve the MNL-SUE model, the stochastic loading will 

be the MNL probability from the route travel cost at each iteration.  

There are some remarks for this fundamental algorithmic framework. Since the 

constrained entropy-type formulation has the route flow variables as its decision variable, 

this model need to store the route (or path) set. This route set can be obtained from the 

survey and/or route set generation (e.g., Prato, 2009). To avoid this route set 

enumeration, a column generation procedure (Dantzig, 1963) can be adopted which is 

determined by a lowest-cost route at each iteration.    

For the line search procedure, we may adopt the golden section or bisection methods 

to determine the exact stepsize. However, both methods are computationally expensive for 

this complicated objective function. To overcome this problem, one may select the 

predetermined stepsize strategy such as the method of successive average (MSA) (e.g., 

 
1

n
n  , that satisfies   0n 

 
and  

0n
n




   to guarantee convergence). Even 
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though this method is easy to implement, it suffers from a sublinear convergence rate 

(Nagurney, 1999). In practice, inexact line search schemes are usually more practical and 

efficient. Among others, the Armijo-type methods (Armijo, 1966) are perhaps the most 

well-known inexact line search scheme. This line search scheme method has been used to 

solve some SUE problems and showed a better performance compared to the exact line 

search (e.g., Bekhor et al., 2008). It can be determined by (Bertsekas, 1976) 

  ( )n m n s  , (62) 

where ( )m n  is the first non-negative integer m such that  

         ( ) ( ) ( ) ( ) ( )
T

n n m n n n mZ Z s Z s     f f f f f , (63) 

where  Z   and  Z  are the objective function and its gradient w.r.t. to the solution; 

(0,1), (0,1)   , and 0s   are fixed scalars. From Eq. (63), we can obtain an 

appropriate stepsize (unnecessarily the optimal stepsize) with some evaluations, and 

therefore we can avoid solving the computationally expensive exact line search.  

In the literature, there are another two promising line search schemes, recently 

proposed to enhance the computational performance of determining a suitable stepsize: 

the self regulated averaging (SRA) scheme by Liu et al. (2009) and the quadratic 

interpolation scheme by Maher (1998). The SRA scheme is a modified version of the 

MSA. It has an adjustable stepsize according to the residual error. It stepsize can be 

expressed as 
 

 

1n

n



 , where 

 
         
 

1

1

1

2

, if 1 1

, otherwise

n

n

n

n n n n 


 





      
 



v v v v

, λ1>1, and 0<λ2<1. With this scheme, 
 n

  is adjusted according to the residual error (i.e., 

the deviation between the current solution and its auxiliary solution) relationship of two 
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consecutive iterations. When the current residual error is larger than the previous 

iteration, λ1>1 makes a more aggressive reduction in the stepsize. On the other hand, 

when the residual error is smaller than the previous iteration, 0<λ2<1 makes the stepsize 

reduction more conservative. 

For the quadratic interpolation scheme, the stepsize can be approximated from  

   

   
0

0 1

n
Z

Z Z

 

  




 


 




  
, (64) 

where  Z   is the derivative of objective function w.r.t. stepsize. In this scheme, 

 Z   are evaluated twice per iteration (or two ends), one at =0 and another at =1, 

to determine an approximate stepsize.  

 

2.3.2 Link-based solution algorithm 

A fundamental framework for this link-based algorithm can be expressed as follows 

(e.g., Sheffi, 1985). 

Step 0: Initialization  

 Set n = 0; perform the link-based stochastic loading according to the free flow 

travel costs to obtain a feasible link flow solution 
 1

v ; 

Step 1: Direction finding 

 Increment n = n+1; update link travel costs; perform the link-based stochastic 

loading to obtain auxiliary link flows 
 n

v , and search direction 
    1n n

v v ; 

Step 2: Line search 

 Solve 
        1 1

0 1
min

n n n n
Z




 

 

  
 
v v v  to obtain  ; 

Step 3: Move  

           1 1n n n n n


 
  v v v v ; 

 n

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Step 4: Convergence test 

 If the stopping criterion is reached, terminate; otherwise go to Step 1. 

 

Some link-based stochastic loading schemes have been developed in the literature. 

The MNL link-based stochastic loading scheme can be found, for example, in Dial 

(1971), Sheffi (1985), Bell (1995), and Akamatsu (1996) (also see subsection 2.2.1). 

Later, Russo and Vitetta (2003) developed a link-based loading scheme for the C-logit 

model, where the correction factor was modified to capture the overlapping at the link 

level. With this, we can obviate the path (or route) storage needed in the path-based 

solution algorithms. 

For the line search procedure, one may adopt the MSA and SRA without the need 

to evaluate the (complicated) objective function. However, we may suffer from a 

sublinear convergence rate. Recently, Maher (1998) adopted the interpolation scheme to 

determine the stepsize of this unconstrained formulation.  Z   can be determined 

from the first derivative of the objective function w.r.t. the stepsize, which gives  

    
2

n a
a

a A a

dhdZ
Z v

d dv
 

 

    . (65) 

Then, we can use this simple objective function gradient to approximate the stepsize in 

Eq. (64). Note that, to evaluate  Z   at =1, we need to obtain another auxiliary link 

flows (see Maher, 1998). In other words, we need to perform the stochastic loading twice 

per iteration to approximate the stepsize. 
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CHAPTER 3 

A PATH-SIZE WEIBIT STOCHASTIC USER EQUILIBRIUM MODEL 

Abstract 

The aim of this paper is to develop a path-size weibit (PSW) route choice model 

with an equivalent mathematical programming (MP) formulation under the stochastic 

user equilibrium (SUE) principle that can account for both route overlapping and route-

specific perception variance problems. Specifically, the Weibull distributed random error 

term handles the identically distributed assumption such that the perception variance with 

respect to different trip lengths can be distinguished, and a path-size factor term is 

introduced to resolve the route overlapping issue by adjusting the choice probabilities for 

routes with strong couplings with other routes. A multiplicative Beckmann’s 

transformation (MBec) combined with an entropy term are used to develop the MP 

formulation for the PSW-SUE model. A path-based algorithm based on the partial 

linearization method is adopted for solving the PSW-SUE model. Numerical examples 

are also provided to illustrate features of the PSW-SUE model and its differences 

compared to some existing SUE models as well as its applicability on a real-size network. 

 

3.1 Introduction 

The stochastic user equilibrium (SUE) model is well-known in the literature. It 

relaxes the perfect information assumption of the deterministic user equilibrium model by 

incorporating a random error term in the route travel cost function to simulate travelers’ 

imperfect perceptions of travel costs. Route choice models under this approach can have 

different specifications according to the modeling assumptions on the random error term. 
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The two commonly used random error terms are Gumbel (Dial, 1971) and Normal 

(Daganzo and Sheffi, 1977) distributions, corresponding to the multinomial logit (MNL) 

and multinomial probit (MNP) route choice models, respectively. MNL model has a 

closed-form probability expression and can be formulated as an equivalent mathematical 

programming formulation (MP) by using an entropy-type model for the logit-based SUE 

problem (Fisk, 1980). The drawbacks of the MNL model are: (1) inability to account for 

overlapping (or correlation) among routes and (2) inability to account for perception 

variance with respect to (w.r.t.) trips of different lengths. These two drawbacks stem from 

the underlying assumptions that the random error terms are independently and identically 

distributed (IID) with the same and fixed perception variance (Sheffi, 1985). MNP route 

choice model, on the other hand, does not have such drawbacks, because it handles the 

route overlapping and identical perception variance problems between routes by allowing 

the covariance between random error terms for pairs of routes. However, the MNP model 

does not have a closed-form solution and it is computationally burdensome when the 

choice set contains more than a handful of routes. Due to the lack of a closed-form 

probability expression, solving the MNP model will require either Monte Carlo 

simulation (Sheffi and Powell, 1982), Clark’s approximation method (Maher, 1992), or 

numerical method (Rosa and Maher, 2002). 

To overcome the deficiencies of the MNL model, some analytical closed-form 

extensions have been proposed in the literature. These models can be broadly classified 

into two groups: extended logit models and Weibull-based model as shown in Fig. 10. 

The extended logit models were developed mainly to handle the route overlapping 

problem. These models modified either the deterministic term or the random error term in 
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the additive disutility function of the MNL model while maintaining the Gumbel 

distributed random error term assumption. The models modifying the deterministic term 

of the disutility function include the C-logit model (Cascetta et al., 1996), the implicit 

availability/perception (IAP) model (Cascetta et al., 2002), and the path-size logit (PSL) 

model (Ben-Akiva and Bierlaire, 1999). All three models add a correction term to the 

deterministic term of the disutility function to adjust the choice probability; however, the 

interpretation of each model is different. The C-logit model uses the commonality factor 

to penalize the coupling routes, while both the IAP and PSL models use a logarithmic 

correction term to modify the disutility (hence, the choice probability). Equivalent MP 

formulations for the C-logit model and PSL model were recently provided by Zhou et al. 

(2012) and Chen et al. (2012), respectively. The models modifying the random error term 

of the disutility function include the cross-nested logit (CNL) model (Vovsha, 1997; 

Bekhor and Prashker, 1999), the paired combinatorial logit (PCL) model (Chu, 1989; 

Bekhor and Prashker, 1999; Gliebe et al., 1999; Pravinvongvuth and Chen, 2005), and the 

generalized nested logit (GNL) model (Bekhor and Prashker, 2001; Wen and Koppelman, 

2001). These models are based on the generalized extreme value (GEV) theory 

(McFadden, 1978) using a two-level tree structure to capture the similarity among routes 

through the random error component of the disutility function. Equivalent MP 

formulations for all three models were given by Bekhor and Prashker (1999, 2001). 

Recall that the extended logit models with closed-form solution discussed above were 

developed to mainly address the independence assumption (i.e., route overlapping 

problem) of the MNL-SUE model. The identically distributed assumption (i.e., 

homogeneous perception variance problem) is still inherited in these extended logit-based 
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SUE models. In other words, the perception variance is fixed (or constant) with respect to 

trips of different lengths over all routes and all origin-destination (O-D) pairs. In view of 

network equilibrium assignment, the identically distributed assumption seems unrealistic 

since it does not distinguish trip lengths of different O-D pairs. Hence, Chen et al. (2012) 

suggested a practical approach to partially relax the assumption by scaling the perception 

variance of an individual O-D pair. The individual O-D specific scaling factors allow the 

perception variance to increase or decrease according to the travel distance of each O-D 

pair. Specifically, the systematic disutility in the logit-based SUE models can be scaled 

appropriately to reflect different O-D trip lengths in a network by replacing a single 

dispersion parameter for all O-D pairs with individual O-D dispersion parameters for 

each O-D pair. However, it should be noted that it is not possible to scale individual 

routes of the same O-D pair since it would violate the logit-based SUE models’ 

assumption of an equal variance across the routes within the same O-D pair. For a more 

comprehensive review of the extended logit models used in the SUE problem, readers are 

directed to the reviews given by Prashker and Bekhor (2004) and Chen et al. (2012). 

On the other hand, Castillo et al. (2008) proposed the multinomial weibit (MNW) 

model to address the identically distributed assumption. This model assumes that the 

perceived route travel time follows the Weibull distribution, instead of the conventional 

Gumbel distribution. Under the independence assumption, the MNW model has a simple 

analytical form with route-specific perception variance (i.e., non-identical perception 

variances with respect to trips of different lengths). However, no equivalent MP 

formulation has been provided for the MNW-SUE model.  
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Fig. 10. Chronicle development of some closed-form route choice models and their MP 

formulations 
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with other routes. A multiplicative Beckmann’s transformation (MBec) combined with an 

entropy term are used to develop the MP formulation for the PSW-SUE model. Some 
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algorithm based on the partial linearization method is adopted for solving the PSW-SUE 
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model. Numerical examples are also provided to illustrate features of the PSW-SUE model 

and its differences compared to some existing SUE models as well as its applicability on a 

real-size network.  

The remaining of this paper is organized as follows. Section 2 provides some 

background of the MNW route choice model and develops the PSW model. In section 3, 

equivalent MP formulations for the MNW-SUE and PSW-SUE models are provided 

along with some qualitative properties. Section 4 presents a path-based algorithm for 

solving the SUE formulations. Numerical results are presented in Section 5, and some 

concluding remarks are provided in Section 6. 

 

3.2 Weibit route choice models 

In this section, we provide some background of the multinomial weibit
*
 (MNW) 

route choice model and the development of the path-size weibit (PSW) model. 

Specifically, we show how the MNW model resolves the identical perception variance 

issue inherited in the classical multinomial logit (MNL) model. Then, a path-size factor is 

introduced to the MNW random utility maximization (RUM) model to develop the PSW 

model that can address both route overlapping and non-identical route perception 

variance problems. 

 

3.2.1 MNW model 

Castillo et al. (2008) developed the MNW model to relax the identically distributed 

assumption embedded in the MNL model. Instead of the Gumbel distribution, this closed-

form route choice model is derived from the Weibull distribution presented in Table 2. 

                                                 
*
 The term ―weibit‖

 
stands for ―Weibull probability unit‖. Note that this term has also been used in other 

disciplines, for example, the bioassay (Looney, 1983), contingent valuation model in economics (Genius 

and Strazzera, 2002), and reliability engineering (Strong et al., 2009). 
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Let ij

rG  denote travelers’ perceived travel cost on route ijr R  between O-D pair ij IJ , 

and 
ij

rg  be the mean of ij

rG  (or the mean travel cost). Then, the cumulative distribution 

function (CDF) of ij

rG  can be expressed as the negative exponential function. The mean 

travel cost 
ij

rg  is a function of the location parameter 0,ij ij

r rG  , the shape parameter 

 0,ij

r   , and the scale parameter  0,ij

r  , where    is the gamma function. 

Unlike the Gumble distribution, the perception variance of the Weibull distribution  
2

ij

r  

is also a function of 
ij

rg . 

Further, unlike the MNL model which used the conventional additive RUM 

(ARUM), the MNW model adopts the multiplicative RUM (MRUM) with the Weibull 

distribution as the random error term (Fosgerau and Bierlaire, 2009). By relating ij

r  with 

ij

rg  in Eq. (67), the MNW disutility function can be written as 

 

Table 2: Weibull distribution 

CDF  ij
rG

F t  
 

 1 exp , 0,

ij
rij

r

ij

r

t
t







   
     
    

 (66) 

Mean travel cost 
ij

rg  
1

1ij ij

r r ij

r

 


 
   

 
 (67) 

Route perception variance  
2

ij

r     
2 22

1ij ij ij

r r rij

r

g 


 
    

 
 (68) 
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 
ij

ij ij ij ij

r r rU g


   ,  ,ijr R ij IJ   , (69) 

where ij

r  is the independently Weibull distributed random error term on route r between 

O-D pair ij whose CDF is    1 expij
r

F t t


   . Then, the MNW probability can be 

determined by 

   

 

 

Pr , , ,

Pr , , , .

ij ij

ij

ij

ij ij ij ij ij ij ij

r r r l l ij

ij ij

r ij ij

r l ij
ij ij

l

P g g l r r R ij IJ

g
l r r R ij IJ

g

 





   


 



 
         

 

 


       
  
 

 (70) 

Then, we can compute the choice probability from  

 .., ,.. , , ,ij ij ij ij

r r r r ijP H d r R ij IJ 




      (71) 

where ij

rH  is the partial derivative of the joint survival function w.r.t. ij

r . For the weibit 

RUM model, the CDF of each random error term is  

   1 expij ij

r rF     , (72) 

and hence the survival function of each random error term is 

     1 expij ij ij

r r rF F      . (73) 

Under the independence assumption, the joint survival function can be expressed as 

  exp
ijij

ij ij

r r

r Rr R

H F  


 
   

 
 

 , (74) 

which gives 

exp
ij

ij ij

r r

r R

H 


 
   

 
 

 . (75) 
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From Eq. (70), Eq. (75) can be restated as 

   exp
ij ij

ij

ij ij ij ij ij ij

r r r k

k R

H g g
 

  




 
     

 
 

 . (76) 

Substituting Eq. (76) in Eq. (71) gives 

   

 

 
   

0

0

exp

exp .

ij ij

ij

ij

ij ij

ij

ij

ij

ij ij ij ij ij ij ij

r r r k r

k R

ij ij

r ij ij ij ij ij

r r k
ij ij k R
k

k R

P g g d

g
g g

g

 



 



   


  

















 
    

 
 

  
      

     






 (77) 

From Eq. (77), the MNW route choice probability can be expressed as 

 

 

ij

ij

ij

ij ij

rij

r
ij ij

k

k R

g
P

g



















,  ,ijr R ij IJ   . (78) 

Since ij ij

rG  , it naturally implies that ij ij

rg  . Also note that the MNW model 

computes the probability directly using proportion of the route travel costs, while the 

MNL model uses the exponential proportion of the route travel costs to compute the 

probability. 

To illustrate how the MNW resolves the identical perception variance issue 

inherited in the MNL model, a two-route network configuration shown in Fig. 7 is 

adopted. For both short and long networks, the upper route travel time is larger than the 

lower route travel time by 5 units. However, the upper route travel time is two times 

larger than the lower route travel time in the short network, while it is only less than 5% 

larger in the long network. As expected, the MNL model produces the same flow patterns 

for both short and long networks. This is because the MNL model cannot handle the 
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perception variance with respect to (w.r.t.) different trip lengths. Each route is assumed to 

have the same (or identical) perception variance of 2 26  , where  is the logit 

dispersion parameter, as shown in the upper two panels of Fig. 12. Hence, the MNL 

probability is solely based on the cost difference irrespective of the overall trip lengths 

(Sheffi, 1985). 
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The MNW model, in contrast, produces different route choice probabilities for the 

two networks. It uses the relative cost difference to differentiate the overall trip length. 

When considering the perception variance, the MNW model handles the route-specific 

perception variance as a function of ij , ij , and route travel cost, i.e.,  

 
 
 

2

2
22 1

1 1
1 1

ij ij

rij

r ij ijij

g 


 

      
          
        

,  ,ijr R ij IJ   , (79) 

where    is the gamma function. From Eq. (79), a longer route will have a higher 

perception variance as shown by the probability density functions (PDFs) with different 

combinations of ij  and ij  in Fig. 12. A larger ij  and/or ij  will decrease the route 

perception variance. This will lead to a smaller perception variance among travelers and 

more flows loaded on the lower-cost route, especially on the network with a shorter trip 

length. For the extreme cases, when ij    or ; ,ij ij

r ijg r R ij IJ     , the MNW 

model collapses to the deterministic shortest path problem, where only the lowest-cost 

route is selected, i.e., 

 

 
lim 1
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ijij

ij

ij ij
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ij ij
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k R
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
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
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 
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lim 1

ij

ijij ij
r

ij

ij ij

r

g ij ij

k

k R

g

g










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





, 

, ,ij ij

r l ijg g l r R ij IJ     .   

(80) 

Meanwhile, as 0ij  , the MNW model becomes the uniform traffic loading, i.e., 

 

 0

1
lim

ij

ijij

ij

ij ij

r

ij ij
ij

r

k R

g

Rg



















,  ,ijr R ij IJ   . (81) 

where ijR  is the number of routes connecting O-D pair ij. 
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Fig. 12. Perceived travel time distributions for the two-route networks 
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determined by the length of links within a route and the relative lengths of routes that 

share a link, i.e., (Ben-Akiva and Bierlaire, 1999) 

1

r

ij

ij a
r ij ij

a r ak

k R

l

L






 


,  ,ijr R ij IJ   , 
(82) 

where 
al  is the length of link a, ij

rL  is the length of route r connecting O-D pair ij , 
r  is 

the set of all links in route r between O-D pair ij, and ij

ar  is equal to 1 for link a on route 

r between O-D pair ij and 0 otherwise. The lengths in the common part and the route 

ratio (i.e., ij

a rl L ) is a plausible approximation of the route correlation, and 
ij

ij

akk R


  

measures the contribution of link a in the route correlation (Frejinger and Bierlaire, 

2007). Routes with a heavy overlap with other routes will have a smaller value of ij

r . 

The path-size factor can be used to modify the deterministic term of the MNW RUM 

model in Eq. (18) as follows:  

 
ij

ij ij

rij ij

r rij

r

g
U









 ,  ,ijr R ij IJ   , (83) 

which gives the following route choice probability: 

 

 

ij

ij

ij

ij ij ij

r rij

r
ij ij ij

k k

k R

g
P

g





 

 











,  ,ijr R ij IJ   . (84) 

To illustrate how the path-size factors handle the route overlapping problem, we use 

the loop-hole network shown in Fig. 13. In this network, all three routes have equal travel 

cost. The two upper routes overlap by a portion x, while the lower route is distinct from the 

two upper routes. According to the independently distributed assumption, both MNL and 

MNW models give the same route choice probability for all x values as shown in Fig. 13.  
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Fig. 13. Loop-hole network 

In contrast, the PSW model as well as the path-size logit (PSL) model can handle 

the route overlapping problem via the path-size factor. As x increases, the probability of 

choosing the lower route increases. When x=100 (i.e., only two routes with equal trip 

length exist), both upper and lower routes receive the same probability of being selected.  

 

3.3 Equivalent mathematical programming formulations 

This section presents equivalent mathematical programming (MP) formulations for 

the weibit route choice models under congested networks. A multiplicative Beckmann’s 

transformation (MBec) combined with an entropy term are used to develop the MP 

formulation for the weibit SUE models. Specifically, we present the MP formulations 

with some qualitative properties. Before presenting the formulations, we describe the 

necessary assumptions. 

 

3.3.1 Assumptions 

To begin with, a general assumption of link travel cost function is made, i.e.,  

Assumption 3.1. The link travel cost 
a , which could be a function of travel time, is 

a strictly increasing function w.r.t. its own flow. 
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Since ij  cannot easily be decomposed into the link level, we make another assumption:  

Assumption 3.2. ij  is equal to zero.  

This assumption indicates that each route is assumed to have the same coefficient of 

variation. From Eq. (79), the route-specific coefficient of variation can be expressed as 

   

  
2

1 2
1

1 1

ij ij ijij
rij r

r ij ij
ij

r r

g

g g

 




  
  

 

,  ,ijr R ij IJ   . (85) 

With 0ij  , ij

r  of each route is equal. Note that we can adopt the variational inequality 

(VI) formulation (e.g., Zhou et al., 2008) to incorporate ij  in the MNW-SUE model. 

Since the weibit model falls within the category of multiplicative random utility 

maximization model (MRUM), the deterministic part of the disutility function is simply a 

set of multiplicative explanatory variables (e.g., Cooper and Nakanishi, 1988). Then, we 

make an assumption of the route travel cost: 

Assumption 3.3. The route travel cost is a function of multiplicative link travel 

costs, i.e., 

r

ij

r a

a

g 


  ,  ,ijr R ij IJ   . (86) 

This assumption not only maintains the weibit relative cost criterion (Fosgerau and 

Bierlaire, 2009), but it also corresponds to the Markov process in transportation network 

analysis (see Akamatsu, 1996). With a suitable multiplicative link cost function, travelers 

are assumed to make a decision at each node (or state) until they reach the destination (or 

final state) according to the weibit choice probability. In other words, travelers are 

assumed to follow the weibit choice probability in selecting their routes (see Chapter 4 

for details).  
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Following the path-size logit (PSL) SUE formulation provided by Chen et al. 

(2012), the lengths used in the path-size factor for the MP formulation are assumed to be 

flow independent as follows. 

Assumption 3.4. The lengths 
al  and ij

rL  used in ij

r  are flow independent. 

Note that we can also adopt the congestion-based C-logit VI formulation (Zhou et al., 

2012) to incorporate the flow dependent path-size factors. 

 

3.3.2 MNW SUE model 

Consider the following MP formulation: 

   

1 2

0

min

1
ln ln 1

ij ij
a r ar

ij IJ r Rij

ij

v f

ij ij

a r rij
a A ij IJ r R

Z Z Z

d f f



  


 



  

 

 

    
 (87) 

s.t. 

ij

ij

r ij

r R

f q


 ,  ij IJ  , 
(88) 

0ij

rf  ,  ,ijr R ij IJ   , (89) 

where ij

rf  is the flow on route r between O-D pair ij, ijq  is the demand between O-D pair 

ij, and 
av  is the flow on link a. Eq. (88) and Eq. (89) are respectively the flow 

conservation constraint and the non-negativity constraint. The main differences between 

this MNW-SUE model and Fisk’s (1980) MNL-SUE model are the multiplicative 

Beckmann’s transformation (MBec) in Z1 and ij  (the perception variance of O-D pair ij) 

in Z2. The MBec can be converted to an additive form via a log transformation to 

facilitate the direct route cost computations, while the O-D specific dispersion parameters 
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ij  is related to the route-specific perception variance (see Eq. (79)). These two 

differences are the key to the development of the MNW-SUE model. Note that if ij  

approaches infinity for all O-D pair ij, Z2 approaches zero. From Assumption 3.1, the log 

transformation would not alter the results of the MP formulation. Minimizing Z1 would 

result in the deterministic user equilibrium (DUE) model where only the lowest-cost 

routes are used.  

 

Proposition 3.1. The MP formulation given in Eqs. (87) through (89) has the solution of 

the MNW model.  

Proof. Note that the logarithmic term in Eq. (87) implicitly requires 
a  and ij

rf  to be 

positive. By constructing the Lagrangian function of the MNW SUE model and then 

setting its partial derivative to zero, we obtain 

1
ln ln 0ij ij

a ra r ijij
a A

f  


   , (90) 

ij

ij

r ij

r R

f q


 , 
(91) 

where ij  is the dual variable associated with the flow conservation constraint in Eq. (88). 

Eq. (90) can be rearranged as 

ln ln .
r

ij ij ij

a r ij

a

f   


   (92) 

From Assumption 3.3, Eq. (92) can be expressed as 

ln lnij ij ij ij

r r ijg f    , (93) 
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which indicates that the MBec provides the logarithmic route cost in the equivalency 

conditions. With this logarithmic route travel cost structure, we have the route flow as a 

function of  
ij

ij

rg


, i.e.,  

  exp
ij

ij ij ij

r ij rf g


 


 . (94) 

From Eq. (91) and Eq. (94), the O-D demand can be written as 

   exp
ij

ij ij

ij ij ij

ij r ij r

r R r R

q f g


 


 

   . (95) 

Dividing Eq. (94) by Eq. (95) leads to the MNW route probability expressed as the 

proportion of route travel costs: 
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g


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
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
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
, ,ijr R ij IJ   . (96) 

Thus, the MP formulation given in Eqs. (87) through (89) corresponds to the SUE model 

for which the route-flow solution is obtained according to the MNW model. This 

completes the proof.  

 

 
Fig. 14. Relation between MNL-SUE and MNW-SUE models 
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From Proposition 3.1, we can see that the first term (i.e., multiplicative 

Beckmann’s transformation: MBec) in Eq. (87) uses the logarithm to handle the 

relative cost difference in the MNW model. This mechanism can be viewed from the 

relation between the MNW-SUE and MNL-SUE models shown in Fig. 14. The MBec 

is rooted from the relation between the Gumbel and Weibull distributions by applying 

a log transformation to the Beckmann’s transformation (Bec) (Beckmann et al., 1956) 

and incorporating the exponential proportions given by the entropy term in the 

equivalent conditions to obtain the MNW probability. In other words, by applying a 

log transformation to the MNL travel time, we obtain the MNW model (Castillo et 

al., 2008; Fosgerau and Bierlaire, 2009). This is because the Gumbel distribution can 

be considered as the log-Weibull distribution (White, 1969).  

To further illustrate the role of MBec in developing the objective function for 

the MNW-SUE model, we adopt a visual approach used in Bell and Iida (1997) to 

graphically illustrate the relation between the MNL-SUE and MNW-SUE models in 

Fig. 15. The supply curve gives the relationship between route flows of the upper and 

lower routes and their route costs. In the case of monotonically increasing link costs 

from Assumption 3.1, the supply curve is smooth and exhibits a logistic shape. The 

demand curve for this two-route network, in relation to the route cost difference 

between the two routes, is also smooth and logistic, but in opposite direction to the 

supply curve. The logarithmic route cost produced by the MBec and the exponential 

proportions given by the entropy term in the equivalent conditions give the MNW 

solution. With this, the demand curve changes according to the overall trip length. A 

longer trip length has a steeper demand curve, while a shorter trip length has a flatter 
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demand curve. Thus, the probabilities of the upper and lower routes become more 

similar as the overall trip length increases at the equilibrium point where the demand 

curve intersects the supply curve (shown by the dotted red line of the MNW SUE 

model in Fig. 15).  

 

Proposition 3.2. The solution of MNW-SUE model is unique. 

Proof. It is sufficient to prove that the objective function in Eq. (87) is strictly convex 

in the vicinity of route flow and that the feasible region is convex. The convexity of 

the feasible region is assured by the linear equality constraints in Eq. (88). The 

nonnegative constraint in Eq. (89) does not alter this characteristic.  

Hence, the focus is on the properties of the objective function. This is done by 

proving that the Hessian matrix is positive definite. According to Assumption 3.1, the 

Hessian matrix of the multiplicative Beckmann’s transformation 
1Z  is positive semi-

definite w.r.t. the route flow variables. This is similar to the Beckmann’s 

transformation case. The Hessian matrix of 
2Z  can be shown as 

 2

2

1
0 ;

0 ;

ij ij

rij ij

r k

r kZ
f

f f
otherwise




  

 
  



. (97) 

As such, the Hessian matrix of 
2Z  is positive definite. Hence, 

1 2Z Z  is strictly 

convex. The solution of MNW-SUE model is unique w.r.t. route flows. This 

completes the proof.  

 

3.3.3 PSW SUE model 

In this section, we provide an equivalent MP formulation for the PSW-SUE model to 

consider both route overlapping and heterogeneous perception variance under congested 
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Fig. 15. Visual illustration of the MNL-SUE and MNW-SUE models 
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networks. Following the path-size logit (PSL) SUE formulation provided by Chen et al. 

(2012), the PSW-SUE model can be formulated as follows: 

   

1 2 3

0

min

1 1
ln ln 1 ln

ij ij
a r ra

ij IJ r Rij

ij ij

v f
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a r r r rij ij
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  

 

       
 (98) 

subject to the flow conservation and non-negativity constraints in Eq. (88) and Eq. (89). 

The term Z3 is introduced to the MNW-SUE formulation in Eq. (87) to capture the 

length/size of the routes in order to correct the MNW choice probability. Note that when 

there is no route overlap (i.e., 1ij

r  ), the PSW-SUE model collapses to the MNW-SUE 

model.  

 

Proposition 3.3. The MP formulation given in Eqs. (98), (88), and (89) has the solution of 

the PSW model. 

Proof. Following the same principle as Proposition 3.1, we have 

ln ln lnij ij ij ij ij

r r r ijg f      , (99) 

which gives 
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Then, dividing Eq. (100) by Eq. (101) leads to the PSW probability expression 
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Thus, the MP formulation given in Eqs. (98), (88), and (89) corresponds to the SUE model 

for which the route-flow solution is obtained according to the PSW model. This completes 

the proof.  

 

Proposition 3.4. The solution of PSW-SUE model is unique. 

Proof. Following the same principle as Proposition 3.2, the Hessian matrices of 
1Z  and 

2Z  are positive semi-definite and positive definite, respectively. Since ij

r  in 
3Z  is flow 

independent from Assumption 3.4, we have 

 2

3
0

ij ij

r k

Z

f f




 
. (103) 

Thus, 
1 2 3Z Z Z   is strictly convex. The solution of PSW SUE model is unique w.r.t. 

route flows. This completes the proof.  

 

3.4 Solution algorithm 

In this study, a path-based algorithm based on the partial linearization method is 

adopted to solve the PSW-SUE model as shown in Fig. 16. This descent algorithm 

iterates between the search direction and line search until the stopping criterion of a 

convex optimization problem is reached (Patriksson, 1994). In the PSW-SUE 

formulation, the search direction is obtained by solving the first-order approximation of 

the MBec. For the line search, we consider the classical generalized Armijo rule 

(Bertsekas, 1976) to find an approximate stepsize, which has been found to be effective 

in solving the CNL-SUE model (Bekhor et al., 2008). A column generation procedure 

(Dantzig, 1963) is adopted to resolve the route enumeration issue. Alternatively, a pre-

generated working route set based on a behavioral route choice generation method  
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Fig. 16. Partial linearization method for solving the MNW-SUE and PSW-SUE models 

 

(Prashker and Bekhor, 2004; Prato, 2009) could also be used instead of the column 

generation procedure. 
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expij ij

r a ar

a A

g  


 
  

 
 , ,ijr R ij IJ   . (105) 

It should be noted that 
a  could be negative if 

a  is less than one. In such cases, a 

shortest path algorithm that can handle negative cycles is necessary to avoid an infinite 

loop. We consider Pape’s (1974) algorithm, which is a label correcting method that can 

work with negative link costs. When the network contains a negative cost loop, all 

negative 
a  would be set to a very small positive number, and the algorithm is then 

repeated. A more appropriate modification to Pape’s algorithm could be implemented to 

generate the shortest ―simple routes‖ with the presence of negative cycles (e.g., the 

labeling and scanning method described in Tarjan, 1983). The basic idea is to include a 

scan operation to the shortest path algorithm to eliminate negative cost cycles. For more 

information, see Tarjan (1983). 

 

3.5 Numerical results 

In this section, we present three numerical examples. Example 1 uses the two-

route networks in Fig. 11 with flow dependent travel cost. This example is adopted to 

investigate the solution from the MNW-SUE model and compare it with the MNL-

SUE models (with and without scaling technique). Example 2 is the modified loop-

hole network used to consider both route overlapping and route-specific perception 

variance problems simultaneously. Example 3 is the Winnipeg network used as a case 

study to demonstrate its applicability in real networks. Without loss of generality, all 

routes are assumed to have the same coefficient of variation ij

r  of 0.3 (i.e., 3.7ij   

for all O-D pairs, see Eq. (85)) unless specified otherwise. 
al  and ij

rL  used in the path-
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size factor ij

r  are set to the link free-flow travel cost and route free-flow travel cost, 

respectively. The dispersion parameter  of the MNL-SUE model is set to 0.1, and  

of the MNL-SUE model with scaling technique (or MNLs-SUE model) is set 

corresponding to 0.3ij

r   using the uncongested lowest-cost route (Chen et al., 

2012). For the MNP-SUE model, the solution is computed by the Monte Carlo 

stochastic loading technique with 2000 draws to obtain stable results.  

 

3.5.1 Example 1: Two-route network 

The two-route networks in Fig. 11 are modified to incorporate the congestion 

effect as shown in Table 3. The previous route travel cost configuration is used as the 

free-flow travel cost, and 10ij

rf  is introduced to create the flow-dependent travel 

cost. The O-D demand is 100 vehicles per unit time. We first investigate the MNW 

solution from the MNW-SUE MP formulation, followed by the effect of different trip 

lengths. 

 

3.5.1.1 MNW solution 

The MNW-SUE objective value for the short network can be expressed as (see Eq. 

(87)) 

   
0 0

1
min ln 10 ln 5 ln 1 ln 1

10 10 3.7

ijij
u lff

ij ij ij ij

u u l ld d f f f f
 

 
                   

   (106) 

s.t. 

100ij ij

u lf f  . (107) 
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Table 3: Flow-dependent route travel cost for the two-route networks 

Network Upper route Lower route 

Short 10 10ij

uf  5 10ij

lf  

Long 125 10ij

uf  120 10ij

lf  

 

From Eq. (107), derivative of Eq. (106) w.r.t. the flow on the lower route 
lf  gives  

 
100 1

ln 10 ln 5 ln 100 ln 0
10 10 3.7

ij ij
ij ijl l

l l

f f
f f

   
              

   
. (108) 

Rearranging Eq. (108) gives 
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. (109) 

Since  10 100 10ij

lf   and 5 10ij

uf  are respectively the costs of upper and lower 

routes, Eq. (109) gives the MNW choice probability, i.e., 

 

 

 
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 
. (110) 

This result indicates that the multiplicative Beckmann’s transformation preserves the 

relative cost difference criterion of the weibit model. By solving Eq. (109), we obtain the 

route flow solution of the MNW-SUE problem, i.e.,  

35.25; 64.75ij ij

u lf f  . (111) 

 

 

3.5.1.2 Effect of different trip lengths 

Next, we consider the effect of different trip lengths under the SUE framework. 

The results are shown in Table 4. As expected, the MNL-SUE model produces the 

same flow pattern for both short and long networks, regardless of the overall trip 
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length. Meanwhile, the MNLs-SUE and MNW-SUE models assign different flow 

patterns to reflect the overall trip lengths. Specifically, both models assign a smaller 

amount of traffic flows on the lower route as the trip length increases. These 

assignment results are consistent with that there is higher opportunity for ―wrong‖ 

perception (in the sense of choosing a larger-cost route) on the longer overall trip 

length network (Sheffi, 1985). Note that the MNLs-SUE model has a higher amount 

of flows on the lower route than the MNW-SUE model since the MNLs-SUE model 

still retains the identically distributed assumption; each route has the same and fixed 

perception variance from the classical logit assumption, despite different scaling 

factors (i.e., 0.86   for the short network and 0.04   for the long network) are 

used in the two networks. 

The objective values (Z=Z1+Z2) of all three models are presented in Table 5. All 

three models have a higher total objective value (Z) as the overall trip length 

increases. The Bec value (Z1) of the MNL-SUE and MNLs-SUE models are higher 

than the MBec value (Z1) of the MNW-SUE model. This is because the MBec has the 

logarithm transformation. Note that the Z1/Z2 ratio of the MNLs-SUE model is 

different from the Z1/Z2 ratio of the MNW-SUE model. While the Z1/Z2 ratio of the 

MNLs-SUE model is smaller as the overall trip length increases, the Z1/Z2 ratio of the 

MNW-SUE model is larger as the overall trip length increases. These results appear 

to indicate that the MNW-SUE model uses the Z1/Z2 ratio differently to capture the 

effect of different trip lengths compared to that of the MNLs-SUE model. 
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Table 4: Results of the two-route networks 

Model MNL-SUE MNLs-SUE MNW-SUE 

Short network 

Flow on the upper route 41.72 29.96 35.25 

Flow on the lower route 58.28 70.04 64.75 

Long network 

Flow on the upper route 41.72 46.23 46.84 

Flow on the lower route 58.28 53.77 53.16 

 

 

Table 5: Objective values of MNL-SUE, MNLs-SUE and MNW-SUE models  

Network OBJ MNL-SUE MNLs-SUE MNW-SUE 

Short 

Bec or Mbec (Z1) 965.45 939.96 382.27 

Entropy term (Z2) 3925.80 467.19 106.92 

Total OBJ value (Z=Z1+Z2) 4891.25 1407.15 489.20 

Bec or Mbec and Entropy term (Z1/Z2) 0.25 2.01 3.58 

Long 

Bec or Mbec (Z1) 12465.45 12482.55 9813.07 

Entropy term (Z2) 3925.80 10988.69 105.78 

Total OBJ value (Z=Z1+Z2) 16391.25 23471.25 9918.86 

Bec or Mbec and Entropy term (Z1/Z2) 3.18 1.14 92.76 

 

 

 

Fig. 17. Modified loop-hole network 

 

i j DestinationOrigin

[5, 100]

[5, 100]

[y, 100]

[FFTT, Capacity]

[5, 100]
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3.5.2 Example 2: Modified loop-hole network 

In this example, we use the modified loop-hole network given in Fig. 17 to consider 

both route overlapping and route-specific perception variance problems and the effects of 

demand level and coefficient of variation. This network has three routes. The upper two 

routes have a fixed overlapping section by half of the route free-flow travel time (FFTT). The 

lower route is truly independent, and its FFTT can be varied according to  0,10y  . All 

links have the same capacity of 100 vehicle per hour (vph), and the O-D demand is 100 vph. 

The flow dependent link travel time is represented by the standard Bureau of Public 

Road (BPR) function 

4

0 1 0.15 a
a a

a

v
t t

c

  
    
   

, (112) 

where 0

at  is the FFTT of link a, and 
ac  is the capacity (in vph) of link a. Without loss of 

generality, we assume that the link travel cost (or disutility) is an exponential function 

(Hensher and Truong, 1985; Polak, 1987; Mirchandani and Soroush, 1987), i.e., 

0.075 at

a e  ,  a A  . (113) 

 

 

3.5.2.1 Effects of overlapping and heterogeneous perception variance 

We first consider the route overlapping and route-specific perception variance 

problems. The results in Fig. 18 show that all SUE models assign a smaller amount of 

flows on the lower route when y increases. While the MNP-SUE and PSW-SUE models 

seem to give similar traffic flow patterns, the MNW-SUE model assigns a smaller flow 

on the lower route. This is because the MNW-SUE model does not handle the route 

overlapping problem. With the independently distributed assumption, the MNW-SUE 



69 

 

model considers each route as an independent alternative. As such, it assigns more flow 

on the routes with overlapping, hence a smaller amount of flow on the lower route.  

 

3.5.2.2 Effects of demand level and coefficient of variation 

We continue to use the modified loop-hole network with y = 5 to investigate the 

effects of demand level and coefficient of variation. The O-D demand is varied from 25 to 

300 vph, and ij

r  is varied from 0.1 to 1. The root mean square error (RMSE) is used as a 

statistical measure to compare the link-flow difference between the PSW-SUE model 

relative to the user equilibrium (UE) model, i.e.,  

    
2

UE PSW

a a

a A

v v
RMSE

A


  , (114) 

where A  is the number of links in the network (i.e., 4 links). A low value of RMSE 

means that both assignment models perform similarly. 

It can be seen from Fig. 19 that as the demand level increases, the RMSE decreases. 

This means that the PSW-SUE model approaches the UE model when the congestion 

level is increased (i.e., the congestion effect due to high demand levels of 400 to 500 vph 

dominates the solution). Also, the RSME decreases when ij

r  decreases (i.e., ij  

increases or lower perception variance). The PSW-SUE flow patterns also tend to the UE 

flow pattern. This implies the demand is more concentrated on the minimum cost routes 

(i.e., travelers are able to select the lower-cost routes more often since they have better 

knowledge of the network traffic conditions). Otherwise, the two models will produce 

different flow patterns for low demand levels and larger ij

r  values.  
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Fig. 18. Traffic flow patterns of the modified loop-hole network 

 

 
Fig. 19. Effects of demand level and coefficients of variation ij

r
 

 

 

 

Fig. 20. Winnipeg network 
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Fig. 21. Convergence characteristics of the path-based partial linearization algorithm 

 

 

Table 6: Computational efforts of the MNW-SUE and PSW-SUE models 

Model # of iterations CPU time (sec)* CPU time per iteration # of routes 

MNW-SUE 45 10.04 0.22 15,791 

PSW-SUE 51 13.41 0.26 15,442 

* All the algorithms are coded in Compaq Visual FORTRAN 6.6 and run on a personal computer with 3.8 

G Pentium-IV processor and 2G RAM 

 

3.5.3 Example 3: Winnipeg network 

This example adopts the Winnipeg network (shown in Fig. 20) as a case study to 

demonstrate its applicability in a real network. This network consists of 154 zones, 2,535 

links, and 4,345 O-D pairs. The network topology, link characteristics, and O-D demands 

can be found in Emme/2 software (INRO Consultants, 1999). We continue to use the link 

travel cost configuration in Eq. (113) for this real network.  

 

3.5.3.1 Computational results 

For the stopping criterion of the path-based partial linearization algorithm, we adopt 

the residual error defined as follows. 
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  min
ij

ij

ij ij ij

r r r

ij IJ r R

ij ij

r r

ij IJ r R

gc gc f

gc f


 

 





 

 
, (115) 

where ln ln lnij ij ij ij ij

r r r rgc g f    , which should be identical for all routes at 

equilibrium. Without loss of generality,   is set at 810 . The convergence 

characteristics of the path-based partial linearization algorithm are shown in Fig. 21 

and Table 6. From Fig. 21, it appears that the path-based algorithm can solve both 

SUE models (MNW and PSW) in a linear convergence rate, with the PSW-SUE 

model requiring a few more iterations to reach the desired level of accuracy. The 

computational efforts required by each SUE model are provided in Table 6. As 

expected, the PSW-SUE model does require slightly more computational efforts than 

the MNW-SUE model in terms of number of iterations, CPU time, and CPU time per 

iteration. 

 

3.5.3.2 Flow allocation comparison 

At the disaggregate level, we examine the route choice probabilities produced by 

the PSLs-SUE, MNW-SUE and PSW-SUE models. Note that the PSLs-SUE model use 

the same link travel cost configuration as the weibit SUE model in Eq. (113). For 

demonstration purposes, we use O-D pairs (50, 52), (14, 100), and (92, 30) to 

respectively represent a short, medium, and long O-D pair. The route choice probabilities 

shown in Fig. 22 are under the respective equilibrium route flow patterns. Recall that 

each SUE model handles the IID assumption (i.e., route overlapping and non-identical 

perception variance problems) differently as follows: (1) The PSLs-SUE model can 

handle the route overlapping problem, but it cannot capture the heterogeneous perception 
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variance among different routes, (2) the MNW-SUE model can handle the heterogeneous 

perception variance among different routes, but it cannot resolve the route overlapping 

problem, while (3) the PSW-SUE model considers both route overlapping and 

heterogeneous perception variance problems simultaneously. Thus, different route flows 

(or probabilities) can be expected. Even though O-D pair (50, 52) has only three routes 

with a heavy overlap between route 2 and route 3, the three SUE models produce 

significantly different results. The PSLs-SUE model assigns a higher probability to the 

independent route (i.e., route 1); the MNW SUE model, on the other hand, assigns a 

higher probability to the two overlapping routes (i.e., route 2 and route 3) compared to 

the PSL-SUE model; and the PSW-SUE model seems to allocate a flow pattern in 

between these two models by accounting for both overlap and heterogeneous perception 

variance among different routes. For the two longer O-D pairs [(14, 100) and (92, 30)], 

more routes are generated as a result of a longer trip length. When both number of routes 

and trip length are increasing, the differences among the three models also decrease. 

At the aggregate level, we examine the effects of route overlapping and 

heterogeneous perception variance problems on the link flow patterns. The link flow 

pattern difference between the PSLs-SUE and PSW-SUE models can be found mostly in 

the central business district (CBD) area as shown in Fig. 23. The absolute maximum flow 

difference in the CBD area is 482 vph compared to 304 vph in the outer area (or non-

CBD area). This is because there are many short O-D pairs in the CBD area with 

different trip lengths, and the PSLs-SUE model has difficulty in handling the 

heterogeneous perception variance among different routes. When comparing between the 

MNW-SUE and PSW-SUE models, the link flow difference can also be found mostly in 
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the CBD area (see Fig. 24). This is because more than 60% of the routes (or more than 

9,000 routes) pass through the CBD area. As a result, route overlapping is a significant 

problem in the CBD area compared to the outer area. 

 

3.6 Concluding remarks 

In this paper, we presented a path-size weibit (PSW) route choice model with an 

equivalent mathematical programming stochastic user equilibrium (SUE) formulation to 

relax the independently and identically distributed (IID) assumption imposed on the 

MNL-SUE model. The proposed route choice model adopts the Weibull distributed 

random error term to handle the route-specific perception variance as a function of route 

travel cost and a path-size factor to resolve the route overlapping problem by adjusting 

the choice probabilities for routes with strong couplings with other routes. A 

multiplicative Beckmann’s transformation (MBec) was developed to handle the 

multiplicative nature of this new route choice model. Incorporating this MBec with an 

entropy term gives the PSW traffic flow solution under congested conditions. The PSW-

SUE model was tested on three networks to examine its features in comparison with 

some existing SUE models (MNL, PSL, MNW, and MNP) and its applicability on a real 

network. Through the numerical results, we observed the followings: 

 The MNW-SUE model (without the identically distributed assumption) can 

account for the overall trip length by using the relative cost difference to 

determine the flow pattern much better than the MNL-SUE model does. 

 The PSW-SUE model can produce a compatible traffic flow pattern compared to 

the MNP-SUE model in a congested network. 
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Fig. 23. Link flow difference between PSLs-SUE and PSW-SUE models 

 

 

 

  
Fig. 24. Link flow difference between MNW-SUE and PSW-SUE models   
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 The PSW-SUE model can be applied in a real network as shown by the Winnipeg 

network. 

For future research, parameter calibration should be conducted for the PSW-SUE 

model, and more tests should be conducted to validate the usefulness of the PSW-SUE 

model. The PSW-SUE model should be extended to consider non-zero location 

parameter, flow-dependent path-size factors, multiple user classes, and other travel 

choice dimensions (e.g., elastic demand for travel choice, modal split for mode choice, 

and trip distribution for destination choice). Moreover, there are several distributions 

(other than the Weibull distribution) that also give a closed-form probability expression 

(e.g., Li, 2011). A route choice model derived from these distributions would provide 

alternative properties (e.g., route-specific perception variance), and hence different 

choice probabilities.  
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CHAPTER 4 

UNCONSTRAINED WEIBIT STOCHASTIC USER EQUILIBRIUM MODEL WITH 

EXTENSIONS 

 

Abstract 

This study proposes a weibit stochastic user equilibrium (SUE) model to relax the 

identically distributed assumption of the multinomial logit (MNL) SUE model such that 

the heterogeneous perception variances with respect to different trip lengths under 

congested conditions are explicitly considered. Specifically, we derive an analytical 

closed-form expected perceived travel cost (EPC) of the multinomial weibit (MNW) 

model and combine it with the multiplicative Beckmann’s transformation to formulate an 

unconstrained MNW-SUE minimization program. Qualitative properties of the 

unconstrained minimization program are given to establish equivalency and uniqueness 

of the MNW-SUE solution. A link-based algorithm combined with recent advances in 

line search strategies is developed for solving the unconstrained MNW-SUE 

minimization program. Numerical examples are also provided to illustrate the features of 

the MNW-SUE model along with several extensions for future research. 

 

4.1 Introduction 

The multinomial logit (MNL) model (Dial, 1971) has been widely used as a route 

choice model in the transportation literature. Two main advantages are its closed-form 

choice probability solution, and its equivalent mathematical programming (MP) 

formulation under the stochastic use equilibrium (SUE) framework (Fisk, 1980; Daganzo, 

1982; Sheffi and Powell, 1982). However, the MNL model has two major drawbacks: (1) 
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inability to account for overlapping (or correlation) among routes and (2) inability to 

account for perception variance with respect to (w.r.t.) trips of different lengths (Sheffi, 

1985). These two drawbacks stem from the MNL’s underlying assumption that the 

perceived travel costs are independently and identically distributed (IID) Gumbel with 

the same and fixed perception variance. To overcome these drawbacks, the multinomial 

probit (MNP) model (Daganzo and Sheffi, 1977) was adopted. It uses the Normal 

distribution to handle the route overlapping and identical perception variance problems 

between routes by allowing the covariance between random error terms for pairs of 

routes. However, the MNP model does not have a closed-form solution and it is 

computationally burdensome when the choice set contains more than a handful of routes. 

Due to the lack of a closed-form probability expression, solving the MNP model will 

require either Monte Carlo simulation (Sheffi and Powell, 1982), Clark’s approximation 

method (Maher, 1992), or numerical method (Rosa and Maher, 2002). 

To overcome the drawbacks of the MNL model while retaining an analytical 

solution, several closed-form route choice models have been proposed in the 

transportation literature. These route choice models can be classified into two categories: 

extended logit models and weibit
†
 model. The extended logit models with analytical 

closed-form probability solution were mainly developed to handle the route overlapping 

problem, while the weibit model was developed to address the identical perception 

variance problem. The extended logit models modified either the deterministic term or 

the random error term in the additive disutility function of the MNL model while 

retaining the Gumbel distributed random error term assumption. The models modifying 

the deterministic term of the disutility function include the C-logit model (Cascetta et al., 

                                                 
†
 Weibit stands for Weibull probability unit. 
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1996), the implicit availability/perception (IAP) model (Cascetta et al., 2002), and the 

path-size logit (PSL) model (Ben-Akiva and Bierlaire, 1999). All three models add a 

correction term to the deterministic term of the disutility function to adjust the choice 

probability; however, the interpretation of each model is different. The C-logit model 

uses the commonality factor to penalize the coupling routes, while both IAP and PSL 

models use a logarithmic correction term to modify the disutility, hence, the choice 

probability. The models modifying the random error term of the disutility function 

include the cross-nested logit (CNL) model (Bekhor and Prashker, 1999), the paired 

combinatorial logit (PCL) model (Bekhor and Prashker, 1999; Pravinvongvuth and Chen, 

2005), and the generalized nested logit (GNL) model (Bekhor and Prashker, 2001). These 

models are based on the generalized extreme value (GEV) theory (McFadden, 1978) 

using a two-level tree structure to capture the similarity among routes through the random 

error component of the disutility function. This allows a route to belong to more than one 

nest (i.e., a nest is a link in the CNL and GNL models or a route pair in the PCL model). 

The route choice probability is calculated according to the two-level tree structure using 

the marginal and conditional probabilities. Bekhor and Prashker (1999, 2001), Zhou et al. 

(2012), and Chen et al. (2012) provided equivalent MP formulations for these extended 

logit models, while Chen et al. (2003), Bekhor et al. (2008a,b), Xu et al. (2012), and 

Zhou et al. (2012) developed path-based algorithms for solving these MP formulations. 

For a more comprehensive review of the extended logit models used in the SUE problem, 

readers are directed to the reviews given by Prashker and Bekhor (2004) and Chen et al. 

(2012). 
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As mentioned above, the closed-form extended logit models were developed mainly 

to address the independence assumption (i.e., route overlapping problem) of the MNL 

model. The identically distributed assumption is still inherited in the route choice 

problem, where all routes between all origin-destination (O-D) pairs still have the same 

and fixed perception variance. In view of network equilibrium assignment, the identically 

distributed assumption seems unrealistic since it does not distinguish trip lengths of 

different O-D pairs. Therefore, Chen et al. (2012) suggested a practical approach by 

scaling the perception variance of each individual O-D pair in the network. The 

individual O-D specific scaling dispersion parameter allows the perception variance to 

increase or decrease according to the travel distance of each O-D pair. Nevertheless, it 

should be noted that it is not possible to scale individual routes of the same O-D pair 

since it would violate the logit model’s assumption of an identical variance across the 

routes within the same O-D pair (i.e., homogeneous perception variance) to maintain an 

analytical closed-form solution.  

Castillo et al. (2008), on the other hand, provided a multinomial weibit (MNW) 

model to relax the identically distributed assumption of the MNL model. This route 

choice model adopts the Weibull distribution, instead of the conventional Gumbel 

distribution, to handle the heterogeneous perception variance at the route level. Under the 

independently distributed assumption, the MNW model has an analytical closed-form 

probability expression with route-specific perception variance as a function of the route 

travel cost. Recently, we provided an equivalent MP formulation as a constrained (or 

entropy-type) optimization problem and a path-based partial linearization algorithm for 

solving the MNW-SUE model (see Chapter 3). 
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The aim of this study is to provide an unconstrained minimization program as an 

alternative MP formulation for the MNW-SUE model. Specifically, we derive an 

analytical closed-form expected perceived travel cost (EPC) of the MNW model and 

combine it with the multiplicative Beckmann’s transformation to formulate an 

unconstrained MNW-SUE minimization program that explicitly considers the route-

specific (or heterogeneous) perception variances w.r.t. different trip lengths under 

congested networks. Some quantitative properties of the proposed unconstrained 

minimization program are provided to establish equivalency and uniqueness of the 

MNW-SUE solution. In addition, a link-based algorithm combined with recent advances 

in line search strategies is developed for solving the unconstrained MNW-SUE 

minimization program. Numerical examples using a toy network and a real network are 

also provided to illustrate the features of the unconstrained MNW-SUE model along with 

three extensions to consider both route overlapping and route-specific perception 

variance problems, demand elasticity, and multiple user classes. 

The remainder of this paper is organized as follows. Section 2 provides some 

background of the MNW model and presents the MNW EPC. In section 3, an equivalent 

unconstrained MP formulation is provided for the MNW-SUE problem. Section 4 

provides numerical results to illustrate the features of the proposed unconstrained MNW-

SUE problem. Concluding remarks and several extensions are addressed in Section 5.  

 

4.2 Multinomial weibit model 

In this section, we review the multinomial weibit (MNW) model developed by 

Castillo et al. (2008). Specifically, we present a closed-form expected perceived travel 

cost (EPC) of the MNW model. The section begins with the Weibull distribution, 
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followed by the MNW closed-form probability expression, the stability property w.r.t. the 

minimum operation, its choice probability, and finally the closed-form MNW EPC. 

 

4.2.1 Weibull distribution 

Let ij

rG  denote travelers’ perceived travel cost on route ijr R  between O-D pair 

ij IJ . The MNW model assumes that ij

rG  follows the 3-parameter Weibull distribution 

with the mean equals to ij

rg  the travel cost on route r between O-D pair ij. Similar to the 

Gumbel distribution, this extreme value distribution has a closed-form cumulative 

distribution function (CDF): 

 
 

1 exp

ij
r

ij
r

ij

r

ijG
r

t
F t




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,  ,ijr R ij IJ   , (116) 

where t is the random perceived travel cost, 0ij

r   is the scale parameter, 0ij

r   is the 

shape parameter, and 0 ij

r t   is the location parameter. ij

rg  can be expressed as    

1
1ij ij ij

r r r ij
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g  


 
    

 
,  ,ijr R ij IJ   , (117) 

where    is the Gamma function. Unlike the Gumbel distribution, the variance of the 

Weibull distribution is a function of ij

rg , i.e.,  

     
2 2 22

1ij ij ij ij

r r r rij
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g  
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,  ,ijr R ij IJ   . (118) 

This feature plays an important role in handling the perception variance w.r.t. different 

trip lengths (to be shown in subsequent sections). For a comparison between the Gumbel 

and Weibull distributions, see Appendix A. 
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4.2.2 Closed-form probability expression 

The MNW choice probability can be derived as follows. According to Ben-Akiva 

and Lerman (1985) and Castillo et al. (2008), the route choice probability can be 

determined by 

 .., ,.. , ,ij ij ij ij

r r r r ijP H t dt r R ij IJ





     , (119) 

where ij

rH  is the partial derivative of the joint survival distribution H  w.r.t. ij

rt . Under 

the independently distributed assumption, we have the joint Weibull survival function: 
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Partial derivative of H  w.r.t. ij

rt  gives 
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From Eq. (119) and Eq. (121), we have 
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To obtain a closed-form expression, both ij

r  and ij

r  are fixed for all routes connecting 

O-D pair ij, i.e.,    

   
1

exp .

ij ij

ij
ij

ij ij ij ijij
r rij ij

r rij ij ij
k Rr r k

t t
P dt

 



 

  






      
     
        

  (123) 



88 

 

By integrating the above equation, we have the MNW probability as a function of the 

scale and shape parameters: 

 

 
, ,

ij

ij

ij

ij

rij

r ij
ij

k

k R

P r R ij IJ















   


. 

(124) 

From Eq. (117), ij

r  is related to ij

rg  as follows: 
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Substituting Eq. (125) into Eq. (124) gives the MNW model: 
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(126) 

Note that since ij  is the lower bound of the travel cost (Castillo et al., 2008), it naturally 

implies that ij ij

rg  , ,ijr R ij IJ   .  

 

4.2.3 Stability property w.r.t. the minimum operation 

Stability is an important property of the extreme value distributions. It states that 

the joint survival function at the minimum is the same function as the marginal survival 

function. Castillo et al. (2008) showed that the joint Weibull distribution with fixed ij  

and ij  satisfies the stability property w.r.t. the minimum operation as follows: 
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where 
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With this property, travelers’ choice decision is assumed to be based on their perceived 

minimum travel cost of each route, and the probabilistic route choice patterns can be 

determined by the multivariate extreme value distribution (e.g., Kotz and Nadarajah, 

2000) with the Weibull marginal. In other words, the joint distribution can be written as 

(see Li, 2011) 

   1 1H t F t


     , (129) 

where  H t  is the joint distribution, and  F t  is the marginal distribution. The Weibull 

distribution with fixed ij  and ij  satisfies this condition, i.e.,  
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where  F t  is the Weibull distribution, i.e., 

    1 exp
ij

ijF t t
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Thus, we can use the Weibull variance to represent the route perception variance for the 

MNW model. From Eq. (118) and Eq. (125), the perception variance of each route for the 

MNW model can be expressed as 
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Note that this MNW perception variance is route-specific. The perception variance of 

each route can vary according to the travel cost ij

rg  with fixed ij  and ij  of O-D pair ij. 

Unlike the MNL model, all routes between all O-D pairs are fixed with identical 
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perception variance in the Gumbel distribution (or a fixed dispersion parameter θ in the 

MNL-SUE problem). Although it can be partially relaxed by scaling the perception 

variance (or dispersion parameter) of each O-D pair as demonstrated by Chen et al. 

(2012) in the context of traffic assignment, each route within the same O-D pair still 

requires to have identical perception variance. 

 

4.2.4 Route choice probability 

We use the two-route networks in Fig. 25 to compare the choice probability 

produced by the MNL and MNW models. The upper route cost is larger than the lower 

route cost by 5 units for both networks. In the short network, the upper route cost is twice 

larger than the lower route cost, while it is only less than 5% larger in the long network. 

We assume that the MNL dispersion parameter  is equal to 0.1, and the MNW 

parameters ij  and ij
 
are equal to 2.1 and 0, respectively.  

As expected, the MNL model gives the same results for both short and long 

networks. The MNL choice probability is determined solely based on the absolute route 

cost difference, while the MNW model uses the relative route cost difference to handle 

different trip lengths. When considering the perception variance, the MNW model has the 

route-specific perception variance from Eq. (132). Unlike the same and fixed perception 

variance of 2 26   in the MNL model, the MNW model has a lower perception variance 

for the shorter route as shown in Fig. 12. As the overall trip length increases, the 

perception variance of the upper and lower routes becomes more similar; and therefore, 

the probability of choosing each route is increasingly similar. 
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a)  Short network b)  Long network 

Fig. 25.  Probability of choosing the lower route for the two-route networks 

 

  

Fig. 26. Perceived travel cost distributions for the two-route networks 

 

We further generalize the two-route networks to consider the probabilistic curve for 

different combinations of cost difference between the two routes and the effect of ij  

and ij  in Fig. 27. The MNW model produces a series of flatter probabilistic curves for 
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the long network compared to the series of sharper probability curves for the short 

network, while the MNL model just gives one probabilistic curve for both short and long 

networks. As ij  and/or ij  increases, the probabilistic curve is getting steeper. This is 

due to the decrease in perception variance, which increases the chance of selecting the 

shorter route. Between the two networks, the impact of ij  and ij  is more pronounced 

on the short network due to its shorter trip length. 

 

4.2.5 Expected Perceived Travel Cost  

According to the stability property, we can determine the MNW EPC by 

substituting the Weibull scale parameter in Eq. (128) into Eq. (117) as follows: 

   
1/

1
1

ij

ij

ij

ij ij

ij k ij
k R

E t




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   
           

 , (133) 

where E[ ] is the expected value operator. From Eq. (125), the MNW EPC (up to a 

constant) can be restated as  
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1
ij

ij

ij

ij ij
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
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 , ij IJ  . (134) 

Note that we can alternatively derive this MNW EPC from  

   
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 (135) 

which would give the same result as in Eq. (133). However, the partial derivative of this 

MNW EPC w.r.t. the route travel cost does not give back the MNW choice probability 
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(Fosgerau and Bierlaire, 2009). Therefore, it could not be used directly to develop the 

unconstrained MP formulation for the MNW-SUE model. 

To overcome this drawback, we consider the logarithmic MNW EPC, i.e., 

 ln ijE t  
 

. From the joint Weibull survival function in Eq. (127), the logarithmic 

MNW EPC can be determined by 

 
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(136) 
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Fig. 27. Effect of ij  and ij  on the probability of choosing the lower route 
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Let x denote    ,0
ij ij

ij ijt
 

  . Eq. (136) can be restated as   
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ij x d x 
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  . (137) 

Since  
0

ln yy e dy




  is a constant (see Abramowitz and Stegun, 1972), we have the 

logarithmic MNW EPC up to a constant:  
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From Eq. (125) and Eq. (128), the logarithmic MNW EPC can be restated as 
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Since the constant has no impact on the solution, we do not consider it in the formulation 

development of the unconstrained minimization program. 

Three important properties of this logarithmic MNW EPC are as follows. First, the 

partial derivative of this logarithmic MNW EPC w.r.t. the logarithmic route travel cost 

gives back the MNW choice probability, i.e.,  
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Second, it is monotonic decreasing w.r.t. the number of routes; and third, it is concave 

w.r.t.  ln ij ij

rg  . Details of the second and third properties are provided in Appendix B.   

 

4.3 Unconstrained minimization program 

In this section, we adopt the logarithmic MNW EPC to develop an unconstrained 

MP formulation for the MNW-SUE model. This section begins with some necessary 

assumptions, followed by the unconstrained MP formulation, and comparison between 

the proposed unconstrained MNW-SUE model and the constrained entropy-type MNW-

SUE model. 

 

4.3.1 Assumptions 

Before formulating the unconstrained MNW-SUE model, some necessary 

assumptions are made. To begin with, a general assumption of link travel cost function is 

made, i.e.,  

Assumption 4.1. The travel cost on link a A  ( a ), which could be a function of 

travel time, is a strictly increasing function w.r.t. its own flow. 

Since ij  cannot be easily decomposed into the link level, we make another assumption: 

Assumption 4.2. ij  is equal to zero.  

Hence, each route is assumed to have the same coefficient of variation (CoV). According 

to Eq. (132), the CoV can be expressed as 

   
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1 2
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,  ,ijr R ij IJ   . (141) 
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With 0ij  , all routes have the same ij

r . The higher ij , the smaller ij

r . Note that we 

can incorporate ij  into the MNW-SUE model by adopting the variational inequality 

formulation of the congestion-based C-logit SUE model (Zhou et al., 2012).  

To handle the logarithmic MNW EPC, we make another assumption on the route 

travel cost:  

Assumption 4.3. The route travel cost is a function of multiplicative link travel 

costs a , i.e., 

r

ij

r a

a

g 


  , ,ijr R ij IJ   , (142) 

where r  is the set of links in route r between O-D pair ij.  

This assumption corresponds to the Markov process in transportation network analysis 

(see Akamatsu, 1996). Under a suitable link travel cost function, travelers are assumed to 

make a decision at each node (or state) until they reach the destination (or final state) 

according to the weibit choice probability using the MNW EPC (see Appendix C for 

more details).  

 

4.3.2 Formulation 

Consider the following unconstrained MP formulation: 

   

1 2 3

0

min

ln ln ,
av

a ij ij a a a

a A ij IJ a A

Z Z Z Z

d q v v    
  

  

     
 (143) 

where av  is the flow on link a. In this MNW-SUE problem, all Z1, Z2, and Z3 differ from 

the ordinary unconstrained SUE formulation (Sheffi and Powell, 1982; Daganzo, 1982). 

Instead of the Beckmann’s transformation, Z1 is the multiplicative Beckmann’s 
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transformation (MBec) used to handle the multiplicative link travel cost in Assumption 4.3. 

Z2 includes the logarithmic EPC derived in section 2.5. Z3 can be considered as a system 

performance; however, it is a summation of the product of link flow and logarithmic link 

cost. Combining the MBec and Z3, the link flow solution according to the weibit choice 

probability can be obtained from logarithmic weibit EPC (see Proposition 4.1). 

 

Proposition 4.1. The unconstrained SUE problem in Eq. (61) is equivalent to the MNW 

model. 

Proof. See Appendix D.  

 

Proposition 4.2. The unconstrained MNW SUE problem in Eq. (61) has the unique link 

flow solution. 

Proof. See Appendix E.  

 

4.3.3 Unconstrained and constrained MP formulations comparison 

In this section, we compare the proposed unconstrained MNW-SUE formulation 

with the constrained entropy-type MNW-SUE model in Chapter 3 as shown in Table 7. 

The main differences between these two formulations are the decision variables. The 

constrained entropy-type formulation adopts the route flows as the decision variables. 

Hence, it has to be solved using a path-based algorithm (e.g., Chen et al., 2002). On the 

other hand, the unconstrained formulation uses the link flows as the decision variables. It 

obviates the route storage in the entropy-type formulation by implementing a link-based 

loading technique (e.g., Dial, 1971; Sheffi, 1985; Bell, 1995; Akamatsu, 1996). 

Therefore, a link-based algorithm can be applied to solve the unconstrained SUE 

problem (e.g., Sheffi, 1985; Maher, 1998). 
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Table 7: Constrained entropy-type and unconstrained MNW-SUE formulations 

Model Entropy-type Unconstrained 

Formulation 
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Decision 

variable 
Route flows Link flows 

Unique solution Route flows and link flows 

Link flows 

(at the vicinity of the minimum) 

 

 

4.4 Solution algorithm 

In this section, we provide a link-based solution algorithm for solving the 

unconstrained MNW-SUE model. Generally, this algorithm has two main steps: search 

direction and line search. A search direction is obtained by solving a convex auxiliary 

problem through the equivalency conditions (i.e., the first-order approximation of the 

objective function). This can be done by performing a stochastic loading scheme that 

produces the MNW link-flow pattern. A line search is computed in the search direction 

w.r.t. the original objective function, and then the resulting stepsize defines a new 
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solution with a reduced objective value. The major steps of the link-based solution 

algorithm are as follows. 

Step 0: Initialization. 

 Set iteration counter n=0; update link travel costs; and perform the MNW loading 

to obtain initial link flows:

 

   0 0
;

ij

ij ij

a ij r ra

ij IJ r R

v q P 
 

    

Step 1: Direction finding 

 Increment iteration counter n=n+1; update link travel costs; perform the MNW 

loading to obtain auxiliary link flows:

 

   
;

ij

n ij n ij

a ij r ra

ij IJ r R

v q P 
 

  
 

and determine the 

search direction 
    1n n

v v ; (See Section 4.1 for details) 

Step 2: Line search 

 Determine the stepsize 
 n

  via some line search schemes (See Section 4.2 for 

details) 

Step 3: Move 

           1 1n n n n n


 
  v v v v ; 

Step 4: Convergence test 

 If 
   1

2

n n
RMSE A 


  v v  holds, terminate; otherwise, go to Step 1.  

 

 

4.4.1 Link-based stochastic loading mechanism  

According to Assumption 4.3, the MNW model flows the Markov process (see 

Appendix C), a link-based stochastic loading can be adopted to determine the auxiliary 
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link flows. Without loss of generality, we consider the STOCH algorithm (Dial, 1971) to 

perform the MNW stochastic loading. 

Let i be origin, j be destination, h(a) be the head node of link a, t(a) be the tail node 

of link a, r(n) be the lowest travel cost from origin i to node n, and s(n) be the lowest 

travel cost from destination j to node n. Unlike the MNL model whose choice probability 

incorporates the exponential transformation, the MNW model makes direct use of the 

route costs to compute the choice probabilities. Therefore, the link likelihood for the 

MNW model does not need the exponential transformation, i.e., 

  
  
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. (144) 

The link weight can be written as 
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and the link flow can be determined by 
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. (146) 

Assuming that the link travel cost is an exponential function, 1ijq   and 1ij  . 

Using the Braess network, we illustrate how to implement the STOCH loading scheme 

for the MNW model in Fig. 28. Fig. 28a presents the results of r(n) and s(n). Note that 

r(n) (s(n)) is not equal to zero for the origin (destination) node due to the exponential 
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travel cost function. Fig. 28b presents the link likelihood results, and Fig. 28c shows the 

link flow pattern. To verify the link flow pattern obtained from the STOCH loading 

scheme indeed satisfies the MNW model, we compute the route flows directly based on 

the MNW probability expressions in Eq. (11) and compare the results in Table 8. The 

results are the same, and this verifies the validity of the MNW link-based solution 

obtained from the STOCH loading scheme. 

 

 
a) r(n) and s(n) 

 
b) Link likelihood 

 
c) Link flow 

Fig. 28. STOCH stochastic loading mechanism for the MNW model 
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Table 8: MNW route and link flow solutions  

Route Links Flow  Link Flow 

1 1 – 4 0.41  1 0.75 

2 2 – 5 0.25  2 0.25 

3 1 – 3 – 5 0.34  3 0.34 

    4 0.41 

    5 0.59 

 

 

4.4.2 Line search schemes 

In this section, we consider three stepsize schemes: method of successive averages 

(MSA) (Sheffi, 1985), self-regulated averaging (SRA) scheme (Liu et al., 2009), and 

quadratic interpolation (Quad) (Maher, 1998). A brief description of each line search 

scheme is provided as follows. 

 

4.4.2.1 MSA scheme 

The MSA scheme is perhaps the most widely used line search method to determine 

the stepsize for complex objective functions including those that cannot be evaluated 

analytically (e.g., the probit-based satisfaction function). It uses a predetermined 

diminishing stepsize sequence, such as  
1

n
n  , that satisfies   0n 

 
and 

 
0n

n




   to guarantee convergence.  This scheme is easy to implement since it does 

not need to evaluate the complex objective function and/or its derivatives. However, it 

suffers from a sublinear convergence rate (Sheffi, 1985). 
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4.4.2.2 SRA scheme 

To overcome some drawbacks of the MSA scheme, Liu et al. (2009) developed the 

SRA scheme to relax the predetermined stepsize sequence. This SRA scheme determines 

a suitable stepsize as follows: 

 
 

1n

n
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 , (147) 
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where λ1>1 and 0<λ2<1. With this scheme, 
 n

  is adjusted according to the residual error 

(i.e., the deviation between the current solution and its auxiliary solution) relationship of 

two consecutive iterations. When the current residual error is larger than the previous 

iteration, λ1>1 makes a more aggressive reduction in the stepsize. On the other hand, 

when the residual error is smaller than the previous iteration, 0<λ2<1 makes the stepsize 

reduction more conservative. Note that the stepsize sequences from the SRA scheme still 

satisfy the diminishing stepsize sequence conditions required to guarantee convergence. 

 

4.4.2.3 Quadratic interpolation (Quad) scheme 

The Quad scheme was first suggested by Maher (1998) for solving the MNL SUE 

problem in the link domain. This Quad scheme determines the stepsize using the 

objective function, unlike the MSA and SRA schemes, whose stepsizes are respectively 

predetermined and dependent on the residual error. The stepsize for the Quad scheme can 

be expressed as 
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Z Z
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, (149) 
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where  Z   is the derivative of objective function w.r.t. the stepsize. In this scheme, 

 Z   are evaluated twice per iteration, one at α = 0 and another at α = 1, to determine 

an approximate stepsize. For the unconstrained MNN-SUE model,  Z   can be 

determined from the first derivative of the objective function (see Appendix D), which 

gives 

    
2 lnn a

a

a A a

ddZ
Z v

d dx





 

    . (150) 

 

 

4.5 Numerical results 

To demonstrate the features of the unconstrained MNW-SUE model, two numerical 

examples are conducted in this section. Example 1 uses the two-route networks to investigate 

the effect of different trip lengths under congestion. Example 2 adopts the Winnipeg network 

as a real-case study to examine the efficiency of the link-based algorithm combined with 

recent advances in line search strategies and the flow allocation comparison between the 

MNL-SUE and MNW-SUE models in a real-size network. The coefficient of variation ij

r  is 

assumed to be 0.3, which corresponds to 3.7ij   unless specified otherwise.  

 

Table 9: Flow-dependent route travel cost for the two-route networks 

Network Upper route Lower route 

Short 10 10uv  5 10lv  

Long 125 10uv  120 10lv  
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4.5.1 Two-route Networks 

The two-route networks in Fig. 25 are modified to incorporate congestion. Each 

route/link incorporates a flow-dependent cost component of 10av  as shown in Table 9. 

The O-D demand is assumed to be 100 vehicles per unit of time. 

 

4.5.1.1 MNW-SUE solution 

We first investigate the MNW-SUE solution of the short network from its MP 

formulation in Eq. (61), which can be expressed as 

3.7

0 0

1
min ln 10 ln 5 100 ln 10 5

10 10 3.7 10 10

ln 10 ln 5 .
10 10

u lv v

u l

u l
u l

v v
Z d d

v v
v v

 
 
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                      

   
      

   

 
 (151) 

Taking the derivative of Eq. (151) w.r.t. the upper link flow gives 
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(152) 

Rearranging Eq. (152) gives 

 

   

3.7 1
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u uijij ij
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    


. (153) 

The partial derivative of the multiplicative Beckmann’s transformation Z1 (i.e., ln ij

ug ) 

cancels out a part of the partial derivative of the total multiplicative travel cost Z3 (i.e., 

ln ij

ug ), which gives the MNW solution, i.e., 

 

   

3.7

3.7 3.7
100

ij
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u
ij ij
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g
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g g
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
. (154) 
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Similarly, the lower link flow can be determined as follows: 

 

   

3.7

3.7 3.7
100

ij

l

l
ij ij

u l

g
v

g g



 



. (155) 

By simultaneously solving Eq. (154) and Eq. (155), we have the amount of flows 

assigned on each link, i.e.,  

35.25, 64.25u lv v  . (156) 

 

 

4.5.1.2 Flow allocation comparison 

This section compares the results produced by the MNW-SUE model with those of 

two MNL-SUE models (without and with scaling). For the MNL-SUE model without 

scaling, the logit dispersion parameter  is set equal to 0.1. For the MNL-SUE with 

scaling (or MNLs-SUE) model,  is set to correspond with 0.3ij

r   for the lowest 

uncongested route travel cost (Chen et al., 2012). As expected in Table 10, the MNL-

SUE model gives the same flow pattern for both short and long networks according to the 

identically distributed assumption. Meanwhile, the MNLs-SUE and MNW-SUE models 

produce different results for each network. Both models assign a smaller amount of 

traffic flows on the long network. Note that the MNLs-SUE model uses the scaled 

dispersion parameter to handle the overall trip length (i.e., 0.86   for the short network, 

and 0.04   for the long network), while the MNW-SUE model uses the same 3.7ij   

for both networks.  

Note further that the MNLs-SUE model gives a slightly higher amount of flows on 

the lower route even though it has a larger cost than that of the MNW-SUE model. This is 

because the MNLs-SUE model still assumes the same and fixed perception variance of  
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Table 10: Flow allocation 

                     SUE Model 

    Network 

MNL MNLs MNW 

Cost Flow Cost Flow Cost Flow 

Short Upper route 14.17 41.72 12.99 29.96 13.53 35.25 

Lower route 10.83 58.28 12.00 70.04 11.48 64.75 

Long Upper route 129.17 41.72 129.62 46.23 129.68 46.84 

Lower route 125.83 58.28 125.38 53.77 125.32 53.16 

 

 

Table 11: Perception variance and coefficient of variation  

Network 
 

2
ij

r  
ij

r  

MNL MNLs MNW MNL MNLs MNW 

Short network Upper route 164.49 2.22 16.46 0.91 0.11 0.30 

Lower route 164.49 2.22 11.85 1.18 0.12 0.30 

Long network Upper route 164.49 1028.08 1513.60 0.10 0.25 0.30 

Lower route 164.49 1028.08 1413.38 0.10 0.26 0.30 

 

 

 
2

2 26ij

r    for each route connecting the O-D pair. As such, the MNLs-SUE model 

underestimates the perception variance and coefficient of variation in the congested 

condition as presented in Table 11. As a result, the flow allocation on the larger-cost 

route is underestimated, especially in the short network. 
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4.5.1.3 Effect of demand levels 

We continue to use the short network to investigate the effect of demand levels. The 

O-D demand is varied from 50 to 300 vehicles per unit of time, and ij

r  is varied from 0.1 

to 0.5. The root mean square error (RMSE) is used as a statistical measure to compare the 

difference between the MNW-SUE model relative to the user equilibrium (UE) model, i.e.,  

    
2

MNW SUE UE

a a

a A

v v
RMSE

A






  , (157) 

where A  is the number of links in the network. A low value of RMSE means that the 

assignment model performs similarly to the UE model.   

It can be seen from Fig. 29 that as the demand level increases, the RMSE decreases. 

This result means that the MNW-SUE model approaches the UE model when the 

congestion level is increased (i.e., congestion effect due to high demand levels of 200 to 

300 vehicles per unit of time dominates the solution). Also, the RSME decreases when 

ij

r  decreases (or 
ij  increases with a lower perception variance). The MNW-SUE flow 

patterns also tend to the UE flow pattern. This result implies that the flow allocation is 

more concentrated on the minimum cost routes (i.e., travelers are able to select the lower-

cost routes more often since they have better knowledge of the network traffic 

conditions). Otherwise, the two models will produce different flow patterns for low 

demand levels and larger ij

r  values.  

 

4.5.2 Winnipeg Network 

Example 2 adopts the Winnipeg network (shown in Fig. 30) as a real-case study to 

examine the efficiency of the link-based solution algorithm with recent advances in line 



109 

 

search strategies, and the flow allocation comparison between the MNL-SUE and MNW-

SUE models in a real-size network. This network consists of 154 zones, 1,067 nodes, 

2,535 links, and 4,345 O-D pairs. The network topology, link characteristics, and O-D 

demands can be found in Emme/2 software (INRO Consultants, 1999). Without loss of 

generality, we assume that the link travel cost is an exponential function (Hensher and 

Truong, 1985; Polak, 1987; Mirchandani and Soroush, 1987), i.e., 

0.075 at

a e  ,  a A  , (158) 

where at  is the travel time on link a. 

 

 

Fig. 29:  Effect of demand levels 

 

 
Fig. 30.  Winnipeg network 
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4.5.2.1 Computational results 

The STOCH algorithm (Dial, 1971) is used to perform the link-based MNW 

stochastic loading in the search direction step. Three line search schemes are considered: 

MSA, SRA, and Quad. The MSA scheme uses a predetermined stepsize of 1/n. The SRA 

parameters are assumed to be 1 1.5   and 2 0.1  . The stopping threshold  is set at 

810 . The convergence characteristics of the link-based solution algorithm are shown in 

Fig. 31. We can see that both the SRA and Quad schemes converge linearly, while the 

MSA scheme cannot converge to the desired accuracy level within the maximum number 

of iterations (500) allowed. Between SRA and Quad schemes, the Quad scheme is faster 

than the SRA scheme even though the Quad scheme needs about two times longer 

computational cost for each iteration as presented in Table 12. Note that the Quad scheme 

requires more computational time per iteration than the SRA scheme since it needs to 

perform the link-based MNW stochastic loading twice per iteration. The first stochastic 

loading is to evaluate  Z   at 0  , and the second stochastic loading is to evaluate 

 Z   at 1   (see Maher, 1998).    

 

 

Fig. 31. Convergence characteristics of three line search schemes 
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Table 12: Computational efforts for solving the MNW-SUE model 

Algorithm # of iterations CPU time (sec) CPU time/Iteration 

(sec) 

MSA 500 

(still not converge) 

5505 11.01 

SRA 49 540 11.04 

Quad 23 482 20.92 

*All algorithms are coded in Compaq Visual Fortran 6.6 and run on a personal computer with 3.8 G 

Pentium-IV processor 

 

 

Fig. 32.  Comparison of link choice probabilities of two O-D pairs 
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MNLs-SUE and MNW-SUE models under the same cost configuration in Eq. (158). For 
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short and long O-D pair. The link choice probabilities shown in Fig. 32 are under the 
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O-D-specific perception variance (i.e., each route connecting an O-D pair has the same 

and fixed perception variance) while the MNW-SUE model uses the route-specific 

perception variance (i.e., each route has its own perception variance as a function of route 

travel cost). Thus, different link choice probabilities (hence link flows) can be expected. 

Even though O-D pair (3,147) includes only 9 links, the two SUE models produce 

significantly different results. The MNLs-SUE model assigns a higher probability to link 

8; the MNW-SUE model, on the other hand, assigns a higher probability to link 9. With 

the differences in these two beginning links, the subsequent link choice probabilities 

produced by each SUE model are also different. For the long O-D pair (60,74), more 

links are involved as a result of a longer trip length. When both number of links and trip 

length are increasing, the differences in the link choice probabilities between the two 

models also decrease. 

At the aggregate level, we examine the effect of heterogeneous perception variance 

problem on the link flow patterns. The link flow difference between the MNLs-SUE and 

MNW-SUE models can be found mostly in the central business district (CBD) area as 

shown in Fig. 33. The complete link flow difference distributions for both CBD and non-

CBD (or outer) areas are also shown in Fig. 33. The absolute maximum flow difference 

in the CBD are is 374 vehicle per hour (vph) compared to 268 vph in the outer area. This 

is because there are many short O-D pairs in the CBD area with different trip lengths, 

which make it difficult for the MNLs-SUE model to handle the heterogeneous perception 

variance among different routes. Nevertheless, these results demonstrate that the 

proposed unconstrained MNW-SUE formulation can handle the route-specific perception 

variance under congested conditions and can be implemented in a real-size network.  
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Fig. 33.  Link flow comparison between the MNLs-SUE and MNW-SUE models 
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(Castillo et al., 2008) was derived and combined with the multiplicative Beckmann’s 

transformation to develop an unconstrained minimization program for the MNW-SUE 

problem. Numerical examples revealed that  

 the proposed MNW-SUE model can capture the route-specific perception 

variance as a function of route travel cost under congested conditions, 

 it can handle the route-specific perception variance better than the MNL-SUE 

with scaling technique (Chen et al., 2012), which still assumes the same and 

fixed perception variance for all routes connecting an O-D pair, and 

 it can be implemented in a real-size network as shown by the Winnipeg 

network.  

 

4.6.2 Extensions 

Even though the MNW model can successfully relax the identically distributed 

assumption of the MNL model, it still inherits some limitations. Three extensions are 

suggested for further study: (1) route overlapping problem, (2) demand elasticity, and (3) 

multiple user classes. 

 

4.6.2.1 Handling route overlapping 

The first extension relaxes the independently distributed assumption of the Weibull 

distribution by considering a correction factor to handle the route overlapping problem. 

According to Fosgerau and Bierlaire (2009), the MNW model can be posed as a random 

utility model with multiplicative error terms:  

 
ij

ij ij ij ij

r r rU g


   ,  ,ijr R ij IJ   , (159) 
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where ij

r  is the weibull distributed random error term. A correction factor ij

r
 
could be 

adopted to adjust the probability of routes coupling with other routes through the route 

travel cost (or the deterministic term), i.e., 

 
ij

ij ij

rij ij

r rij

r

g
U









 ,  ,ijr R ij IJ   , (160) 

which gives the choice probability expression as 
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,  ,ijr R ij IJ   . 

(161) 

Therefore, the route overlapping is captured through the correction factor, and the route-

specific perception variance is handled through the Weibull random error term. Assuming 

that ij

r  is flow independent, a logarithmic EPC for this enhanced route choice model can 

be expressed in closed form as follows:  

 
1

ln
ij

ij

ij ij ij

ij r rij
r R

g


  






   , ij IJ  . (162) 

Incorporating this logarithmic EPC (with 0ij  ) in the unconstrained minimization 

programming formulation in Eq. (61), we have an unconstrained MNW-SUE problem 

that can simultaneously capture both route overlapping and route-specific perception 

variance problems under congested networks. Note that if ij

r  is specified as the path-size 

factor (Ben-Akiva and Bierlaire 1999) independent of flows, we have the path-size weibit 

SUE model similar to the constrained convex program formulated in Chapter 3. If ij

r  is 

specified as a flow-dependent commonality factor, we have a similar model as the 
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congestion-based C-logit SUE model formulated as a variational inequality (VI) problem 

by Zhou et al. (2012). 

 

4.6.2.2 Considering demand elasticity 

The second extension relaxes the fixed demand assumption by explicitly 

considering the elasticity of travel demand. By incorporating the inverse demand function 

with the multiplicative Beckmann’s transformation, we can formulate the MNW-SUE 

problem with elastic demand as a function of the logarithmic MNW EPC. Following 

Maher et al. (1999), the MNW-SUE problem with elastic demand can be written as 

     

       
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(163) 

where Dij( ) is the (invertible) elastic demand function. In the above formulation, both 

travel choice and route choice are simultaneously considered. To consider both route 

overlapping and route-specific perception variance problems in the elastic demand, we 

can simply incorporate the logarithmic EPC in Eq. (162) into the objective function in 

Eq. (163). With this, the elastic demand can also account for the route overlapping 

problem through the path-size factor ij

r  to enhance the realism of modeling demand 

elasticity. 

 

4.6.2.3 Extending to multiple user classes 

The third extension relaxes the single class assumption to consider multiple user 

classes (e.g., multiple vehicle classes such as passenger cars, light trucks, medium trucks, 
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and heavy trucks; vehicles with and without equipped traveler information systems; 

travelers with different values of time and reliability; etc.). Modeling the multi-user class 

problem requires specific customization. Here we provide a general multi-class MNW-

SUE model as an extended unconstrained MP formulation as follows: 

   

1 2 3

0

min

ln ln ,
av

a mij mij a a a

a A m M ij IJ a A

Z Z Z Z

d q v v    
   

  

      
 (164) 

where m M  represents the user class. The link travel time is assumed to be a function 

of link flows from different user classes (i.e., m

a a

m M

v v


   ), and the logarithmic MNW 

EPC could be different for each user class depending on the perception variances and 

other relevant attributes used to model the specific multi-class MNW-SUE problem. 

Again, if we want to consider both route overlapping and route-specific perception 

variance problems, the logarithmic EPC in Eq. (162) can be incorporated into the 

objective function in Eq. (164). With this, each user class can account for the route 

overlapping in addition to the route-specific perception variance.  
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CHAPTER 5 

ELASTIC DEMAND WITH WEIBIT STOCHASTIC USER EQUILIBRIUM FLOWS 

AND APPLICATION IN A MOTORIZED AND NON-MOTORIZED NETWORK 

 

Abstract 

In this paper, we propose a new elastic demand stochastic user equilibrium (SUE) 

model with application to the combined modal split and traffic assignment (CMSTA) 

problem.  This new model, called the path-size weibit (PSW) SUE model with elastic 

demand (ED), is derived based on the Weibull distribution, which does not require the 

identically distributed assumption typically imposed in the multinomial logit (MNL) 

model with the Gumbel distribution. In addition, a path-size factor is included to correct 

the choice probabilities of routes that are not truly independent (i.e., another assumption 

typically required in the MNL model). Equivalent mathematical programming (MP) 

formulation of the PSW-SUE-ED model is developed to simultaneously consider both 

travel choice and route choice.  The travel choice is determined based on the elastic 

demand function that explicitly considers the network level of service based on the 

logarithmic expected perceived cost of the Weibull distribution to determine the travel 

demand, while the route choice accounts for the route overlapping problem and the non-

identical perception variance with respect to different trip lengths. Qualitative properties 

of the proposed MP formulation are rigorously proved. A path-based partial linearization 

algorithm combined with a self-regulated averaging (SRA) line search strategy is 

developed for solving the PSW-SUE-ED model and its application to the CMSTA 

problem. Numerical examples are also provided to demonstrate the features of the 
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proposed PSW-SUE-ED model as well as a real-case study in a bi-modal network with 

motorized and non-motorized mode choices. 

 

5.1 Introduction 

Modeling the elasticity of travel demand in network equilibrium analysis was 

introduced by Beckmann et al. (1956) to explicitly consider the equilibrium between 

supply and demand. The supply functions are determined by the link travel costs under 

congestion, and the travel demand functions are determined by the user benefits (Florian 

and Nguyen, 1974), generally derived based on the level of service (LOS) of the network 

(Sheffi, 1985). For example, as congestion increases, the network LOS decreases. 

Travelers may exercise their available choices by considering a different mode of travel 

(mode choice), going to a different destination (destination choice), foregoing some trips 

altogether (travel choice), in addition to choosing a different route (route choice). These 

choices will have an effect of the traffic flow patterns. In addition to the multi-

dimensional travel choice applications (e.g., combined travel and route choice problem, 

combined mode and route choice problem, combined destination and route choice 

problem, and combined travel-destination-mode-route choice problem), modeling 

demand elasticity has important transportation applications in predicting future travel 

demand patterns and assessing network improvement. Using the network analysis with 

fixed demand to assess such behavior may cause a bias future travel-demand-pattern 

prediction, misevaluation of network performance, and result in an inefficiency budget 

allocation. 

Beckmann et al. (1956) provided the pioneer work of formulating the deterministic 

user equilibrium (DUE) model with elastic demand (ED) (or DUE-ED) as a mathematical 
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programming (MP) formulation, where the ED is a function of the equilibrium route 

travel cost between each origin-destination (O-D) pair. For a historical review of 

Beckmann’s DUE-ED model, readers are referred to Boyce (2013). Since the seminal 

work by Beckmann et al. (1956), many researchers have further developed the idea in 

different directions as shown in Table 13 to enhance the modeling realism and 

applications of the DUE-ED model.  

In terms of the methodology used in formulation and analysis, Beckmann et al. 

(1956) provided the first MP formulation, or more specifically a convex programming 

(CP) formulation, for the DUE-ED model. Carey (1985) provided two dual formulations 

of the DUE-ED problem using node-link and link-path variables, and explored the 

relationship between the primal and dual formulations. Aashtiani (1979) gave the first 

nonlinear complementarity problem (NCP) formulation for modeling the interactions in a 

multimodal network, while Gabriel and Bernstein (1997) introduced the nonadditive user 

equilibrium (NaUE) problem as an NCP formulation in which the cost incurred on each 

path is not simply the sum of the link costs that constitute that path. Dafermos (1982) 

offered a variational inequality (VI) formulation for the multimodal traffic equilibrium 

model with elastic demand, where the link travel costs depend on the entire link flow 

vector and the travel demands depend on the entire mode-specific O-D cost vector. Fisk 

and Boyce (1983) provided alternative VI formulations for the network equilibrium travel 

choice problem, which does not require invertibility of the travel demand function. 

Cantarella (1997) provided a fixed point (FP) formulation for the multi-mode multi-user 

equilibrium assignment with elastic demand, where users have different behavioral 

characteristics as well as different choice sets. 
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The major drawback of the above models assumes all travelers have perfect 

knowledge of network conditions (i.e., know all available routes and have perfect 

perception of all route costs). In reality, travelers rarely know all available routes, and 

certainly do not always select the minimum cost route. To overcome such drawback of 

the DUE-ED model, several researchers extended the stochastic user equilibrium (SUE) 

principle suggested by Daganzo and Sheffi (1977) from a fixed demand (FD) to an elastic 

demand (ED) version, or the SUE-ED model for short. In the SUE principle, a random 

error term is introduced into the route cost function to mimic the perception error of 

network travel times due to the travelers’ imperfect knowledge of network conditions. At 

the SUE state, no travelers can improve his or her perceived travel time by unilaterally 

changing routes (Sheffi, 1985).  In the transportation literature, Gumbel and Normal 

distributions are the two commonly used random error terms to develop the probabilistic 

route choice models, which result in the multinomial logit (MNL) and multinomial probit 

(MNP) route choice models (Dial, 1971; Daganzo and Sheffi, 1977), respectively. 

Yang and Bell (1998) extended Fisk’s (1980) MP formulation for the MNL-SUE 

model with fixed demand to the elastic demand case (or MNL-SUE-ED), while Maher 

(2001) and Meng and Liu (2012) provided MP and VI formulations for the MNP-SUE-ED 

model without and with link interactions, respectively. As is well known, the MNL model 

needs the independently and identically distributed (IID) assumption with the Gumbel 

variates in order to derive a closed-form probability expression. The IID assumption comes 

with two known limitations: (1) inability to handle route overlapping and (2) inability to 

handle perception variance with respect to (w.r.t.) different trip lengths. These drawbacks 

may cause a bias result in estimating the expected perceived cost (EPC) (i.e., the well-
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known MNL’s log-sum term) used in the elastic demand function to determine the travel 

demands. On the other hand, the MNP-SUE-ED model does not have the two known 

limitations of the MNL model since it does require the IID Gumbel variate assumption. 

However, the MNP-SUE-ED model does not have a closed-form probability expression, 

and hence would require significant computational efforts using either Monte Carlo 

simulation (Sheffi and Powell, 1982), Clark’s approximation method (Maher, 1992; Maher 

and Hughes, 1997), or numerical method (Rosa and Maher, 2002). 

In terms of applications, Wu and Lam (2003a,b) adopted the VI formulation to 

develop a combined modal split and traffic assignment (CMSTA) model with elastic 

demand based on the MNL-SUE flows for modeling mode choice and route choice 

decisions in a bimodal (i.e., motorized and non-motorized) network. Since the CMSTA 

model adopts the MNL-SUE-ED model, it also inherits the same two drawbacks 

identified above with the same bias in estimating the travel demands for the two modes.  

To partially address the drawbacks, Kitthamkesorn et al. (2013) developed an 

equivalent MP for the CMSTA problem that explicitly considers mode and route 

similarities under congested networks. The mode choice is modeled using the nested logit 

(NL) model (Ben-Akiva and Lerman, 1985) and the route choice is modeled through the 

cross nested logit (CNL) model (Bekhor and Prashker, 1999). Although the model 

captures the similarities of both mode and route choices in the CMSTA problem, the 

identically distributed assumption still remains (i.e., inability to account for the route-

specific perception variance) due to the classical logit assumption of homogeneous 

perception variance. 
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Table 13: Summary of traffic equilibrium models with elastic demand 
Approach Reference Model Remark 

Mathematical 

Programming 

(MP) 

Beckmann et 

al., 1956 
DUE-ED 

Provide the first DUE model with elastic demand as a 

convex programming formulation for modeling travelers’ 

trip-making behavior 

Carey, 1985 DUE-ED 

Provide two dual formulations of the DUE-ED problem 

using node-link and path-link variables, and explore the 

relationship between the primal and dual formulations 

Yang and Bell, 

1998 

MNL-SUE-

ED 

Provide an equivalent mathematical programming 

formulation for the logit-based SUE problem with elastic 

demand 

Maher, 2001 
General SUE-

ED 

Provide a new objective function for the SUE assignment 

with elastic demand, and develop a balanced demand 

algorithm for solving it 

Kitthamkesorn 

et al., 2013 
CMSTA 

Provide a combined modal split and traffic assignment 

(CMSTA) problem based on the excess demand 

formulation with nested logit model for mode choice and 

cross nested logit for route choice 

Nonlinear 

complementarity 

problem (NCP) 

Aashtiani, 1979 

Multimodal 

traffic 

assignment 

problem 

Provide the first NCP formulation for the multimodal 

traffic assignment problem, and develop one of the early 

path-based linearization algorithms for solving the traffic 

assignment problem 

Gabriel and 

Bernstein, 1997 

Non-additive 

user 

equilibrium 

(NaUE) 

Introduce the nonadditve traffic equilibrium problem in 

which the cost incurred on each path is not simply the sum 

of the link costs that constitute that path, and propose the 

nonsmooth equations/sequential quadratic programming 

(NE/SQP) method for solving the nonadditive traffic 

equilibrium problem 

Variational 

Inequality (VI) 

Dafermos, 

1982 

Multimodal 

traffic 

assignment 

problem 

Provide a VI formulation for modeling the general 

multimodal traffic equilibrium model with elastic demand, 

where the link travel costs depend on the entire link flow 

vector and the travel demands depend on the entire mode-

specific O-D cost vector, and develop an iterative 

relaxation algorithm for computing the equilibrium flow 

pattern 

Fisk and 

Boyce, 1983 
DUE-ED 

Provide alternative VI formulations for the network 

equilibrium travel choice problem, which does not require 

invertibility of the travel demand function 

Wu and Lam, 

2003a,b 
CMSSA-ED 

Provide a combined modal split and traffic assignment 

model (CMSTA) with elastic demand based on the MNL-

SUE flows for modeling combined mode and route choice 

decisions on a bimodal network, and develop a method of 

successive averages (MSA) with cost approximation (CA) 

algorithm and block Gauss-Seidel decomposition method 

Meng and Liu, 

2012 

MNP-SUE-

ED-LI 

Develop two VI models and two hybrid prediction-

correction cost averaging algorithms combined with a two-

stage Monte Carlo simulation based stochastic network 

loading method for the multinomial probit (MNP) SUE 

problem with elastic demand (ED) and link interactions 

(LI) 

Fixed Point 
Cantarella, 

1997 

Fixed point 

(FP) 

Develop a fixed point formulation for the multi-mode 

multi-user equilibrium assignment with elastic demand, 

where users have different behavioral characteristics as 

well as different choice sets 
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In this paper, we provide an alternative to relax the IID assumption embedded in the 

MNL-SUE-ED model by using the Weibull distribution. The path-size weibit (PSW) 

model in Chapter 3 is used to develop an equivalent MP formulation for modeling 

demand elasticity in the SUE framework. The proposed PSW-SUE model with ED (or 

PSW-SUE-ED) has the following two significant features that are distinct from the 

literature shown in Table 13. 

 The network level of service (LOS) is captured through the logarithm expected 

perceived cost (EPC) of the Weibull distribution, which is used to develop the 

PSW-SUE-ED model, to determine the travel demands and SUE flows. The 

advantage is that the log EPC explicitly considers the route overlapping and non-

identical perception variance problems in the SUE assignment, and avoids the bias 

caused by the two known limitations of the MNL-SUE model in estimating the 

travel demands. 

 An application of the PSW-SUE-ED model is developed to consider both mode 

choice and route choice as a combined modal split and traffic assignment (CSMTA) 

problem. It is demonstrated with a case study in a bimodal network with motorized 

and non-motorized modes using the Winnipeg network. 

This paper not only develops a new PSW-SUE-ED model, but also provides 

qualitative properties, as well as a solution algorithm, accompanied by convergence 

results, numerical examples, and application to a bimodal network with motorized and 

non-motorized modes. 

The remainder of this paper is organized as follows. The next section gives some 

background of the weibit route choice models. In section 3, the equivalent MP 
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formulations for the PSW-SUE-ED model and its application as a CMSTA problem are 

provided along with some qualitative properties. Section 4 describes a path-based partial 

linearization method combined with a self-regulated averaging (SRA) stepsize scheme 

for solving the PSW-SUE-ED model. Numerical results are presented in Section 5, and 

some concluding remarks are provided in Section 6. 

 

5.2 Weibit route choice models 

In this section, we provide some background of the weibit route choice models and 

their expected perceived cost (EPC). The section begins with the multinomial weibit 

(MNW) model and follows by the path-size weibit (PSW) model.  

 

5.2.1 Multinomial weibit (MNW) model 

 

5.2.1.1 Model formulation  

Castillo et al. (2008) developed the MNW model to resolve the identical variance 

issue. Unlike the MNL model which uses the conventional additive RUM, the MNW 

model adopts the multiplicative RUM with the Weibull random error (Fosgerau and 

Bierlaire, 2009), i.e., 

 
ij

ij ij ij ij

r r rU g


   ,  ,ijr R ij IJ   , (165) 

where IJ is the set of O-D pairs, 
ijR  is the set of routes between O-D pair ij, ij

rg  is the 

travel cost on route r between O-D pair ij,
 

ij

r  is the independently Weibull distributed 

random error term on route r between O-D pair ij. According to the MNW disutility in 

Eq. (18), we have the MNW route choice probability: 
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To show how this MNW model handles the different trip lengths, consider a two-

route network configuration as shown in Fig. 34. For both networks, the upper route cost 

is larger than the lower route cost by 5 units. However, the upper route cost is two times 

larger than the lower route cost in the short network, while it is only less than 5% larger 

in the long network. As expected, the MNL model produces the same route choice 

probability for both short and long networks. This is because the MNL model assumes 

that each route has the same and fixed perception variance (i.e., 
2 26  ) as shown in 

Fig. 35a. In other words, the solution is solely based on the absolute cost difference 

irrespective of the overall trip length (Sheffi, 1985). The MNW model, in contrast, 

produces different route choice probabilities for the two networks. It uses a relative cost 

difference to handle different trip lengths. When considering the perception variance, the 

MNW model has a route-specific perception variance as a function of route travel cost 

(see Chapter 4), i.e.,  

 
 
 

2

2
22 1

1 1
1 1

ij ij

rij

r ij ijij

g 


 

      
          
        

,  ,ijr R ij IJ   , (167) 

where ( ) is the gamma function. With this, a larger-cost route will have a higher 

perception variance as shown in Fig. 35b, such that the probability of choosing each route 

becomes more similar for a longer network.  
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a) Short network b) Long network 

Fig. 34.  Two-route networks 

  

a) MNL model b) MNW model 

Fig. 35.  Perception variance of the MNL and MNW models 

 

Note that scaling the dispersion parameter can partially relax the identical variance 

issue in the MNL model in the traffic assignment context (Chen et al., 2012). By scaling 

the dispersion parameter according to the O-D trip length (i.e., a larger  for the short 

network or a smaller  for the long network), we can obtain similar results as that of the 

MNW model, where the probability of choosing the lower route is higher for the short 
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network according to a smaller perception variance. Nonetheless, this scaling technique 

cannot obtain the route-specific perception variance like the MNW model in Eq. (79). All 

routes between an O-D pair must still have the same and fixed perception variance of 

2 26   in Fig. 35a due to the classical logit assumption of homogeneous perception 

variance.  

 

5.2.1.2 Expected perceived cost of the MNW model 

The expected perceived cost (EPC) can be used to represent the level of service 

(LOS) of a transportation network. Yang and Bell’s (1998) mathematical programming 

(MP) formulation for the MNL stochastic user equilibrium (SUE) model with elastic 

demand has the elastic demand as a function of the MNL EPC—the log-sum term (e.g., 

Sheffi, 1985). Further, Oppenheim’s (1995) MP formulation for the MNL-based 

combined travel demand model also has the multi-dimensional travel choices as a 

function of the MNL EPCs. However, the MNW model does not have a closed-form EPC 

in general (Fosgerau and Bierlaire, 2009). To overcome this drawback, we consider the 

logarithmic EPC of the MNW model (see Chapter 4) to represent the LOS of a 

transportation network, i.e.,  

 
1

ln
ij

ij

ij ij

ij rij
r R

g


 






   , ij IJ  . (168) 

This logarithmic MNW EPC satisfies some important properties as follows: (1) Its 

partial derivative w.r.t. the logarithmic route travel cost gives back the MNW choice 

probability; (2) it is monotonically decreasing w.r.t. the number of routes; and (3) it is 

concave w.r.t. the vector of logarithmic route travel costs (see Chapter 4). 
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5.2.2 Path-size weibit (PSW) model 

5.2.2.1 Model formulation 

Even though the MNW model can successfully address the identical perception 

variance problem, it still inherits the independently distributed assumption. To overcome 

this shortcoming, we adopted the path-size factor ij

r  (Ben-Akiva and Bierlaire, 1999) to 

handle the route overlapping problem (see Chapter 3). This path-size factor accounts for 

different route sizes determined by the length of links within a route and the relative 

lengths of routes that share a link, i.e.,  

1

r

ij

ij a
r ij ij

a r ak

k R

l

L






 


,  ,ijr R ij IJ   , 
(169) 

where al  is the length of link aA, ij

rL  is the length of route r connecting O-D pair ij , 

r  is the set of all links in route r between O-D pair ij, and
 

ij

ar  is equal to 1 for link a on 

route r between O-D pair ij and 0 otherwise. Routes with a heavy overlapping with other 

routes have a smaller value of ij

r . Note that other functional forms of ij

r  can be found 

in Bovy et al. (2008) and Prato (2009). The path-size factor is used to modify the MNW 

RUM model: 
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r rij

r

g
U









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which gives the PSW probability: 
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r rij
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(171) 
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5.2.2.2 Expected perceived cost of the PSW model 

Since the PSW model modifies the deterministic term of the MNW model, its 

logarithmic EPC can be expressed as (see Chapter 4) 

 
1

ln
ij

ij

ij ij ij

ij r rij
r R

g


  






   ,  ij IJ  . (172) 

Note that this logarithmic PSW EPC also has the same property as the logarithm MNW 

EPC. The partial derivative of this logarithmic PSW EPC w.r.t. the logarithmic route 

travel cost gives back the PSW choice probability. It is monotonically decreasing w.r.t. 

the number of routes, and it is concave w.r.t. the vector of logarithmic route travel costs. 

 

5.3 Mathematical programming formulation 

This section presents equivalent MP formulations for the PSW-SUE-Ed model and 

its application to the combined modal split and traffic assignment (CMSTA) problem. 

Specifically, we present these MP formulations with some qualitative properties. The 

section starts with some necessary assumptions, followed by the MP formulations for the 

PSW-SUE-ED model and the CMSTA problem. 

 

5.3.1 Assumptions  

We start with some necessary assumptions. First, we make a general assumption on 

the link travel cost: 

Assumption 5.1. The link travel cost a , which can be a function of link travel time, 

is a monotonically increasing function of its own flow. 

Since the weibit model falls within the category of multiplicative random utility 

maximization model, the deterministic part of the disutility function is simply a set of 
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multiplicative explanatory variables (e.g., Cooper and Nakanishi, 1988). Then, we make 

an assumption of the route travel cost: 

Assumption 5.2. The route travel cost is a function of multiplicative link travel 

costs, i.e., 

r

ij

r a

a

g 


  ,  ,ijr R ij IJ    . (173) 

This assumption not only maintains the weibit relative cost criterion, but also 

corresponds to the weibit choice behavior similar to the Markov process (see Chapter 4). 

In addition, it allows the MP formulation to incorporate the elastic demand (travel choice) 

and mode choice as a function of the logarithmic PSW EPC.  

Following the path-size logit (PSL) SUE formulation provided by Chen et al. 

(2012), the lengths used in the path-size factor for the MP formulation is flow 

independent. We make another assumption on the path-size factor attributes: 

Assumption 5.3. The lengths al  and ij

rL  used in ij

r  are flow independent. 

Note that we can also adopt the variational inequality (VI) formulation to incorporate the 

flow-dependent path-size attributes similar to the congestion-based C-logit-SUE model 

developed by Zhou et al., 2012). 

Since 
ij  cannot be decomposed into the link level easily, we make another 

assumption:  

Assumption 5.4. 
ij  is equal to zero.  

This assumption indicates that each route is assumed to have the same coefficient of 

variation (COV). From Eq. (79), the route-specific coefficient of variation can be 

expressed as 
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   

  
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ij ij ijij
rij r

r ij ij
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r r

g

g g

 




  
  

 
,  ,ijr R ij IJ   . (174) 

With 0ij  , ij

r  of each route is equal. Note that we can adopt the VI formulation of the 

congestion-based C-logit-SUE model developed by Zhou et al. (2012) to incorporate a 

non-zero 
ij  into the PSW-SUE-ED model. 

Finally, we make an assumption on the elastic demand function Dij( ): 

Assumption 5.5.  The elastic demand function is a monotonically decreasing 

function of the logarithmic PSW EPC.  

 

5.3.2 MP formulation for the PSW-SUE-ED  

In this subsection, we provide the PSW-SUE-ED model where ED is a function of 

the logarithmic PSW EPC as shown in Fig. 36. Consider the following MP formulation  

 

   

   
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0
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d f f

D d q q f
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

  
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 



  



   

    

 
  

   

  

   

f q

 
(175) 

s.t. ,
ij

ij

r ij

r R

f q ij IJ


   , 
(176) 

0, 0, ,ij

ij r ijq f r R ij IJ     , (177) 

where ij

rf  is the flow on route r between O-D pair ij, qij is the travel demand between   

O-D pair ij from the elastic demand function Dij( ), and va is the flow on link a. Eq. (176) 

is the flow conservation constraint, and Eq. (177) is the non-negativity condition. The 

main differences between this PSW-SUE-ED and Yang and Bell’s (1998) MNL-SUE-ED 
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are Z1 and Z5. Z1 is the multiplicative Beckmann’s transformation. It uses the log 

transformation to facilitate the route cost computations. With this, the PSW-SUE-ED has 

the elastic demand Dij( ) as a function of the logarithmic PSW EPC at the equilibrium. 

On the other hand, Z5 incorporates ij

r  to handle the route overlapping problem. When 

there is no route overlapping, 1ij

r   and the PSW-SUE-ED model collapses to the 

MNW-SUE-ED model.  

 

Proposition 5.1. The solution of the MP formulation given in Eqs. (175) through (177) 

satisfies the PSW route choice probability and the elastic demand function. 

Proof. Note that the logarithm terms in Eq. (175) implicitly require both ij

rf  and 
ijq  to be 

positive. By constructing the Lagrangian and then setting its partial derivative to zero, we 

obtain: 

1 1
ln ln ln 0ij ij ij

r r r ijij ij
g f  

 
    , (178) 

 1 1
ln 0ij ij ij ijij

D q q


   , (179) 

ij

ij

r ij

r R

f q


 , 
(180) 

 

 
Fig. 36:  Network representation and equilibrium conditions with ED 
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where ij  is the Lagrangian multiplier for the flow conservation constraint in Eq. (176).  

Rearranging Eq. (90) gives: 

   exp
ij

ij ij ij ij

r ij r rf g


  


 . (181) 

From Eq. (91), we have: 

   exp
ij

ij ij

ij ij ij ij

r ij ij r r

r R r R

f q g


  


 

   . (182) 

Dividing Eq. (181) by Eq. (182) gives the PSW route choice probability: 

 

 
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


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    


. (183) 

On the other hand, by rearranging Eq. (182), we obtain: 

 
1 1

ln ln
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ij ij

ij ij r rij ij
r R

q g


 
 





   . (184) 

Substituting Eq. (184) into Eq. (179) gives 

   1 1
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ij ij

ij ij r rij
r R

D q g










   . (185) 

By rearranging Eq. (185), we have the following elastic demand as a function of the 

logarithmic PSW EPC, i.e., 

   
1

ln ,
ij

ij

ij ij

ij ij ij ij r rij
r R

q D D g ij IJ


 






 
     

 
 

 . (186) 

This completes the proof.  

 

Proposition 5.2. The solution of the PSW-SUE-ED model is unique.  

Proof. It is sufficient to prove that the objective function in Eq. (175) is strictly convex in 

the vicinity of route flow solution and that the feasible region is convex. The convexity of 
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the feasible region is assured for linear equality constraint in Eq. (176). The nonnegative 

constraint in Eq. (177) does not alter this characteristic. From Proposition 5.1 and 

Assumption 5.3, the second derivative w.r.t. route flow is 

 2

1

ln
ln ln1 1 ij

ij

ij

rij ij
r Rijr r
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r Rr k k k k k

f
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




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


f
. (187) 

From Assumptions 5.1 and 5.5, both 
ln ij

r

rs

k

g

f




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D f
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Finally, we can observe that 

ln
1 ij

ij

r

r R

ij rs

k

f

f









 is positive semi-definite since all elements 

of the block matrix w.r.t. O-D pair ij are equal to 
1

ij

ij ij

r

r R

f





. Thus, the objective 

function in  Eq. (175) is strictly convex with respect to route flows. Therefore, the 

equilibrium route flow is unique. According to the flow conservation condition, the 

equilibrium travel demand is also unique. This completes the proof.  

 

5.3.3 Application of the PSW-SUE-ED  

In this section, we provide an application of the PSW-SUE-ED model to consider 

both mode choice and route choice as a combined modal split and traffic assignment 

(CMSTA) problem. It will be demonstrated in the numerical result section with a case 
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study in a bimodal network with motorized and non-motorized modes using the 

Winnipeg network. 

To begin with, a model with a binary logit mode choice is presented. The elastic 

demand term Z3 in Eq. (175) is modified using the argument-complementing function 

(Sheffi, 1985), i.e., (see also Fig. 37) 

 
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1
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ij m
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D d d
q
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 
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 
   , (189) 

where 
ij

mq  is the demand of mode m=1,2 between O-D pair ij, 
ij  is the binary logit 

model parameter between O-D pair ij, and ij  is the exogenous modal attractiveness 

difference between the two modes connecting O-D pair ij. By incorporating Eq. (189) 

into Eq. (175), we have a combined binary logit mode choice and PSW-SUE route choice 

model.  

To extend the binary logit mode choice to the MNL mode choice, we restate Eq. 

(189) as  
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and then change the mode choice index from binary (2) to multinomial (Mij) as follows 
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 (191) 

where ij

mq  is now the travel demand of mode ijm M  between O-D pair ij, and ijm
 
is 

the exogenous modal attractiveness of mode m between O-D pair ij.  
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Fig. 37.  Network representation and excess demand as a binary logit mode choice 

 

By incorporating Eq. (191) into Eq. (175), we have a combined MNL mode choice 

and PSW-SUE route choice (or MNL-PSW-SUE) model, i.e.,  
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s.t.  

ijm
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mr m
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f q
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 , ,ijm M ij IJ   , 
(193) 

ij
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(194) 

0ij

mrf  , 0ij

mq  , , ,ijm ijr R m M ij IJ    , (195) 

where ij

mrf  is the flow on route r of mode m between O-D pair ij, 
ijm  is the weibit 

parameter of mode m between O-D pair ij, ij

mr  is the path-size factor on route r of mode 

m between O-D pair ij, and ij

amr  is equal to 1 if link a on route r of mode m between O-D 
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pair ij and 0 otherwise. Eq. (193) and Eq. (194) are the flow/travel demand conservation 

constraints, and Eq. (195) is the non-negativity constraint on the decision variables (i.e., 

route flows and mode-specific O-D flows).  

 

Proposition 5.3. The MP formulation in Eqs. (192) through (195) has the MNL mode 

choice solution and the PSW route choice solution.   

Proof. The Lagrangian of this problem can be expressed as 

ij ijm ij

ij ij ij

ijm m mr ij ij m

ij IJ m M r R ij IJ m M

L Z q f q q 
    
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   
   

     , (196) 

where ijm  and ij  are Lagrangian multipliers corresponding to the constraints in Eq. 

(193) and Eq. (194), respectively. Following the same principle of Proposition 5.1, we 

have the PSW route choice solution, and ijm  can be expressed as a function of the mode-

specific O-D demand travel demand of mode m and the logarithmic PSW EPC of mode m 

( ijm ), i.e., 
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By setting the partial derivative of the Lagrangian w.r.t. 
ij

mq  to zero, we have  

1 1
ln 0ij
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According to Eq. (197), Eq. (198) can be restated as 

  expij

m ij ij ij ijm ijmq        . (199) 
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Then, ijq  can be expressed as  
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Incorporating Eq. (199) and Eq. (200) give the MNL mode choice probability, i.e., 
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. (201) 

Therefore, the MP formulation in Eq. (192) through Eq. (195) has the MNL mode choice 

solution and PSW route choice solution. This completes the proof.  

 

Proposition 5.4. The solution of MNL-PSW-SUE model is unique. 

Proof. Following the same principle of Proposition 5.2, Z1, Z2, and Z5 are positive semi-

definite, positive definite, and positive semi-definite, respectively. Since ijm  is flow 

independent, the second derivative of Z3 is zero. Assuming that ijm

ij  , the second 

derivative of Z4 can be expressed as  
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1 1 1
0, if , ,
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ijm ij
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. (202) 

Thus, Z4 is positive definite, and the objective function in Eq. (192) through Eq. (195) is 

strictly convex w.r.t. the route flows and mode-specific O-D demands. Therefore, the 

equilibrium route flows and mode-specific O-D demands are unique. This completes the 

proof.  
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5.4 Solution algorithm 

In this section, we provide a path-based partial linearization algorithm combined 

with a self-regulated averaging (SRA) line search strategy for solving the PSW-SUE-ED 

and MNL-PSW-SUE models. The partial linearization method belongs to the descent 

direction algorithm (Patriksson, 1994). A search direction and a stepsize determination 

are iteratively performed to obtain a new iterative solution until some convergence 

criterion is satisfied. The search direction is obtained by solving a partial linearized 

subproblem. In this study, we adopt the SRA scheme recently proposed by Liu et al. 

(2009) to determine a stepsize. This stepsize scheme is based on the residual error and the 

stepsize in the current iteration to smartly determine a stepsize for the next iteration, 

without the computationally expensive evaluations of the complex objective function or 

its derivatives. The SRA scheme satisfies the convergence condition (see Robbins and 

Monro, 1951; Blum, 1954; Liu et al., 2009 for details). Some major detailed steps of the 

path-based partial linearization algorithm are provided as follows: 

Step 0: Initialization.  

 Set iteration count n=0; 

 Calculate the path-size factor; 

 Update link travel costs and route travel costs; 

 Calculate initial O-D demands (Dij( ) for the PSW-SUE-ED model and MNL 

mode choice for the MNL-PSW-SUE model); 

 Perform the PSW loading to obtain initial route flows and link flows; 

Step 1: Direction Finding. 

 Increment iteration count n:= n +1; 
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 Update link and route travel costs; 

 Calculate auxiliary O-D demands; 

 Perform the PSW loading to obtain auxiliary route flows;  

 Search direction     1n n
f f , and     1n n

q q ; 

Step 2: Line Search. 

 Use the SRA scheme to obtain α
(n)

; 
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where λ1>1 and λ2<1.  

Step 3: Move. 

           1 1n n n n n
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

 
  q q q q ; 

Step 4: Convergence Test. 

 If 
   1

2

n n
RMSE R 


  f f  holds, terminate, where R  is the number 

of routes; otherwise, go to Step 1. 

 

 

5.5 Numerical example 

In this section, we provide three examples to present features of the proposed 

models. Example 1 is the two-route network used to investigate effect of different trip 

lengths. Example 2 is a loop-hole network adopted to investigate the effect of route 
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overlapping and route-specific perception variance problems. Lastly, Example 3 uses the 

Winnipeg network to show the algorithmic performance along with an application of bi-

modal network considering both motorized mode (i.e., auto) and non-motorized mode 

(i.e., bicycle) as a case study. Without loss of generality, all routes are assumed to have 

the same coefficient of variation 0.3ij

r   [i.e., 3.7ij   for all O-D pairs, see Eq. (85)] 

unless specified otherwise. al  and 
ij

rL  used in the path-size factor 
ij

r  are set to the link 

free-flow travel cost and route free-flow travel cost, respectively. The elastic demand 

function (in vehicle per hour: vph) is assumed to be a function of the logarithmic 

expected perceived cost (EPC), i.e., 

 100exp 0.05ij ijq    , ij IJ  . (203) 

 

 

5.5.1 Example 1: Two-route networks 

This example modifies the two-route networks in Fig. 34 to incorporate the congestion 

effect. The travel cost of each route includes a flow dependent cost 100ij

rf  as shown in 

Table 14. The equilibrium solutions produced by the PSW-SUE-ED model are compared 

with the MNL-SUE-ED and MNL-SUE-ED with scaling (or MNLs-SUE-ED) models as 

presented in Table 15. The MNL-SUE-ED model has the dispersion parameter  set 

equal to 0.1, and the MNLs-SUE-ED model has a scaling  set corresponding to 0.3ij

r   

using the lowest uncongested travel cost route (see Chen et al., 2012). The results show 

that all models give a smaller travel demand as the overall trip length increases. The 

MNL-SUE-ED model produces the same route choice probabilities for both short and 

long networks. This is because it cannot handle the heterogeneous perception variance 

w.r.t. different trip lengths. Meanwhile, the MNLs-SUE-ED and PSW-SUE-ED models 
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assign a smaller amount of flows on the lower route as the overall trip length increases. 

The MNLs-SUE-ED model gives a larger O-D demand. It further gives a higher 

probability of choosing the lower route, especially on the short network. This is because 

the scaling technique still assumes the same and fixed perception variance of each route 

within the same O-D pair. 

 

5.5.2 Example 2: Loop-hole network 

In this example, a loop-hole network in Fig. 38 is adopted to consider both route 

overlapping and route-specific perception variance problems. This loop-hole network has 

3 routes, and each route has the same capacity of 100 vph. The two upper routes have the 

free flow travel time (FFTT) of 30 minutes with an overlapping section of x. The lower 

route is truly independent with the FFTT of y. The standard Bureau of Public Road (BPR) 

function is adopted to represent the flow dependent link travel time, i.e.,  

4

0 1 0.15 a
a a

a

v
t t

c

  
    
   

, (204) 

where 
0

at  is the FFTT on link a, and ac  is the capacity on link a. Without loss of 

generality, the travel cost is assumed to be an exponential function (Hensher and Truong, 

1985; Polak, 1987; Mirchandani and Soroush, 1987), i.e.,  

 exp 0.05a at  , (205) 

 

 

Table 14: Flow-dependent route travel cost for the two-route networks 

Network Upper route Lower route 

Short 10 100ij

uf  5 100ij

lf  

Long 125 100ij

uf  120 100ij

lf  
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Table 15: Travel demand and flow allocation for the two-route networks 

Model Network Demand 
Probability 

Upper route Lower route 

MNL-SUE-ED 
Short (=1) 99.79 0.38 0.62 

Long (=1) 78.86 0.38 0.62 

MNLs-SUE-ED 
Short (=0.86) 91.94 0.03 0.97 

Long (=0.04) 79.40 0.46 0.54 

PSW-SUE-ED 
Short 91.72 0.11 0.88 

Long 79.36 0.47 0.53 

 

 

 

Fig. 38. Loop-hole network and its characteristics 

 

5.5.2.1 Effect of route overlapping  

The effect of route overlapping is investigated first where all routes have the same trip 

length (i.e., y = 30). The results produced by the PSW-SUE-ED model would be compared 

with the MNLs-SUE-ED model under the same cost configuration in Eq. (205).  

As expected, the MNLs-SUE-ED model has difficulty in handling the overlapping 

problem as shown in Fig. 39. As x increases, it assigns more flows on the two upper 

routes (hence, a smaller amount of flows on the lower route), while the PSW-SUE-ED 

model assigns a relatively larger amount of flows on the lower route as x increases. At x = 

30, only two routes with equal trip length exist. The PSW-SUE-ED model assigns an 

equal amount of flows on both routes, while the MNLs-SUE-ED model only assigns 36% 

i j DestinationOrigin

[x, 100] [30-x, 100]

[30-x, 100]

[FFTT, Capacity]

[y, 100]

1 2

3

4

Link number

Route               Link 

Route/link relationship

1                     1  2

2                     1  3

3                     4
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of the total flows to the lower route as it still considers all three routes as feasible routes 

in the loop-hole network.  

However, the logarithmic PSW EPC is larger as shown in Fig. 40a. This is because 

the logarithmic PSW EPC incorporate the route overlapping problem through the path-

size factor 
ij

r . As the overlapping section increases, 
ij

r  of the upper routes decreases. 

As a result, the PSW-SUE-ED model produces a lower O-D demand level, especially for 

a longer overlapping section x, as shown in Fig. 40b. 

 

 

Fig. 39. Probability of choosing the lower route for the loop-hole network (y = 30) 

 

  

a) Logarithmic EPC b) O-D demand 

Fig. 40. EPC and travel demand patterns for the loop-hole network (y = 30) 
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Fig. 41. Traffic flow patterns for the loop-hole network (y = 32) 

 

  

a) O-D demand b) Logarithmic EPC 

Fig. 42. EPC and travel demand patterns for the loop-hole network (y = 32) 

 

5.5.2.2 Effect of both route overlapping and identical perception variance problems  

To consider both route overlapping and identical perception variance problems, y is 

set equal 32 minutes. As such, the FFTT of the lower route is longer than that of the 

upper routes by 2 minutes. The results show that the PSW-SUE-ED model can produce a 

comparable flow pattern to the multinomial probit SUE model with elastic demand (or 

MNP-SUE-ED) as shown in Fig. 41. Both models give a smaller O-D demand for a 

larger x since the logarithmic EPC is increased as shown in Fig. 42. Note that at 

3.7ij  , the Weibull distribution is a symmetric distribution like the Normal 

distribution (see White, 1969). 
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5.5.3 Example 3: Winnipeg network 

This example uses the Winnipeg network shown in Fig. 43 as a real-case study. 

This network consists of 154 zones, 2,535 links, and 4,345 O-D pairs. The network 

topology, link characteristics, and O-D demands can be found in Emme/2 software 

(INRO Consultants, 1999). For comparison purposes, a behavioral working route set 

generated by Bekhor et al. (2008) is adopted. This example begins with the performance 

of the SRA scheme, followed by an application of the MNL-PSW-SUE model in a bi-

modal network with motorized and non-motorized modes. 

 

5.5.3.1 Algorithmic performance  

The algorithm is coded in Intel Visual FORTRAN 6.6 and run on a 3.80 GHz 

processor with 2.00 GB of RAM. The stopping criterion ε is set equal 10
-8

. We first 

analyze the sensitivity of the parameters λ1 and λ2 in the algorithmic performance in 

Table 16. It can be observed that the effect of λ2 seems to be higher than λ1 in this case. 

Without loss of generality, we select the value of λ1 and λ2 (1.55, 0.10) for further 

analyses. 

 

 
Fig. 43. Winnipeg network 
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The convergence characteristics of the SRA scheme are shown in Fig. 44. It appears 

that the SRA scheme outperforms the MSA scheme with a stepsize of 1/n. The SRA 

scheme requires 514 iterations to reach the desired level of accuracy, while the MSA 

scheme requires more than 3,000 iterations as presented in Table 17. In terms of average 

computational effort required in each iteration, the SRA scheme needs only 0.02 second 

per iteration more than the MSA scheme. 

 

Table 16: Sensitivity analysis of λ1 and λ2 in solving the PSW-SUE-ED model 

No. of 

Iterations 

λ1 

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 

λ2 

0.01 562 574 572 572 548 551 553 583 594 536 531 

0.05 538 547 562 594 623 627 633 574 587 590 592 

0.10 529 514 548 565 579 598 606 597 623 675 677 

0.15 1146 1147 1251 1273 1362 1421 1455 1427 1414 1578 1596 

0.20 2015 2121 2129 2245 2387 2451 2477 2564 2679 2796 2948 

 

 

 

Fig. 44. Convergence characteristics for solving the MNL-PSW-SUE model 
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Table 17: Computational efforts for solving the PSW-SUE-ED model 

Algorithm # of iterations CPU time (sec.) CPU time/Iteration 

MSA 3217 569 0.18 

SRA 514 102 0.20 

 

 

5.5.3.2 Application in a bi-modal network with motorized and non-motorized modes 

To construct the bi-modal network, we incorporate the cycling routes obtained from 

the Winnipeg city’s website to the Winnipeg network. The dedicated bike lanes are 

assumed to be located along some streets as shown in Fig. 45. The results produced by 

the MNL-PSW-SUE model will be compared with the MNL-MNLs-SUE model. For a 

fair comparison, we continue to use the same cost configuration in Eq. (205). Both 

models use the logarithmic EPC for the mode choice level with 0.5ij 
 
and 0ijm   

for the auto and bike modes. For the bike routes, we use Bekhor et al. (2008)’s route set 

with the travel distance less than 8 miles, which is the longest distance for the majority of 

cyclists in the United States (US Census Bureau, 2000). The bike travel time is assumed 

to be flow-independent determined by its trip length and average speed of 10 mph on a 

dedicated bike lane (Jensen et al., 2010). With this setting, we have 421 O-D pairs with 

both auto and bike modes available. 

The computational efforts for solving the MNL-PSW-SUE model are shown in 

Table 18. We can see that the SRA scheme outperforms the MSA scheme. The SRA 

scheme requires a significant smaller computational effort than the MSA scheme. 
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Fig. 45. Winnipeg network with bike lanes 

 

Table 18: Computational efforts for solving the MNL-PSW-SUE model 

Algorithm # of iterations CPU time (sec) CPU time/Iteration 

MSA 3374 650 0.19 

SRA 644 138 0.21 

 

 

Then, we compare the flow allocations at the disaggregate and aggregate levels. At 

the disaggregate level, we examine the route choice and mode choice probabilities 

produced by the MNL-MNLs-SUE and MNL-PSW-SUE models. For demonstration 

purposes, we use O-D pairs (3, 147) and (74, 60) to respectively represent a short O-D 

pair and a long O-D pair that include both auto and bike modes. The route choice and 

mode choice probabilities shown in Fig. 46 are under the equilibrium conditions. Five 

routes with larger auto flow proportions in each O-D pair are selected, where the first 

three routes (i.e., routes 1, 2, and 3) also include the bike routes. Recall that the MNLs-

Bike lane

Auto street
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SUE model can partially handle the different trip lengths through the scaling dispersion 

parameter whereas the MNL-PSW-SUE model can simultaneously handle both route 

overlapping and non-identical perception variance of different trip lengths. Therefore, the 

different route choice probabilities can be expected. The MNL-MNLs-SUE model seems 

to assign more flows to the shortest route. This is according to the same and fixed 

perception variance for all routes between an O-D pair. Meanwhile, the MNL-PSW-SUE 

model seems to produce a more dispersed assignment. It gives a lower route choice 

probability to routes that have couplings with other routes. At the same time, it assigns a 

larger amount of flows to the longer routes compared to the MNL-MNLs-SUE model. As 

a result, combining the effect of route overlapping and non-identical perception variance 

of different trip lengths, the MNL-PSW-SUE model produces a higher share for the bike 

mode, especially for the shorter O-D pair (i.e., O-D pair (3,147)). 

At the aggregate level, we examine the effect of route overlapping and 

heterogeneous perception variance problems on the link flow patterns and mode shares. 

As expected, the link flow difference between the MNL-MNLs-SUE and MNL-PSW-

SUE models can be found mostly in the central business district (CBD) area as shown in 

Fig. 47. This is because this area consists of much denser roads with more overlapping 

between routes. As such, the MNL-PSW-SUE model produces a larger probability of 

choosing the bike mode as presented in Table 19. In the CBD area, the bike mode share 

of the MNL-PSW-SUE model is more than two times higher than that of the MNL-

MNLs-SUE model.  
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Fig. 46. Comparison of route choice and mode choice probabilities of O–D pairs (3,147) 

and (74,60) 

 

 

 
Fig. 47.  Link flow difference between MNL-MNLs-SUE and MNL-PSW-SUE models 
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1 0.379 0.358

2 0.237 0.279
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Mode choice probability

Mode MNL-MNLs-SUE MNL-PSW-SUE

Auto 0.996 0.991

Bike 0.004 0.009
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Route choice probability

Auto Route MNL-MNLs-SUE MNL-PSW-SUE

1 0.176 0.169

2 0.158 0.150
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5 0.084 0.097

Bike Route MNL-MNLs-SUE MNL-PSW-SUE

1 0.375 0.324
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3 0.311 0.302

Mode choice probability
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Table 19: Mode share comparison between MNL-MNLs-SUE and MNL-PSW-SUE models 

Mode 

MNL-MNLs-SUE MNL-PSW-SUE 

All areas CBD Non-CBD All areas CBD Non-CBD 

Auto 

99.63% 99.48% 99.80% 99.26% 98.82% 99.75% 

(54258) (28756) (25501) (54056) (28568) (25488) 

Bike 

0.37% 0.52% 0.20% 0.74% 1.18% 0.25% 

(201) (151) (50) (403) (340) (63) 

*( ): number of trips 

 

5.6 Conclusions 

This paper proposed a new model, called the path-size weibit (PSW) SUE model 

with elastic demand (ED), with application to the combined modal split and traffic 

assignment (CMSTA) problem. This new model was derived based on the Weibull 

distribution to handle both route overlapping and heterogeneous perception variance 

problems, which is lack in the widely used multinomial logit (MNL) model with Gumbel 

distribution. Specifically, the route overlapping is handled through the path-size factor, 

and the route-specific perception variance is handled through the Weibull distribution. In 

addition, the travel choice is determined based on the elastic demand function that 

explicitly considers the network level of service based on the logarithmic expected 

perceived cost of the Weibull distribution to determine the travel demand. 

Through the numerical result and Winnipeg network studies, we observed that the 

PSW-SUE model with ED is capable of handling the overlapping and route-specific 

perception variance problems, and it could produce a compatible result to the 

multinomial probit model. When considering the motorized and non-motorized modes 
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(i.e., auto and bike), the proposed model gave a larger non-motorized travel demand 

especially in the downtown area, compared to the MNL-based model. For future 

research, we will consider other random error distributions (which also have a closed-

form probability expression), and perform parameter calibration. Further, equivalent 

mathematical programming formulation for these models under congested networks 

should be developed for large-scale applications. 
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CHAPTER 6 

CONCLUDING REMARKS 

6.1 Summary 

In this study, we provided a closed-form (probabilistic) route choice model and its 

mathematical programming (MP) formulations as an alternative to relax the 

independently and identically distributed (IID) assumption embedded in the classical 

multinomial logit (MNL) model (Dial, 1971) under the stochastic user equilibrium (SUE) 

framework (Fisk, 1980; Sheffi and Powell, 1982). A path-size factor (Ben-Akiva and 

Bierlaire, 1999) was adopted to modify the multinomial weibit (MNW) model (Castillo et 

al., 2008) to create the path-size weibit (PSW) model (see Chapter 3). Specifically, the 

route overlapping is handled through the path-size factor, and the route-specific 

perception variance is handled through the Weibull distribution. A multiplicative 

Beckmann’s transformation (MBec) was used to develop a constrained entropy-type MP 

formulation and an unconstrained MP formulation for the PSW-SUE model. The MBec is 

used to handle the relative cost difference criterion of the weibit model for the 

constrained entropy-type PSW-SUE model. Meanwhile, it is used to handle the PSW 

expected perceived travel cost (EPC) for the unconstrained PSW-SUE model. Qualitative 

properties of these minimization programs were given to establish equivalency and 

uniqueness conditions. Path-based and link-based algorithms were provided for solving 

the constrained entropy-type and unconstrained MP formulations, respectively. Through 

the numerical examples, we observed the results as follows. 

 The PSW-SUE model can account for both route overlapping and route-specific 

perception variance problems under congestion, and it can produce a compatible 
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traffic flow pattern compared to the MNP-SUE model. 

 The elastic demand and mode choice patterns of the PSW-SUE flow can be 

significantly different from the logit-based model. This is because the logarithmic 

PSW EPC explicitly incorporates both route overlapping and route-specific 

perception variance problems in determining the network level of service. 

Therefore, the PSW-SUE model results a smaller demand for motorized vehicles. 

 The proposed MP formulations can be implemented in a real-size transportation 

network as shown by the application of the Winnipeg network in Canada. 

 

6.2 Possible drawbacks of the weibit models 

The MNW model satisfies the IIA property. The choice probability ratio of any two 

routes is entirely unaffected by the travel cost of other routes:  
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This is because the MNW model is derived from the independent extreme value 

distribution (Dagsvik, 1983).  

Further, since the weibit models use the relative cost difference criterion to 

determine the choice probability, these models may be insensitive to an arbitrary 

multiplier on the route cost. We use another two-route network in Fig. 48 to illustrate this 

drawback. The upper route of these two networks is twice longer than the lower route. 

For the short network, the upper route is longer than the lower route by 5 units; however, 

for the long network, the upper route is 50 units longer.  
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a)  Short network b)  Long network 

Fig. 48. Insensitive to an arbitrary multiplier on the route cost of the MNW model 

 

With 0ij  , the MNW model gives the same result for both short and long 

networks. Note that the PSW model also has this drawback when 0ij   (in fact, it is 

depended on the specification of the path-size factor). Nonetheless, with a positive 
ij , 

the drawback can be alleviated to a certain extent as shown in Fig. 48. 

 

6.3 Future study  

6.3.1 Model calibration 

This study focused on the theoretical properties of the weibit model and its MP 

formulations. Empirical studies, however, were not conducted. To implement the weibit 

model in a real-case study, a field traffic survey is necessary to observe travelers’ route 

choice decision. Since the weibit model has a closed-form solution, a widely used 

maximum likelihood method can be adopted for estimating the model parameters.  

i j
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6.3.2 Incorporating the location parameter  

To develop the MP formulations for the weibit SUE model, we need to assume that 

the Weibull location parameter 0ij   to obtain a decomposable travel cost at the link 

level. However, incorporating 
ij  can enhance modeling flexibility in the route choice 

problem. It allows modelers to incorporate the route-specific coefficient of variation 

(CV). With non-zero 
ij , we have not only a higher perception variance for a longer 

route, but also a larger route CV for a longer route. Incorporating the non-zero 
ij  in the 

SUE framework can be achieved using the variational inequality (VI) formulation such as 

the one used in Zhou et al. (2012) to formulate the congestion-based C-logit SUE model.  

 

6.3.3 Incorporating both route overlapping and route-specific perception variance in 

the random error term 

 

Since this study create the PSW model by modifying the deterministic term of the 

MNW random utility maximization (RUM) model to resolve the overlapping issue, we 

may create another weibit route choice model by modifying the random error term of the 

MNW RUM model. Developing a joint Weibull distribution that allows the covariance 

between route pairs is necessary to obtain a closed-form weibit route choice model to 

handle both route overlapping and route-specific perception variance. One may adopt the 

copula (e.g., Nelsen, 2006), which provides a general framework to construct a joint 

distribution with unrestrictive marginal distributions, to develop such a joint weibull 

distribution.  

Since the GEV theory is related to the copula (e.g., Bhat, 2009; Fosgerau et al., 

2013), using the inversion method we can obtain an extreme value copula (Nelsen, 2006). 

For example, from the paired combinatorial logit (PCL) generating function, we have the 



165 

 

weibit model with the route pair nest at the upper level and the individual route nest at the 

lower level, where the route-specific perception variance is handled through the Weibull 

distribution. This weibit model can be expressed as 
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Its logarithmic EPC can be written as 
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With the probability expression in Eq. (207), an entropy-type MP formulation for this 

route choice model can be written as 
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s.t.
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  0ij

r rk
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In addition, we can adopt the logarithmic EPC in Eq. (208) to construct an unconstrained 

MP formulation through: 
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Following the same principle, we can develop other weibit models and their MP 

formulations by using the CNL and GNL generating functions.  

 

6.3.4 Model extension 

In Chapter 4 and Chapter 5, we provided several extensions to consider the demand 

elasticity, modal split and assignment, and multi-user classes. One may further extend the 

PSW-SUE formulation to consider other choice dimensions with multi-user classes. For 

example, the combined trip generation, trip distribution, modal split, and traffic 

assignment according to the PSW-SUE framework (with multi-user classes). On the other 

hand, to formulate the MP formulation, the path-size factor is assumed to be flow 

independent. In other words, a length-based path-size factor is adopted to consider the 

route overlapping. To relax this assumption, we can adopt the VI problem to consider a 

flow dependent path-size factor to reflect a congestion-based route similarity (e.g., Zhou 

et al., 2012). 

 

6.3.5 Algorithmic enhancements 

Since this study adopted the principle of partial linearization algorithm for solving 

the proposed models, alternative algorithms to improve the computational cost should be 

provided in the future. For example, one may adopt the gradient projection (GP) 

algorithm (Bertsekas, 1976). The GP algorithm has been shown as a successful path-

based algorithm for solving the DUE problem (Chen et al., 2002). It adopts the diagonal 

inverse Hessian approximation as a scaling matrix and uses the ―one-at-a-time‖ flow 
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update strategy to obtain a modest computational effort. These features make the GP 

algorithm computationally more efficient than the partial linearization algorithm for both 

additive cost (i.e., the route cost is separable into the link level) and non-additive cost 

(i.e., the route cost is not separable into the link level (see Chen et al., 2002; Zhou et al., 

2012). 

 

6.3.6 Modeling uncertainty 

This study considered only the subjective uncertainty from travelers’ perception of 

travel costs. However, there are several uncertainties surrounding the transportation 

network from both demand and supply sides. We may incorporate the objective 

uncertainty from demand side such as daily O-D demand fluctuations and supply side 

such as adverse weather conditions in future research. By using the travel time budget 

(TTB) (Lo et al., 2006) or the mean-excess travel time framework (Chen and Zhou, 

2010), one may develop the PSW traffic equilibrium model under uncertainty.  
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Appendix A 

Gumbel and Weibull distributions 
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Remark: ij

r  is the Gumbel location parameter; ij

r  is the Gumbel scale parameter;   is 

the Euler constant. 

 

Appendix B 

ij  is monotonically decreasing w.r.t. the number of routes: 
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This is because   0, ,
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     . Further, ij  is concave w.r.t. the 

vector of  ln ij ij

rg  . The Hessian matrix of ij  w.r.t. the vector  ln ij ij

rg   can be 

expressed as 
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From the Cauchy-Schwarz inequality,
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 , the above Hessian matrix is negative semi-definite; hence, this logarithmic 

MNW EPC is concave w.r.t. the vector  ln ij ij
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Appendix C 

This appendix is to demonstrate how Assumption 4.3 relates to the Markov process (or 

Markov chain) under the weibit route choice decision. According to the MNW model, the 

probability of choosing a succeeding node can be expressed as 
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where i is the origin node, j is the destination node, p denotes the current node in which 

travelers are about to leave, q denotes the succeeding node in which travelers are about to 



172 

 

go, 
 a p q




 is the travel time on link a whose head node is p and tail node is q, qj  is the 

MNW EPC in Eq. (134) between node q to destination j, and qjR  is the set of routes 

between node q to destination j. Eq. (216) indicates that travelers are assumed to make a 

decision at each node from available routes following node q and available routes 

following the current node p using the MNW EPC as shown in Fig. 49. 

We use the Braess network in Fig. 50 to show that Eq. (216) leads to the MNW 

route choice probability. From Assumption 4.3, the probability of choosing from node 1 

to node 2 can be expressed as 

 

 

Fig. 49. Conceptual framework for the node-to-node weibit choice behavior 

 

 

Fig. 50. Braess network and its available routes 
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Following the same principle, we have  
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14

3 4 1P  . (221) 

 

Assuming that the decision is independent of the preceding decision (on the previous 

node), the choice probability of each route can be determined from 

  ,
ij
r pqij ij

r p q

pq

P P


  , (222) 

where ,

ij

r pq  equals to 1 if nodes p and q are on route r between O-D pair ij and 0 

otherwise. From Eq. (222), we have the choice probability for route 1 as  
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 (223) 

which corresponds to the MNW probability in Eq. (126). Using the same principle, we 

have the MNW choice probability of each route. With this, if we assume that each node is 

a ―state‖, and travelers’ movement between two adjacent nodes corresponds to the 

transition of the state according to ij

p qP  , we have Akamatsu (1996)’s Markov chain  from 

node to node weibit choice behavior as shown in Fig. 51.  

 

Appendix D 

Proof of Proposition 4.1. The partial derivative of 1Z  can be expressed as: 
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The partial derivative of 2Z  w.r.t. av  is as follows: 
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 (225) 



175 

 

  

Fig. 51. Markov chain and the node-to-node weibit choice behavior 

 

From Assumption 4.3, Eq. (225) can be restated as: 
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where ij

ar  equals to 1 for link a on route r between O-D pair ij and 0 otherwise. From 

Assumption 4.1, Eq. (226) reduces to  
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The partial derivative of 3Z  w.r.t. av  can be expressed as 
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Then, the KKT condition is (the logarithmic link cost from Z1 cancels out the logarithmic 

link cost from Z3) 

i j DestinationOrigin

p q

ij

p qP 

Initial state

Final state

1ij

j jP  
State p

State q

Transition of the state
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(229) 

From Assumption 4.1, ln a av   is greater than zero. Then, we have 

ij

ij ij

a ij r ar

ij IJ r R

v q P 
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   , 
(230) 

which expresses the equilibrium link flows corresponding to the MNW model. This 

completes the proof.  

 

Appendix E 

Proof of Proposition 4.2. Following Sheffi (1985), the Hessian of the unconstrained 

program Eq. (61) can be expressed as 
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The Hessian matrix Eq. (231) can be expressed as the sum of three separate matrices: 
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 (232) 

This Hessian is an A A  matrix. The matrix lnv τ  is the A A  Jacobian of the log-

multiplicative-link-travel-cost vector with the elements ln a ad dv . ij  represents the 
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incidence matrix 
ij

ar   . The Jacobian ln

ij
g
P  is a ij ijR R  matrix with the elements 

lnij ij

r lP g  . According to Assumption 1, 2 lnv τ  is a diagonal A A  matrix which 

includes elements 2 2ln a ad dv . B  is a diagonal A A  matrix, the a
th

 element of which 

is 

ij

ij ij

ij r ar a

ij IJ r R

q P v
 

   . 
(233) 

 

To begin with, we consider the first matrix of Eq. (232). The matrix ln

ij
g
P  is negative 

semi-definite since it is the Hessian of ij , which is concave in ln ij

rg . Consequently, 

 ln

ij gP  is a positive-semidefinite matrix. The first matrix of Eq. (232) includes a 

quadratic form (of nonzero terms) applied to a positive-semidefinite matrix. It is therefore 

positive semidefinite. 

The second matrix lnv τ  is a diagonal matrix with positive entries. From 

Assumption 4.1, this matrix is positive definite. The third matrix is the product of two 

separate matrices. From Assumption 4.1, 2 lnv τ  is a diagonal matrix with positive 

terms. Meanwhile matrix B  includes Eq. (233) along its diagonal. These terms can be 

either positive or negative. Thus, 2 ln v τ B  is not positive definite. However, when 

approaching the equilibrium point, 0
ij

ij ij

ij r ar a

ij IJ r R

q P v
 

 
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 
 

  , and the last matrix 

2 ln v τ B  vanishes. This implies that at the point that satisfies the SUE conditions, this 

unconstrained program is strictly convex (i.e., the Hessian at this point is positive 

definite). Note that the Hessian matrix of Z  is indefinite at all other points. The only 
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conclusion is that the equilibrium point is a local minimum. It cannot conclude that other 

local minima do not exist.  

To prove that the SUE solution is the only minimum of this unconstrained SUE 

problem, the dual variable is adopted. Let  lna av   be the inverse of  ln a av ; this 

inverse exists because of Assumption 1.  lna av   is increasing for all positive a  and 

positive for all 0

a a  , where 0

a  is the free flow travel cost on link a. Then, the 

objective function becomes 

 
 

 
0

ln

ln

ln ln ln
a

a

a

ij ij a a a

a A ij IJ a A

dv
Z d q v

d






    

  

     τ . (234) 

After integrating by parts, we have 
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The gradient of  lnZ τ  is given by 

 ln
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. (236) 

This gradient of  lnZ τ  would always have the same sign and vanish at the same point 

as the gradient of  Z v . Then, the Hessian of  lnZ τ  is given by 
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Similar to Eq. (232), the first matrix on the right hand side is semi-definite matrix. The 

second matrix is diagonal with nonzero terms of 
 ln

ln

a a

a

dv

d




. Since  lna av   is an 
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increasing function,  2 lnZ τ  is therefore strictly convex, having a single stationary 

point which is its minimum. 

According to  lnZ τ  and  Z v  are related by a monotonic transformation, it is a 

one-to-one mapping. The gradient of  lnZ τ  vanishes only once at its minimum. Thus, 

 Z v  also has a unique minimum with a unique solution. Note that this unconstrained 

SUE problem is strictly convex at the vicinity of the minimum but not necessarily convex 

elsewhere. Nonetheless, its local minimum is also the global minimum. This completes 

the proof.  
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