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ABSTRACT 
 
 

Interspecific Interactions Between Penstemon palmeri and Shrubs in the Arid Shrublands of the 

Spring Mountains, Nevada 

 
by 

 
 

Jesse M. Poulos, Master of Science 
 

Utah State University, 2013 
 
 

Major Professor: Dr. Eugene W. Schupp 
Department: Wildland Resources 
 
 

A project involving shrub removal was undertaken by the United States Forest Service in 

the Spring Mountains National Recreation Area (SMNRA) to reduce accumulated woody fuels, 

which can pose risks to human communities. This research focuses on the interactions between 

shrubs and the perennial forb Palmer’s penstemon (Penstemon palmeri), one of many nectar 

sources for the endemic Spring Mountains Acastus Checkerspot Butterfly (Chlosyne acastus ssp 

robusta). Initial observations revealed that P. palmeri (‘penstemon’) seemed to grow almost 

exclusively under shrubs. Such spatial associations are often indicative of a history of positive 

interactions between plants, and led to the research presented here. These studies investigate and 

discuss the interactions between this penstemon and shrubs in the arid shrublands of the SMNRA. 

Spatial patterns between populations of penstemon and shrubs were measured during November 

2008-May 2011, and the consequences of shrub-association for individual penstemon emergence, 

survival, growth, and reproduction were documented (Chapter 2). The results suggest that 

although shrubs reduced penstemon emergence, they increased seedling survival (a seed-seedling 



iv 
 
conflict) resulting in a strong shift toward association between shrubs and penstemon over time. 

Further, while no differences in growth were detected between microhabitats, the results suggest 

that shrubs inhibited P. palmeri flowering but improved the successful maturation of fruits when 

flowering occurred. The mechanisms driving these patterns were elusive, but seed-sowing and 

seedling transplant experiments suggested that shrub soils, rather than their canopies, alter the 

nature of seed-seedling conflicts in a way that may promote seed-bank persistence in penstemon 

populations (Chapter 3). To provide a detailed description of the reproductive response of 

penstemon to shrubs, structural equation modeling was used to describe the importance of shrubs 

for penstemon seed production (Chapter 4). The results suggest that competition with shrubs 

reduced penstemon seed production, but that shrubs simultaneously facilitated penstemon water 

balance and altered the foraging behavior of its pollinators, indirectly increasing seed production. 

I conclude by discussing the importance of these studies, and studies of plant interactions in 

general, for helping land managers balance the objectives of fuel load reduction with protecting 

desirable species (Chapter 5). 

(160 pages) 
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PUBLIC ABSTRACT 
 
 

Interspecific Interactions Between Penstemon palmeri and Shrubs in the Arid Shrublands of the 

Spring Mountains, Nevada 

 
by 

 
 

Jesse M. Poulos, Master of Science 
 

Utah State University, 2013 
 
 

Major Professor: Dr. Eugene W. Schupp 
Department: Wildland Resources 
 
 

A project involving shrub removal was undertaken by the United States Forest Service in 

the Spring Mountains National Recreation Area (SMNRA) to reduce accumulated woody fuels, 

which can pose risks to human communities. The SMNRA is also home to a variety of species 

that occur within these fuel reduction boundaries and are protected under the Multiple Species 

Habitat Conservation Plan (MSHCP) of Clark County, Nevada. It is unknown how MSHCP 

covered species will respond to shrub removal. This research focuses on the interactions between 

shrubs and the herbaceous plant Palmer’s penstemon (Penstemon palmeri), one of many nectar 

sources for the adults of MSHCP-covered Spring Mountains Acastus Checkerspot Butterfly 

(Chlosyne acastus ssp robusta). To understand the potential impact of shrub removal on P. 

palmeri, a series of observations and experiments were conducted. I begin by discussing plant 

interactions and the management concerns of the SMNRA, hypothesizing that shrubs may be an 

important component to P. palmeri populations (Chapter 1). I then document the effects of shrubs 

on P. palmeri performance and its spatial patterning to generate hypotheses about their 
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interactions (Chapter 2). The results suggest that shrubs reduced penstemon emergence but 

increase seedling survival (a seed-seedling conflict) resulting in a pattern of association in which 

P. palmeri survive almost exclusively under shrubs. Further, while shrubs had little effect on P. 

palmeri growth, the results suggest that shrubs inhibited its flowering but improved its fruit 

maturation. Seed-sowing and seedling transplant experiments suggested that shrub soils may help 

penstemon populations persist as seeds on the landscape during dry years and that when seedlings 

emerge, shrub soils also improve their survival (Chapter 3). I then provide a detailed description 

of the direct and indirect reproductive responses of penstemon to shrubs (Chapter 4). The results 

suggest that competition with shrubs reduced penstemon seed production, but shrubs 

simultaneously facilitated penstemon water “sufficiency” and altered its pollinators foraging 

behavior, indirectly increasing seed production. I conclude by discussing the importance of these 

studies, and studies of plant interactions in general, for helping land managers balance the 

objectives of fuel management while protecting desirable species (Chapter 5). 
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CHAPTER 1 

INTRODUCTION 

Positive (e.g., facilitation, mutualism) and negative (e.g., competition, allelopathy) 

interactions among plants occur simultaneously (Callaway 1995; Callaway and Walker 1997; 

Maestre et al. 2003) and the Stress Gradient Hypothesis (SGH) predicts that net species 

interactions are frequently positive under extreme abiotic conditions (Bertness and Callaway 

1994). In arid and semi-arid regions, uniform patterning among plants is often due to competition 

for water while spatial associations (i.e. aggregation) among plants can arise through many 

processes (Fowler 1986). Reliable interpretation of the mechanisms underlying spatial association 

is challenging, especially when used without complementary experimental evidence (Lepš 1990), 

however, patterns of spatial association often indicate a history of facilitative interactions 

(Callaway 2007; Brooker et al. 2008; Rayburn et al. 2010). Plants are said to be ‘associated’ 

when they aggregate spatially (Lepš 1990) and disentangling the processes that generate these 

spatial associations is challenging, requiring experimental approaches that are often expensive 

and logistically constrained (Lepš 1990; Callaway 2007; McIntire and Fajardo 2009). In contrast, 

assessing the effects of spatial associations for the performance of suspected beneficiaries is 

relatively easy to assess, the studies reported here primarily focus on how association with shrubs 

influences the individual performance of the perennial forb Penstemon palmeri (Palmer’s 

beardtoungue), but patterns of spatial association among P. palmeri populations and shrubs are 

also described. 

Since younger plants are often more vulnerable to hostile environments (Lambers et al. 

2008), scientists generally study associational effects (i.e. the effects of being aggregated) by 

documenting seedling emergence and early seedling survival and/or growth of the presumed 

beneficiary. However, considering associational effects across many life-stages improves our 



 
 
understanding of the nature of plant interactions (Schupp 1995, 2007; Miriti 2006; Armas and 

Pugnaire 2009; Gómez-Aparicio 2009). For example, while the effects of competition on 

reproduction are well documented (Weiner 1988) the reproductive stage is often not considered in 

facilitation studies, resulting in an incomplete understanding of the role of facilitation for plant 

fitness (Brooker et al. 2008; Bronstein 2009) and demography (Griffith 2010). The studies 

reported here describe these potential size-dependent responses in their analyses and consider the 

potential for life-stage conflicts. 

This research was conducted in the Spring Mountains National Recreation Area 

(SMNRA) of the Humbolt-Toiyabe National Forest in Clark County, NV. The Spring Mountains 

ascend from low desert floors (600 m) to the top of Mt. Charleston (3632 m) and are 

characterized by distinct vegetation zones associated with increasing elevation. Sites used in these 

studies were located within shrublands at elevations of 1600 m-2000 m; the communities 

consisted of a diverse mixture of shrubs and forbs.  

In recent times, fire seasons have become more severe due to fuel accumulation from 

historic fire suppression practices, climate change, human expansion (Keane et al. 2010), and 

invasion of grasses yielding fine-fuels (Brooks et al. 2004; Brooks and Matchett 2006). 

Consequently, mechanical thinning treatments are often required to manage fire threats to human 

populations in the wildland urban interface (WUI) (Kalabokidisl and Philip 1998), yet little is 

known about the potentially adverse effects of such treatments on desirable species (Ostoja et al. 

2010). In the SMNRA the United States Forest Service (USFS) has deemed human communities 

to be threatened by wild-fire due to fuel load accumulation that could hamper fire containment 

and/or evacuation efforts (USFS 2007). The Spring Mountains Hazardous Fuel Reduction Project 

(fuel reduction project) designated 800 hectares (2,000 acres) of continuous stands of vegetation 

to be subjected to a wide variety of mechanical fuel reduction treatments, ranging from pruning of 

individual trees to whole tree and shrub removal (Ostoja et al. 2010). While it is unknown what 
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impact these treatments will have on endemic species, at least 8 species (5 plants and 3 

butterflies) of the Multiple Species Habitat Conservation Plan (MSHCP) of Clark County, 

Nevada (RECON 2000), have been observed within the treatment boundaries (Ostoja et al. 2010). 

The MSHCP is designed to protect the rare and endemic plant and animal species found in Clark 

County by eliminating unmitigated habitat loss and fragmentation (RECON 2000). Unfortunately, 

little is known of the impacts of these treatments on species covered by the MSHCP (‘covered’ 

species). I posit that if shrubs facilitate covered plants or the host plants of covered butterflies by 

altering microhabitat conditions, then their removal could result in an unaccounted loss of habitat. 

This scenario is likely since woody species frequently facilitate other species in arid 

environments (Gómez-Aparicio 2009). However, without an understanding of how covered 

species directly and indirectly interact with shrubs, land managers will find it challenging to 

eliminate habitat loss of covered species while protecting the needs of human populations within 

the expanding WUI (Radeloff et al. 2005). 

This thesis focuses on interactions between shrubs and Palmer’s beardtongue (Penstemon 

palmeri A. Gray), one of many nectar host plants used by the endemic MSHCP-covered Spring 

Mountains Acastus Checkerspot butterfly (Chlosyne acastus ssp robusta) (Boyd and Austin 

2000). Yellow rabbit brush (Ericameria viscidiflorus) is this butterfly’s only known larval host 

plant (Boyd 2004), while a suite of plant species have been observed to provide it nectar (see 

Boyd and Austin 2000; RECON 2000; reviewed in Ostoja et al. 2010; Pinyon Environmental 

Engineering Resources Inc. 2011). The removal of E. viscidiflorus will negatively affect C. 

acastus populations by eliminating its larval foodplant, but removing other shrub species might 

also indirectly influence C. acastus if shrubs facilitate productivity of E. viscidiflorus or the 

pollen and nectar productivity of its nectar host plants. However, it should be recognized that C. 

acastus use many other species for nectar and the sites considered occur below the elevation of 

their known populations (Pinyon Environmental Engineering Resources Inc. 2011). 

3



 
 

Palmer’s penstemon (P. palmeri) is a drought and cold tolerant native perennial forb 

occurring throughout much of the western United States (Cronquist et al. 1984). Seeds are highly 

sensitive to abiotic conditions (light, moisture, and temperature) during and after maturation and 

generally germinate in spring, though fall germination can occur rarely (Kitchen 1988; Allen and 

Meyer 1990; Kitchen and Meyer 1992; Meyer and Kitchen 1992). Although it is generally 

described as preferring disturbed washes with well drained soils (Cronquist et al. 1984), in the 

SMNRA populations can exist outside of active washes, co-occuring with mixed shrub 

communities. At lower elevations (1600 m -2000 m) they appear to grow mostly beneath shrub 

canopies  (personal observation), possible indicating a history of positive interactions between 

shrubs and P. palmeri. 

Using a combination of observational and experimental approaches, this research 

dynamically describes spatial associations between shrubs (i.e., potential facilitators) and P. 

palmeri (i.e., hypothesized beneficiary) and documents the effects of those associations on the 

performance of P. palmeri (emergence, survival, growth, and reproduction). In Chapter 2, an 

observational approach compares natural patterns of emergence, survival, growth, and 

reproduction of P. palmeri occurring in ‘shrub’ microhabitats versus ‘interspace’ microhabitats. It 

is expected that the observed influence of shrubs on P. palmeri will depend on the performance 

metric used as well as the life-stage and size of the individual (Brooker et al. 2008; Gómez-

Aparicio 2009), but that at least some performance metrics will be improved by shrubs. In 

Chapter 3, an experimental approach was used to describe the importance of shrub canopies 

versus the shrub-associated soils in determining emergence and survival of sown P. palmeri seeds 

and the survival of transplanted seedlings. In Chapter 4, an observational study describes the 

direct and indirect effects of a single shrub species, Eriodictyon angustifolium (Nutt.), on P. 

palmeri seed production; this chapter used structural equation modeling to explore the importance 

of plant-plant interactions and plant-pollinator interactions for seed production in P. palmeri. 

4



 
 
Lastly, in chapter 5, the theoretical and land management policy implications of chapters 2-4 are 

discussed in the context of the WUI that exists within the SMNRA. 
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CHAPTER 2 

EFFECTS OF SHRUBS ON A NATIVE PERRENIAL FORB’S (PENSTEMON PALMERI A. 

GRAY) INDIVIDUAL SURVIVAL, GROWTH, AND REPRODUCTION AND  

THE SPATIAL PATTERNING OF ITS POPULATIONS 

 
I. Abstract 

In arid and semi-arid shrublands the positive (e.g. facilitative) effects of shrubs often 

outweigh their negative (e.g. interspecific competitive) effects on understory species emergence 

and subsequent performance. These net-positive effects can produce spatial association of 

understory plants with shrubs. The balance between facilitative and competitive effects of shrubs 

on associated understory plants depends on, among many other factors, shrub species identity and 

the size and life-stage of understory plants. For example, this balance can shift from being net-

facilitative at early life-stages (emergence, seedling and juvenile survival) to net-competitive at 

later life-stages (growth and reproduction). This study attempted to (1) describe interspecific 

spatial patterns (associative, no different than random, or dissociative) between the understory 

forb Penstemon palmeri and multiple shrub species and (2) document the effects of shrub-

association on P. palmeri survival, growth, and reproduction. Shrubs had conflicting effects on P. 

palmeri, facilitating some performance metrics (emergence in 2011, survival, and buds-to-fruit 

maturation rates) but interfering with others (emergence in 2010, growth, and the probability of 

initiating reproduction). The effects of shrub-association on survival and reproduction were often 

size-dependent; shrub-association appeared to improve survival more for smaller P. palmeri. In 

contrast, shrub-association improved bud-to-fruit maturation mostly for larger P. palmeri but 

reduced the probability that smaller individuals would initiate reproduction. These conflicting 

effects of shrub-association coincided with population-level shifts in associative patterns; P. 

palmeri populations were initially associated with shrubs, but in 2010 shrubs reduced P. palmeri 
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emergence densities compared to interspaces and interspecific spatial patterns between shrubs 

and P. palmeri populations shifted from associative to dissociative. However, while shrubs had a 

net negative effect on the density of seedling emergence, the net positive effect on seedling 

survival gradually shifted interspecific spatial patterns toward associative. These results suggest 

that shrubs have important and complex effects on the spatial patterning and demography of P. 

palmeri populations, highlighting the importance of observing the effects of shrub-association 

temporally over a range of plant sizes, life-stages, and years. 

 
II. Introduction 

 Positive (facilitation, mutualism) and negative (resource competition, allelopathy) 

interactions often occur simultaneously among plants (Callaway 1995, 2007 pp 179–254; Maestre 

et al. 2003). The stress gradient hypothesis (SGH; Bertness and Callaway 1994) posits that the 

effects of facilitation should frequently outweigh the effects of competition in physiologically 

stressful environments. Shrubs frequently ameliorate the stressful conditions that limit plant 

establishment in deserts, leading to many accounts of spatial association between shrubs and 

other species in arid environments (e.g. Flores and Jurado 2003). Many mechanisms can promote 

establishment beneath shrub canopies. For example, shrubs can buffer air and soil temperatures, 

improve soil nutrients and water availability, and offer protection from larger herbivores 

(Pugnaire and Lázaro 2000; Callaway 2007 pp 15-178). Thus, shrubs can be considered as 

‘benefactors’ to the ‘beneficiary’ understory plants (Callaway 1995). In contrast, interspaces 

between shrubs can be characterized by intense insolation and extreme fluctuations in abiotic 

conditions (Tracol et al. 2011) which can directly or indirectly reduce emergence and/or survival, 

potentially limiting plant establishment (Callaway 1992; Callaway et al. 1996; Carrillo-Garcia et 

al. 2000; Kitzberger et al. 2000; Shumway 2000; Gómez-Aparicio et al. 2005; Becerra and 

Bustamante 2011). However, interaction can extend beyond the canopy to influence interspace-
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associated plants (Dawson 1993; Scholes and Archer 1997; Dickie et al. 2005). For example, 

hydraulic lift (sensu Richards and Caldwell 1987) can redistribute water from deep soil profiles 

making it available to plants with shallower roots (Caldwell and Richards 1989). These positive 

interactions can weaken with increasing distance from the lifting plant (Dawson 1993). 

Additionally, shade extends beyond the canopy on its poleward side. Thus, if hydraulic lift or 

shade improve recruitment or survival, then plants in interspaces may aggregate near shrubs even 

if they live beyond the canopy. 

 Interspecific spatial patterns (sensu Lepš 1990) between plants have long been assumed 

to give insight into the relative importance of positive versus negative interactions (Shreve 1931; 

Went 1942; Niering et al. 1963; Turner et al. 1966; Fowler 1986; McAuliffe 1988; Callaway 

1995; Flores and Jurado 2003). However, using spatial patterns alone to infer their underlying 

processes has limitations (Lepš 1990; McIntire and Fajardo 2009) because other processes 

besides facilitation can create association among plants (Lepš 1990; McIntire and Fajardo 2009). 

For example, sub-canopy seed accumulation (Reichman 1984; Pugnaire and Lázaro 2000; Vander 

Wall and Thayer 2001; Bullock and Moy 2004) and shared habitat requirements in a patchy 

resource environment (Couteron and Kokou 1997) can lead to association among plants. 

Analyses of interspecific spatial patterns rely on correlative evidence and associative patterns are 

often driven by multiple dynamic processes; thus, when used alone, they cannot demonstrate the 

mechanisms that produced them, especially if they are statically observed (Lepš 1990). However, 

combining repeated measures of spatial pattern and understory plant performance (e.g. survival, 

growth, reproduction) provides more suggestive evidence than ‘snap shot’ correlative results 

(Lepš 1990; e.g. Chapter 3 herein). 

 Overstory species often have conflicting effects on their associated understory species 

emergence, survival, and growth, increasing some and decreasing others (Greenlee and Callaway 

1996; Ibáñez and Schupp 2002; Miriti 2006; Gómez-Aparicio 2009; Soliveres et al. 2010). Such 
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life-stage conflicts seem to be widespread (Schupp 2007). Thus, the observed effect of overstory 

plants on understory plants depend on the life-stage considered and performance metric used 

(Gómez-Aparicio 2009). One common type of life-stage conflict, the seed-seedling conflict, 

occurs when the conditions that favor seed success disfavor seedling success, and vice versa 

(Schupp 1995). Another common life-stage conflict occurs when overstory plants facilitate 

understory emergence and survival, but impede growth (Gómez-Aparicio 2009), probably 

because net-interactions often shift from being facilitative for the smaller and vulnerable seed and 

seedling stages to competitive as understory plants grow larger (Greenlee and Callaway 1996; 

Miriti 2006; Callaway 2007 pp 179-254). Since plant size is closely related to life-stage, others 

have similarly noted the importance of the sizes of interacting plants in determining the net effect 

of their interactions since smaller, more shallowly rooted understory plants are expected to 

benefit more from ameliorated stressful conditions (Callaway and Walker 1997). Thus, the 

direction and strength of the net interaction is expected to shift as understory plants develop and 

optimal conditions for survival and growth change. 

 The magnitude and direction of the net effects of interactions between plants is often 

species-specific, depending on characteristics of the benefactors (Callaway 2007 pp 117–178) and 

beneficiaries (Maestre et al. 2009; Reisner 2010). Different shrub species can have different 

effects on beneficiary germination (Rudgers and Maron 2003), survival (Callaway and D’Antonio 

1991; Rudgers and Maron 2003; Landero and Valiente-Banuet 2010), productivity (Landero and 

Valiente-Banuet 2010), and reproduction (Casper 1996). Thus, each shrub species may uniquely 

alter conditions so as to create a heterogeneous patchwork of microhabitats with dissimilar effects 

on understory plants of various life-stages. 

While the role of competition on reproduction is well documented (Weiner 1988), most 

research on facilitation has evaluated emergence and early survival and/or growth of beneficiary 

plants (Brooker et al. 2008). Although seedling survival may be improved under shrubs, slower 
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vegetative growth and different reproductive patterns may be a consequence of higher densities of 

conspecifics under shrubs as well as competition with the facilitating shrub itself (Weiner 1988; 

Miriti 2006). Fluctuating abiotic conditions and competition influence how plants balance 

resource allocation between growth, maintenance, and reproduction, while investing in growth 

has the advantage of increasing future reproductive output, plants growing under these conditions 

may benefit from early reproduction rather than waiting and risking mortality or increasing 

interference by other plants if resources become more limited (Stearns 1976; Reekie and Bazzaz 

2005; Bonser and Aarssen 2009). However, the timing of and allocation to reproduction in the 

context of microhabitat conditions have been rarely considered (but see De Ridder and Dhondt 

1992a; b), especially in light of facilitation (Brooker et al. 2008), although studies of reproductive 

facilitation are becoming more common (Casper 1996; Shumway 2000; Tielbörger and Kadmon 

2000; Choler et al. 2001; Kikvidze et al. 2001; Tirado and Pugnaire 2003; Griffith 2010; 

Soliveres et al. 2010; Cranston et al. 2012). Further, although the importance of size in 

reproduction is increasingly being recognized (Bonser and Aarssen 2009; Weiner et al. 2009), 

most studies examining potential facilitation of reproduction do not use size as a covariate of 

reproduction in their analyses (but see Soliveres et al. 2010; Cranston et al. 2012). The effects of 

facilitation on individual reproduction are important to consider since they can have emergent 

demographic effects at the population level (Griffith 2010). Despite the potentially complex 

effects of positive and negative interactions on beneficiary reproductive output and allocation 

patterns (e.g. Cranston et al. 2012), these topics have received little attention (Brooker et al. 

2008).  

 This chapter describes interspecific spatial patterns between shrubs and the perennial forb 

Penstemon palmeri(A. Gray) in the Mojave Desert and examines the effects of different shrub 

species on multiple performance metrics, life-stages, and sizes of P. palmeri from 2008-2011. 

Specific objectives of this study were to: (1) characterize interspecific spatial patterns between 
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shrubs and different cohorts and populations of P. palmeri over time, and (2) to evaluate the 

effects spatial association have on individual P. palmeri at multiple life-stages (emergence, 

survival, growth, and reproduction) and sizes. Predictions for Objective 1 are that: (1a) 

interspecific spatial patterns between cohorts of P. palmeri and shrubs will initially be 

associative, (1b) the existence and strength of P. palmeri association with shrubs will depend on 

the shrub species considered, (1c) interspace-associated P. palmeri will aggregate closer to shrubs 

than expected by chance, and (1d) interspecific spatial patterns between shrubs and P. palmeri 

will shift over time. Predictions for the second objective are that: (2a) shrub-association will have 

positive effects on P. palmeri survival, especially for the smallest individuals, (2b) P. palmeri 

survival will depend on the identity of the associated shrub, (2c) higher survival of shrub-

associated individuals will result in increasingly strong associative patterns between P. palmeri 

and shrubs, (2d) the observed effect of shrub-association will depend on the performance metric 

evaluated (emergence vs. survival vs. growth vs. reproduction), and (2e) the size of P. palmeri. 

Still considering the second objective, predictions on the effects of shrub-association on 

emergence densities, plant size and growth are not clear. Further, the reproductive effects of 

shrub-association are difficult to predict based on the available literature. However, I ask four 

questions related to reproduction. After controlling for plant size, does shrub-association 

influence an individual’s (a) probability of initiating reproduction, (b) number of initiated buds, 

(c) percentage of initiated buds that successfully developed into mature fruits, and/or (d) total 

number of mature fruits?  

 
III. Materials and Methods 

 This study was conducted in the mid-elevation (~1600 m) shrublands of the Spring 

Mountains National Recreation Area (SMNRA) in southern Nevada, USA. The SMNRA is 

within the Humboldt-Toiyabe National Forest and rises from Mojave Desert valleys at elevations 
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below 600 m to 3,633 m at the alpine peak of Mt. Charleston. All plant names follow the USDA 

NRCS PLANTS database (NRCS 2011). 

The suspected beneficiary is Palmer’s beardtongue (P. palmeri), a short lived perennial 

herb common in washes and along roadsides throughout the arid south-western United States 

(Cronquist et al. 1984). It is considered to be drought and cold tolerant (NRCS 2011). 

Temperature and moisture during seed maturation and after dispersal drive germination 

requirements and dormancy induction and release (Kitchen and Meyer 1992) leading to cyclic 

patterns of seed dormancy and the formation of persistent seed-banks (Meyer and Kitchen 1992). 

At the start of the study, almost all P. palmeri appeared a priori to be found under shrub 

canopies. This observation was interpreted to suggest that shrub-induced facilitation may be 

influencing spatial patterning of P. palmeri populations. 

  Replicate study plots (16 m x 8 m) were established at three Mojave Desert shrubland 

sites within the SMNRA: Lovell Canyon (LC), Lower Kyle Canyon (LKC), and Middle Kyle 

Canyon (MKC). Distances between sites were between 5 km (LKC to MKC) and 14 km (LKC to 

LC). Plots were established within known patches of P. palmeri and plots in a site were at least 

15 m apart. On 15 November 2008, eight plots were established in LKC and three plots were 

established in MKC. On 29 May 2009, three more plots were established in LC in an area that 

burned on 17 July 2002. Although sites were chosen to be similar (i.e. areas with slope < 5°; 

shrub dominated), they were analyzed separately since there remained considerable differences in 

soils and climate (Table 2-1), as well as shrub composition. Total shrub cover was approximately 

56% (LC), 53% (LKC), and 62% (MKC); at MKC a single Pinus monophylla tree covered 4.9% 

of the considered area and was treated as a shrub for analyses. The shrub community at LC was 

dominated by Eriodictyon angustifolium (~70% of shrub cover) with a mixture of 10 other shrub 

species, at LKC was dominated by Ericameria nauseosus (~32% of shrub cover) with a mixture 
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of 8 other shrub species, and at MKC was dominated by Artemisia tridentata (~49% of shrub 

cover) along with 5 other shrub species. 

 Data for maximum temperature, minimum temperature, and precipitation were obtained 

for 2000-2011 for each site (PRISM Climate Group 2011). From 2000-2007, mean annual 

precipitation (MAP) and mean annual temperature (MAT) were inversely related and formed a 

subtle climatic gradient; LC was driest, with LKC being slightly wetter and MKC being the 

wettest (Table 2-1). Precipitation generally peaked during winter (November-March) and was 

followed by a pronounced dry season (April-Mid July), varying intensities of monsoons (July – 

September), and intermediate precipitation (September-November). Across all sites, winter 

precipitation during this study (2008-2011 mean = 313.3 mm) was more than the 2000-2007 

winter average (mean = 211.7 mm). In contrast, monsoon precipitation in 2009 (63.7 mm) and 

especially in 2010 (25.7 mm) was less than average (83.6 mm). The highest site was colder and 

its frost-free period was shorter than at the other sites (Table 2-1). 

 
 
 
 
 

Table 2-1 
Mean annual precipitation (MAP), mean annual temperature (MAT) from 2000-2007, and soil 
association from lowest to highest precipitation (and highest to lowest MAT). Sites are shown 
below by location and according to elevation (elev.). Precipitation and MAT were obtained from 
(PRISM Climate Group 2010) and soil associations were obtained from the USDA NRCS web 
soil survey (Soil Survey Staff et al. 2011) 

Site 
Location 

 (latitude/longitude) 
Elev. 
(m) 

MAP† 
(mm) 

MAT† 

(°C) Soil Association 

LC 36° 9' 11.663" N/115° 34' 19.515" W 1770 334.18 12.05 Purob-Irongold†† 

LKC 36° 16' 18.867" N/115° 31' 17.328" W 1651 350.57 11.4 Purob-Irongold†† 

MKC 36° 16' 20.889" N/115° 34' 38.521" W 1967 415.53 3.75 Kylecanyon-Goodwater††† 
† Years 2000-2007 
††   frost-free period: 130-240 days; depth to petrocalcic layer: 36-51 cm 
††† frost-free period: 90-180 days; depth to petrocalcic layer: 51-99 cm 
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Study design 
 
 

 At each site, interspecific spatial patterns between shrubs and P. palmeri were 

characterized (objective 1), and seedling emergence, survival, growth, and reproduction were 

monitored from November 2008 to March 2011 (objective 2). Three cohorts were considered: a 

mixed size and life-stage cohort comprised of juveniles and adults found during the first census 

(November 2008 LKC and MKC; May 2009 LC) and two cohorts of similarly sized and aged 

seedlings that emerged in the spring of 2010 and of 2011; there was no emergence in 2009. After 

the initial census, monitoring was conducted in May, July, and November 2009; May, July, and 

September 2010; and May 2011. During each census survival and size of previously tagged 

individuals were recorded. New recruits were tagged and their size (number of leaves) and 

microhabitat association (shrub-associated or interspace-associated) were recorded. An individual 

P. palmeri was considered to be shrub-associated if its stem originated below the shrub canopy, 

otherwise it was classified as being interspace-associated. For the initial mixed ‘2008 cohort’, 

measurements of the major diameter, the diameter perpendicular to the major, and height from 

ground level to rosette top were taken during each census. The number of reproductive nodes was 

counted and developmental stage (e.g. buds, flowers, fruits) noted.  

 For objective 1, at each site I evaluated interspecific spatial associations (sensu Lepš 

1990) between shrubs and P. palmeri populations over time (prediction 1a) and tested whether 

the existence and magnitude of P. palmeri association with shrubs differed among shrub species 

(prediction 1b). Species-specific shrub cover was determined by establishing 4 parallel 16-m 

transects spaced 2 m apart in each plot and estimating cover using line-intercept methodology, 

which measures the proportion of the transects intercepted by each shrub species. Prediction 1c is 

that P. palmeri occurring in interspaces are closer to shrubs than expected by chance. To evaluate 

this prediction, random points were created by generating 4 sets of 10 random numbers between 
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0.00 m and 16.00 m for each plot; in the field, a set of 10 random points was assigned to each of 

the 4 transects used to characterize shrub cover, and the distance from each random point to the 

canopy edge of the nearest shrub was measured. Similarly, I measured the distance between the 

center of each interspace P. palmeri and the canopy edge of the nearest shrub. Because densities 

of newly recruited seedlings were very high, this part of the objective was abandoned for the two 

cohorts of new recruits in favor of obtaining more samples for the survival analyses. Interspecific 

spatial associations were described for each census to assess whether they would shift temporally 

(Prediction 1d). 

For objective 2, survival of P. palmeri was expected to be higher under shrubs than in 

interspaces, especially when comparing the smallest individuals (prediction 2a). Survival data 

were collected by recording the status (alive or dead) of each plant during each census; the 

species of shrub was also noted to address whether survival differences were species specific 

(prediction 2b). Spatial associations within each cohort were described at the end of the study for 

comparison to initial spatial associations (prediction 2c).The size of the initial cohort (above 

ground volume; AGV) was assumed to be log-normally distributed and modeled as the volume of 

an ellipsoid (ܸܩܣ ൌ
గ௔௕௖

଺
	, where a is the major diameter, b is its perpendicular diameter and c is 

plant height). Estimates of AGV were used to parameterize the equation for relative growth rate 

ܴܩܴ) ൌ
ൣ௟௡൫஺ீ௏೟೙శభ൯–௟௡൫஺ீ௏೟೙൯൧

ൣ௧೙శభ	–	௧೙൧
, where tn = time at census n). Size of new recruits was measured 

as a count of their leaves. For reproduction, total initiated buds was estimated using the maximum 

observed reproductive nodes (pedicels), and total mature fruits was estimated by using the 

maximum observed fruits from May-July, 2009. These metrics were used to evaluate predictions 

that observed differences between microhabitats would depend on the performance metric 

considered (prediction 2d) and that differences would be size dependent (prediction 2e). 
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Analyses 
 
 

To address prediction 1a, that higher proportions of P. palmeri populations would be 

shrub-associated more often than expected by chance, separate chi-square goodness of fit tests 

were conducted for each cohort at each site. This is a common approach (Lepš 1990) in which 

observed numbers of shrub-associated and interspace-associated P. palmeri are compared to 

expected numbers, calculated as the proportional cover of a microhabitat (shrub vs. interspace) 

multiplied by the total number of P. palmeri in the plot. Although plants were clustered within 

plots, in each analysis observed and expected counts were pooled across plots; I am not aware of 

any goodness of fit test that accommodates clustering of both observed and expected counts. I 

assessed whether interspecific spatial patterns between shrubs and P. palmeri populations depend 

on the identity of the shrub species (prediction 1b), again using chi-square goodness of fit tests. 

This was accomplished by excluding interspace-associated P. palmeri from the chi-square 

analysis and treating each shrub species as a distinct microhabitat. Some shrubs species (LKC: 

Atriplex canescens, Sphaeralcea ambigua; MKC: E. angustifolium, Fallugia paradoxa) were 

excluded from analyses of interspecific spatial patterns since they covered little plot area and 

were never associated with P. palmeri. Species-specific chi-squared tests only used data from the 

first census because of high mortality and were applied separately for each cohort and site. To 

address prediction 1c, that interspace-associated P. palmeri would aggregate closer to shrubs than 

would be expected by chance, the empirical distribution function (EDF) of distance between P. 

palmeri and nearest shrub canopy edge was compared to the EDF for random points with the 

Kolmogorov-Smirnov test for Two Independent Samples (Smirnov 1939) using the NPAR1WAY 

procedure in SAS 9.2 (SAS Institute Inc. 2008); these data were again pooled over plots within 

each site. Finally, to determine whether interspecific spatial patterns shifted from census to 
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census (prediction 1d), cohorts were combined within sites and chi-square goodness of fit tests 

were conducted for each census. 

 Shrubs were expected to improve P. palmeri survival, especially for the smaller P. 

palmeri (prediction 2a), and survival was predicted to depend on shrub species (prediction 2b). 

To test these predictions, survival analyses of the 2008 and 2010 cohorts were conducted using 

Cox proportional hazards (PH) models with the PHREG procedure in SAS 9.3 (SAS Institute Inc. 

2011). Cox PH and standard regression models are similar. However, three key differences are: 

(1) individuals surviving past the last census are right-censored (allowing the fact that they 

survived to the last census to be accounted for in the estimates), (2) imprecise knowledge of when 

mortality occurred between censuses can be accounted for by treating data as “tied”, and (3) 

estimates are in the form of easily interpreted Hazard Ratios (HR), which represent comparisons 

of survival between one group (numerator) relative to another group (denominator) (e.g. 

interspaces versus shrubs) (Allison 2010). For all survival models, potential non-independence 

among individuals within plots was accounted for with a shared frailty model for plants within 

plots using the ‘random’ statement within PROC PHREG; ties in the data (see ‘2’ above) were 

addressed using the ‘exact’ method, which is recommended when the precise time of death 

between censuses is unknown (Allison 2010). Six survival models (3 sites × 2 cohorts per site; 

survival data were not collected for the 2011 cohort) were used to examine the survival effects of 

shrub-association. Mortality risk was modeled as a response to an individual’s initially observed 

size, spatial pattern (shrub-associated or interspace-associated), and their interaction. To address 

species-specific effects of shrubs on P. palmeri survival (prediction 2b), six more Cox models 

were used to examine pair-wise comparisons of shrub effects on hazard of P. palmeri for both 

cohorts within each site (e.g. survival under species ‘A’ versus species ‘B’, species ‘B’ versus 

species ‘C’, etc.); species with fewer than 10 associated P. palmeri were excluded from the 

analysis. To determine whether differences in survival between shrub and interspace 
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microhabitats coincided with shifts in interspecific spatial patterns within cohorts (prediction 2c), 

chi-squared goodness of fit tests from the final census were compared to those of the initial 

census.  

To assess whether shrubs affected size, growth, and reproduction (prediction 2d) and 

whether the effects were size-dependent (prediction 2e), differences in P. palmeri size, growth, 

and reproduction between shrub-associated and interspace-associated plants were analyzed using 

generalized linear mixed models (GLMM) with the GLIMMIX procedure in SAS 9.2 (SAS 

Institute Inc. 2008).When possible, models included random effects for plots and their interaction 

with microhabitat to account for within plot dependence. To model size (log10 AGV) and growth 

(RGR) I included a fixed effect factor for microhabitat association; size was modeled as log-

normal distributed while RGR was modeled as normally distributed. For the 2008 cohort at LC, 

size at only the first census was analyzed and growth only between the first and second censuses 

was analyzed since sample sizes of interspace-associated plants were too small in the subsequent 

censuses to meaningfully analyze. At LKC and MKC in 2008 there were too few interspace-

associated plants to conduct reliable analyses of size and growth. For the 2010 cohort at all sites, 

cohort analyses of size were made only for the first census and growth was not analyzed because 

of poor survival. For the four questions related to reproduction, initial plant size (log10(AGV)), 

microhabitat association (shrub or interspace), and their interaction were used as fixed effects 

factors. Response data for each reproductive question were distributed differently; assumed 

distributions for questions a-d were binary, negative-binomial, over-dispersed binomial, and 

negative-binomial, respectively. For questions b-d, only plants that initiated reproduction were 

analyzed. Insufficient numbers of P. palmeri in interspaces at LKC and MKC (all years) 

precluded reliable analysis of reproduction. Only the initial cohort (2008) at LC was evaluated for 

these questions since new recruits did not become reproductive during this study and the other 

two sites (LKC and MKC) had too few reproductive plants in the initial cohort. However, at LC 
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the presence of 32 reproductive interspace-associated plants and 108 shrub-associated plants 

permitted comparisons of reproduction in 2009; unfortunately, robust analysis of reproduction at 

LC was not possible in 2010 due to low densities of P. palmeri in interspaces (2 remaining; 10 

fruits produced in interspaces and 177 fruits produced under shrubs). Finally, random effects 

were included only for plots; ideally, models would have also included random effects for the plot 

× microhabitat interaction, but there were issues with their estimation and they were not included.  

 
IV. Results 

For the 2008 cohort, a total of 238 (LC; 0.62 plants/m2), 99 (LKC; 0.10 plants/m2), and 

69 (MKC; 0.18 plants/m2) plants were tagged and monitored. No emergence occurred in 2009; 

emergence did not occur until the spring of 2010 and these seedlings were tagged in July 2010; 

500 (LC; 1.30 plants/m2), 60 (LKC; 0.06 plants/m2), and 73 (MKC; 0.19 plants/m2) newly 

recruited seedlings were tagged and monitored. Finally, in 2011 another cohort emerged, yielding 

597 (LC; 1.55 plants/m2), 191 (LKC; 0.19 plants/m2), and 265 (MKC; (0.69 plants/m2) new 

seedlings. Since ages are relatively similar within cohorts of new recruits, their size varied much 

less than did the sizes of the 2008 mixed-age cohort, which likely consisted of the surviving 

plants of many previous recruitment events. 

 
Objective 1: temporal descriptions of interspecific spatial patterns 

 
Prediction 1a: At the first census (Nov. 2008 at LKC and MKC; May 2009 at LC, 

interspecific spatial patterns varied between cohorts, but were relatively consistent within cohorts 

and between sites (Fig. 2-1). For the 2008 cohort, interspecific spatial patterns between shrubs 

and P. palmeri populations were associative at all sites during the initial census (Fig. 2-1); there 

were significantly more shrub-associated juveniles and adults than would be expected based on 

shrub cover (all sites P < 0.001; LC: 2
1 = 66.89; LKC: 2

1= 55.59, MKC: 2
1 = 22.28). For the 
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2010 cohort, interspecific spatial patterns were dissociative during the initial census (July 2010) 

(Fig. 2-1); fewer emerged seedlings were shrub-associated than expected based on shrub cover at 

all sites (LC: P < 0.001, 2
1 = 178.93; LKC: P < 0.001, 2

1 = 26.78; MKC: P = 0.037, 2
1 = 4.35). 

For the 2011 cohort, interspecific spatial patterns were associative at LC during the initial census 

(May 2011) (Fig. 2-1a); more seedlings were shrub-associated than expected based on shrub 

cover (P < 0.001; 2
1 = 73.53). In contrast, interspecific spatial patterns were neither associative 

nor dissociative (i.e., were not statistically different than random) at LKC (Fig. 2-1b; P = 0.060; 

2
1 = 3.55) and MKC (Fig. 2-1c; P = 0.128; 2

1 = 2.31); at these sites seedlings emerged under 

shrubs in proportion to shrub cover. 

 Prediction 1b: Shrub-associated P. palmeri occurred in proportions greater than expected 

under some shrub species, in proportions lower than expected under others, and in proportions no 

different than expected under the remaining species (Fig. 2-2). For shrub-associated P. palmeri of 

the 2008 cohort, differences among shrub species in their associations with P. palmeri were 

strong at LKC and MKC, but at LC the pattern was weaker and only marginally significant (Fig.  

 

Fig. 2-1: Initial differences between the proportion of shrub-associated P. palmeri observed 
compared to the proportion expected based on shrub cover for each cohort (shades) and site 
(panels a-c). N=total number of P. palmeri individuals. Significance measures result from chi-
squared goodness of fit tests (*** P < 0.001; * P < 0.05; NS: Not Significant).  
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2-2). At LKC, the 2008 cohort of P. palmeri was most strongly associated with P. mexicana and 

most strongly dissociated with E. nauseosus (Fig. 2-2, middle panel). At MKC, P. palmeri were 

also most strongly associated with P. mexicana but were most strongly dissociated with A. 

tridentata (Fig. 2-2, bottom panel).  

In 2010, seedling emergence differed from expected emergence under at least some shrub 

species at all sites (Fig. 2-2). At LC, seedlings emerged at higher than expected densities under C. 

greggii, F. paradoxa, and G. microcephala, and in much lower than expected densities under  

E. angustifolium (Fig. 2-2, top panel). At LKC, seedlings emerged at higher than expected 

densities under A. tridentata, P. mexicana, and dead shrubs and at lower than expected densities 

under F. paradoxa (unlike at LC) and E. nauseosus; these patterns were similar to those in the 

initial cohort (Fig. 2-2, middle panel). At MKC, seedlings emerged at higher than expected 

densities under P. mexicana but at lower than expected densities under A. tridentata (contrasts 

LKC), again patterns similar to those in the initial cohort (Fig. 2-2, bottom panel).  

For the 2011 cohort, at LC patterns of emergence were generally similar to those in the 

2010 cohort, but appear less pronounced (Fig. 2-2, top panel). At LKC, seedlings were associated 

more strongly with A. tridentata and E. nevadensis (unlike in 2010) and more weakly with P. 

mexicana than the previous year (Fig. 2-2, middle panel), and at MKC, seedlings emerged at 

higher than expected densities under P. fasciculata (contrasts 2010) while seedlings showed 

weaker associations with P. tridentata than the 2008 and 2010 cohorts (Fig. 2-2, bottom panel).  

Prediction 1c: Interspace-associated P. palmeri of the 2008 cohort occurred no different 

from random throughout interspaces; there was no statistically significant difference between the 

distances from shrub canopy edges to randomly generated points versus naturally occurring P. 

palmeri at any site (LC: D = 0.083 , P = 0.998; LKC: D = 0.184, P = 0.934; MKC: D = 0.482, P 

= 0.103). As previously mentioned, this prediction was not addressed for new cohorts.  
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Prediction 1d: Interspecific spatial patterns between P. palmeri populations and shrubs 

changed over time (Fig. 2-3). The initial 2008 mixed age cohort had much higher than expected 

proportions of P. palmeri associated with shrubs at all sites, indicating strong associations 

between P. palmeri populations and shrubs. When the 2010 cohort emerged at higher than 

expected densities in interspaces, the proportion of P. palmeri that were shrub-associated sharply 

declined at all sites (Fig. 2-3); at LC and LKC this flush of new recruits in interspaces was so 

strong that it resulted in significantly fewer P. palmeri associated with shrubs than expected by 

chance (i.e., a shift from associative patterns to dissociative patterns) but at MKC the result was a 

shift from strong association with shrubs to patterning no different than random. Following 2010 

emergence, from July-September, interspecific spatial patterns shifted back from dissociative to 

associative at LC and LKC and remained no different than random at MKC. When the 2011 

cohort emerged, a drop in the proportion of shrub-associated P. palmeri was seen at LKC and 

MKC, similar to, but less pronounced than in 2010, resulting in small negative shift (Fig. 2-3). 

However, at LC, emergence in 2011 was 

higher under shrubs, increasing the 

proportion of shrub-associated P. palmeri 

and amplifying already associative 

interspecific spatial patterns (Fig. 2-3).  

 
Objective 2: evaluation of plant 

performance 

 
Prediction 2a: Mortality was high 

across all sites and microhabitats (Fig. 2-4). 

For the initial 2008 cohort at LC,  

Fig. 2-3: Temporal comparison of the overall 
difference between the observed and expected 
percentage of shrub-associated P. palmeri when 
cohorts were combined within sites. ‘NS’ 
indicates point-comparisons that were no 
different than zero, all other points were 
significantly different than zero (P < 0.05). 
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microhabitat association (shrub or 

interspace) and size of P. palmeri were 

important factors driving survival, but their 

interacting effects were less pronounced 

(Table 2-2). While the importance of the 

statistical interaction between size and 

microhabitat is questionable at LC, the HR 

estimates indicate greater survival of shrub-

associated seedlings than interspace 

associated seedlings (i.e. HR < 1.00), but 

indicate no difference in survival rates 

between microhabitats for larger plants 

(Table 2-2). At LKC and MKC, 

microhabitat, plant size, and their interaction 

had little effect on the survival of the 2008 

cohort (Table 2-2). For the 2010 cohort at 

LC, microhabitat was more important than 

size and the microhabitat-size interaction in 

driving seedling survival (Table 2-2). 

Further, while there is not statistical support 

that survival depends on size or its 

interaction with microhabitat, HR estimates 

indicate that shrub-associated seedlings had 

higher survival than those growing in  

 

Fig. 2-4: Comparison of the proportion of 
shrub-associated (solid lines) and interspace-
associated (dotted lines) P. palmeri remaining 
over time at (a) LC, (b) LKC and (c) MKC for 
the 2008, mixed cohort (black) and for the 2010 
emerged seedling cohort (gray). Note that y-
axes are on the log10 scale and the circles on the 
lines represent the time of each census. 
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interspaces for the two smallest size classes but not for the largest (Table 2-2). At LKC, there was 

stronger evidence that survival was related to size, microhabitat and their interaction; when the 

smallest plants were compared, HR estimates indicate higher survival for shrub-associated 

seedlings than those located in interspaces, but HR estimates increased when larger seedlings 

were compared and indicate survival rates were becoming more similar between microhabitats for 

larger seedlings (Table 2-2). At MKC, there was little evidence that any of these factors were 

important drivers of survival (Table 2-2).  

Table 2-2 

Model fit and hazard ratios (HR) and their 95% confidence limits for six Cox PH models (3 
sites × 2 cohorts) with covariates for plant size (Log10AGV for the 2008 cohort and Log10(leaf 
count) for the 2010 cohort), microhabitat association (shrub or interspace), and their 
interaction. The HR represents the risk of mortality for shrub-associated P. palmeri relative to 
interspace-associated P. palmeri. HR > 1.0 indicates higher mortality for P. palmeri that are 
shrub-associated than interspace-associated while HR < 1.0 indicates the opposite. Size was 
Log10AGV for the 2008 cohort and Log10(leaf count) for the 2010 cohort. 

Model Information Parameter Estimates Hazard Ratios 

Site Cohort Model Fit Covariate P AGV HR 95% CL P 

LC 2008 2
4.15=11.83  Microhabitat 0.049  64 cm3 0.45 0.23-0.90 0.023 

 Cohort P=0.021  Size 0.035  640 cm3 0.71 0.48-1.06 0.094 
    Interaction 0.109  6400 cm3 1.13 0.57-2.25 0.735 
 2010 2

3.44=13.02  Microhabitat 0.073  2 leaves 0.57 0.37-0.88 0.010 
 Cohort P=0.007  Size 0.569  4 leaves 0.72 0.56-0.91 0.007 
    Interaction 0.340  6 leaves 0.90 0.49-1.64 0.729 
LKC 2008 2

8.02=19.52  Microhabitat 0.550  64 cm3 1.12 0.34-3.67 0.848 
 Cohort P=0.013  Size 0.467  640 cm3 0.59 0.10-3.40 0.551 
    Interaction 0.526  6400 cm3 0.31 0.01-11.33 0.520 
 2010 2

3.00=9.30  Microhabitat 0.018  2 leaves 0.15 0.03-0.69 0.015 
 Cohort P=0.026  Size 0.014  4 leaves 1.04 0.39-2.79 0.940 
    Interaction 0.033  6 leaves 7.24 0.63-82.85 0.112 
MKC 2008 2

3.00=1.97  Microhabitat 0.680  64 cm3 0.61 0.18-2.05 0.425 
 Cohort P=0.578  Size 0.907  640 cm3 0.70 0.27-1.77 0.447 
    Interaction 0.852  6400 cm3 0.79 0.11-5.86 0.820 

 2010 2
3.78=5.08  Microhabitat 0.243  2 leaves 0.44 0.14-1.39 0.160 

 Cohort P=0.282  Size 0.686  4 leaves 0.59 0.33-1.06 0.077 
    Interaction 0.747  6 leaves 0.80 0.35-1.85 0.605 
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Prediction 2b: For the 2008 cohort, at LC there was evidence that the identity of the 

associated shrub influenced P. palmeri survival; the best support was seen when comparing E. 

angustifolium-associated P. palmeri to those associated with E. nauseosus, which had lower 

survival (Table 2-3). Note also that there was some indication that plants associated with E. 

angustifolium survived better compared to interspace-associated plants (Table 2-3). At LKC, the 

best evidence that survival was higher under one shrub species compared to another came when 

comparisons involved S. dorrii; note that relative to interspace-associated plants, there was little 

statistical support that association with any shrub species improved survival more than the others, 

though S. dorrii was the strongest candidate as benefactor to P. palmeri survival (Table 2-3). At 

MKC there was little evidence that microhabitat association was a major determinant of survival 

(Table 2-3). For the 2010 cohort, at LC there was little evidence that seedling survival varied 

between shrub microhabitats, instead, there is stronger evidence that multiple shrub species 

improved seedling survival relative to interspaces, but none improved survival more than the 

others (Table 2-3). At LKC, there were too few shrub-associated seedlings to make reliable 

comparisons of survival and at MKC only P. mexicana had sufficient numbers of shrub-

associated seedlings for the analysis, and there was little evidence that this species influenced 

seedling survival relative to interspaces (Table 2-3). 

Prediction 2c: After mortality occurred, the proportion of shrub-associated P. palmeri 

either remained higher than expected (2008 cohort) or shifted toward higher than expected (2010 

cohort), indicating maintenance of or a shift in interspecific spatial patterns from dissociative to 

associative for both cohorts at all sites (Fig. 2-5). For the 2008 cohort, at all sites interspecific 

spatial patterns between shrubs and P. palmeri began as associative (P < 0.001; LC: 2
1 = 66.89; 

LKC: 2
1= 55.59; MKC: 2

1 = 22.28) and remained associative (LC: 2
1=16.72, P <0.001; LKC: 

2
1 = 7.86, P = 0.005; MKC: 2

1 = 5.44, P = 0.020). Interspecific spatial patterns between the  
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Table 2-3 

Results of six Cox PH models (3 sites × 2 cohorts), each with a ‘microhabitat’ variable 
specifying the species-specific association of P. palmeri. Only species with 10 or more 
associated P. palmeri were included and only significant comparisons are reported. Hazard 
ratios represent the risk of mortality for P. palmeri associated with the numerator microhabitat 
relative to the denominator microhabitat. When HR < 1.00, mortality is estimated to be lower for 
plants associated with the numerator microhabitat; when HR > 1.00 the opposite is true. P-
values are reported for overall model significance (PM), significance of specifies-specific 
microhabitat covariate (PSPP), and the significance of pair-wise comparisons between 
microhabitats (PHR).Bolding indicates significant at to 0.05 level. 

Site Cohort Model Fit  Species Compared HR 95% CL PHR 

LC 2008 2
3.40=11.96  E. angustifolium ÷ E. nauseosus 0.54 0.32-0.91 0.020 

  PM.=0.011  E.  nauseosus ÷interspaces 1.35 0.72-2.51 0.352 
 E.  angustifolium ÷ interspaces 0.72 0.48-1.09 0.123 

 2010 2
4.45=13.83  C. greggii ÷  E. angustifolium 1.15 0.67-2.00 0.613 

  PM=0.011  C. greggii ÷  F. paradoxa 1.20 0.69-2.09 0.528 
    C. greggii ÷ G. microcephala 1.01 0.65-1.57 0.968 
    C. greggii ÷  interspaces 0.70 0.52-0.95 0.021 
    E. angustifolium ÷  F. paradoxa 1.04 0.53-2.05 0.914 
    E. angustifolium ÷ G. microcephala 0.88 0.49-1.58 0.658 
    E. angustifolium ÷  interspaces 0.61 0.37-1.00 0.048 
    F. paradoxa ÷ G. microcephala 0.84 0.47-1.53 0.575 
    F. paradoxa ÷ interspaces 0.59 0.35-0.97 0.036 
    G. microcephala ÷ interspaces 0.69 0.48-1.00 0.051 
LKC 2008 2

7.95=21.05  A. tridentata ÷ E. nauseosus 1.58 0.73-3.42 0.248 
  PM=0.007  A. tridentata ÷ P. mexicana 1.58 0.84-2.99 0.159 
    A. tridentata ÷ S. dorrii 5.90 1.40-24.85 0.016 
    A. tridentata ÷ interspaces 1.46 0.47-4.59 0.516 
    E. nauseosus ÷ P. mexicana 1.00 0.47-2.12 0.995 
    E. nauseosus ÷ S. dorrii 3.74 0.90-15.57 0.070 
    E. nauseosus ÷ interspaces 0.93 0.28-3.13 0.902 
    P. mexicana ÷ S. dorrii 3.73 0.93-14.99 0.063 
    P. mexicana ÷ interspaces 0.92 0.29-3.00 0.896 
    S. dorrii ÷ interspaces 0.24 0.05-1.31 0.100 
 2010 2=NA  

No species with 10 or more associated P. palmeri 
  PM =NA  
MKC 2008 2

2.00=2.22  A. tridentata ÷ P. mexicana 0.73 0.37-1.42 0.350 
  PM=0.330  A. tridentata ÷ interspaces 0.49 0.19-1.26 0.140 
    P. mexicana ÷ interspaces 0.68 0.29-1.56 0.357 

 2010 2
1.64=2.42  

P. mexicana ÷ interspaces 0.68 0.37-1.25 0.230 
  PM=0.230  
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2010 cohort and shrubs shifted from 

dissociative at all sites (LC: 2
1 = 178.83, 

P < 0.001; LKC: 2
1 = 26.78, P < 0.001; 

MKC: 2
1 = 4.35; P = 0.037) to no 

different than random at all sites (LC: 2
1 = 

2.50, P = 0.114; LKC (2
1 = 0.03; P = 

0.862); MKC: 2
1 = 0.28, P = 0.596). 

Size and growth: For the 2008 

cohort, initially observed plant size 

(Log10AGV; May 2009) did not appear to 

be different between microhabitats at LC (LC: F1,2  = 0.46, P = 0.566); comparisons of size and 

growth were not made for this cohort at MKC and LKC due to the scarcity of interspace-

associated plants. At LC, RGR of the plants that survived through the second census (July, 2009; 

49 days later) was estimated to be 3.46 times greater for interspace associated plants than for 

those associated with shrubs.  However, there is little statistical support that this difference is 

meaningful (F1,2 = 4.77; P = 0.161). For the 2010 cohort at LC, analyses could not be blocked by 

plot since one of the three plots had no emergence and the other had only 4 shrub-associated 

seedlings emerge leaving only one plot with sufficient data for comparisons. Thus, data were 

pooled across plots at LC; pooling was not necessary at LKC and MKC. Given this, shrub-

associated seedlings at LC were estimated to be ~7.4% larger during the first census (July 2010) 

than those associated with interspaces, but the statistical support for this difference was 

suggestive at best (F1,501 = 3.20; P = .074). At the other sites, there was less evidence that 

seedling size was different between microhabitats during the first census (LKC: F1,1 = 0.16, P = 

0.761; MKC: F1,1 = 1.05, P = 0.492).  

 

 Fig. 2-5: Initial and final difference between the 
observed and expected percentage of shrub-
associated P. palmeri across sites and cohorts. 
NS’ indicates point-comparisons that were no 
different than zero; all other points were different 
than zero (P < 0.05) 
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 Reproduction: Flowering generally started in May, with most flowers senescing by the 

end of July and capsule maturation continuing through most of October. Recall that reproduction 

was only analyzed for the 2008 cohort at LC during the 2009 season (see ‘Methods’). 

 There was strong evidence that the probability of initiating reproduction (question a) was 

influenced by microhabitat association and plant size, but not their interaction (Fig. 2-6a). Despite 

the lack of statistical support for an interaction, the model estimated that for shrub-associated 

plants the probability of initiating reproduction in 2009 increased with increasing plant size (F1,232 

= 39.56; P < 0.001), but size had no significant effect for interspace-associated plants (F1,232 = 

1.638; P = 0.200) (Fig. 2-6a). The smallest of interspace-associated plants (~105 cm3; log10AGV 

= 2.02) were estimated to be 69.9% more likely to reproduce than equal-sized shrub- associated 

plants (F1,232 = 10.18; P = 0.002). With increasing plant size, this difference remained statistically 

significant (P < 0.05) for plants up to an AGV = 2500 cm3 (log10AGV > 3.40); plants of this size 

were 16.1% more likely to reproduce than equal-sized shrub-associated plants (F1,232 = 3.88; P = 

0.049). When AGV exceeded 2500 cm3 (log10AGV > 3.40), differences in the likelihood of 

initiating reproduction were insignificant and continued to decline (Fig. 2-6a). 

Of the P. palmeri that initiated reproduction, the number of buds initiated (question b) 

was significantly positively influenced by plant size (F1,134 = 100.98; P < 0.001) but not by 

microhabitat association (F1,134 = 0.98; P = 0.324) or by its interaction with plant size (F1,134 = 

1.19; P = 0.277). Although interspace associated plants appeared to initiate more buds, especially 

at the larger sizes (Fig. 2-6b), the difference was not statistically significant even for the largest 

(AGV = 13,280 cm3; log10AGV = 4.12) of interspace-associated plants (F1,134 = 2.16; P = 0.143). 

The proportion of initiated buds to successfully mature into fruits (i.e. bud-to-fruit 

maturation rate) (question c) was not significantly influenced by microhabitat (F1,134 = 0.03; P = 

0.873) or plant size (F1,134 = 0.59; P = 0.445) alone, but was significantly influenced by their 

interaction (F1,134 = 5.74; P = 0.018). This interaction revealed that bud-to-fruit maturation rate 
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Fig. 2-6: GLMM predictions of four reproductive responses (y-axes) at LC in 2009 for 
shrub-associated (solid lines) and interspace-associated (dashed lines) different sized P. 
palmeri(x-axes): (a) the probability of initiating reproduction, (b) the number of buds 
initiated, (c) the proportion of buds matured into fruits, and (d) the number of mature 
fruits. Shaded regions are 95% confidence bands. All models included covariates for 
plant size (x-axes), microhabitat association, and their interaction. ‘NS’ indicates no 
significant difference (P ൒ 0.05). Note that the reported estimates of microhabitat effects 
result from comparing average sized plants. 
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was independent of plant size for interspace-associated P. palmeri (F1,134 = 0.83; P = 0.362) but 

increased significantly (F1,134 = 12.04; P < 0.001) with increasing plant size for shrub-associated 

P. palmeri (Fig. 2-6c). Bud-to-fruit maturation rate was not significantly greater under shrubs 

than in interspaces until AGV exceeded 3800 cm3 (log10AGV = 3.58 cm3) after which bud-to-fruit 

maturation rate was between 8.82% (F1,134=3.92; P = 0.049) and 20.9% (AGV = 13,280 cm3; 

log10AGV =4.12 cm3; F1,134= 8.12; P = 0.005) greater for shrub-associated plants relative to 

interspace-associated plants. 

Finally, total individual fruit production (question d) increased with plant size (F1,134 = 

68.04; P < 0.001) but was not influenced by microhabitat (F1,134 = 0.19; P = 0.668) or its 

interaction with plant size (F1,134 = 0.11; P = 0.746) (Fig. 2-6d). 

 Prediction 2d: To summarize, the performance metric being evaluated influenced the 

observed net effect of shrubs (positive, neutral, or negative) on P. palmeri (Table 2-4). The 2008 

cohort of juveniles and adults at LC demonstrated associative interspecific spatial patterns with 

shrubs and higher survival under shrubs (positive effects), but when growth differences were  

detected, shrub-associated plants had lower growth rates and smaller sizes than did interspace-

associated plants (a negative effect). In addition, relative to interspace-associated plants, shrub- 

 associated plants had a lower likelihood of initiating reproduction when small plants were 

compared (negative effect) but had a higher bud-to-fruit maturation when larger plants were 

compared (positive effect). For the 2010 cohort, emerged seedlings demonstrated dissociative 

interspecific spatial patterns with shrubs, but survival was higher for shrub-associated seedlings 

compared to interspace-associated seedlings at LC and LKC (positive effect) and no survival 

differences were detected between microhabitats at MKC (neutral effect). 

 Prediction 2e: Plant size also influenced the observed effect of shrubs on survival and 

reproduction (Table 2-4). When size was significant, survival differences between shrub-

associated and interspace-associated P. palmeri were greatest when small plants were compared,  
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regardless of which cohort was examined. For reproduction models, microhabitat association had 

a stronger effect on the likelihood of initiating reproduction when P. palmeri were smaller, but 

microhabitat association had a stronger effect on the percentage of buds that matured when plants 

were larger. 

 
V. Discussion 

It is now recognized that positive and negative interactions occur simultaneously between 

plants (Callaway 1995, 2007 pp 179-256) and positive interactions should be stronger than 

Table 2-4 
Comparison of the effect of shrubs on various metrics of P. palmeri. ‘+’ indicates a positive 
effect of shrubs, ‘−’ indicates a negative effect, ‘0’ indicates a neutral effect (P < 0.05 unless 
noted otherwise), and ‘.’ indicates unanalyzed comparisons. For spatial patterns, signs on the left 
and right of the ‘/’ correspond to interspecific spatial patterns at the beginning and end of the 
study, respectively; further, ‘+’ indicates associative patterns, ‘−’ dissociative patterns, and ‘0’ 
indicates patterns no different from random. 

LC site 

Cohort 

LKC site 

Cohort 

MKC site 

Cohort 

Metric 2008 2010 2011 2008 2010 2011 2008 2010 2011 
Spatial pattern w/ shrubs +/+ −/01 +/. +/+ −/01 0/. +/+ −/01 0/. 

Survival +2 +2,3 . 01 +2 . 01 0 . 

Size at first census 0 +3 . . 0 . 0 . 

Growth (RGR) 0 . . . . . . . . 

Reproduction 
a) Likelihood of initiating 

reproduction −2 . . . . . . . . 
b) Number of initiated buds NS . . . . . . . . 
c) Percentage of buds 

maturing to fruits +4 . . . . . . . . 
d) Number of fruits 

matured NS . . . . . . . . 
1 Analysis may be limited by sample size 
2 Estimated effect was most pronounced for smaller individuals 
3 Evidence was less compelling, but noteworthy; 0.05< P < 0.100 

4 Estimated effect was most pronounced for larger individuals 
Note: Spatial pattern analyses did not include covariates for plant size 
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negative interactions in stressful environments (Bertness and Callaway 1994), especially when 

comparing smaller plants (Callaway and Walker 1997) and plants of earlier ontogenetic stages 

(Miriti 2006). The results of this study add to this understanding by providing evidence that in 

this arid environment, shrubs facilitated the survival of the smallest and youngest P. palmeri, but 

as individuals developed, the balance between competition and facilitation became increasingly 

competitive. Further, examining spatial patterns over time provided evidence that facilitation of 

seedling survival drove the spatial patterning of P. palmeri toward being strongly associated with 

shrubs as interspace associated seedlings died. While shrub-association had important effects on 

survival, there was little evidence of growth difference between shrub and interspace 

microhabitats. However, there was evidence of complex effects of shrubs on P. palmeri 

reproduction, with shrubs negatively influencing the probability of initiating reproduction, but 

facilitating the successful maturation of buds into fruits. These results highlight the importance of 

providing a temporal description of spatial patterning (Lepš 1990) and examining multiple 

performance metrics over many life-stages and sizes when considering the balance of facilitation 

and competition (Callaway and Walker 1997; Miriti 2006; Schiffers and Tielborger 2006; Armas 

and Pugnaire 2009).  

 
Objective 1: temporal descriptions of interspecific spatial patterns 

 
Prediction 1a: Spatial patterns were predicted to be associative between P. palmeri and 

shrubs. Consistent associative interspecific spatial patterns among shrubs and the 2008 P. palmeri 

cohort of juveniles and adults supported the prediction, demonstrating that shrubs harbored higher 

than expected densities of P. palmeri beneath their canopies. Such patterns could indicate a 

history of facilitative interactions for this cohort, a notion that is supported by the evidence of 

facilitation of survival seen on the other, younger cohorts. However, interpreting associative 

‘snapshot’ spatial patterns alone as evidence of historic facilitation is cautioned against (Lepš 
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1990; McIntire and Fajardo 2009); instead, interspecific spatial patterns should be described 

temporally alongside evidence of their effects on survival, growth, and reproduction and their 

utility should be limited to generating hypotheses that can later be tested manipulatively (Lepš 

1990; McIntire and Fajardo 2009; e.g. Chapter 3). 

In contrast, the dissociative patterns between the first cohort of emerged seedlings (2010) 

and shrubs, counter the prediction and suggest that relative to interspaces, shrubs may have 

inhibited P. palmeri seedling emergence. However, this conclusion should be considered 

cautiously since there were no measures of seed bank densities of P. palmeri in each 

microhabitat, making it impossible to know whether emerged seedling density was higher in 

interspaces because of higher emergence rates or due to higher seed-bank density. However, there 

is substantial evidence that persistent seed-banks form under shrub canopies, not their interspaces, 

(Pugnaire and Lázaro 2000) and a P. palmeri experiment at LKC controlling for seed-bank 

density demonstrated that seeds sown in sagebrush (A. tridentata) soil had lower emergence rates 

than those sown in interspaces (Chapter 3). 

The second cohort of emerged seedlings (2011) had either associative (LC) or not 

different than random (LKC and MKC) spatial patterns with shrubs, partially supporting the 

prediction and suggesting that, relative to interspaces, shrubs at LC had higher seedling 

emergence densities of understory P. palmeri while at the other sites emergence was similar 

between microhabitats. Again, the lack of data on seed-bank densities challenges interpretation of 

this result; however, during the previous year, many seedlings emerged in the interspaces, which 

may have depleted the interspace seed-bank, while, in contrast, seeds may have persisted in shrub 

microhabitats until conditions were sufficient for germination and emergence. Unfortunately, 

without empirical evidence of seed-bank densities, this narrative should be considered with 

caution. Nonetheless, these results demonstrate the complexity of the study system and the 

variability of emergence patterns between years. 
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Prediction 1b: The existence and strength of associations between shrubs and P. palmeri 

were predicted to depend on shrub species identity. Interspecific spatial patterns between P. 

palmeri and shrubs varied with shrub species identity for all cohorts and sites (except for the 2008 

cohort at LC) supporting the prediction and demonstrating the species-specific nature of spatial 

patterns (see Callaway 2007 pp 255–292). The drivers of these patterns remain unclear, but the 

results can be used to identify which species may be the most important facilitators of P. palmeri 

so that future studies can examine their interactions in more detail (e.g. Chapter 2 and Chapter 3). 

Prediction 1c: Penstemon palmeri in interspaces were predicted to aggregate closer to 

shrubs than random points due to shrub effects potentially extending beyond their canopies. This 

prediction was not supported, suggesting that P. palmeri were distributed no different from 

random throughout the interspaces; such a pattern supports the hypothesis that interactions 

between shrubs and P. palmeri occurred under shrub canopies; processes like hydraulic lift (sensu 

Richards and Caldwell 1987) and shade extending past shrub canopies may not influence spatial 

patterns for interspace associated P. palmeri. Other studies have considered distance-dependence 

of plant interactions beyond canopies; for example, decreasing facilitative effects of hydraulic lift  

were found with increasing distance from trees (Dawson 1993) and in another study tree seedling 

growth and density were maximized at intermediate distance due to decreasing competition 

coupled with decreasing facilitation with increasing distance (Dickie et al. 2005); yet another 

study demonstrated that herbaceous biomass did not vary with distance from canopy edge, 

suggesting the tree interactions did not extend past tree canopies (Scholes and Archer 1997). 

However, these studies were different than this one in that they focused on trees rather than 

shrubs and provided performance based indicators of distance-dependent interactions rather than 

drawing inference from spatial patterning. 

  Prediction 1d: Interspecific spatial patterns were predicted to shift over time. As 

predicted, when cohorts were combined within sites, population-level interspecific spatial 
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patterns shifted temporally (Fig. 2-3), highlighting the importance of temporally describing 

spatial patterns and demonstrating the complexity of the temporal component of spatial pattern. 

The shift from associative to dissociative patterns in 2010 was driven by higher than expected 

seedling emergence densities; this was followed by a shift in patterns back toward associative as 

mortality took place. Considering spatial associations only at the beginning of the study would 

have masked these fluctuations in spatial patterning and resulting in a gross oversimplification of 

spatial patterns. Others have observed similar complexities in spatial patterning over time 

(Rousset and Lepart 1999) and across climatic conditions (Tielbörger and Kadmon 2000), but I 

know of few examples where a temporal component was considered when evaluating spatial 

association (discussed in sub-section ‘Prediction 2c’ below). 

 
Objective 2: evaluation of plant performance 

 
 

 Prediction 2a: Survival was predicted to be higher for shrub-associated P. palmeri. 

Though survival differences between microhabitats were not always observed, when differences 

were detected, survival under shrubs was always higher than in interspaces and the estimated 

difference was always greatest for smaller plants, supporting the prediction and suggesting that 

shrubs facilitate survival of smaller individuals, but that as they grow, shrubs had less influence 

on survival; others have found similar shifting effects due to increased competition with 

beneficiary development (reviewed in Miriti 2006; Callaway 2007 pp 15–116; Gómez-Aparicio 

2009). However, a decline in competition with beneficiary development has also been observed 

(Soliveres et al. 2010). Others have found higher survival among larger seedlings alongside 

evidence of facilitation of survival by shade during summer months, but they did not analyze the 

potential interaction between size and microhabitat in their analyses (Hastwell and Facelli 2003). 

Another study considered size and adult proximity as potentially important factors for seedling 
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survival, however, while their survival analyses controlled for plant size, its statistical interaction 

with adult proximity was not assessed (Mulligan and Kirkman 2002). 

 Prediction 2b: Shrub species identity was predicted to influence P. palmeri survival. This 

was supported, but only for the 2008 cohorts at LC and LKC and the 2010 cohort at LC; for these 

sites and cohorts there was evidence that survival was higher for P. palmeri associated with 

certain shrub species relative to others (Table 2-3). These results add to the substantial evidence 

of species-specific effects of shrubs on survival of understory plants (Muller 1953; Callaway and 

D’Antonio 1991; Rudgers and Maron 2003; Landero and Valiente-Banuet 2010). Species specific 

effects could arise if certain benefactor traits facilitate P. palmeri survival more than others (see 

Callaway 2007 pp 255–292); e.g. N-fixation in C. greggii (Kummerow et al. 1978) and hydraulic 

lift in A. tridentata (Richards and Caldwell 1987). Dissimilar positive effects (e.g. canopies of 

some shrub species may have higher light transmission than others; Jones 1995) and/or differing 

negative effects (e.g. allelopathic leachates in the litter of some species but not others; Muller 

1953) could both be responsible for species specific survival differences(reviewed in Callaway 

2007 pp 255–292). It should be noted that survival was not always species specific, in part 

because too few P. palmeri grew under some potentially important shrub species, limiting 

inference due to small sample sizes. Also, no adjustments of P-values were made for pair-wise 

survival comparisons, increasing type I error; thus, some caution should be exercised in drawing 

strong conclusions from these results. 

 Prediction 2c: Higher survival of shrub-associated P. palmeri was expected to shift 

spatial patterns with shrubs toward associative. Comparisons of pre- and post-mortality 

interspecific spatial patterns between shrubs and P. palmeri supported this prediction at all sites 

cohorts analyzed, except for at MKC. At the remaining sites, spatial patterns either trended 

toward associative over time or remained strongly associative; this, in conjunction with the 

evidence of often higher survival under shrub canopies, suggests that shrubs facilitated P. palmeri 
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survival, shifting spatial patterns between P. palmeri and shrubs toward being associative. The 

mechanisms driving survival differences are unclear from these results alone, however, 

experimental evidence suggests that at LKC, A. tridentata soil properties have stronger effects on 

P. palmeri seedlings than canopy related effects (Chapter 3). Many studies have used single 

observations of interspecific spatial patterns to generate and test predictions about survival 

(Turner et al. 1966; Callaway et al. 1996; Casper 1996; Greenlee and Callaway 1996; Tirado and 

Pugnaire 2003). However, other researchers have described a temporal shift in interspecific 

spatial patterns between Quercus humilis seedlings and shrubs; spatial patterns shifted from no 

different than random, before sheep grazing took place, to associative, after sheep grazing took 

place, providing strong evidence that shrubs facilitated Q. humilis seedling survival by protecting 

seedlings from predation (Rousset and Lepart 1999). Another study found a shift from either 

initially dissociative to no different than random, or from no different from random to associative, 

during years of higher precipitation which was interpreted as evidence that the negative effect of 

shrubs on density increased during dry years due to rainfall interception by canopies (Tielbörger 

and Kadmon 2000). 

 Size and growth: Of all the metrics compared, differences in size and growth among P. 

palmeri living in different microhabitats were the weakest; however, the analyses were severely 

limited due to high mortality rates and scarcity of P. palmeri in either interspaces (2008 cohort) 

or under shrub (2010 cohort). The most compelling evidence of size differences came from the 

2010 cohort at LC, where shrub-associated P. palmeri appear to be slightly larger; however, the 

statistical support for this effect (P = 0.074), while suggestive, should not be considered 

conclusive, especially given that most observations came from a single plot at a single site. 

Weaker, but still noteworthy, evidence of size and growth differences came from the 2008 cohort 

at LC in which models estimated higher growth rates of interspace-associated P. palmeri 

surviving between the first and second census; however, while this evidence alludes to a 
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competitive effect of shrubs on P. palmeri growth, the statistical support for this effect (P = 

0.161) was merely suggestive. Failure to detect strong size and growth differences between 

microhabitats is partially a consequence of the limited sample sizes, however, they may also 

suggest neutral effects of shrub-association at later life-stages, despite the positive effects shrubs 

had on seedling and juvenile survival. This would suggest that shrubs facilitate smaller, younger 

individuals but  not larger, older individuals, a commonly observed life-stage conflict (sensu 

Schupp 2007) in which interactions shift from facilitative toward competitive as the beneficiary 

develops (Miriti 2006; Gómez-Aparicio 2009). These apparent negative shifts in net-interactions 

with decreased abiotic stress are commonly reported as the outcome of simultaneously increasing 

competition with increased resource availability alongside a decreased benefit of ameliorated 

stress with less stressful conditions, however, experimental approaches are required to discern 

positive from negative effects (Callaway 2007 pp 15–116; e.g. Maestre et al. 2003).  

  Reproduction: The observed effect of shrubs on P. palmeri reproduction depended on 

which reproductive question (i.e. response) was being addressed and the size of P. palmeri (see 

Fig. 2-6b) supporting other studies showing that reproductive patterns depend on plant size 

(Bonser and Aarssen 2009; Weiner et al. 2009) and can differ between shrub-associated and 

interspace-associated plants (Casper 1996; Shumway 2000; Tielbörger and Kadmon 2000; Choler 

et al. 2001; Kikvidze et al. 2001; Tirado and Pugnaire 2003; Cranston et al. 2012). Some of these 

studies examined the effect of shrubs on reproductive initiation (Casper 1996; Shumway 2000; 

Choler et al. 2001) and/or seed or fruit production (Casper 1996; Tielbörger and Kadmon 2000; 

Kikvidze et al. 2001; Tirado and Pugnaire 2003) but none included size as a covariate for 

reproductive metrics (but see Soliveres et al. 2010) and none examined the fate of buds as they 

mature to fruits (but see Tirado and Pugnaire 2003 in which shrubs increased benefactors flower-

to-fruit maturation). Though resource availability and abiotic conditions were never examined in 

this study, interspaces are often associated with highly variable abiotic conditions (Tracol et al. 
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2011) as well as limited resources (Noy-Meir 1985; Schlesinger et al. 1996; Maestre et al. 2003; 

Gómez-Aparicio et al. 2004; Cortina and Maestre 2005). Limited and unpredictable resources 

could explain the observation of high probability of initiating reproduction for interspace-

associated plants relative to shrub-associated ones since plants often respond to these factors by 

investing in reproduction instead of growth; under these conditions, investing in growth may be 

‘unwise’ since resources could be unavailable in the future resulting in mortality before 

reproduction (Stearns 1976; Reekie and Bazzaz 2005; Bonser and Aarssen 2009). In light of 

reproductive strategies, these results suggest that interspace-associated plants follow a strategy of 

early reproductive investment (an ‘r-selected’ strategy; sensu MacArthur and Wilson 1967), while 

shrub-associated plants follow a strategy of investing in growth before attempting reproduction (a 

‘K-selected’ strategy; sensu MacArthur and Wilson 1967). For shrub-associated plants, a K-

selected strategy may be more favorable than an r-selected strategy since shrub-associated plants 

had higher bud-to-fruit maturation rate when they were larger while interspace-associated plants 

saw no benefit in bud-to-fruit maturation rates from being large. A simpler and more likely 

explanation is that competition with shrubs or higher densities of conspecifics under shrubs may 

have limited the resources available to reproduction resulting in delayed reproduction of shrub-

associated plants (Weiner 1988). While some authors have found a similar pattern of apparent 

delayed reproduction under shrubs (Casper 1996), others found the opposite (Shumway 2000; 

Choler et al. 2001). These contrasting results may be due to the latter studies being from sub-

alpine systems rather than arid and semi-arid systems. Larger plants had higher total bud and fruit 

production suggesting that early reproduction has a consequence of lower fruit production; 

however, the advantages of early reproduction may outweigh the disadvantages when mortality is 

high, as it was in interspaces, since reproduction early with low output is better than dying before 

reproducing. Interestingly, despite these important reproductive differences between 

microhabitats, total bud initiation and fruit production was not significantly influenced by 
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microhabitat suggesting that the effects of competition and facilitation on bud and fruit 

production were balanced under shrub canopies. Many studies of reproduction have observed 

increased output for plants aggregated with other species (Shumway 2000; Tielbörger and 

Kadmon 2000; Tirado and Pugnaire 2003), though this is not always the case; Soliveres et al. 

(2010) found that larger shrubs produced more fruits, but growing near grass tussocks had no 

effect on reproduction. The mechanisms responsible for differences in reproductive patterns 

between microhabitats remain unknown without experimental manipulation, but these results 

suggest that incorporating concepts of facilitation with well-studied topics like reproductive 

allocation strategies (Stearns 1976; Reekie and Bazzaz 2005) may lead to a more complete 

theoretical framework (e.g. Kikvidze et al. 2001; Cranston et al. 2012). 

 Prediction 2d: The observed effect shrubs had on P. palmeri depended on which 

performance metric was evaluated, supporting this prediction (see Table 2-4). While there was 

poor support for differences in growth rates, facilitation of survival coupled with reductions in 

growth rates is commonly reported (reviewed in Gómez-Aparicio 2009). However, few studies 

examine emergence, survival, growth, and reproduction in unison (but see Casper 1996 and 

Soliveres et al. 2010). Casper (1996) compared survival, growth, and flowering of the perennial 

forb Cryptantha flava and reported that shrub-associated C. flava had increased survival but 

reduced plant size, likelihood of flowering, and inflorescence production; emergence and bud-to-

fruit maturation rates were not considered in the study. Flowering and survival were probably 

limited by different environmental factors, with shade perhaps decreasing water loss in seedlings, 

improving their survival, but shade also limiting photosynthesis, reducing growth and flowering 

(Casper 1996). Soliveres et al. (2010) provided experimental evidence that associative spatial 

patterns between a grass (benefactor) and a shrub (beneficiary) were primarily determined during 

the seed stage by higher than expected shrub seedling emergence in grass tussocks, but that 

growth of grass-associated shrub seedlings was limited; however, in their study, high mortality 
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was associated with drought for all shrubs and precluded survival analysis and fruit production 

depended only on plant size.  

The combined interspecific spatial patterns and survival analyses from the 2010 cohort 

suggest a seed-seedling conflict (Schupp 1995); initially dissociation between shrubs and P. 

palmeri emerged seedlings may indicate reduced emergence under shrubs, a negative effect on 

the seed stage, but survival was subsequently improved at the seedling stage; these types of seed-

seedling conflicts appear to be widespread (Schupp 1995). For example, an experimental study 

determined that litter of Cercocarpus ledifolius inhibited emergence, but improved survival of 

seedlings of the tree C. ledifolius (Ibáñez and Schupp 2002). In another study at LKC emergence 

of seedlings from sown-seeds was higher in shrub soils than interspace soils, but their subsequent 

survival was lower, a pattern matching the natural patterns observed here; further, experimental 

manipulations (shrub removal and canopy mimicry) demonstrated that seedling emergence was 

better explained by association with A. tridentata soil than by canopy presence or absence, 

suggesting soil properties may be very important determinants of seed-seedling conflicts in P. 

palmeri (Chapter 3). 

Prediction 2e: As expected, size was an important factor to consider when evaluating 

survival and reproduction (summarized in Table 2-4), yet few studies of facilitation include 

control over size (but see Mulligan and Kirkman 2002; Hastwell and Facelli 2003; Soliveres et al. 

2010) despite its predicted importance in influence the outcome of interactions (Callaway and 

Walker 1997). Studies considering size, microhabitat, and their interaction in a single analysis 

were not found when reviewing literature, however, by their inclusion as covariates added insight 

into the size-dependence of the balance between facilitation and competition. 
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Conclusion 

 
This study revealed that shrubs can be of great importance for the spatial distribution, 

emergence, survival, and reproduction of P. palmeri. The precise demographic and fitness 

impacts of shrubs on P. palmeri remain unclear since little is known about seed survival and total 

life-time reproductive output in contrasting microhabitats; however, these observations 

demonstrated that shrub-association can have complex and conflicting demographic effects at 

different life-stages, increasing performance of some life-stages and decreasing performance of 

others. By temporally observing interspecific spatial patterns alongside emergence and survival, 

insight was gained regarding the role of emergence and survival differences between shrub and 

interspace microhabitat in driving the spatial patterning of P. palmeri populations. These results 

add to a growing body of evidence of ontogenetic shifts in plant-plant interactions throughout the 

life-cycle of an organism (e.g. Miriti 2006; Armas and Pugnaire 2009; Gómez-Aparicio 2009; 

Soliveres et al. 2010) and suggest that shrubs potentially alter the nature of life-stage conflicts in 

a way that could promote persistence of P. palmeri populations during unfavorable conditions. 
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CHAPTER 3 

DISENTANGLING CANOPY AND SOIL EFFECTS OF A COMMON DESERT 

SHRUB ON A PATCHILY DISTRIBUTED PERENNIAL  

HERB IN THE MOJAVE DESERT 

 
I. Abstract 

In water-limited ecosystems, microhabitat conditions under shrub canopies often contrast 

the conditions in interspaces. For example, sub-canopy shade and ‘fertile islands’ can provide 

more habitable conditions than interspaces exposed to direct insolation and with relatively 

denuded soils.  Seeds and seedlings respond to these distinct microhabitats in complex and 

potentially conflicting ways. I experimentally examined the relative importance of Artemisia 

tridentata (Nutt.) canopy presence or absence versus soil microhabitat (shrub vs. interspace) and 

their potentially interacting effects on seedling emergence, survival, size, and growth of the 

herbaceous perennial Penstemon palmeri (A. Gray). I sowed P. palmeri seeds and transplanted 

greenhouse-reared seedlings into four microhabitats: (1) no canopy with interspace soil, (2) 

canopy with shrub soil, (3) canopy with interspace soil, or (4) no canopy with shrub soil. In both 

experiments, relative to soil microhabitat, canopy presence had little effect on emergence and 

seedling performance. Further, when the net effects of canopies were detected, they depended on 

soil microhabitat. Shrub soils had lower emergence but higher seedling survival relative to 

interspace soils in the seed-sowing experiment; seedlings emerging on shrub soils had higher 

survival in the presence of canopy shelter, but canopy presence had no effect on emerged seedling 

survival in interspace soils. In contrast to emerged seedling survival, transplanted seedling 

survival was lower on shrub soils and canopies had no effect. Shrub soils had a positive effect on 

transplanted seedling size and growth in the absence of canopies but canopy presence decreased 

seedling size and growth on shrub, but not interspace, soil. The response of P. palmeri depended 
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largely on soil microhabitat and the plant response and experiment being considered. Results of 

the seed sowing and seedling transplant experiments conflicted, but both suggest soil 

microhabitat had a greater effect on survival regardless of canopy presence or absence. Both 

experiments also demonstrated that canopy effects depended on soil microhabitat. Finally, the 

demographic consequences of these results are considered: shrub soils appeared to alter seed-

seedling conflicts in a way that might promote seed bank persistence and therefore resistance and 

resilience of P. palmeri populations to environmental perturbations. 

 
II. Introduction 

The topic of facilitation has received substantial attention in ecology (Brooker et al. 2008; 

Brooker and Callaway 2009). Facilitation and interference act simultaneously to determine the 

net interactions between plants; their balance varies spatially, as along productivity gradients 

(Brooker et al. 2008), and temporally due to progressive development of interacting plants and 

climatic variability (Kitzberger et al. 2000; Tielbörger and Kadmon 2000; Miriti 2006; Armas and 

Pugnaire 2009; Gómez-Aparicio 2009). Community dynamics in arid environments are thought 

to be dominated by positive net plant-plant interactions (Pugnaire et al. 1996; Callaway and 

Walker 1997). Shrubs frequently facilitate the performance of other species beneath their 

canopies (Callaway 1995; Gómez-Aparicio 2009; Reisner 2010) (i.e., are benefactors, sensu 

Callaway 1995) and can increase the persistence of seeds in the seed bank (Pugnaire and Lázaro 

2000). For desert plants, water is limited, variable, and unpredictable and persistent seed banks 

allow plant populations to remain dormant until precipitation events are large enough to trigger a 

pulse of germination (Noy-Meir 1973; Reynolds et al. 2004). 

 In water-limited systems, relative to shrub canopy microhabitat, the shrub interspaces are 

often characterized by extreme temperatures and insolation (Tracol et al. 2011) and limited 

resource availability (Garcia-Moya and McKell 1970; Schlesinger et al. 1996; Gómez-Aparicio et 
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al. 2005; van der Heijden and Horton 2009; Bashan and de-Bashan 2010), conditions that can 

inhibit germination and be physiologically stressful for seedlings (Aro et al. 1993; Callaway pp 

15-116; Murata et al. 2007; Lambers et al. 2008). Shrubs can ameliorate stressful interspace 

conditions by altering local microhabitat via an above-ground ‘canopy effect,’ a below-ground 

‘soil effect,’ and their interacting effects (Callaway 1992, 2007 pp 15-116; Carrillo-Garcia et al. 

2000; Gómez-Aparicio et al. 2005; Becerra and Bustamante 2011).  

 Canopy effects on emergence and survival are complex, acting directly and indirectly 

through alterations of the physical, chemical, and biotic conditions (Facelli and Picket 1991; 

Callaway 2007 pp 15-178). Physical shelter of the shrub canopy can influence seeds and 

seedlings through direct effects of shade, which can have positive effects on understory seedlings 

if water is limited (Kitzberger et al. 2000; Maestre et al. 2003; Gómez-Aparicio et al. 2005; 

Callaway 2007 pp 15-116). However, the negative effects of shade may increase as seedlings 

develop, resulting in reduced survival and growth under shaded conditions (Kitzberger et al. 

2000; Miriti 2006; Armas and Pugnaire 2009; Gómez-Aparicio 2009). Further, interactions 

between canopy shade and soil microhabitat can improve plant performance under canopies. 

Canopy shade can directly reduce air and soil temperatures, thereby reducing evaporation of 

water in soils and increasing root and microbial activity (Kitzberger et al. 2000; Shumway 2000; 

Gómez-Aparicio et al. 2005; Becerra and Bustamante 2011). Further, indirect effects of canopies 

can arise when the physical structure of canopies alters the foraging intensity of seed and seedling 

predators as through ‘associational resistance and ‘associational susceptibility’ (sensu Barbosa et 

al. 2009). Associational resistance may occur when the canopy prevents access to, or obscures, 

understory seeds and seedlings from their predators (Callaway 2007 pp 117-178). Associational 

susceptibility may occur when the canopy protects seed and seedling consumers from their 

predators, leading to an indirect increased seed and seedling predation under canopies (Callaway 

1992; Castro et al. 1999; Hulme and Borelli 1999; Vander Wall and Thayer 2001). 
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 Unlike interspace soils,  soils beneath canopies soils may effect litter input and buffer 

temperature and may also have differences in deeper soil profiles due to root related effects 

(Callaway 2007 pp 15-116). The physical, chemical, and biotic soil characteristics that are 

important for emergence and seedling performance are greatly impacted by the litter produced by 

canopies (Facelli and Picket 1991; Facelli 1994; Ibáñez and Schupp 2002). Sub-canopy ‘Islands 

of fertility’ (sensu Schlesinger et al. 1996) form due to litter inputs, throughfall, and microbial 

activity (Garcia-Moya and McKell 1970; Schlesinger et al. 1996; van der Heijden and Horton 

2009; Bashan and de-Bashan 2010). While litter can positively alter the environment faced by 

seeds and seedlings it also has potential negative effects on them as well; for example, seedling 

emergence and survival can be limited by high concentrations of phytotoxins in litter or lower 

water availability while emergence be further limited due to seeds being shaded by litter and/or 

litter forming a physical barrier for emerging seedlings (Facelli and Picket 1991; Facelli 1994; 

Ibáñez and Schupp 2002). Further, emerged seedling density can be low in litter since seeds can 

become buried and remain where light, temperature, and/or moisture conditions may be 

insufficient for germination (Kitchen and Meyer 1992; Pugnaire and Lázaro 2000). Litter can 

interact with canopy shade to further indirectly influence seedling performance by altering the 

temperature of soils through an albedo effect (Turner et al. 1966; Carrillo-Garcia et al. 2000). 

While these canopy effects on soils are important, the roots of shrubs can also influence deep 

water profiles via hydraulic redistribution (Ryel 2004), potentially altering surface water 

availability and the performance of other plants (Dawson 1993). Further, understory plants may 

respond to alterations of the rhizosphere by shrubs via root competition, nitrogen fixation, or 

exudation of water, nutrients, and allelopathic compounds (Callaway 2007 pp 15-116). 

 Alterations of microhabitat conditions by shrubs can influence seeds and seedlings in 

conflicting ways; conditions that are favorable for seedling emergence may later be unfavorable 

for seedlings (i.e. a “seed-seedling conflict” Schupp 1995). For example, litter under canopies can 
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negatively affect seedling emergence but positively affect the survival of emerged seedlings 

(Ibáñez and Schupp 2002). In contrast, interspaces may have positive effects on the seed stage if 

interspace conditions promote emergence (e.g. warmer temperatures, or lack of competition for 

light and water) but have negative effects on seedlings if those conditions are unfavorable for 

growth or survival (e.g. Facelli and Ladd 1996). Thus, the stages of the seed-seedling conflicts 

that are improved or worsened may differ between interspace and shrub microhabitats. 

 Understanding the interacting effects of canopies and soils on emergence and survival 

requires manipulative experiments which, when combined with long-term patterns of spatial 

associations, can better distinguish the underlying mechanisms that drive the balance between 

positive and negative interactions (Lepš 1990; Callaway 1995, 2007 pp 255-292; McIntire and 

Fajardo 2009). Many studies use canopy removal to evaluate if shrubs act as benefactors to 

understory plants (e.g. Callaway 1992; Callaway et al. 1996; Holzapfel and Mahall 1999). 

Decreased understory plant performance in the absence of canopies suggests that shrubs act as 

benefactors while increased understory plant performance following canopy removal suggests 

that shrubs act as competitors (Callaway 2007 pp 15-116). However, canopy removal does not 

consider potential facilitation by modified soils beneath shrubs (Callaway 2007 pp 15-116) which 

can last many years after canopy removal (Bechtold and Inouye 2007); such lagged effects can 

lead to observations of neutral or even improved plant performance following shrub removal even 

if the canopy effect is positive (Callaway 2007 pp 15-116). Another manipulation for 

disentangling canopy and soil effects is the use of canopy-mimicry experiments, which use either 

shade cloth or mimic shrubs to simulate the shade and shelter conditions of a shrub canopy 

without the effects of accumulated soil under canopies (Holzapfel and Mahall 1999; Callaway 

2007 pp 15-116; Padilla and Pugnaire 2008). While canopy mimicry experiments allow for 

explicit comparisons of the effect of shade on plants living in interspace soils, they cannot 

account for the effect of shade when plants live in shrub soils; similarly, canopy removal 
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experiments provide no information on the effect of shade when plants live in interspace soils. 

The importance of the potentially interacting effects of shrub canopies and their associated soils 

on seedling emergence and performance can be evaluated better in field conditions using a 

factorial combination of removal and shrub-mimic manipulations (see Gómez-Aparicio et al. 

2005). 

Natural observation of spatial association at the experimental site during this study 

suggested that emerging seedlings of the perennial forb Penstemon palmeri were negatively 

associated with shrubs, including Artemisia tridentata; that is, seedlings emerged in interspaces 

more frequently than expected by chance. This pattern may be caused by greater emergence rates 

in interspaces relative to beneath shrubs suggesting a net negative effect of shrubs on emergence 

(Chapter 2). However, high seedling and adult mortality in interspaces disproportionately 

decreased densities, promoting positive spatial associations between shrubs and P. palmeri over 

time; i.e., surviving plants were found beneath shrubs increasingly more often than expected by 

chance (Chapter 2). These results suggested a seed-seedling conflict in which shrubs negatively 

influenced the seed emergence stage but positively influenced the seedling survival stage. 

However, without experimental manipulations as described above, determination of the 

mechanisms responsible for these patterns is impossible. 

 The objectives of this study were to experimentally determine the relative importance of 

two broadly defined and interacting shrub microhabitat effects, canopy cover and soil 

microhabitat, for P. palmeri (1) emergence from sown seeds and (2) performance (i.e. size, 

growth, and survival) of seedlings recruited from sown seeds and transplanted seedlings. I 

compared these experimental results to natural patterns of spatial associations (Chapter 2) and 

discuss the implications for the population dynamics of P. palmeri. 
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III. Materials and Methods 

Study site 

 
The study was conducted in a Mojave Desert shrubland in the Spring Mountains National 

Recreation Area (SMNRA), an isolated mountain range (‘Sky Island’) within the Mojave Desert 

of southern Nevada, USA (approximately 50 km northwest of downtown Las Vegas). 

Experimental units were established in a shallowly sloping (slope <5°) wash in Lower Kyle 

Canyon (Lat.: 36° 16' 18.867" N, Long.: 115° 31' 17.328" W; Elevation: 1626 m – 1677 m). 

Climate data for the maximum temperature, minimum temperature, and precipitation were 

obtained from the years 2000 - 2010 (PRISM Climate Group). For the first and second years of 

the study (2009-2010) mean annual precipitation (MAP) was about 25% higher and 68% lower 

than the 2000-2008 mean, respectively (MAP2000-2008 = 360 mm; MAP2009 = 451 mm; MAP2010 = 

221 mm). Temperatures in both 2009 and 2010 were similar to the mean (MAT2009 = 12.4°C; 

MAT2010 = 12.6°C; MAT2000-2008 = 12.4°C). Peak precipitation occurs during winter (November–

March) with a pronounced dry season (April–mid-July) followed by varying intensities of 

monsoons (mid-July – September) and intermediate precipitation (September–November). In 

2009 and 2010, respective winter precipitation (WP) was 41% and 55% higher than the 2000-

2008 mean (WP2000-2008= 204 mm; WP2009 = 288 mm; WP2010 = 317 mm) and monsoon 

precipitation (MP) was roughly 13% (2009) and 73% (2010) less than the 2000-2008 mean 

(MP2000-2008= 85 mm; MP2009 = 74 mm; MP2010 = 23 mm). Soils are purob-irongold associated; 

well-drained soils with a surface covered with cobbles and stones, a deep (>2 m) water table, and 

a shallow (25-35 cm) petrocalcic layer (Soil Survey Staff, NRCS USDA, 2011). Line point 

intercept estimates indicated that shrub cover was roughly 53% consisting of at least 11 shrub 

species (Chapter 2, Fig. 2-1, middle panel). At this site, P. palmeri grew under many shrub 

species more than expected based on the cover of all shrub species, but particularly A. tridentata 
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(Chapter 2, Fig. 2-1, middle panel). All plant names follow the USDA NRCS PLANTS database 

(NRCS 2011). 

Penstemon palmeri commonly occurs in disturbed sites such as washes and roadsides 

throughout the arid south-western United States between 800 and 2500 m in elevation (Cronquist 

et al. 1984). It is considered to be drought and winter tolerant (USDA NRCS 2011). Seed banks 

can become persistent if seeds are buried in litter in part because breaking dormancy requires 

light if temperatures are below 30° C (Kitchen and Meyer 1992). Other evidence (Meyer and 

Kitchen 1992) suggests that most seeds are non-dormant at maturation, but rarely germinate in 

fall conditions, probably because they require sufficient periods of moisture to germinate. Seeds 

generally germinate in response to post-chilling conditions during early spring. Penstemon 

palmeri seeds vary in their response to variation in abiotic conditions, allowing them to persist in 

a dormant state until conditions are suitable to break dormancy (Meyer and Kitchen 1992).  

Artemisia tridentata possesses several physiological and morphological characteristics 

that can positively or negatively affect understory species. In addition to providing shade, it was 

the first species used to demonstrate the existence of hydraulic lift ( sensu Richards and Caldwell 

1987), by which plant roots move water from deeper, wetter, strata to upper, dryer, strata of the 

soil profile (see Ryel 2004 for review). Lifted water can become available to shallow rooted 

plants (Dawson 1993), like forbs and grasses. It is unclear whether canopy removal results in a 

complete cessation of hydraulic lift because water is thought to move passively through roots 

(Ryel 2004). In addition, long-term soil fertility can be improved by A. tridentata even after 

removal due to an accumulation of nutrient-rich litter (Bechtold and Inouye 2007). These traits 

may help explain why A. tridentata frequently acts as a benefactor to herbaceous plants under 

stressful conditions in its northern range (e.g., Reisner 2010). However, allelopathic effects of A. 

tridentata litter and soil on plant performance are also widely documented (Schlatterer and 

Tisdale 1969; Weaver and Klarich 1977; Kelsey et al. 1978). 
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Seed Sowing 

 
In mid-March 2009, P. palmeri seeds were sown into four experimental microhabitats 

(treatments) and their emergence and subsequent survival in the field were monitored. Treatments 

(i.e. microhabitats) formed a 2 x 2 fully factorial design consisting of a two-level soil factor 

(shrub soil vs. interspace soil) and a two-level canopy factor (canopy vs. no canopy). Two 

microhabitats occurred naturally: no canopy with interspace soil (NC+IS; i.e. natural interspaces) 

and canopy with shrub soil (C+SS; i.e. natural shrubs). The other two microhabitats were 

experimentally created; the no canopy with shrub soils (NC+SS; i.e. artificially exposed shrub 

soils) microhabitat was created by removing A. tridentata canopies. Canopy mimics were then 

created by spraying removed canopies with lacquer (for longer leaf retention; Callaway et al. 

1996), and relocating them to interspaces to create the microhabitat for canopy with interspace 

soil (C+IS; i.e. artificially-sheltered interspaces). Soils surfaces were not disturbed. Each 

treatment combination was replicated 25 times and replicates were spaced every 20 m along 5 

non-overlapping 100 m transects, excluding zero. Each replicate contained one of each of the four 

microhabitat types. Seeds of P. palmeri (200) were collected from 25 plants at the site and were 

mixed to form packets of 50 seeds per treatment. These packets were then sown on the surface of 

20cm x 20cm “plots” for each treatment (Total seeds sown = 5000; 50 seeds per treatment × 4 

treatments per replicate × 25 replicates); plots were spaced at least 5 m apart. When treatments 

involved canopies, seedlings were transplanted on the shady north side of canopies that were 

matched for similarity of size (~1 m diameter). Seedling emergence and subsequent survival were 

observed during 10 unequally spaced censuses over 528 days (14 April 2009- 29 September 

2010). To estimate density of background P. palmeri seedling emergence, an adjacent 20cm x 

20cm control plot was randomly assigned to either the east or west of the sowing plot and 

background emergence tallied.  
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Seedling Transplants 

 
Seeds were collected from 25 P. palmeri individuals surrounding the study site, 

germinated, and grown in a sterilized 3:1 mixture of sand to Canadian peat moss, repectively, at 

the Research Greenhouses at Utah State University in Logan, UT, 6 months prior to transplanting; 

45 days prior to transplanting (2 March 2009), seedlings were placed outside of the greenhouse to 

allow them to acclimate to aridity and increased fluctuations and extremes in temperature. In mid-

April 2009, the same four microhabitats were again created by varying canopy presence or 

absence on either shrub or interspace soil. This experiment was replicated 21 times and replicates, 

representing each of the four microhabitats, were placed using the same transect methods 

described in the seed-sowing experiment. Plots were formed by transplanting nine seedlings into 

a 3 x 3 grid with 10 cm between adjacent seedlings forming a 20 cm x 20 cm plot. For each of 21 

replicates, plots were established within each of the four microhabitats (15 April 2009), spaced at 

least 5 m apart. Seedlings were transplanted on the north side of similarly sized (~1 m diameter) 

canopies. The 21 replicates resulted in 189 seedlings per microhabitat and 756 seedlings total 

(nine seedlings per treatment × four treatments per replicate × 21 replicates). To mediate 

transplant shock (sensu Close et al. 2005), plants were watered weekly, starting with 3.78 liters 

per plot and ending with about 0.5 liters per plot at day 126 (decreasing by approximately 0.2 

liters per week); ample time was taken to ensure that water infiltrated into the soil rather than 

running off. Growth and survival were monitored as in the seed sowing experiment described 

above. To estimate aboveground volume (AGV), measurements of the major diameter, its 

perpendicular diameter, and the height of above-ground living tissue for each seedling were taken 

and used to parameterize the equation for an ellipsoid (  , where  a is the major 

diameter, b is its perpendicular diameter and c is plant height). Size and growth were only 

assessed for seedling transplants since sample sizes in the seed sowing experiment were limited. 
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Every canopy mimic in the seedling transplant experiment remained sturdy, but five 

canopy mimics in the seed sowing experiment blew over due to strong winds (these plots were 

excluded from analyses). For both experiments, leaves on canopy mimics remained mostly intact 

until day 126 (18 August 2009), but by day 203 (3 November 2009) most leaves had fallen off. 

While the size measurements in the seedling transplant experiment all occurred before this and 

>90% of mortality had already taken place in all treatments, emergence in the seed sowing 

experiment was not observed until 407 days after canopy mimics were installed; the implications 

of this are that canopy mimics eventually provided less shade than natural canopies, but the entire 

woody portion of the canopy remained, still offering some shelter and shade. 

 
Analyses 

 
Seed Sowing: Differences in emergence between treatments were modeled using 

generalized linear mixed models (GLMMs) with the GLIMMIX prodecure in SAS 9.2 (SAS 

Institute Inc. 2008). A binomial distribution was assumed for the response (number of emerged 

seedlings [successes] ÷ number of seeds sown [trials]).  To account for possible non-

independence of plots within replicates, random effects were assigned to replicates; an 

overdispersion parameter was also included. Tukey-Kramer adjustments were used to assess 

significance for pair-wise comparisons between treatments. Individual seedling survival was 

analyzed using Cox proportional hazard (PH) regression models with the PHREG procure in SAS 

9.2 (SAS Institute Inc. 2008), which estimates each individuals ‘hazard’, or risk of death, in 

response to the covariates associated with a given individual, e.g. microhabitat. Two additional 

options were used within the PHREG procedure: (1) the COVSANDWICH option to estimate 

robust Wald sandwich covariance (Lee et al. 1992) since individuals are non-independently 

clustered as plots within replicates, and (2) the EXACT ties option, which should be used when 

the true timing of mortality is unknown and could occur during any continuous point between 
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censuses (Allison 2010). Interpreting Cox PH models is fairly intuitive since a Hazard Ratio (HR) 

for each covariate is produced. For categorical variables, the HR quantifies the hazard for one 

group (numerator) relative to another (denominator); e.g. the hazard associated with growing 

beneath shrubs relative to interspaces. Size was not used in survival analyses of seedlings 

emerged from sown seeds. 

 
IV. Results 

Seed-sowing experiment 

 
Emergence occurred between the 

censuses of 4 November 2009 and 28 May 

2010, probably in April or early May, 

since most seedlings only had cotyledon 

leaves. When first observed in May, the 

desiccated remains of dead seedlings 

included in emergence and survival 

analyses. Seedling emergence was never 

observed in control plots of any treatment 

suggesting all seedlings were from the 

seeds I had sown.  

Emergence was significantly 

influenced by microhabitat association 

(Fig. 3-1a). Pair-wise comparisons indicate 

canopy presence (C) or absence (NC) had 

no effect on emergence (Table 3-1; Fig. 3- 

*  P < 0.05; ** P < 0.01 

Fig. 3-1: (a) The percentage of seeds that 
emerged as seedlings in each microhabitat and 
results of a generalized linear mixed model 
showing the associated 95% confidence limits. 
(b) The proportion of seedlings that survived in 
each microhabitat over time. Significance tests 
result from Cox PH modeling and indicate 
significance between pair-wise comparisons of 
hazard ratios (see Table 3-2).  
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1a). In contrast, emergence was more than 4.7 times greater in interspace soils relative to shrub 

soils, regardless of shrub canopy presence or absence (Table 3-1, Fig. 3-1a). 

 Hazard (ie. risk of mortality) of emerged seedlings was influenced by microhabitat 

(Table 3-2a; Fig. 3-1b). Pair-wise hazard comparisons between microhabitats revealed that 

seedlings emerging in natural interspaces (NC+IS) had 32%, 45%, and 65%, higher hazard than 

the C+IS, C+SS, and NC+SS treatments, respectively, but all other treatments were 

indistinguishable (Table 3-2a; Fig. 3-1b). Summarizing in other words, seedlings growing in 

shrub soil had higher survival regardless of canopy presence, but survival of seedlings was only 

greater under canopies if seedlings emerged from interspace soils. Although these differences in 

initial  survival rates are enlightening, all seedlings died before becoming reproductive. 

 
Seedling-transplant experiment 

 
Initial size (AGV) of transplants did not differ significantly between microhabitats (Table 

3-3). To avoid interpreting size-dependent mortality as growth, I only compared size and growth 

for transplants surviving to day 77; too few plants survived past day 77 for reliable growth 

analyses (Fig. 3-2). This limited the number of transplants used for size and growth analyses in 

each microhabitat to 25 (C+SS), 75 (C+IS), 27 (NC+SS), and 59 (NC+IS).  

Table 3-1 
Pair-wise comparisons of emergence between treatments resulting from the GLMM using the 
GLIMMIX procedure in SAS 9.2 (SAS Insititute Inc. 2008). Tukey-Kramer significant 
adjustments are reported (Padj). Emergence occurred either under a canopy (C) or no canopy (NC) 
in either shrub soil (SS) or interspace soil (IS). To account for potential non-independence within 
replicates, G-sided random effects were specified at the replicate level. Bolding indicates 
significance at the 0.05 level. The overall model was significant (P < 0.001; F3,67 = 12.62) 

Microhabitat comparisons Estimate SE T67 Padj 
C+ SS vs.    C+IS -1.595 0.375 4.22 <0.001 
C+ SS vs.    NC+SS 0.848 0.589 1.44 0.478 
C+ SS vs.    NC+IS -1.477 0.371 3.98 0.001 
C+IS vs.    NC+SS 2.434 0.523 4.66 <0.001 
C+IS vs.    NC+IS 0.109 0.254 0.43 0.974 
NC+IS vs.    NC+SS 2.325 0.520 4.47 <0.001 
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Table 3-2 
Pair-wise microhabitat comparisons of hazard ratios (HR) and their 95% confidence limits (CL), 
goodness of fit (Wald χ²df=1) and statistical significance for (a) seedlings emerged from seed and 
(b) average sized transplanted seedlings of P.palmeri. Seedlings grew either under a canopy (C) 
or no canopy (NC) in either shrub soil (SS) or interspace soil (IS). All comparisons result from 
Cox PH models using SAS 9.2 (SAS Institute Inc. 2008) with EXACT ties (Allison 2010). Non-
independence was accounted for using robust Wald sandwich covariance’s (Lin and Yei 1992) 
using the COVSANDWICH option at the subplot (20cm x 20cm) scale. Bolding indicates 
significance at the 0.05 level. 

(a) Emerged seedlings a     

Microhabitat Comparison HRc Wald 95% CL Wald χ²1 P-value 
C+SS ÷    C+IS 0.808 0.565-1.154 1.378 0.241 
C+SS ÷    NC+SS 1.563 0.688-3.550 1.137 0.286 
C+SS ÷    NC+IS 0.545 0.361-0.822 8.365 0.004 
C+IS ÷    NC+SS 1.935 0.869-4.311 2.609 0.106 
C+IS ÷    NC+IS 0.675 0.456-0.999 3.856 0.049 
NC+SS ÷    NC+IS 0.349 0.150-0.813 5.954 0.015 

(b) Transplanted seedlings b     
Microhabitat Comparison HRc Wald 95% CL Wald χ²1 P-value 

C+SS ÷    C+IS 1.573 1.207-2.050 11.227 < 0.001 
C+SS ÷    NC+SS 1.043 0.839-1.297 0.146 0.702 
C+SS ÷    NC+IS 1.313 1.030-1.674 4.852 0.028 
C+IS ÷    NC+SS 0.663 0.523-0.842 11.386 <0.001 
C+IS ÷    NC+IS 0.835 0.645-1.080 1.886 0.170 
NC+SS ÷    NC+IS 1.259 1.017-1.558 4.473 0.034 
a Overall the model/microhabitat effect were statistically significant (P = 0.011;χ²3 = 11.05). 
b The overall model fit was significant (P < 0.001; χ²4 = 79.138) and included a statistically significant 

effect of Log10[Initial transplant volume](P < 0.001; χ²1 = 65.151; HR = 0.615). The microhabitat effect 
was statistically significant (P = 0.001; χ²3 = 16.08). The interaction between microhabitat and plant 
size was not significant (P = 0.230; χ²3 = 4.039), and was removed from the model. 

c  HR: ‘Hazard Ratio’; the risk of mortality in the microhabitat in the numerator relative to the 
denominator. 

 
 

Table 3-3 
Summary of generalize linear mixed models for initial above ground volume (AGV), AGV 
over time, and relative growth rate (RGR) for transplanted P. palmeri. All models were 
evaluated using the GLIMMIX procedure in SAS 9.2 (SAS Institute Inc. 2008). 

  Initial AGV   AGV over time   RGR 
Covariates F df P-

value
 F df P-

value 
 F df P-

value
Microhabitat 0.20 3,60 0.895 4.20 3,56 0.009  4.92 3,48 0.005
Days  - - - 12.74 3,152 < 

0.001 
 3.35 3,106 0.039

Microhabitat × days 
 
 
 

- - - 2.91 9,152 0.003  0.45 6,106 0.842
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 Above ground volume (AGV) was 

significantly influenced by microhabitat, 

the number of days since transplant, and 

their interaction (Table 3-3). Pair-wise 

comparisons show that there were no 

significant AGV differences between 

transplants in any microhabitat until day 

49 (Table 3-4); after this, AGV was greater 

for transplants in the NC+SS microhabitat 

than in the C+SS and C+IS microhabitats 

(Fig. 3-2a; Table 3-4a). By day 77 these 

differences were amplified since 

transplants in NC+SS microhabitat 

continually increased in AGV after day 49 

while those in the remaining microhabitats 

continued to shrink(Fig. 3-2a; Table 3-4a); 

however, the decrease in size was less for 

transplants in natural interspaces (NC+IS) 

compared to those beneath natural shrubs (C+SS) resulting in a significantly higher transplant 

AGV in the natural interspaces relative to the natural shrubs (NC+IS ÷ C+SS; Fig. 3-2a; Table 3-

4a). The remaining microhabitat comparisons of transplanted seedling AGV were not statistically 

significant (Table 3-4a). 

 Transplant growth (RGR) was significantly influenced by treatment and the number of 

days since transplant but, unlike the model for AGV, not their interaction (Table 3-3). Pair-wise  

 
 

 

*  P < 0.05; *** P < 0.001 

Fig. 3-2: Comparisons of (a) size (log10(AGV)) and 
(b) growth rate (RGR) of transplanted seedlings; 
significance was evaluated using Tukey-Kramer 
adjusted pair-wise comparisons of microhabitats 
based on generalized linear mixed models. 
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comparisons (Table 3-4b) were only significant for a single comparison on day 49; RGR of 

seedlings transplanted to shrub soils was higher when canopies were absent (NC+SS) than when 

they were present (C+SS) (Fig. 3-2b; Table 3-4b).  

In the survival analysis, larger plants survived better. Cox PH models estimated a 38% 

lower hazard for each 10-fold increase in the initial AGV of the transplanted seedlings being 

compared (HR = 0.615; χ²1 = 65.151; P < 0.001). The interaction term was removed from the 

model since it was not significant (χ²3 = 4.039; P = 0.230), i.e. the effects of size and treatment 

were independent. After controlling for plant size by including it as a covariate, results contrasted 

markedly from those in the seed sowing experiment. Seedlings transplanted in shrub soils had 

57% higher hazard than did those in interspace soils when canopies were present (C+SS ÷ C+IS) 

(Fig. 3-3; Table 3-2b). Similarly, seedlings transplanted into shrub soils had 26% more hazard 

compared to those in interspace soils if canopies were absent (NC+SS ÷ NC+IS) (Fig. 3-3; Table 

3-2b). In contrast to the effects of soil microhabitat, canopy had no significant effect on hazard 

for plants growing in shrub soils 

(C+SS÷NC+SS) or in interspace soils 

(C+IS÷ NC+IS) (Fig. 3-3; Table 3-2b). Of 

the two natural microhabitats, transplants 

beneath natural shrubs (C+SS) had 31% 

greater hazard than transplants in natural 

interspaces (NC+IS) (Fig. 3-3; Table 3-

2b).  

Lastly, comparing the two 

experimentally created microhabitats, 

transplants in the artificially shaded 

* P < 0.05; *** P < 0.001 

Fig. 3-3: Pair-wise comparisons of the percentage 
of transplanted seedlings remaining over time. 
Significance tests apply to hazard ratios from a 
Cox PH model (see Table 2b); a significant 
difference indicates that the risk of mortality in 
one microhabitat is greater than the other. 
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interspace soils (C+IS) had 34% lower hazard than those in artificially exposed shrub soils 

(NC+SS) (Fig. 3-3; Table 3-2b). Again, while these early survival differences are interesting, 

only one transplanted seedling remained in each treatment at the end of the study. 

 
Summary 

 
Soil type had significant but contrasting effects on emerged seedling density and survival, 

and the effect of soil on survival depended on which experiment was examined (Table 3-5). 

While the net-effects of canopy were generally weaker than the net-effects of soil, when P. 

palmeri responded to canopy presence, the effects depended on the soil microhabitat, 

performance metric, and experiment being considered (Table 3-5). 

V. Discussion 

Using a combination of canopy removal and mimicry manipulations, the effects of shrub 

canopies on P. palmeri emergence and seedling performance were isolated from the simultaneous 

effects of shrub-altered soil. The results suggest that soils beneath shrubs influenced emergence 

and seedling survival much more than canopy effects, which were only occasionally important 

Table 3-5 
Summary of the response of emergence, survival, size and growth to canopy presence (relative 
to absence) and shrub soil (relative to interspace soil) in the two experiments. Effects can be 
positive (+), negative (−), or neutral (0) and can depend on the microhabitat condition 
(superscripts). For example, ‘+IS/0SS’ indicates that the effect of canopy presence was positive 
on interspace soils but neutral on shrub soils. Decimals (‘.’) indicate unanalyzed responses 

 Seed-sowing experiment  Seedling-transplant experiment 

Metric 
 Canopy 

presence 
 Shrub  

soil 
 Canopy 

presence 
 Shrub 

 soil 

Emergence  0  −  .  . 
Survival  +IS/0SS  +  0  − 
Size/Growth  .  .  0IS/−SS  0C/+NC 
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and depended on soil conditions. Further, soil-driven seed-seedling conflicts were suggested by 

the seed sowing experiment. 

 
Seed sowing experiment 

 
Emergence of P. palmeri was lower on shrubs soils than interspace soils, suggesting that 

soils beneath A. tridentata had a net negative effect on emergence. That emergence had no 

apparent response to canopies suggests that canopies had no net effect on emergence. Greater 

emergence densities in interspace soils were more likely due to higher emergence rates rather 

than higher seed bank density since initial seed bank density was controlled for and most studies 

find that seeds accumulate under shrubs rather than their interspaces (Pugnaire and Lázaro 2000). 

Other research on natural P. palmeri emergence patterns and germination requirements indicate 

P. palmeri seeds require sufficient light, temperatures, and moisture to break dormancy and can 

form persistent seed banks when seeds are buried (Kitchen and Meyer 1992; Meyer and Kitchen 

1992). However, heat can overcome light requirements allowing buried seeds to germinate 

(Kitchen and Meyer 1992). Therefore, if seeds become trapped and buried by shrub soils and 

litter, they may not germinate during dry years. Instead they may persist in the seed bank until 

soils are disturbed or if sufficiently warm temperatures break seed dormancy preceding a 

‘biologically significant’ (Reynolds et al. 2004) precipitation event, triggering a pulse of 

germination (Noy-Meir 1973). Even if seeds do germinate, litter can also act as a physical barrier 

to emergence, or as a chemical inhibitor due to allelopathic leachates (reviewed in Facelli & 

Picket 1991). Greater seed predation in shrub soils could possibly also reduce shrub soil seed 

bank density if belowground seed predators prefer foraging in litter (e.g. herbivorous anthropods 

in Facelli 1994), but for above ground seed predators, higher seed predation under shrubs is 

usually attributed canopies providing seed consumers from their predators (Castro et al. 1999; 

Hulme and Borelli 1999; Vander Wall and Thayer 2001; Callaway 2007 pp 117-178; Barbosa et 
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al. 2009). However, canopies had no effect on emergence density suggesting that such indirect 

biotic interactions are absent or they are masked by simultaneous positive canopy effects. Given 

the light and temperature sensitivity of dormant P. palmeri seeds (Kitchen and Meyer 1992), it is 

surprising that canopies had no detectable influence on emergence. However, A. tridentata 

canopies are known to have lasting indirect effects on soils (Bechtold and Inouye 2007) and in 

this study A. tridentata soils appeared to suppress P. palmeri emergence, though the mechanisms 

remain unclear. 

Emerged seedling survival was higher in shrub soils, regardless of canopy presence or 

absence, suggesting that the positive effects of shrubs soils on seedling survival might outweigh 

their negative effects. For example, while A tridentata litter can have allelopathic effects 

(Schlatterer and Tisdale 1969; Weaver and Klarich 1977; Kelsey et al. 1978), long-term 

improvements of nutrient availability (Bechtold and Inouye 2007) and subsequent increased 

beneficial microbial activity (van der Heijden and Horton 2009; Bashan and de-Bashan 2010), 

may be more important for P. palmeri seedling survival; however, the fact that post-emergence 

survival was higher on shrub soils suggests allelopathic effects were probably not important 

unless they negatively influence emergence but had no effect on seedlings. Canopy presence had 

no effect on survival when seedlings emerged in shrub soils, but those that emerged in interspace 

soils benefitted from canopy presence suggesting that canopies, even the leafless experimental 

canopies present when seedlings emerged, have net positive effects on seedling survival in 

interspace soils but the positive and negative effects of canopies were balanced in the presence of 

shrub soil. If lower survival in interspace soils indicated stressful conditions, then observing a 

net-positive effect of canopy on survival in stressful interspace soils but a neutral effect of canopy 

in shrub soils suggests that the positive effects of shrubs are more pronounced under stressful 

conditions;  this pattern is consistent with the SGH (sensu Bertness & Callaway, 1994). However, 

most experimental studies have not detected this type of interaction since they examined 
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differences between shrub and interspace soils only in the presence of shelter, as in canopy mimic 

experiments (Holzapfel and Mahall 1999; Padilla and Pugnaire 2008; Becerra and Bustamante 

2011) or absence of shelter, as in canopy removal experiments (Callaway 1992; Callaway et al. 

1996). One study also combined shrub removal and canopy mimicry to evaluate the independent 

and interacting effects of shade and soil (Gómez-Aparicio et al. 2005). While they did not 

examine emergence patterns, their results suggested that both canopy presence and shrub soil 

microhabitat improved transplanted tree seedling performance, but the effects of shade were 

much more important than soil (Gómez-Aparicio et al. 2005). A relevant greenhouse study 

(Carrillo-Garcia et al. 2000) took soil from beneath mesquite (Prosopis articulata) and from 

interspaces and used it as a potting medium for the columnar cactus, cardon (Pachycereus 

pringlei). Cardon potted in these different soil microhabitats were then grown beneath either 50% 

shade simulation (canopy mimic via shade cloth), or in full sun; their results were strikingly 

similar to the results found here (Carrillo-Garcia et al. 2000). They also found that ‘resource 

island’ tree soil had strong positive effects on survival, regardless of whether shade cloth was 

present, and that shade cloth greatly influenced survival, but only when cactus grew in interspace 

soils; they concluded that survival depends on the interacting effects of shade and soil (Carrillo-

Garcia et al. 2000). The result from this study, and others (Carrillo-Garcia et al. 2000; Kitzberger 

et al. 2000; Gómez-Aparicio et al. 2005) suggest that the effects of canopy and soil are often not 

independent of each other, and should be more often be studied in a fully factorial manner. 

Seedling emergence and survival responded to soil microhabitat in a conflicting manner, 

with shrub soils reducing emergence density but also increasing emerged seedling survival 

relative to interspace soils. These results suggest a soil driven seed-seedling conflict in which the 

soil conditions that were unfavorable for the seed stage were later favorable for the seedling 

stage. Seed-seedling conflicts are common throughout many ecosystems (Schupp 1995). Similar 

patterns were found in a study demonstrating that C. ledifolius litter reduced the emergence of 
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experimentally sown C. ledifolius seeds, probably since litter created a physical barrier, but litter 

improved survival of transplanted seedlings, possibly since litter improved the soil microclimatic 

conditions (Ibáñez and Schupp 2002). Further, results of a canopy mimicry experiment (shade 

cloth) suggested that shade increased emergence of sown seeds, perhaps through increased soil 

moisture , but that survival was higher in interspace soils with canopies (mimics) than in shrub 

soils with canopies (Becerra and Bustamante 2011). This result may have been due to allelopathic 

effects of litter; while their design could not address the effects of soil in the absence of shade, 

their results suggest that the order of seed-seedling conflicts can be opposite from what was 

observed in this study (i.e. positive effects of shrubs on emergence, but negative on survival) and 

that positive effects may occur through different mechanisms than negative effects (Becerra and 

Bustamante 2011). 

 
Seedling transplant experiment 

 
Transplanted seedlings in each microhabitat were initially similar in size, but by day 49 

plant size differed between some microhabitats and these differences were even greater by day 

77. Only seedlings transplanted to shrub soil with no canopy treatment (NC+SS) grew in size 

between day 49 and day 77 suggesting a net-negative effect of canopy; however, in interspace 

soils, canopy presence had no effect on transplanted seedling size. Further, shrub soil only had 

positive effects on growth in the absence of canopies, suggesting that soils are favorable for 

growth, but only in the absence of negative canopy effects. These results demonstrate that the 

response of growth under canopies can depend on soil microhabitat and the effect of soil 

microhabitat can depend on canopy presence or absence; other factorial examinations of shade 

and soil have observed similar interactions between canopy and soil effects (Carrillo-Garcia et al. 

2000; Gómez-Aparicio et al. 2005). Despite nearly double the precipitation in 2009 and water 

supplementation, growth (RGR) was generally negative, suggesting that seedling transplants 
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struggled to maintain biomass. However, there was one exception: seedlings transplanted to shrub 

soils without canopies (NC+SS) grew between June-July 2009 (day 49-77) and by day 49, they 

grew faster in this microhabitat than in shrub soils with canopies, where transplanted seedling 

shrunk throughout the study. Otherwise, growth was rarely different between microhabitats and 

censuses despite significant model effects for microhabitat and time (days since transplant) in the 

RGR model and large size differences developed by day 77 in the AGV model; this suggests that 

undetected differences in RGR resulted in significant cumulative differences in AGV, highlighting 

the importance of examining both. 

Compared to analyses of emergence and survival, analyses of size and growth have been 

less examined in removal or shrub mimicry experiments (but see Callaway 1992; Callaway et al. 

1996; Kitzberger et al. 2000; Gómez-Aparicio et al. 2005). One removal experiment revealed a 

negative effect of shrub canopies on transplanted tree seedling growth in A. tridentata soils 

(Callaway et al. 1996). Separate shrub mimicry experiments showed that artificial shade reduced 

seedling growth (Callaway 1992), but these experiments in isolation examined interactions only 

within particular soil microhabitats, not between them. Therefore, these experiments could not 

assess the potentially interacting effects of shade and soil on growth, like those observed in this 

study and others (Carrillo-Garcia et al. 2000; Gómez-Aparicio et al. 2005). Another experiment 

combining shrub mimicry and shrub removal demonstrated that growth effects of shrubs were 

rare for understory tree species, but that one tree (Quercus ilex) species had complex growth 

responses to shade and soil (Gómez-Aparicio et al. 2005). More specifically, shade appeared to 

have an overall positive effect on growth, independent of soil type, but shrub soil only had 

positive effects on growth in the presence of a canopy; the response of growth to soil microhabitat 

depended on canopy presence or absence (Gómez-Aparicio et al. 2005). The effects of shade on 

seedling growth in their experiment were positive, regardless of soil microhabitat. However in the 

present experiment, the effects of shade on growth were negative, and required the presence of 
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shrub soils to be apparent. Further the effects of soil on seedling growth in their study were only 

apparent in the presence of shade while the effects of shrub soil on growth in the present study 

were only apparent in the absence of shade. While the specific effects of canopies and soils were 

very different between these studies, they shared an important interaction between shade and soil 

that could only be revealed when shrub removal and canopy mimicry experiments were 

combined. It should be noted here that there are other ways to address the interacting effects of 

canopies and soils.  

Survival of transplanted seedlings was not influenced by shrub canopies in either soil 

microhabitat; however, survival in shrub soils was always lower than survival in interspace soils 

regardless of canopy presence or absence on either soils microhabitat. This suggests that the 

negative effects of shrub soils on transplanted seedling survival outweighed their positive effects. 

This result, combined with the positive effects of shrub soils on growth, suggests a conflict 

between survival and growth due to soil microhabitat; transplanted seedlings in shrub soils had 

lower survival than those in interspace soils, suggesting that soil conditions were unfavorable for 

establishment, but once established, growth was higher in shrub soils than in interspace soils. In a 

removal experiment, a similar conflict between survival and growth occurred by canopy-related 

mechanisms; survival of Pinus monophylla was higher under A. tridentata canopies than in the 

open or removed microhabitats, probably due to shrubs favorably altering microclimate and 

providing associational defense, but the positive effects of shelter simultaneously negatively 

influenced growth (Callaway 1992).  

 
Contradictions between experiments 

 
While the seed sowing and transplant experiments both indicated that soil microhabitat 

generally influenced seedling survival more than canopy presence, the response of seedling 

survival to soil microhabitat was opposite in the two experiments; the effect of soils on survival 
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was positive in the sowing experiment but negative in the transplant experiment. Negative soil 

effects in the transplant experiment but not the sowing experiment suggest that experimental 

differences altered the outcome of seedling survival. Monsoonal conditions were wetter than 

average during early days of the transplanted seedling survival observations (2009) but during 

observations of emerged seedling survival in the seed sowing experiment (2010), monsoonal 

precipitation was below average. Negative effects of shrub soils on transplanted seedling survival 

also may have arisen due to the addition of water; for example, litter could retain the added water, 

preventing it from infiltrating to plant roots (Facelli and Picket 1991). These experimental 

differences in water availability, could influence the outcome of plant interactions (e.g. Greenlee 

and Callaway 1996; Kitzberger et al. 2000; Tielbörger and Kadmon 2000), which are predicted 

by the SGH to become increasingly negative as conditions become less stressful with water 

addition (Bertness and Callaway 1994). While transplant experiments permit control over some 

factors (plant size, density, and spatial arrangement), they can be challenging to establish and 

interpret, requiring manipulatively balancing water requirements of plants to prevent transplant 

shock (see Close et al. 2005) without altering the outcome of the interactions under investigation 

(Kitzberger et al. 2000; Padilla and Pugnaire 2008). In contrast, relative to transplant 

experiments, seed sowing experiments can be more informative about seed-seedling conflicts and 

require less effort, but in arid environments, if water is not supplemented, it may take years for a 

precipitation event to be large enough to trigger a pulse of germination (Noy-Meir 1973; 

Reynolds et al. 2004). Nonetheless, seed-sowing results closely matched natural patterns of lower 

emergence but higher survival under shrubs compared to interspaces (Chapter 2). Thus, the 

survival results of the seed-sowing experiments are probably more reliable than the survival 

results of the seedling-transplant experiment. 
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Demographic implications 

 
Understanding the demographic consequences of these results requires a better 

understanding of the relationship between seed bank dynamics, seed-seedling conflicts, and 

facilitation. Ultimately, all seedlings died by the end of the seed sowing experiment and only one 

seedling remained in each treatment of the seedling transplant experiment suggesting that P. 

palmeri establishment was severely limited in 2010. This may have been due to 2010 winter 

precipitation being above average (2000-2008), possibly triggering a pulse of germination with 

spring snowmelt, followed by summer precipitation being half the mean, probably causing rapid 

seedling mortality. If the negative effect that shrub soils had on emergence densities is due to 

reduced emergence rates (rather than reduced seed bank density) and seeds that did not germinate 

during the study remain viable, then the observed negative effect of shrubs on single-season 

emergence rates suggest a positive long-term effect of shrubs on P. palmeri seed bank 

persistence.  

Interspace soils were associated with improved seedling emergence but reduced seedling 

survival while shrub soils were associated with reduced seedling emergence but improved 

seedling survival. This suggests that the order of seed-seedling conflicts was reversed for shrub 

and interspaces soil microhabitats. While both soil microhabitats had poor establishment rates due 

to either reduced emergence or reduced survival, the order of the seed-seedling conflict has 

important implications for seed bank persistence in different soil microhabitats. In interspace soil, 

a conflict of high emergence densities followed by low survival is expected to deplete the seed 

bank, but in shrub soils, a conflict of low emergence densities followed by high seedling survival 

should have positive consequences for long-term seed bank persistence if seed survive and 

remain viable. These results add to a growing body of evidence showing the positive effects that 

shrubs may have on seed bank persistence in arid and semi-arid ecosystems (Pugnaire and Lázaro 
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2000); however, the implications of seed-seedling conflicts for seed bank persistence and, 

therefore population stability, remain poorly understood. 

 
Conclusion 

 
Experimental manipulations of shade narrowed the range of mechanisms that may be 

driving natural patterns of P. palmeri emergence and performance. Soil properties had important 

but conflicting roles in emergence, survival, and cumulative growth (i.e. size) of P. palmeri; in 

contrast, shrub canopies often had relatively weak effects on P. palmeri emergence and 

performance and the effects of canopies depended on soil conditions. However, it remains unclear 

which properties of shrub soils are responsible for the observed patterns. Integrating concepts of 

facilitation, seed-seedling conflicts, and seed bank persistence could help describe the spatio-

temporal heterogeneity of plant populations and the demographic consequences of interspecific 

associations in arid and semi-arid ecosystems. Future research should investigate how the order of 

seed-seedling conflicts vary along gradients of environmental stress (Schupp 2007) and the effect 

of the order of the seed-seedling conflict on persistence of seed banks. 
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CHAPTER 4 

USING STRUCTURAL EQUATION MODELING TO EXPLORE REPRODUCTIVE 

CONSEQUENCES OF ASSOCIATIONS BETWEEN A PERRENIAL FORB  

(PENSTEMON PALMERI A. GRAY) AND A SHRUB (ERIODICTYON  

ANGUSTIFOLIUM NUTT.) IN THE MOJAVE DESERT 

 
I. Abstract 

For decades ecologists have investigated the various interactive factors of plant 

reproductive ecology, but few have examined the direct and indirect effects of facilitation on 

plant reproductive ecology. Reproductive output can be limited by a suite of potentially highly 

correlated factors (e.g. water stress, pollen limitation, resource allocation). In deserts, overstory 

plants can improve the water use efficiency of plants growing beneath their canopies, yet few 

studies investigate how facilitation of water use efficiency might influence understory 

reproduction. Similarly, the reproductive importance of pollinator behavior is well documented, 

yet studies considering how overstory plants might influence pollinator foraging behavior on 

understory plants are lacking. Here, I used structural equation modeling to explore how spatial 

association with overstory shrubs of Eriodictyon angustifolium might influence the single-season 

seed production of an understory short-lived perennial herb (Penstemon palmeri). Two broad 

questions are addressed: 1) how does association with E. angustifolium influence single-season P. 

palmeri seed production? 2) Which direct and indirect factors are responsible for any differences? 

Results indicate shrubs had a net-negative effect on P. palmeri seed production due to shrubs 

strongly reducing the size of P. palmeri, indirectly limiting total bud initiation and nectar 

production, which were factors that were related to pollinator visitation and thence fruit 

production. However, the strong negative effects of shrubs on understory seed production 

coincided with decreased understory water stress, fewer aborted buds, and a greater percentage of 
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bees choosing to forage for pollen. These results suggest that overstory shrubs suppressed the 

growth of P. palmeri, but they simultaneously facilitated P. palmeri by reducing water stress and 

increased foraging activity for pollen by bees, leading to a weak mitigation of the negative effects 

of shrubs on plant size. Further, larger plants had more mature fruits, but the frequency of visits 

during which bees collected pollen corresponded with an increase in the number of mature fruits, 

suggesting that P. palmeri is resource limited, but also pollen limited. 

 
II. Introduction 

A renewed interest in positive interactions, especially facilitation, in the past 15 years has 

led to greater understanding of ecological systems (Brooker and Callaway 2009). Many 

ecological concepts were developed before it was recognized that facilitation can be a key force 

shaping communities (Bruno et al. 2003). Mutual progress has been made by merging the 

conceptual framework of facilitation with better understood frameworks, such as niche theory 

(Bruno et al. 2003), phylogeny (Valiente-Banuet and Verdú 2008), life-history strategy (Maestre 

et al. 2009), and functional traits (Butterfield and Briggs 2011). The field of plant reproductive 

ecology provides a conceptual framework to describe patterns and strategies of reproduction, and 

has been studied intensively (see Stephenson 1981; Doust and Doust 1988); the reproductive 

importance of plant size (Bonser and Aarssen 2009; Weiner et al. 2009), pollinator behavior 

(Zimmermann 1988), competition (Weiner 1988) and herbivory (Hendrix 1988) are fairly well 

documented. However, relatively few studies of reproduction have included facilitation as a 

potentially influential factor of reproduction (Brooker et al. 2008) and those that have (Casper 

1996; Shumway 2000; Tielbörger and Kadmon 2000; Choler et al. 2001; Kikvidze et al. 2001; 

Tirado and Pugnaire 2003; Griffith 2010; Soliveres et al. 2010; Cranston et al. 2012) did not 

address the potential influence of facilitation on pollinator behavior, floral display and reward, or 

the fate of buds as they mature into fruits. As a consequence, the evolutionary impact of 
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facilitation is often overlooked as a consequence of poor understanding of the fitness response of 

plants to facilitation (Brooker et al. 2008; Bronstein 2009) 

Positive and negative interactions between plants are thought to occur simultaneously 

(Bertness and Callaway 1994; Callaway 1995, 2007 pp 179-254; Callaway and Walker 1997; 

Maestre et al. 2003) and both can act directly or indirectly and a through multitude of interacting 

physical, biotic, and chemical mechanisms (Callaway 2007 pp 15-178). Net interactions between 

plants are predicted to be increasingly facilitative as environments become more biotically and 

abiotically severe (Bertness and Callaway 1994). Though this ‘stress gradient hypothesis’ (sensu 

Bertness and Callaway 1994) is well supported, there are exceptions (reviewed in Brooker et al. 

2008); these differences largely arise due to variable effects of stress gradients on different life-

stages (Miriti 2006; Schiffers and Tielborger 2006; Armas and Pugnaire 2009; Soliveres et al. 

2010) and traits of interacting plant pairs (Callaway 2007 pp 255-292; Butterfield and Briggs 

2011).  Extending these patterns to reproduction suggests that, the importance of facilitation on 

reproduction should depend on the environmental conditions plants face during reproduction (e.g. 

Casper 1996), the sensitivity of various stages of reproduction (budding, flowering, and fruiting) 

to those conditions, and the degree to which different stress factors can be mediated by benefactor 

(facilitating plant) and beneficiary (facilitated plant) traits (sensu Callaway 1995). 

Plant size is closely related to the energy and resources that are available to reproduction 

(Stephenson 1981; Reekie and Bazzaz 1987; Weiner et al. 2009) and reproductive effort in plants 

is costly (Obeso 2002), requiring an investment of resources to developing buds, flowers (and 

their nectar and pollen), and fruits (Stephenson 1981). To manage these costs, plants abort 

reproductive parts, allowing resources to be translocated to more developed parts if resources 

become limited (Stephenson 1981). By definition, water is limited in deserts, so if shrubs 

ameliorate water stress, as they can in arid environments (Maestre et al. 2003; Gómez-Aparicio et 

al. 2004), plants growing under shrubs may demonstrate different patterns and strategies of 
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abortion than their potentially water-limited neighbors in interspaces. A water-limited plant is 

expected to benefit most by aborting the least developed flowers (i.e. buds) since less water has 

been devoted to their development (i.e. the loss of the structure is less costly) and a portion of 

invested water (and other resources) can be translocated to further developed floral structures that 

are more developed (i.e. flowers, fruits, and/or seeds) (Stephenson 1981). If shrubs reduce water 

limitation, rates of abortion may be lower, leading to an indirect increase in successful fruit 

maturation, but research examining patterns of abortion in the context of facilitation is lacking. 

Although resources often limit individual seed production and fruit set (Stephenson 

1981), pollination can also be limiting (Rathcke 1983; Zimmermann 1988; Larson and Barrett 

2000; Knight et al. 2005).The importance of pollen limitation depends on specific plant traits (e.g. 

floral display size, longevity, ovules per flower) and life-history strategy (i.e. iteroparity vs. 

semelparity) among other factors (Larson and Barrett 2000; Knight et al. 2005). By investing 

resources to floral display and nectar rewards, plants can decrease pollen limitation by 

influencing decisions made by pollinators, such as whether to visit, how long to stay, and where 

to go after visiting (Zimmermann 1988). There is substantial evidence that pollinators forage 

optimally (see Pyke 1984 for review); in order to maximize fitness they behave in ways that 

increase the forage collected while reducing the costs of collecting it (MacArthur and Pianka 

1966; Charnov 1976). Thus, plants with larger floral displays tend to attract more pollinators 

since pollinators can rapidly acquire floral resources while minimizing the travel costs between 

flowers (Galen 1999). Nectar production has been thought to have limited influence on visitation 

rates since assessing the reward requires a pollinator to visit a plant (Zimmermann 1988); 

however, olfaction in Osmia spp. bees permits detection of nectar prior to visiting flowers 

(Howell and Alarcón 2007), suggesting that plants that produce copious nectar may be able to 

attract certain pollinators from a distance. How pollinators respond to an individual’s floral 

display and rewards depends on whether conspecific and heterospecific neighbors compete for or 
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facilitate visitation. Examples of both competition for, and facilitation of pollination, are well 

documented (Rathcke 1983; Ghazoul 2006); however, it is unknown how overstory desert plants 

may directly or indirectly influence pollinator behavior. Higher densities of flowering plants are 

expected if their survival is facilitated, thus facilitation of survival may indirectly influence the 

intensity of interactions for pollination. In arid Mediterranean ecosystems, nectar volume and 

concentration is driven by plant traits and abiotic conditions, i.e. temperature, humidity, light 

intensity, water availability and nutrient stress (Petanidou 2007). If shrubs alter these conditions 

to be more favorable, then plants growing beneath their canopies may produce more nectar. Such 

an effect could also increase patch-scale reward, potentially altering foraging decisions of 

pollinators. Floral microclimate, such as temperature and relative humidity, has been shown to be 

an important determinant of bee foraging behavior (Herrera 1995a, b; Rands and Whitney 2008). 

Thus, since shrubs can buffer climatic extremes via canopy structure (Tracol et al. 2011), they 

may consequently alter foraging behavior of bees, especially in environments where climatic 

conditions are extreme and highly variable throughout the day. 

  In reality, fruit set is often not limited by a single factor, but instead by a combination of 

highly interrelated and temporally variable factors (Lee 1988; Campbell and Halama 1993; 

Mitchell 1994). The number of ovules produced, the amount and quality of pollen delivered to 

stigmas, the amount of resources available for fruit and seed filling, herbivory, predation, disease, 

and the physical environment can all limit reproduction simultaneously or asynchronously 

(Stephenson 1981) and are not mutually exclusive (Lee 1988). Such complexity might benefit 

from a multivariate approach for inference. Structural equation modeling (SEM) is an extension 

of path analysis that allows for explicit modeling of error terms, multicollinearity, and goodness 

of fit. It is well suited for situations where the interest lies in determining relative importance of 

direct, indirect, and total effects of different factors on the response of interest (see Grace 2006). 
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For these reasons, SEM has been used to evaluate multiple simultaneous determinants of seed 

production (Campbell and Halama 1993; Mitchell 1994).  

 The objective of this study was to use SEM to explore the direct and indirect 

consequences of interspecific interactions between the herbaceous perennial Penstemon palmeri 

(A. Gray) and the shrub Eriodictyon angustifolium (Nutt.) on the reproduction of P. palmeri. I 

asked two questions: 1) Does association with E. angustifolium positively or negatively influence 

single-season P. palmeri seed production? 2) Which direct and indirect processes might be 

responsible for those differences? Natural observations at this site suggested that in the presence 

of E. angustifolium, adult P. palmeri survived better and bud-to-fruit maturation success was 

greater, but fewer P. palmeri initiated flowering (Chapter 2). Consequently, relative to 

interspaces, plants located under shrubs are likely to have closer neighbors (due to increased 

survival), but have lower water stress. Plant size is expected to be the most important determinant 

of seed production, but water limitation, and pollinator foraging behavior are expected to be 

important as well. The effects of water stress in P. palmeri are unknown, but water stress is 

expected to negatively impact nectar production, reproductive maturation, and ultimately seed 

production. The least developed floral structures (i.e. buds) are expected to be most impacted by 

water limitation. It is unclear how the presence of E. angustifolium might directly influence 

pollination, but the potential for shrubs to alter visitation rates or foraging behavior upon 

individual plants are investigated. Three major groups of factors important in seed production 

were considered: plant-plant interactions (e.g. the effects of shrub presence and conspecific 

density on water stress and plant size), plant-pollinator interactions (e.g. the effects of local 

flower density on visitation rates and foraging behavior), and reproduction ecology (e.g. the 

number of initiated buds, and the fate of those buds). The effects of these groups of factors on 

each other were also examined (e.g. the effects of visitation rates on fruit and seed production). 
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III. Materials and Methods 

Study site 

 
Observations were made from May-November 2009 in Lovell Canyon within the Mojave 

Desert shrublands in the southern range of the Spring Mountains ~30 km west of Las Vegas, NV 

(latitude: 36° 9' 11.663" N; longitude: 115° 34' 19.515" W; elevation = 1770 m). The site burned 

7 years prior, and line-point cover estimates (Chapter 2) indicate that the vegetation consisted of a 

diverse mixture of nine Mojave Desert shrub species covering 50-60% of the area; E. 

angustifolium was the dominant shrub, responsible for roughly 70% of total shrub cover (Chapter 

2). Other herbaceous perennials and some grasses occurred throughout. Soil associations from the 

USDA NRCS web soil survey (Soil Survey Staff et al. 2011) indicate soils are Purob-Irongold 

associated; soils are well drained shallow gravelly loam with a deep water table (~2 m) with a 

shallow petrocalcic layer (~50 cm). 

 
Climatic data 

 
Estimated mean annual temperature and mean annual precipitation were obtained for 

2000 - 2009 (PRISM Climate Group 2011). In 2009 the site received 297 mm of precipitation, 

~13% lower than the mean annual precipitation from 2000-2008 (340 mm), and annual 

temperature for 2009 was 11.6 °C, very similar to the mean annual temperature from 2000-2008 

(11.9°C). Winter precipitation (November 2008-April 2009) was considerably greater than the 

average from 2000-2008 (289 mm; mean = 198 mm). May was a relatively wet month (17 mm; 

mean = 3 mm), and June was very dry as usual (< 1 mm; mean < 1 mm). July had stronger than 

usual monsoonal precipitation (38 mm; mean 29 mm), but August-October had below average 

precipitation making for a shorter than normal monsoon season (August: 7 mm, mean = 35 mm; 

Sept: 7 mm, mean = 18 mm; Oct: 2 mm, mean = 32 mm). 

90



 
 

 
 

Species of interest 

 
Suspected Beneficiary: Palmer’s penstemon (P. palmeri) is a native perennial forb that 

produces brilliant displays of white and purple flowers. Inflorescences develop acropetally and 

can support hundreds of flowers with buds initiated throughout the reproductive season. In 2009, 

flowering within the population began before data collection, most likely beginning in late April 

to early May. Flowering continued through June, but many flowers began to rapidly wither and 

detach toward the month’s end. By mid-July, flowering ceased. Fruits (i.e. capsules) matured 

between September and October. By November all capsules had dehisced. 

Suspected Benefactor: Yerba Santa (E. angustifolium) is a native perennial shrub that 

produces flowers from June to July and occurs throughout the arid United States Southwest in 

washes and on slopes (Baldwin et al. 2002). These shrubs can grow to over 2 m and the major 

diameter of their canopy can span several meters. Yerba Santa shares many floral visitors with P. 

palmeri (personal observation). All plant names follow the USDA NRCS PLANTS database 

(NRCS 2011). 

Pollinators: Observations indicate that bees are the primary visitors to P. palmeri from 

dawn to dusk; a single hummingbird was observed feeding on nectar of a P. palmeri not involved 

in the study. Bees were identified by Dr. Terry Griswold and vouchered in the United States 

Department of Agriculture Pollinating Insect Collection at Utah State University. In the field, 

between 830-1730 hr, 1-2 genera of small bees [Ceratina sp. or Ashmeadiella sp.] actively 

foraged for pollen and nectar independently; these were impossible to distinguish in the field 

since they were similar in size and color. Their small size permitted entry into the corolla without 

contacting the anthers on the dorsal interior surface of the corolla. This allowed them to 

potentially access nectaries (between the base of the anther filaments and the interior corolla) 

without pollen transfer; however, these species sometimes chose to forage for pollen and when 
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they did, pollen transfer would have been possible. In contrast, when foraging for nectar, larger 

bees (Xylocopa tabanaformis, Anthophora sp.) and vespoid wasps (Vespidae) had to enter the 

corolla by passing the staminode, promoting contact between the bee’s scopa and the anthers of 

P. palmeri; these larger visitors were extremely rare (0.92% of all observed visitors) during 

observations compared to the smaller visitors that actively foraged for pollen.  

 
Data Collection 

 
In June 2009, 54 reproductive P. palmeri were randomly selected for observation and 

measurement. Half were located under canopies of E. angustifolium and half in interspaces 

between shrubs. Independence was promoted by selecting P. palmeri at least 5m apart. Caudex 

diameter (the woody stem connecting the roots to the rosette) was measured with calipers and 

used as an index of plant size; support for this approach comes from another study in which 

aboveground dry mass of seedlings grown in greenhouses was highly correlated with their caudex 

diameter (Poulos and Rayburn in preparation; Appendix A). Distances to each of the nearest three 

conspecific neighbors were measured and averaged (‘Average neighbor distance’) and used to 

indicate the potential intensity of intraspecific interactions. 

To account for variability of pollinator activity throughout the day, each P. palmeri was 

randomly assigned to one of three groups. Each group consisted of 9 plants under shrubs and 9 in 

interspaces (18 plants per group). Groups were randomly assigned to one of three time blocks of 

6 consecutive days in June: the first block was 11-16 June, the second was 18-24 June, and the 

third was 25-30 June. Each day within a block was then divided into three observation periods: 

morning (830-1130hr), early afternoon (1130-1430hr), and late afternoon (1430-1730hr). 

Observations and measurements for the 18 plants within each group were rotated so that each 

plant was observed for 2 consecutive days per observation period (6 days total). 
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On each day, I counted the number of open flowers on each P. palmeri plant and the 

number of open conspecific flowers of other individuals within 1.5 m of each plant (‘local flower 

density’). Pollinator activity was then observed for 12 minutes per day per plantfor 6 days (72 

minutes total), with 30 minutes between the start of each observation. During each 12 minute 

period, the numbers of bees foraging for nectar and/or pollen (‘No. foraging bees’) were counted. 

Small bees that actively foraged for pollen were distinguished from those visiting only for nectar 

to calculate the percentage of bees that foraged for pollen. When the rare larger bee species 

visited, they were counted as foraging for both nectar and pollen. To minimize disturbance of 

pollinator activity, observations were made from a distance of 1.5 m, dull colors were worn, and 

care was taken to remain motionless. Occasionally, some flowers were not observable from a 

single position because flowers face multiple directions, so it was sometimes infeasible to track 

visitation patterns on plants with many open flowers. To account for these constraints, the ratio of 

the total open flowers to observed flowers was multiplied by the total number of bees foraging 

and the total number of forages for pollen to rescale observations to the whole plant; this assumes 

that foraging behavior of bees on observed flowers was equivalent to their behavior on unseen 

flowers. 

On the 1st, 3rd, and 5th days of observation, after observing pollinator visitation, a single 

flower on each plant was randomly selected for nectar measurements. Nectar was first drained 

using micropipettes. Then the flower was enclosed in spun-bound polypropylene (85% light 

permeability) to exclude floral visitation. A day later, before observing pollinator visitation, the 

covering was removed and accumulated nectar was again drained and the volume (μl) recorded. 

 On 18 July 2009, the second leaf set below the lowest flower of the tallest raceme was 

collected from each plant to be analyzed for carbon isotopic content, which can indicate water 

stress (Farquhar et al. 1989). Standardizing collection in this way improves the likelihood that the 

leaves are of similar age and have experienced similar macroclimatic conditions. The tissue was 
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oven dried at 60ºC for 48 hours and ground to a very fine powder using a mortar and pestle. Each 

sample(3.5-3.7mg) of the tissue was processed using continuous-flow direct combustion and 

mass spectrometry on a Europa Scientific SL-2020 system. These δ13C measurements represent 

the ratio of 13C/12C relative to the standard Pee Dee Belemnite value and were then converted to 

carbon isotope discrimination (CID) values using this equation (in Farquhar et al. 1989): CID	 ൌ

	
ି଼	ିஔభయେ

ଵାஔభయେ ଵ଴଴଴⁄
. Smaller CID values indicate limited stomatal conductance, a response to water 

limitation (Farquhar et al. 1989), suggesting greater water stress.  

Counts and fates of initiated P. palmeri buds during the 2009 season were tracked for 

each plant. On 3 August 2009, well after pollination had ceased and fruit maturation had begun, 

the number of pedicles was counted and the fate of the attached reproductive organ was 

determined where possible. Fates were classified as aborted buds, flowers or fruits, consumed 

fruits, or mature fruits. Aborted buds were defined as the dry remnants of an unopened, 

undeveloped, bud. Aborted flowers were defined as the dry remnants of previously open corollas 

or calyces containing uninflated ovaries; note that under this definition, counts of aborted flowers 

potentially include both fertilized and unfertilized flowers. Pedicles that had no attached organ 

were assumed missing due to consumption. Since there was no evidence of herbivory prior to the 

fruiting stage, these were assumed to be consumed developing fruits, not flowers or buds. The 

developing fruits of each plant were covered with the same material used to prevent floral 

visitation in order to catch falling seeds before dispersal. Capsules were collected on 5 November 

2009, well after seed maturation was complete. The contents of each capsule were then emptied 

and the number of mature seeds counted. Seed maturity was tested non-destructively by applying 

a very small amount of force to a suspected seed using a thin chemical spatula. Seed coats 

without embryos crush with little effort whereas seed coats with developed embryos require 

excessive force to crush; this method was validated by dissecting several uncrushed seeds to 
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verify the presence of filled endosperm. A small proportion of capsules had clear evidence of 

herbivory, but the number of seeds lost to damage was undeterminable; these were counted as 

mature fruits if they had at least one mature seed. Total bud initiation was assumed equal to the 

number of pedicles, i.e. the sum of all bud fates. 

 
Data Analysis 

 
An exploratory ‘thinning’ approach to structural equation modeling (SEM) was taken to 

seek a more parsimonious model that described the data equally well as, or better than, an a priori 

model. In SEM, the null hypothesis for the overall model fit (χ2) is that there is no significant 

difference between the model predictions and the data. ‘Thinning’ a pathway forces its estimate 

() to zero, eliminating the need for estimation and increasing the degrees of freedom (df) by 1. 

Since the fit statistic follows a χ2 distribution, determining if a pathway significantly improves 

model fit is achieved by examining the difference in χ2 between the thinned and unthinned model 

and using degrees of freedom equal to one (Δχ2
df=1); if Δχ2

1 exceeds 3.84, the critical value 

corresponding to an α = 0.05, then it significantly contributes to overall model fit. Thus, thinning 

maintains or reduces the χ2 statistic while increasing degrees of freedom. It has been suggested 

that even insignificant pathways that contribute little to overall model fit can be justifiably 

retained if they have strong empirical support in previous studies (Grace 2006). Thus, thinning of 

models was accomplished by removing pathways contributing little to model fit, starting with the 

largest P-values, and reevaluating after elimination until only significant (P < 0.05) paths, or 

insignificant paths with strong theoretical support, remain. 

Three sub models were explored (Fig. 4-1), thinned, and then integrated into a full 

‘linked’ model (Fig. 4-2) which was then explored and thinned. The first sub model explores 

plant-plant interactions and their consequences for plant size and water stress. A second sub  

95



 
 

 
 

  

 
Fig. 4-1: Hypothesized causal relationships within sub-models. Arrows represent the effect of 
one measured variable on another. Dotted or solid arrows indicate expected negative or positive 
relationships, respectively. Theoretical and empirical support for each pathway is summarized 
in the methods section (also see Appendix B). For hypothesized effects between sub-models 
see Fig. 4-2. 
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Fig. 4-2: Hypothesized causal relationships between sub-models. Black arrows show expected 
causal relationships between variables in different sub-models while gray arrows show 
relationships within sub-models (see Fig. 4-1). Dotted or solid arrows indicate expected 
negative or positive relationships, respectively, while dashed lines indicate the possibility of 
either. Theoretical justifications for each pathway is explained in the methods section (also see 
Appendix B). 
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model explores plant-pollinator interactions to determine how floral display size, nectar 

production, and local flower density related to pollinator foraging behavior. The final sub-model 

examines the reproductive ecology of individual P. palmeri by tracking the fate of buds as they 

develop into flowers and fruits, eventually producing seeds; alternatively others could be aborted 

during bud, flower, or fruit stages. Finally, the full model was created by allowing the three 

thinned sub-models to influence each other (Fig. 4-2). Modification indices (MI’s) were 

examined to ensure that potentially important pathways that can be theoretically justified were 

included. Pathways that were removed were then individually added back to ensure they remain 

insignificant in the newly thinned model with MI’s. Theoretical support for each pathway is 

tabulated in Appendix B. 

The software package AMOS was used to produce estimates using maximum likelihood 

(ML), bootstrapping (BS), and Bayesian (B) approaches; these estimates are compared 

throughout. Maximum likelihood estimates of regression coefficients (ML) assume that data 

follow a continuous and multivariate normal distribution. Violation of this assumption does not 

affect parameter estimates, but instead results in underestimation of standard errors (SEML) 

resulting in increased probability of type 1 error; researchers may reject the null hypothesis, 

concluding that the model deviates significantly from the data, when in fact it fits the data well 

(see Grace 2006; Kaplan 2009). 

  AMOS tests multivariate normality using Mardia’s coefficient of multivariate kurtosis 

(‘M’; Mardia 1970, 1974) and its critical ratio (c.r.); a c.r. that exceed ±1.96 indicates a violation 

of multivariate normality. Although transformations can be used to help datasets follow a 

multivariate normal distribution, they may not completely normalize some datasets. When the 

assumption of multivariate normality cannot be met, bootstrapping provides a solution to both 

overestimated goodness of fit and underestimated parameter estimate significance. Two kinds of 
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bootstrapping are used: Monte Carlo bootstrapping was used for parameter estimates since it 

allows for estimates of standard errors (SEBS), and therefore probability tests (PBS), without an 

assumption that the data match any distribution whereas Bollen-Stine bootstrapped estimates 

were used for overall model significance (Bollen and Stine 1992) to correct for distributional 

violations (reviewed in Grace 2006). A Bayesian approach was also taken to estimate regression 

weights (B) and standard errors (SEB) and a credible interval (CI); if the CI includes zero, then 

the parameter estimate is deemed no different than zero. A Bayesian approach may be more 

appropriate for small sample datasets and non-linear relationships, but the associated pitfalls for 

Bayesian estimate are poorly studied (Grace 2006). 

Since SEM also requires complete datasets , i.e. no missing measurements, multiple 

imputation (Proc MI; SAS 9.2; SAS Institute Inc. 2008) was used to estimate CID values for three 

missing tissue samples from one shrub and two interspace-associated plants. These were assumed 

to be missing at random, an assumption that is necessary for imputation and justifiable given that 

their absence was due to human error rather than due to an ecological process. Ten datasets were 

generated, each containing different estimates of CID values. The values of each estimate were 

averaged and substituted for missing values throughout the analysis.  

 
Sub-model 1: plant-plant interactions 

 
This sub-model allows for intraspecific interactions between P. palmeri plants and 

interspecific interactions between P. palmeri and shrubs to influence CID and plant size of P. 

palmeri. Growing location (i.e. microhabitat) was coded ‘0’ for interspaces and ‘1’ for shrubs. 

Since a previous study at the site (Chapter 2) showed that under shrubs P. palmeri survival is 

improved and their densities greater than in interspaces, growing location in the model was 

thought to directly influence the average distance to its nearest three conspecific neighbors (Fig. 
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4-1, Path 1; Avg. neighbor dist. ← Location). Shrubs may compete with or facilitate growth of 

understory plants (Miriti 2006), so location was also allowed to influence caudex diameter (Fig. 

4-1, Path 2; Caudex diameter ← Location). Because growing under shrubs can reduce water 

stress in deserts (Maestre et al. 2003; Gómez-Aparicio et al. 2004), location was allowed to 

influence CID of P. palmeri (Fig. 4-1, Path 4; CID ← Location). Neighbor distance can indicate 

the degree of intraspecific interactions (Weiner 1982; Silander and Pacala 1985; Larrea-Alcázar 

and Soriano 2006), so average neighbor distance was allowed to influence caudex diameter (Fig. 

4-1, Path 5; Caudex diameter ← Avg. neighbor dist.) and CID (Fig. 4-1, Path 3; CID ← Avg. 

neighbor dist.). Water stress hinders plant growth (Hsiao et al. 1976), so CID was allowed to 

influence caudex diameter (Fig. 4-1, Path 6; Caudex diameter ← CID). Two degrees of freedom 

were obtained by fixing the variance of the growing location parameter to 0.25 and the mean to 

0.5; this is a direct result of study design, since half of the plants are under shrubs and half are in 

interspaces (see Appendix C for a detailed derivation of mean and variance). 

 
Sub-model 2: plant-pollinator interactions 

 
The aim of this sub-model is to characterize the relative importance of local P. palmeri 

flower density, per flower nectar production, and individual flower number in predicting behavior 

of pollinators (how many bees visited and what they would forage for while there). Since the 

most common visiting bees (>99%) foraged for nectar without contacting anthers or the stigma 

and pollen transfer by these bees probably only occurs when they actively collect pollen, total 

pollen forages can be influenced by two behaviors: the number (No.) of foraging bees (for nectar, 

pollen, or both) (Fig. 4-1, Path 16; No. pollen forages ← No. foraging bees) and the percentage of 

bees that foraged for pollen (Fig. 4-1, Path 11; No. pollen forages ← % pollen foraging bees). 

Further, pollen is a shared resource, so if more bees are foraging a smaller percentage may choose 

to forage for pollen (Thomson et al. 1987) (Fig. 4-1, Path 12; % pollen foraging bees ← No. 
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foraging bees), indirectly reducing the total number of times pollen was foraged for (Fig. 4-1 Path 

12 & Path 11 combined). 

Pollinators can be drawn to plants via visual cues (Galen 1999) and olfactory cues from 

nectar volatiles (Howell and Alarcón 2007). The strength of the cues from the target plant relative 

to its neighbors can alter foraging behavior resulting in competition for or facilitation of 

pollinator visitation (Rathcke 1983; Moeller 2004; Ghazoul 2006). In general, plants with flowers 

that produce high volumes of nectar are foraged upon more intensely (Zimmermann 1988).Thus, 

the number of foraging bees was allowed to respond to the number of local (1.5 m radius) 

conspecific flowers (Fig. 4-1, Path 13; No. foraging bees ← Local flower density), nectar 

production per flower (Fig. 4-1, Path 14; No. foraging bees ← Nectar production), and the 

number of open flowers (Fig. 4-1, Path 15; No. foraging bees ← Open flowers). 

Small desert bees are especially susceptible to water stress and nectar can be the only 

water source aside from that generated metabolically (Willmer 1997). Beyond attracting bees, 

nectar sugar also provides bees with resources necessary for foraging activities (Willmer 1997), 

including pollen foraging; thus, an increased percentage of pollen foraging bees is expected on 

plants that have many open flowers (Fig. 4-1, Path 9; % pollen foraging bees ← Open flowers) 

and with more nectar production (Fig. 4-1, Path 8; % pollen foraging bees ← Nectar production). 

It is unclear how local flower density might influence the on-plant pollinator behavior , but the 

possibility that local flower density influence the percentage of bees choosing to forage for pollen 

is considered (Fig. 4-1, Path 7; % pollen foraging bees ← Local flower density). Lastly, the 

number of open flowers and the nectar produced per flower can be negatively correlated 

(reviewed in Zimmermann 1988) (Fig. 4-1, Path 10), probably because nectar is costly to produce 

(e.g. Southwick et al. 1981) and flowers on individual plants compete for resources (Stephenson 

1981; Lee 1988). 
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Sub-model 3: reproductive ecology 

 
This sub-model describes the fate of buds from bud to flower to fruit to seed. 

Reproduction starts with the initiation of buds and ultimately ends with seed production. Plants 

demonstrate complex resource allocation behaviors, often selectively aborting developing buds, 

flowers, fruits, and/or seeds; resources from aborted reproductive parts can then be translocated to 

other developing plant parts (reviewed in Stephenson 1981). Because of this within-plant 

competition for resources, plants that initiate more buds might be expected to abort more buds 

(Fig. 4-1, Path 17; Aborted buds ← Buds initiated), fruits (Fig. 4-1, Path 18; Aborted fruits ← 

Buds initiated) and flowers (Fig. 4-1, Path 19; Aborted flowers ← Buds initiated) because each 

competes for resources. However, plants initiating many buds should logically mature many fruits 

(Stephenson 1981) (Fig. 4-1, Path 20; Mature fruits ← Buds initiated). Further, with more fruits 

available more fruits are expected to be consumed (Fig. 4-1, Path 21; Consumed fruits ← Buds 

initiated) simply by virtue of having more reproductive nodes.  

If resources become limited, plants can conserve them by translocating them from 

aborted organs to more developed; further, the cost of aborting poorly developed organs is less 

than aborting well developed organs (Stephenson 1981). Thus, plants with many aborted buds 

may have fewer aborted flowers (Fig. 4-1, Path 22; Aborted flowers ← Aborted buds) or fruits 

(Fig. 4-1, Path 25; Aborted fruits ← Aborted buds). Similarly, plants with many aborted flowers 

may have fewer aborted fruits (Fig. 4-1, Path 23; Aborted fruits ← Aborted flowers). The number 

of consumed fruits may be lower if plants aborted many buds (Fig. 4-1, Path 24; Consumed fruits 

← Aborted buds) or flowers (Fig. 4-1, Path 28; Consumed fruits ← Aborted flowers) simply 

because there were fewer fruits to be consumed. For the same reason, the number of mature fruits 

may be negatively affected by the abortion of buds (Fig. 4-1, Path 26; Mature fruits ← Aborted 

buds), flowers (Fig. 4-1, Path 27; Mature fruits ← Aborted flowers), and fruits (Fig. 4-1, Path 29; 
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Mature fruits ← Aborted fruits) and fruit consumption (Fig. 4-1, Path 30; Mature fruits ← 

Consumed fruits).  

The number of mature seeds may be increased by bud (Fig. 4-1, Path 32; Mature seeds ← 

Aborted buds), flower (Fig. 4-1, Path 34; Mature seeds ← Aborted flowers), and fruit abortion 

(Fig. 4-1, Path 31; Mature seeds ← Aborted fruits) since resources can be translocated from 

aborted organs to mature more seeds in remaining fruits (Stephenson 1981). Since fruits contain 

many seeds, plants with more mature fruits likely have more seeds (Fig. 4-1, Path 33; Mature 

seeds ← Mature fruits) and plants with more consumed fruits potentially have fewer seeds (Fig. 

4-1, Path 35; Mature seeds ← Consumed fruits). 

 
Full model with linked sub-models 

 
The extent to which pollinator behavior might be directly influenced by shrubs is unclear 

since I did not find studies that relate benefactors to pollinator behavior. Two activities were 

compared for bees foraging under shrubs versus between them: the number of bees that forage for 

either nectar or pollen (Fig. 4-2, Path 2; No. foraging bees ← Location) and the percentage that 

forage for pollen (Fig. 4-2, Path 1; % pollen foraging bees ← Location). It is reasonable to 

predict that shrubs may directly reduce the number of foraging bees on P. palmeri by obscuring 

the visibility flowers, or by competing for or facilitating generalist pollinators via shared floral 

display (Rathcke 1983; Ghazoul 2006). Once a pollinator has arrived, it may choose to forage for 

pollen, nectar, or both. Shade under shrubs may alter behavior when desert bees face high 

temperatures. Bees may avoid direct sunlight when faced with overheating (Linsley 1978) so they 

may prefer to collect pollen from plants shaded by shrub canopies.  

Shrubs were thought to indirectly influence pollinator behavior in several ways. First, 

shrubs can improve survival, and therefore density, of conspecific flowering P. palmeri (Chapter 

2), so neighborhood flowering density may be higher under shrubs (Fig. 4-2, Path 3; Local flower 

103



 
 

 
 

density ← Avg. neighbor dist.). In turn, plants may face greater competitive or facilitative effects 

of neighbors on foraging activity. Second, any influence of shrubs on plant size may indirectly 

influence pollinator behavior since plant size can be an important determinant of nectar 

production (Fig. 4-2, Path 10; Nectar production ← Caudex diameter) and bud initiation (Fig. 4-

2, Path 11; Buds initiated ← Caudex diameter). The latter effect is important, as plants that 

initiate more buds are likely to have more open flowers (Fig. 4-2, Path 12; Open flowers ← Buds 

initiated) and pollinators are attracted to larger display size (Galen 2005). Third, indirect 

relationships between shrubs and pollination may occur if shrubs influence water stress, 

sometimes a limiting factor to nectar production (e.g. Carroll et al. 2001; Petanidou and Smets 

1996; see Galen 2005; Petanidou 2007 for review), potentially altering foraging patterns (Fig. 4-

2, Path 8; Nectar production ← CID). Additionally, water stress may reduce the number of open 

flowers directly (Fig. 4-2, Path 7; Open flowers ← CID) since water limitation leads to flower 

closure and curtailed flower longevity (Galen 2005). The number of open flowers could also be 

limited through stress-related bud abortion since an aborted bud cannot become an open flower 

(Fig. 4-2, Path 13; Open flowers ← Aborted buds). It is unclear how water stress might influence 

bud initiation (Fig. 4-2, Path 9; Buds initiated ← CID) (reviewed in Karlsson and Méndez 2005); 

studies of the response of reproductive allocation to water stress are rare for perennial forbs in 

semi-arid environments (but see Jaksić and Montenegro 1979; more stress led to higher allocation 

to reproduction). If reproduction is limited by pollinators, any of these alterations of pollinator 

behavior by shrubs may influence the number of mature fruits or seeds, since pollination intensity 

can depend on floral display size (Galen 1999) and nectar reward (Zimmermann 1988) and often 

contributes to the number of mature seeds (Fig. 4-2, Path 14; Mature seeds ← No. pollen forages) 

and/or fruits (Fig. 4-2, Path 15; Mature fruits ← No. pollen forages) (reviewed in Lee 1988). 

Aside from pollinator mediated effects, shrubs may alter reproduction in other ways. A 

reduction of water stress may directly reduce abortion of buds (Fig. 4-2, Path 5; Aborted buds ← 
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CID), flowers (Fig. 4-2, Path 6; Aborted flowers ← CID), and fruits (Fig. 4-2, Path 4; Aborted 

fruits ← CID) leading to indirect improvements in fruit maturation. Independent of water stress, 

any difference in plant size that results from growing under shrubs is expected to affect 

reproductive allocation (Weiner et al. 2009). 

 
Assessment of spurious correlations 

 
Spurious correlations can arise due to mathematical dependency between the covariate 

and response in regression based models like SEM; thus a portion of the observed correlation (R2) 

may not be ‘real’ (Mitchell 1994; Brett 2004). Since the variable “total bud initiation” was 

formed from the sum of the possible floral fates (aborted buds, flowers, and fruits, consumed 

fruits, and aborted fruits), pathways leading from total bud initiation to each fate are not 

independent, making them prone to spurious correlation (reviewed in Brett 2004). Five pathways 

(Fig. 4-1, Paths 17 (Aborted buds ← Buds initiated), 18 (Aborted fruits ← Buds initiated), 19 

(Aborted flowers ← Buds initiated), 20 (Mature fruits ← Buds initiated), and 21 (Consumed 

fruits ← Buds initiated)) were subject to spurious correlations. These potentially spurious 

correlations were assessed following the method described by Brett (2004), the magnitude of the 

spurious coefficient of determination (R2) was estimated and percentile confidence intervals were 

produced (SAS 9.2; SAS Institute Inc. 2008); if the coefficient from a regression of the data used 

for the SEM (R2
SEM) is greater than the upper confidence interval of the spurious coefficient 

(R2
SP), then the remaining portion of the correlation is expected to be ‘real’. 

 
IV. Results 

 Sample means, standard deviations, correlations, units, and the transformations used for 

each measured variable are reported in Table 4-1. Whole plant seed production ranged from 0 to 

5695 seeds for interspace-associated plants and from 0 to 2544 seeds for shrub-associated plants 
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with a mean of 434. The top five seed producers grew in interspaces. Five plants failed to produce 

any seeds; four of these were interspace-associated. Results are summarized first by describing 

which pathways were thinned or retained (see Table 4-2) followed by a synthetic summary of the 

final ‘linked’ model.  

 Transformation reduced Mardia’s multivariate kurtosis (M) for the final model from 33 to 

23, dropping the critical ratio (c.r.) from 4.78 to 3.28. However, since the c.r. is above the critical-

limit of 1.96, the data still violate the assumption of multivariate normality after transformation. 

Two plants growing in interspaces appeared to be outliers; no bees were observed visiting either 

plant, and one produced zero seeds while the other only produced three seeds. Nonetheless, these 

outliers were retained because sample size is extremely limited and they represent real 

observations containing relevant information. These violations spurred the necessity of 

significance tests using Bayesian and bootstrapped estimates. Bootstrapping can be an effective 

measure for reliable inference when data are non-normal while Bayesian methods are useful 

when sample sizes are small (Grace 2006). Bootstrapped estimation also allows AMOS to 

estimate significance tests for any parameter estimate, including matrices for direct, indirect, and 

total effects. It should be recognized that bootstrapping estimates standard error (SEBS) and 

significance tests (PBS), not regression coefficients (). Bayesian pathway estimates (B), standard 

errors (SEB), and significance tests (pathway is significant when the range between the upper and 

lower 95% credible interval does not contain zero) are only provided for the final, thinned model 

(Table 4-3). The consistency among estimates and significance tests produced using each method 

indicates robustness. 
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Table 4-3 
Summary of unstandardized regression weights () and P-values (P) for the final model (Fig. 
4-3). Subscripts correspond to the method used to derive the value: ‘ML’ for ‘maximum 
likelihood’, ‘BS’ for ‘bootstrapping’, and ‘B’ for Bayesian.  For Bayesian estimates, effects 
are significantly different from zero when 95% credible intervals (CI) exclude zero. Bold 
values indicate significance tests that are discrepant in their interpretation based on an α = 0.05 
rejection level. Note: ‘***’ = ‘< 0.001’ 

95% Bayesian CI 

Dependent variable  Independent variable ML B PML PBS Lower Upper 

Caudex diameter ← Location -0.361 -0.363 *** 0.008 -0.544 -0.185

CID ← Location 1.054 1.050 *** 0.005 0.638 1.465

Buds initiated ← Caudex diameter 0.975 0.985 *** 0.005 0.611 1.366

Aborted buds ← Buds initiated 2.726 2.730 *** 0.007 2.197 3.262

Aborted buds ← CID -0.399 -0.397 0.023 0.030 -0.757 -0.029

Nectar Production ← CID 0.162 0.161 0.098 0.079 -0.045 0.363

Open flowers ← Aborted buds -0.064 -0.064 0.047 0.075 -0.130 0.003

Nectar Production ← Caudex diameter 0.491 0.489 0.047 0.049 -0.041 1.017

Open flowers ← Buds initiated 0.789 0.786 *** 0.005 0.557 1.013

No. foraging bees ← Nectar Production 0.271 0.271 0.009 0.016 0.053 0.490

% pollen foraging bees ← Open flowers 1.494 1.499 *** 0.003 0.949 2.042

No. foraging bees ← Open flowers 2.514 2.519 *** 0.005 2.192 2.848

% pollen foraging bees ← Location 0.593 0.603 0.014 0.025 0.104 1.118

Aborted fruits ← Buds initiated 1.312 1.324 *** 0.004 0.814 1.831

Consumed Fruits ← Buds initiated 2.336 2.327 *** 0.006 1.229 3.415

Consumed Fruits ← Aborted buds -0.334 -0.334 0.026 0.039 -0.642 -0.017

No. pollen forages ← No. foraging bees 0.509 0.510 *** 0.004 0.429 0.589

No. pollen forages ← % pollen foraging bees 0.408 0.406 *** 0.004 0.316 0.495

Aborted flowers ← Buds initiated 3.171 3.181 *** 0.004 2.763 3.600

Mature fruits ← Aborted fruits -0.545 -0.540 *** 0.004 -0.810 -0.259

Mature fruits ← Consumed Fruits -0.544 -0.559 *** 0.005 -0.800 -0.305

Avg. neighbor dist. ← Location -0.178 -0.180 0.058 0.091 -0.377 0.012

Mature fruits ← Buds initiated 8.111 8.150 *** 0.004 6.247 10.139

Mature fruits ← Aborted flowers -0.582 -0.585 *** 0.003 -0.948 -0.239

Mature fruits ← Aborted buds -0.348 -0.354 0.008 0.023 -0.660 -0.059

Mature fruits ← No. pollen forages 0.418 0.410 0.014 0.023 0.037 0.784

Mature seeds ← Aborted flowers -2.571 -2.502 0.002 0.005 -4.289 -0.789

Mature seeds ← Mature fruits 7.029 6.955 *** 0.005 5.636 8.347

Local flower density ← Avg. neighbor dist. -2.958 -2.945 *** 0.005 -3.784 -2.110

e14 ↔ e5 -0.190 -0.223 0.024 0.017 -0.478 -0.023

e20 ↔ e16 -3.690 -4.256 0.015 0.006 -8.744 -0.829
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Sub-model 1: plant-plant interactions 
 
 

The assumption of multivariate normality was met for this sub-model (M = -3.28; c.r. = -1.74). 

However, to maintain consistency with other sub-models, bootstrapped standard error estimates 

and P-values are still reported (Table 4-2). Initially the model fit the data perfectly (Δχ2
2 = 0.00, 

PML  =  1.000, PBS = 0.978), indicating over fitting. Three pathways were removed (Fig. 4-1; 

Paths: 3 (CID ← Avg. neighbor dist.) 5 (Caudex diameter ← Avg. neighbor dist.) and 6 (Caudex 

diameter ← CID)) since they did not contribute significantly to overall model fit and had 

insignificant regression coefficients (Table 4-2). Two pathways were not thinned (Fig. 4-1, Paths 

2 (Caudex diameter ← Location) and 4 (CID ← Location)) since they greatly improved model fit 

and their effects were significant (Table 4-2). One path (Fig. 4-1, Path 1; Avg. neighbor dist. ← 

Location) had insignificant effects (Δχ2
1 = 3.48, PML = 0.070, PBS = 0.070), but was retained since 

it is empirically supported by other studies (Chapter 2). The resulting thinned sub-model fit the 

data (χ2
5 = 4.01, PML = 0.548, PBS = 0.401). There were negligible differences between standard 

and bootstrapped estimates (Table 4-2). No modification indices were reported by AMOS at any 

thinning step. 

 
Sub-model 2: plant-pollinator interactions 

 
 Slight deviation from multivariate normality was detected in this sub-model (M = 5.36; c.r. = 

2.01). The unthinned sub-model fit the data (χ2
5 = 8.00, PML = 0.156, PBS = 0.325). However, five 

paths were removed (Fig. 4-1, Paths 7 (% pollen foraging bees ← Local flower density), 8 (% 

pollen foraging bees ← Nectar production), 10 (Nectar production ← Open flowers), 12 

(%pollen foraging bees ← No. foraging bees), and 13 (No. foraging bees ← Local flower 

density)) since their regression weights were statistically indistinguishable from zero and they did 

not contribute significantly to overall model fit (Table 4-2). The remaining five paths (Fig. 4-1, 
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Paths 9 (% pollen foraging bees ← Open flowers), 11 (No. pollen forages ← % pollen foraging 

bees), 14 (No. foraging bees ← Nectar Production),15 (No. foraging bees ← Open flowers), and 

16 (No. pollen forages ← No. foraging bees)) were highly significant and contributed 

significantly to overall model-fit (Table 4-2). After thinning, the sub-model still fit the data (χ2
10 = 

10.892, PML = 0.390, PBS = 0.513). Despite slight deviation from multivariate normality, using 

bootstrapped estimates to make thinning decisions produces the same reduced model. No MI’s 

were reported at any stage of thinning. 

 
Sub-model 3: reproductive ecology 

 
 Despite transformations, the assumption of multivariate normality was still violated (M = 

14.97; c.r. = 4.899). The unthinned model fit the data (χ2
2  = 5.39; P = 0.072), but lacked 

parsimony (df = 2). Seven paths (Fig. 4-1, Paths 22 (Aborted flowers ← Aborted buds), 23 

(Aborted fruits ← Aborted flowers), 25 (Aborted fruits ← Aborted buds), 28 (Consumed fruits ← 

Aborted flowers), 31 (Mature seeds ← Aborted fruits), 32 (Mature seeds ← Aborted buds), and 

35 (Mature seeds ← Consumed fruits)) were thinned since their effects were not significantly 

different from zero (i.e. P > 0.05) and they did not contribute to overall model fit (i.e. Δχ2
1 < 3.84) 

(Table 4-1). The remaining paths (Fig. 4-1, Paths 17 (Aborted buds ← Buds initiated), 18 

(Aborted fruits ← Buds initiated), 19 (Aborted flowers ← Buds initiated), 20 (Mature fruits ← 

Buds initiated), 21 (Consumed fruits ← Buds initiated), 24 (Consumed fruits ← Aborted buds), 

26, (Mature fruits ← Aborted buds) 27 (Mature fruits ← Aborted flowers), 30 (Mature fruits ← 

Consumed fruits), 33 (Mature seeds ← Mature fruits), 34 (Mature seeds ← Aborted flowers)) 

were retained since their effects differed significantly from zero and contributed significantly to 

overall model fit (Table 4-2). After thinning the model still fit the data (χ2
9 = 12.89, PML = 0.168, 

PBS = 0.263).  
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 There were no MI’s produced by AMOS until the pathway from aborted buds to mature 

seeds (Fig 1. Path 32 (Mature seeds ← Aborted buds)) was eliminated; removal of this pathway 

produced an MI recommending negatively correlated error terms between mature seeds and 

mature fruits (Table 4-2, MI1: Mature fruits ↔ Mature seeds). Correlated error terms indicate a 

joint, unmeasured causal factor (Grace 2006), and it is not unreasonable to expect that some 

unmeasured factor increases fruit maturation while decreasing seed maturation, or vice-versa; e.g. 

resource competition between fruits and seeds. This MI could be resolved when the sub-models 

are linked together if a factor in sub-model 1 or 2 causes a joint effect on both seed and fruit 

maturation; thus, MI’s were evaluated after the sub-models were linked together and thinned (see 

below). Using bootstrapped estimates of standard errors and their associated P-values did not 

change any thinning decisions (Table 4-1). 

 
Full model with linked sub-models 

 
Using thinned sub-models, but prior to thinning links between sub-models, the model did 

not fit the data using ML significance (PML = 0.040), but did using Bollen-Stine bootstrapped 

significance (PBS = 0.597) (Table 4-2). Six pathways were eliminated (Fig. 4-2, Paths 2 (No. 

foraging bees ← Location), 4 (Aborted fruits ← CID), 6 (Aborted flowers ← CID), 7 (Open 

flowers ← CID), 9 (Buds initiated ← CID), and 14(Mature seeds ← No. pollen forages)) due to 

insignificant effects and contribution to overall model fit (Table 4-2). The effect of CID on mean 

per-flower nectar production (Fig. 4-2, Path 8 (Nectar production ← CID)) was not significant 

(PBS = 0.126) but was retained to allow water stress to have a slightly negative effect on nectar 

production as demonstrated in numerous studies (reviewed in Galen 2005; e.g. Carroll et al. 

2001). The remaining pathways (Fig. 4-2, black pathways) were retained since their effects were 

significant (PBS < 0.05) and they contributed significantly to overall model fit (Δχ2
1 > 3.84). It 

should be noted that one pathway (Fig. 4-2, Path 13 (Open flowers ← Aborted buds)) had a 
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statistically significant effect using maximum likelihood (PML = 0.047) but pathway removal led 

to no significant change in model fit (Δχ2
1 = 3.82), bootstrapped estimates were not significant 

(PBS = 0.075) and Bayesian credible intervals included zero (Lower = -0.130; Upper = 0.003) 

(Table 4-3). Despite these inconsistencies, this pathway was retained due to its logical foundation 

(all else being equal, plants with more aborted buds should have fewer open flowers simply 

because they have fewer flowers surviving to anthesis). Another pathway (Fig. 4-2, Path 10 

(Nectar production ← Caudex diameter)) showed inconsistency between significance tests; 

maximum likelihood and bootstrapped tests indicated significance (PML = 0.047; PBS = 0.049) 

and the pathway contributed significantly to model fit (Δχ2
1 = 5.23), but Bayesian credible 

intervals included zero (Lower = -0.041; Upper = 1.017) (Table 4-3). This pathway was retained 

due to strong empirical support; plant size is tightly related to the resources available for 

reproduction (Stephenson 1981; reviewed in Weiner et al. 2009), and nectar production can 

require substantial investment of resources (e.g. Southwick et al. 1981).  

Three MI’s were produced by AMOS. One MI (Table 4-2, MI1: Mature fruits ↔ Mature 

seeds) suggested negatively correlated error between mature seeds and fruits; this correlated error 

pathway was justified by its statistically significant effect (PML = 0.019; PBS = 0.006), significant 

contribution to overall model fit (Δχ2
1 = 7.52), and the possibility that it represents a resource 

trade-off between seeds and fruits, a frequent observation (reviewed in Stephenson 1981). It 

should be noted that both a correlated error term and a unidirectional arrow produce identical 

model fit, but if a unidirectional arrow can be theoretically justified, it is preferred. Another MI 

(Table 4-2, MI2: Aborted flowers ↔ Nectar production) suggested a negatively correlated error 

term between flower abortion and nectar production. This correlated error pathway was added 

due to its significance (PML = 0.024; PBS = 0.033) and contribution to overall model fit (Δχ2
1 = 

5.96); further, it is not inconceivable that flower abortion may be reduced and nectar production 

increased jointly by an unmeasured factor (e.g. favorable climatic conditions may have increased 
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nectar production and reduced flower abortion). The last MI suggested a positive correlated error 

term between local flower density and mean per-flower nectar production (Table 4-2, MI3: Local 

flower density ↔ Nectar production); despite its statistical significance (PML = 0.011, PBS = 

0.004), empirical and theoretical support is lacking for this specific relationship and it was 

removed. After thinning sub-models and links between sub- models the final model (Fig. 4-3) fit 

the data (χ2
107 = 119.88; PML = 0.186, PBS = 0.637).  

 
 Assessment of spurious correlations 

 
 Estimated coefficients of determination from regressions of the original data (R2

SEM) were 

all well above the upper 95th percentile of estimated expected spurious coefficients (R2
SP) (Table 

4-4), indicating that the majority of the coefficients of determination (R2
SEM) for these pathways 

are not due to mathematical dependency.  

 
 Synthesis of results for the final model 

 
It should be recognized that any suggestion of causality (e.g. X reduced Y) simply refers 

to the effects that were modeled, rather than true causality. Ultimately, seed production was 

significantly influenced by every variable in the final model except average neighbor distance, 

local flower density, CID, and the number of aborted buds (Table 4-5, TE’s); though CID and the 

number of aborted flowers have multiple pathways to seed production (Fig. 4-3), these multiple 

pathways counter each other such that they balance to have no total effect. Plant size (caudex 

diameter) was a key correlate of seed production; its modeled direct positive effect on bud 

initiation was related to an array of cascading effects on pollination and reproduction (Fig. 4-3; 

Table 4-5, TE’s). Larger plants also produced more nectar per flower, increasing visitation 

intensity (‘No. foraging bees’) (Fig. 4-3). Higher pollen foraging intensity (‘No. pollen forages’) 

significantly increased seed production by increasing the number of mature fruits, but bud 
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Fig. 4-3: Final SEM. Solid and dashed lines represent positive and negative relationships, 
respectively. Line thickness is proportional to the magnitude of relationships (see legend). 
Unexplained variance for each measured variable is specified by arrows labeled ‘ζ’. Single-
headed arrows represent direct effects; double-headed arrows indicate correlated error. 
Asterisks indicate bootstrapped P-values (‘**’= ‘P < 0.01’; ‘*’ = ‘P < 0.05’).  
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initiation was much more important (Fig. 4-3; Table 4-5, TE’s). All three stages of abortion (bud, 

flower, and fruit) resulted in direct reductions in the number of mature fruits, but bud abortion 

also indirectly reduced fruit consumption, which indirectly increased fruit maturation; thus, bud 

abortion had a neutral effect on the number of mature fruits and seeds (Table 4-5, TE’s). In 

addition to reducing the number of mature fruits, flower abortion also had a significant direct 

negative effect on the number of mature seeds (Fig. 4-3; Table 4-5, DE’s). Growing location was 

much more important than average neighbor distance for seed production (Table 4-5, TE’s). 

Average neighbor distance only influenced local flower density, a measure that had no significant 

effect on any other variables (Fig. 4-3; Table 4-5). The model explained a significant proportion 

of variation in each measured variable, but only a small amount of variation was explained for 

nectar production and average neighbor distance; the remaining variables had at least 25% of 

their variation explained (Table 4-5).  

Three key differences were associated with growing location, each important for seed 

production. Plants associated with shrubs (1) had smaller caudex diameters but (2) suffered less 

water stress (i.e. greater CID) and (3) had a greater percentage of bees that actively foraged for 

pollen; neighbors appeared to be somewhat closer on average for plants under shrubs, but the 

Table 4-4 
Comparison of the coefficient of variation from the data used for the SEM (R2

SEM) and that of 
the estimated spurious correlation (R2

 SP) due to the mathematical dependency due to ‘buds 
initiated’ being derived as a sum of all five possible bud fates. Values of R2

 SEM
 are significantly 

larger than R2
SP at the α = 0.05 level when R2

 SEM is greater than the upper 5% of the percentile 
confidence interval (CI). 

Pathway description Percentile CI 

(Fig.-Path: Dependent var. ← Independent var.) R2
OD R2

SP Lower 5% Upper 5% 

1-17: Aborted buds ← Buds initiated 0.70 0.14 0.03 0.28 

1-19: Aborted flowers ← Buds initiated 0.82 0.24 0.10 0.41 

1-18: Aborted fruits ← Buds initiated 0.36 0.01 <0.01 0.11 

1-20: Mature fruits ← Buds initiated 0.73 0.36 0.20 0.52 

1-21: Consumed fruits ← Buds initiated 0.28 0.04 <0.01 0.14 
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measured effect was not statistically significant (Fig. 4-3; Table 4-5, DE’s). The reduction of 

plant size under shrubs had a negative effect on seed production which outweighed the positive 

effects associated with lower water stress and increased pollen foraging behavior, resulting in a 

net negative effect of shrubs on seed production (Table 4-5, TE’s). Similarly, despite shrub-

related direct increases in the percentage of pollen foraging bees, the small plant size of shrub 

associated plants resulted in lower nectar production and fewer open flowers resulting in fewer 

total pollen forages relative to plants growing in interspaces (Table 4-5, TE’s); however, this 

difference in total pollen forages would be greater if the direct positive effects of shrubs were 

absent. 

 Plants with higher CID (less water stress) aborted fewer buds (after controlling for the 

number of initiated buds) and had slightly higher mean per-flower nectar production; though the 

latter effect was statistically insignificant, but retained for its strong theoretical basis (Carroll et 

al. 2001; Galen 2005). Through these two modeled direct effects, water stress had a wide range of 

modeled indirect effects. Water stress directly increased bud abortion, reducing the number of 

open flowers, which was the most important factor for both the number of foraging bees and the 

percentage that foraged for pollen (Fig. 4-3; Table 4-5, TE’s). In contrast to bud abortion, water 

stress had no significant effect on flower or fruit abortion (Table 4-2). Ultimately, the effect of 

water stress on bud abortion did not translate to reduced seed production per plant; despite the 

direct negative effect of bud abortion on the number of mature fruits, plants with more aborted 

buds incidentally had significantly fewer consumed fruits (Table 4-5; TE’s). 

 Pollinators responded strongly to the number of open flowers in both the number of 

visiting bees and the percentage that foraged for pollen (Fig. 4-3; Table 4-5, TE’s). Nectar 

production was far less important; more bees visited plants with higher per flower nectar 

production, though their on-plant behavior was unchanged (Fig. 4-3; Table 4-5, TE’s). Bees did 
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not appear to respond to local conspecific flower density, but, as previously mentioned, a higher 

percentage of bees foraged on shrub-associated P. palmeri Fig. 4-3; Table 4-5, DE’s). 

  
V. Discussion 

 Seed and fruit production in P. palmeri were ultimately influenced by nearly every factor 

hypothesized as important, supporting the notion that reproductive output is limited by many 

direct and indirect factors rather than any one factor (Lee 1988; Campbell and Halama 1993; 

Mitchell 1994). As expected, plant size the primary limiting factor for seed production during this 

season (2009); larger plants initiated more buds and produced more nectar per flower, consistent 

with previous reviews showing that plant size is an important determinant of resource availability 

to reproductive effort (Stephenson 1981; Bonser and Aarssen 2009; Weiner et al. 2009). After 

controlling for size related effects, those plants with more observed active pollen forages matured 

more fruits, suggesting that pollen also limits seed production in P. palmeri, but much less than 

resources. These results support other SEM studies that concluded that resources and pollen both 

simultaneously limit seed production (Campbell and Halama 1993). Surprisingly, water-stressed 

plants produced similar numbers of fruits and seeds despite having significantly higher numbers 

of aborted buds. However, this observation is perhaps due to local resource density dependence 

for fruit-consumers (see Antonovics and Levin 1980); negative effects of more aborted buds 

included positive effects of having fewer consumed fruits suggesting that plants demonstrating 

high bud abortion either had fewer fruits to consume, or, fruits had lower forage quality. The 

other factors that were of little importance to seed production were average neighbor distance and 

flowering density. Average neighbor distance had no effect, except to increase local flower 

density, which did not alter the number of visiting bees or the percentage that foraged for pollen. 

 These observations are consistent with the general hypotheses that negative and positive 

plant interactions occur simultaneously (Bertness and Callaway 1994; Callaway 1995; Callaway 
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and Walker 1997; Maestre et al. 2003) and that facilitation benefits earlier ontogenetic stages 

more than later stages (Miriti 2006). Specific to the first hypothesis, smaller plant size under 

shrubs coupled with reduced water stress suggests that shrubs simultaneously compete with P. 

palmeri for some non-water resource(s) (e.g. light, nutrients) while facilitating water sufficiency. 

Additionally, when plants grew under shrubs, the percentage of bees that foraged for pollen was 

greater after accounting for the number of open flowers, but the number of foraging bees was not 

directly impacted, suggesting that shrubs altered the on-plant behavior of pollinators without 

altering visitation. When combined, the suppressive effect that the shrub association had on P. 

palmeri size outweighed the facilitative effects that shrubs had on water stress and pollen 

foraging activity, suggesting that resources competition with shrubs is important in limiting seed 

production. In contrast, the lack of a relationship between neighbor distance and either water 

stress or plant size suggests that intraspecific competition did not limit P. palmeri reproduction 

during this season. Regarding differences in ontogenetic sensitivity, the significant impact that 

water stress had on bud abortion, but not flower or fruit abortion, suggests that either buds are 

aborted first when water becomes limited, or, water was acutely limiting during bud formation. 

The latter possibility, though potentially important in some systems, is not supported, given the 

acropetal development of inflorescence in P. palmeri; a single inflorescence holds buds, flowers, 

and fruits simultaneously. Instead, it seems more likely that buds are ‘the first to go’ when water 

becomes limiting since plants have invested little water in buds relative to flowers and fruits. 

Such a pattern is consistent with the more general hypothesis that facilitation acts most strongly 

on early developmental stages (e.g. seedlings vs. adults; Miriti 2006); however, these results 

provide evidence that facilitation of water sufficiency scales down to benefit the least developed 

reproductive parts within an individual as well as the least developed individuals in a population 

(Chapter 2). 
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 Foraging behavior (both the number foraging and the percentage that foraged for pollen) 

of bees was most strongly driven by floral display size (no. of open flowers), a pattern that has 

been demonstrated repeatedly (see Galen 1999), suggesting that plants with more open flowers 

are more desirable sources of forage to bees. Nectar production and growing location were 

important as well. That nectar production influenced the number of foraging bees supports studies 

arguing that bees can remember to return to rewarding plants (see Cartar 2004) and/or can 

evaluate rewards without visiting to forage (Howell and Alarcón 2007), possibilities that have 

previously been argued against (Zimmermann 1988). Both behaviors could optimize foraging 

(sensu MacArthur and Pianka 1966). The observed increase in pollen foraging behavior among 

shrub-associated plants may be due to altered floral micro-habitat (e.g. shade or shelter from 

wind). Thus, pollinators may spend less time collecting nectar for their own metabolic 

maintenance and more time collecting pollen to provision their offspring if they are foraging on 

flowers shaded by shrubs. Flowers exposed to full sun are expected to have lower relative 

humidity and higher temperatures, potentially altering nectar evaporation (Petanidou 2007) which 

could indirectly alter the foraging decisions of bees. Similarly, bees exposed to higher 

temperatures associated with open microhabitats may choose to forage for nectar rather than 

pollen since nectar can act to cool bees (Heinrich 1980a, b). Visitation rates and behavior of bees 

on plants were unaffected by neighborhood flowering density, suggesting that near neighbors 

neither compete with nor facilitate pollination services. However, because of the substantial 

amount of work that has shown that patch density can influence visitation rates (Rathcke 1983; 

Moeller 2004; Ghazoul 2006), its effects on seed production and particularly offspring fitness 

should continue to be considered in future studies, especially given the nearly significant effects 

that shrubs had on seed production. 

 Significant correlated error terms indicate the presence of an unmeasured joint effect on 

the two variables considered (Grace 2006). Negatively correlated error between the number of 
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mature seeds and fruits suggest that a common factor increases one measure while reducing the 

other. Such a pattern could result from trade-offs between seed and fruit production (see 

Stephenson 1981). In addition, the significant negatively correlated error term between nectar 

production and flower abortion suggests that some unmeasured factor simultaneously increases 

nectar production while enhancing flower retention. This effect may be due to limitation of some 

unmeasured climatic or soil resource that limits nectar production and flower maturation. 

Regardless of the cause, the model accounts for these relationships rather than assuming their 

independence, resulting in stronger inference among measured factors. 

 Studies examining the intercorrelated effects of competition and facilitation on 

reproduction are lacking. By using SEM, this study demonstrates how the simultaneous direct and 

indirect effects of facilitation and competition on plant reproduction can be explored. This study 

demonstrates the potential for exploring simultaneous direct and indirect interactions between 

organisms within the same trophic level (plant-plant interactions) and between trophic levels 

(plant-pollinator interactions) using SEM. Further, SEM can be used in a multi-stage fashion, 

starting with an exploratory mode and shifting to a more powerful confirmatory mode as 

hypotheses are generated (Grace 2006). Lastly, exploratory SEM can be a useful tool for 

generating hypotheses that can later be subjected to experimental manipulations and for 

identifying which variables should be measured and controlled for. 

 Estimated effects of spurious correlations related to the ‘buds initiated’ variable were 

significantly less than the correlation detected in the unmodified data. This suggests that although 

spurious correlations arose due to mathematical dependency, the effects were small. The 

combined effects of the five spurious correlations on seed production are unclear; however, what 

is clear is that a large portion of the correlations are due to real variation in bud initiation. Such 

results highlight the importance of ensuring that observed effects are not completely driven by 

mathematical dependency. Methods for accounting for mathematical dependencies are lacking, 
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but the ability to estimate their effects indicates the possibility of adjusting regression coefficients 

and model fit measures in SEM to remove their effects. 

 Care must be taken when interpreting the results of the final model. First, the exploratory 

approach taken does not demonstrate causality. Second, it must be recognized that the results are 

contingent on the model selected to interpret from and the sampling methods; there may also be 

many competing alternative models with equal or greater fit to the data (Grace 2006). For 

example, the correlated error between mature seeds and mature fruits could be replaced with a 

directional arrow from mature seeds to mature fruits with no consequence to model fit; doing so 

would imply a feedback between the number of seeds and fruits in which plants that produce 

many seeds could not produce as many fruits. 

 Outliers and violations of the assumption of multivariate normality were present, but 

transformations linearized most relationships, leading to substantial improvements. Small sample 

sizes are also of great concern, further limiting the generality of these results. Since the use of 

bootstrapped estimates significance and Bayesian estimates of parameters did not alter the 

conclusions reached, except for conflicting statistical inference regarding two pathways (Open 

flowers ← Aborted buds and Nectar production ← Caudex diameter; Table 4-3), it can be 

concluded that the model was fairly robust despite deviation from normality and the presence of 

outliers. The remaining unexplained variation in fruit and seed production could be partially 

explained by measurement error, seed consumption, genetics, unmeasured climatic variability, 

and parasites, among many more factors. 

 Generalized statements about the observed patterns are not advised as these data are 

limited to a single site, species pair, and year. Longer term studies are recommended since the 

balance between facilitation and competition fluctuates temporally (Casper 1996; Greenlee and 

Callaway 1996; Tielbörger and Kadmon 2000; Maestre et al. 2003; Abdallah and Chaieb 2010; 

Soliveres et al. 2010) and varies over multiple spatial scales (Rayburn and Monaco 2011). 
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Nonetheless, incorporating facilitation into more well-studied theoretical constructs has been 

called for by others (Bruno et al. 2003) and the application of SEM to for this purpose is 

promising. 

 Examining plant-plant interactions, plant-pollinator interactions, and reproductive 

ecology in unison led to a greater understanding of the potential drivers of seed output in P. 

palmeri. The use of SEM simplified the challenge of interpreting the effects of highly correlated 

variables on seed production. Evaluation of direct, indirect, and total effects illuminated the 

relative contribution of facilitation and competition for seed production. Using an exploratory 

mode of SEM, theoretical constructs that have historically been treated separately were studied in 

unison; however, a confirmatory approach is required to validate the generality of these 

correlative patterns in other locations, times, and species pairs. These results should spur other 

researchers interested in the role of facilitation on reproduction to consider the influence of 

altered microhabitat on the behavior of pollinators. Understanding the role of plant-plant 

interactions, especially positive interactions, in the reproductive fitness of plants deserves further 

attention.  

126



 
 

 
 

VI. References 

Abdallah F, Chaieb M (2010) Interactions of Acacia raddiana with herbaceous vegetation change 
with intensity of abiotic stress. Flora 205:738–744. doi:10.1016/j.flora.2010.04.009 

Antonovics J, Levin DA (1980) The ecological and genetic consequences of density-dependent 
regulation in plants. Annu Rev Ecol Syst 11:411–452. 
doi:10.1146/annurev.es.11.110180.002211 

Armas C, Pugnaire FI (2009) Ontogenetic shifts in interactions of two dominant shrub species in 
a semi-arid coastal sand dune system. J Veg Sci 20:535–546. doi:10.1111/j.1654-
1103.2009.01055.x 

Baldwin BG, Boyd S, Ertter BJ, Patterson RW, Rosatti TJ, Wilken DH (Eds) (2002) The Jepson 
Desert Manual: vascular plants of Southeastern California. University of California Press, 
Berkeley 

Bertness MD, Callaway R (1994) Positive interactions in communities. Trend Ecol Evol 9:191–
193. doi:10.1016/0169-5347(94)90088-4 

Bollen KA, Stine RA (1992) Bootstrapping goodness-of-fit measures in structural equation 
models. Sociol Method Res 21:205–229. doi:10.1177/0049124192021002004 

Bonser SP, Aarssen LW (2009) Interpreting reproductive allometry: individual strategies of 
allocation explain size-dependent reproduction in plant populations. Perspect Plant Ecol 
11:31–40. doi:10.1016/j.ppees.2008.10.003 

Brett MT (2004) When is a correlation between non-independent variables “spurious”? Oikos 
105:647–656. doi:10.1111/j.0030-1299.2004.12777.x 

Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97:1160–1170. 
doi:10.1111/j.1365-2745.2009.01566.x 

Brooker RW, Callaway RM (2009) Facilitation in the conceptual melting pot. J Ecol 97:1117–
1120. doi:10.1111/j.1365-2745.2009.01580.x 

Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, 
Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, 
Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard 
B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. 
J Ecol 96:18–34. doi:10.1111/j.1365-2745.2007.01295.x 

Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. 
Evolution 18:119–125. doi:10.1016/S0169-5347(02)00045-9 

127



 
 

 
 

Butterfield BJ, Briggs JM (2011) Regeneration niche differentiates functional strategies of desert 
woody plant species. Oecologia 165:477–87. doi:10.1007/s00442-010-1741-y 

Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349. 
doi:10.1007/BF02912621 

Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, 
Dordrecht, The Netherlands, pp 15–116 

Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to 
interactions in plant communities. Ecology 78:1958–1965. doi:10.2307/2265936 

Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed production in a 
natural plant population. Ecology 74:1043–1051. doi:10.2307/1940474 

Carroll AB, Pallardy SG, Galen C (2001) Drought stress, plant water status, and floral trait 
expression in fireweed, Epilobium angustifolium (Onagraceae). Am J Bot 88:438–446. 
doi:10.2307/2657108 

Cartar R V (2004) Resource tracking by bumble bees : responses to plant-level differences in 
quality. Ecology 85:2764–2771. doi:10.1890/03-0484 

Casper BB (1996) Demographic consequences of drought in the herbaceous perennial Cryptantha 
flava: effects of density, associations with shrubs, and plant size. Oecologia 106:144–152. 
doi:10.1007/BF00328593 

Charnov EL (1976) Optimal foraging, the marginal value theorum. Theor Popul Biol 9:129–136. 
doi:10.1016/0040-5809(76)90040-X 

Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine 
plant communities. Ecology 82:3295–3308. doi:10.2307/2680153 

Cranston BH, Callaway RM, Monks A, Dickinson KJM (2012) Gender and abiotic stress affect 
community-scale intensity of facilitation and its costs. J Ecol 100:915–922. 
doi:10.1111/j.1365-2745.2012.01981.x 

Doust JL, Doust LL (Eds) (1988) Plant reproductive ecology: patterns and strategies. Oxford 
University Press, Oxford, NY 

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and 
photosynthesis. Annu Rev Plant Phys 40:503–537. 
doi:10.1146/annurev.pp.40.060189.002443 

Galen C (1999) Why do flowers vary? BioScience 49:631–640. doi:10.2307/1313439 

128



 
 

 
 

Galen C (2005) It never rains but then it pours: the diverse effects of water on flower intergrity 
and function. In: Reekie EG, Bazzaz FA (eds) Reproductive Allocation in Plants. Elsevier, 
San Diego, CA, pp 77–95 

Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304. 
doi:10.1111/j.1365-2745.2006.01098.x 

Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant 
facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol 
Appl 14:1128–1138. doi:10.1890/03-5084 

Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, 
Cambridge, UK 

Greenlee JT, Callaway RM (1996) Abiotic stress and the relative importance of interference and 
facilitation in montane bunchgrass communities in western Montana. Am Nat 148:386–396. 
doi:10.1086/285931 

Griffith AB (2010) Positive effects of native shrubs on Bromus tectorum demography. Ecology 
91:141–154. doi:10.1890/08-1446.1 

Heinrich B (1980a) Mechanisms of body-temperature regulation in honeybees, Apis mellifera: I. 
Regulation of head temperature at high air temperatures. J Exp Biol 85:61–72 

Heinrich B (1980b) Mechanisms of body-temperature regulation in honeybees, Apis mellifera: II. 
Regulation of thoracic temperature at high air temperatures. J Exp Biol 85:73–87 

Hendrix SD (1988) Herbivory and its impact on plant reproduction. In: Doust JL, Doust LL (eds) 
Plant reproductive ecology: patterns and strategies. Oxford University Press, Oxford, NY 

Herrera CM (1995a) Floral biology, microclimate, and pollination by ectothermic bees in an 
early-blooming herb. Ecology 76:218–228. doi:10.2307/1940644 

Herrera CM (1995b) Microclimate and individual variation in pollinators - flowering plants are 
more than their flowers. Ecology 76:1516–1524. doi:10.2307/1938153 

Howell AD, Alarcón R (2007) Osmia bees (Hymenoptera: Megachilidae) can detect nectar-
rewarding flowers using olfactory cues. Anim Behav 74:199–205. 
doi:10.1016/j.anbehav.2006.11.012 

Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Water stress, growth, and osmotic 
adjustment. Philos T R Soc B: Biol Sci 273:479–500. doi:10.1098/rstb.1976.0026 

Jaksić FM, Montenegro G (1979) Resource allocation of Chilean herbs in response to climatic 
and microclimatic factors. Oecologia 40:81–89. doi:10.1007/BF00388812 

129



 
 

 
 

Kaplan D (2009) Statistical assumptions underlying structural equation models. In: Structural 
equation modeling: foundations and extensions, 2nd edn. SAGE Publications, Inc., pp 85–
107 

Karlsson PS, Méndez M (2005) The resource economy of plant reproduction. In: Reekie EG, 
Bazzaz FA (eds) Reproductive allocation in plants. Elsevier, San Diego, CA, pp 1–49 

Kikvidze Z, Khetsuriani L, Kikodze D, Callaway R (2001) Facilitation and interference in 
subalpine meadows of the central Caucasus. J Veg Sci:833–838. doi:10.2307/3236871 

Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, 
Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and 
process. Annu Rev Ecol Syst 36:467–497. doi:10.1146/annurev.ecolsys.36.102403.115320 

Larrea-Alcázar DM, Soriano PJ (2006) Spatial associations, size –distance relationships and 
population structure of two dominant life forms in a semiarid enclave of the Venezuelan 
Andes. Plant Ecol 186:137–149. doi:10.1007/s11258-006-9118-3 

Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering 
plants. Biol J Linn Soc 69:503–520. doi:10.1006/bijl.1999.0372 

Lee TD (1988) Patterns of fruit and seed production. In: Doust JL, Doust LL (eds) Plant 
reproductive ecology: patterns and strategies.Oxford University Press, Oxford, NY 

Linsley EG (1978) Temporal patterns of flower visitation by solitary bees, with particular 
reference to the southwestern United States. J Kansas Entomol Soc 51:531–546 

MacArthur RH, Pianka ER (1966) On optimal use of patchy environment. Am Nat 100:603–609. 
doi:10.1086/282454 

Maestre FT, Bautista S, Cortina J (2003) Positive, negative, and net effects in grass–shrub 
interactions in Mediterranean semiarid grasslands. Ecology 84:3186–3197. doi:10.1890/02-
0635 

Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient 
hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. 
doi:10.1111/j.1365-2745.2008.01476.x 

Mardia K V (1974) Applications of some measures of multivariate skewness and kurtosis in 
testing normality and robustness studies. Sankhyā: Indian J Stat Ser B 36:115–128 

Mardia K V. (1970) Measures of multivariate skewness and kurtosis with applications. 
Biometrika 57:519–530. doi:10.2307/2334770 

Miriti MN (2006) Ontogenetic shift from facilitation to competition in a desert shrub. J Ecol 
94:973–979. doi:10.1111/j.1365-2745.2006.01138.x 

130



 
 

 
 

Mitchell RJ (1994) Effects of floral traits, pollinator visitation, and plant size on Ipomopsis 
aggregata fruit production. Am Nat 143:870–889. doi:10.1086/285637 

Moeller DA (2004) Facilitative interactions among plants via shared pollinators. Ecology 
85:3289–3301. doi:10.1890/03-0810 

NRCS (2011) The PLANTS database (BR National Plant Data Center La, Ed.). National plant 
data center, Baton Rouge, LA 

Obeso JR (2002) The costs of reproduction in plants. New Phyto 155:321–348. 
doi:10.1046/j.1469-8137.2000.00571.x 

Petanidou BYT, Smets E (1996) Does temperature stress induce nectar secretion in 
Mediterranean plants? Thymus 133:513–518. doi:10.1111/j.1469-8137.1996.tb01919.x 

Petanidou T (2007) Ecological and evolutionary aspects of floral nectars in mediterranean 
habitats. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer, 
Dordrecht, The Netherlands, pp 353–375 

PRISM Climate Group (2011) Gridded climate data for the contiguous USA. Oregon State 
University, Corvalis 

Pyke GH (1984) Optimal Foraging Theory: A critical review. Annu Rev Ecol and Syst 15:523–
575. doi:10.1146/annurev.es.15.110184.002515 

Rands SA, Whitney HM (2008) Floral temperature and optimal foraging: is heat a feasible floral 
reward for pollinators? (FR Adler, Ed.). PLoS ONE 3:7. doi:10.1371/journal.pone.0002007 

Rathcke BJ (1983) Competition and facilitation among plants for pollination. In: Real LA (ed) 
Pollination biology. Academic Press, pp 305–329 

Rayburn AP, Monaco TA (2011) Linking spatial patterns and ecological processes in grazed great 
basin plant communities. Rang Ecol Manag 64:276. doi:10.2111/REM-D-10-00130.1 

Reekie EG, Bazzaz FA (1987) Reproductive effort in plants. 2. Does carbon reflect the allocation 
of other resources? Am Nat 129:897–906. doi:10.1086/284682 

SAS Institute Inc. (2008) SAS/STAT® 9.2 User’s Guide. SAS Institute Inc., Cary, NC 

Schiffers K, Tielborger K (2006) Ontogenetic shifts in interactions among annual plants. J Ecol 
94:336–341. doi:10.1111/j.1365-2745.2006.01097.x 

Shumway SW (2000) Facilitative effects of a sand dune shrub on species growing beneath the 
shrub canopy. Oecologia 124:138–148. doi:10.1007/s004420050033 

Silander JA, Pacala SW (1985) Neighborhood predictors of plant performance. Oecologia 
66:256–263. doi:10.1007/BF00379863 

131



 
 

 
 

Soil Survey Staff, Natural Resources Conservation Service, United States Department of 
Agriculture (2011) Web Soil Survey. http://websoilsurvey.nrcs.usda.gov 

Soliveres S, DeSoto L, Maestre FT, Olano JM (2010) Spatio-temporal heterogeneity in abiotic 
factors modulate multiple ontogenetic shifts between competition and facilitation. Persp 
Plant Ecol 12:227–234. doi:10.1016/j.ppees.2010.02.003 

Southwick EE, Loper GM, Sadwick SE (1981) Nectar production, composition, energetics and 
pollinator attractiveness in spring flowers of western New York. Am J Bot 68:994–1002. 
doi:10.2307/2443231 

Stephenson A (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu 
Rev Ecol and Syst 12:253–279. doi:10.1146/annurev.es.12.110181.001345 

Thomson JD, Peterson SC, Harder LD (1987) Response of traplining bumble bees to competition 
experiments - shifts in feeding location and efficiency. Oecologia 71:295–300. 
doi:10.1007/BF00377298 

Tielbörger K, Kadmon R (2000) Temporal environmental variation tips the balance between 
facilitation and interference in desert plants. Ecology 81:1544–1553. doi:10.2307/177305 

Tirado R, Pugnaire FI (2003) Shrub spatial aggregation and consequences for reproductive 
success. Oecologia 136:296–301. doi:10.1007/s00442-003-1264-x 

Tracol Y, Gutiérrez JR, Squeo FA (2011) Plant Area Index and microclimate underneath shrub 
species from a Chilean semiarid community. J Arid Environ 75:1–6. 
doi:10.1016/j.jaridenv.2010.08.002 

Valiente-Banuet A, Verdú M (2008) Temporal shifts from facilitation to competition occur 
between closely related taxa. J Ecol 96:489–494. doi:10.1111/j.1365-2745.2008.01357.x 

Weiner J (1982) A neighborhood model of annual-plant interference. Ecology 63:1237–1241. 
doi:10.2307/1938849 

Weiner J (1988) The influence of competition on plant reproduction. In: Doust JL, Doust LL 
(eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, Oxford, 
NY 

Weiner J, Campbell LG, Pino J, Echarte L (2009) The allometry of reproduction within plant 
populations. J Ecol 97:1220–1233. doi:10.1111/j.1365-2745.2009.01559.x 

Willmer P (1997) Temperature and water relations in desert bees. J Therm Biol 22:453–465. 
doi:10.1016/S0306-4565(97)00064-8 

Zimmermann M (1988) Nectar production, flowering phenology, and strategies for pollination. 
In: Doust JL, Doust LL (eds) Plant reproductive ecology: patterns and strategies.Oxford 
University Press, Oxford, NY  

132



 
 

CHAPTER 5 

CONCLUSION 

 In the Wildland Urban Interface (WUI) (sensu Radeloff et al. 2005) of the Spring 

Mountains National Recreation Area (SMNRA) land managers face the challenge of managing 

hazardous fire fuel loads near human populations, infrastructure, and wildfire escape corridors 

while simultaneously preserving the habitat of species covered under the Clark County Multiple 

Species Habitat Conservation Plan (MSHCP) covered species (RECON 2000). A variety of 

mechanical methods are to be used to manage fuel loads, including thinning of woody species 

(see Ostoja et al. 2010) that are likely to facilitate other species (Gómez-Aparicio 2009). 

Facilitation can be an important component of species habitat since it can geographically expand 

the beneficiaries realized niche space by ameliorating extreme conditions at niche boundaries 

(Bruno et al. 2003). Thus, if woody species facilitate MSHCP covered plant species, or plant 

species that are larval or nectar host plants for MSHCP covered butterflies, their removal could 

constitute a loss of habitat. In general, fuel load reduction within the WUI is increasingly 

accomplished mechanically (e.g. whole tree/shrub removal) that attempt to mimic prescribed fire 

(Kalabokidisl and Philip 1998). However, there is little understanding of how MSCHP covered 

species might respond to these treatments (Ostoja et al. 2010). 

Here, I synthesize the empirical findings of chapters 2-4 and discusses their implications 

for ecological theory and land management policy; specifically, I argue that an understanding of 

plant-plant interactions in the WUI can help land managers balance the objectives of reducing 

fuel loads to protect human populations and infrastructure while minimizing loss of habitat for 

desirable species. The general focus is to describe the effects of shrubs on Penstemon palmeri 

performance over many life-stages. While P. palmeri is not directly covered under the MSHCP, it 

is of interest since it is a nectar host plant for adults of the endemic Spring Mountains checkerspot 
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butterfly (Chlosyne acastas robusta) (reviewed in: Ostoja et al. 2010; Pinyon Environmental 

Engineering Resources Inc. 2011). However, since C. acastus use a diversity of species for 

nectar, any findings of positive or negative impacts of shrubs on P. palmeri do not demonstrate 

significant impacts on C. acastus populations. Additionally, most of this research is at the scale of 

individual P. palmeri, rather than their populations, making it ill advised to extrapolate these 

finding to the population level. Further, these study sites may be below the habitable elevation of 

C. acastus (Pinyon Environmental Engineering Resources Inc. 2011). Nonetheless, these results 

provide valuable insight into the influence of shrubs throughout the life-cycle of P. palmeri and 

add to our theoretical understanding of the importance of shrubs in this arid ecosystem. 

 The major objectives of this thesis were to: (1) describe interspecific spatial associations 

over several years between shrubs and P. palmeri (Chapter 2); (2) evaluate the effects of shrub 

association on the performance of individual P. palmeri plants (Chapters 2-4); (3) use a factorial 

experiment to disentangle the above ground effects of Artemisia tridentata canopies on seedling 

emergence and seedling survival from the effects of the soils that accumulate beneath canopies 

(Chapter 2); and (4) use SEM to examine the direct and indirect effects of the shrub Eriodictyon 

angustifolium on P. palmeri seed and fruit production (Chapter 4). The final objective, addressed 

in this chapter, is to discuss the theoretical and policy implications of these results for the 

management of species covered under the Clark County MSHCP in the areas of the Spring 

Mountains National Recreation Area that have been mechanically thinned.  

 
Theoretical implications 

 
 

 Ecologists are increasingly recognizing that both positive and negative plant-plant 

interactions can be important driving forces for structure and function of plant communities 

(reviewed in Brooker et al. 2008; Brooker and Callaway 2009). Facilitation can increase 

productivity and diversity across entire regions (Pugnaire and Lázaro 2000) and allows species to 
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expand their realized niches into environments that would otherwise be considered inhospitable 

(Bruno et al. 2003).  

The studies in this thesis suggest that at these sites, shrubs facilitate the survival of 

smaller and younger P.palmeri and improve bud-to-fruit maturation success, but shrubs also 

appear to suppress P. palmeri emergence, delay their reproductive initiation, and reduce their 

growth rates (Chapter 2). Further, experimental evidence suggests that it is the soils beneath shrub 

canopies that reduce emergence rates and increase survival, while the shrub canopy effects appear 

to be much less important (Chapter 3). The results of chapters 2 and 3 add to the growing number 

of studies demonstrating life-stage conflicts (Schupp 2007) and ontogenetic shifts of plant 

interactions from facilitative at earlier life stages (e.g. survival) to competitive at later life stages 

(e.g. growth and reproduction) (Miriti 2006; Schiffers and Tielborger 2006; Gómez-Aparicio 

2009; Soliveres et al. 2010). These two chapters provide observational and experimental evidence 

that shrubs, primarily their associated soils, alter the nature of seed-seedling conflicts in a ways 

that may promote persistence of P. palmeri in the seed bank, as well as the resistance and 

resilience of their populations to environmental perturbations (discussed in Chapter 3). 

Additionally, by describing spatial associations between P. palmeri populations and shrubs across 

multiple censuses, Chapter 2 provided suggestive evidence that facilitation of seedling survival 

shifts spatial patterns from associative to dissociative; highlighting the importance of including a 

temporal component when studying spatial patterns (reviewed in Lepš 1990).  

While the effects of competition on plant reproduction are well documented (Weiner 

1988), studies reported in Chapters 2 and 4 add to the relatively few number of studies examining 

the potential facilitation of reproduction (e.g. Casper 1996; Shumway 2000; Tielbörger and 

Kadmon 2000; Choler et al. 2001; Kikvidze et al. 2001; Tirado and Pugnaire 2003; Griffith 2010; 

Soliveres et al. 2010; Cranston et al. 2012); however, few of these studies accounted for plant size 

in their models (reviewed in Chapter 2) and none examined the potential for shrubs to alter the 
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behavior of pollinators visiting the plants in their understory (see Chapter 4). More importantly, 

Chapter 4 demonstrates how SEM can be used to identify the factors that limit reproduction in 

plants and incorporate facilitation into theoretical frameworks that have historically focused only 

on competition. 

 
Land Management Policy Implications 

 
Understanding plant interactions can improve our ability to posit new ways to conserve and 

restore the habitat of MSHCP covered species. Successful conservation and restoration requires 

an understanding of desirable species habitat availability and suitability. An understanding of 

interactions between plants can greatly improve our ability to manage vegetation in a way that 

maximizes the habitat area for a desirable species. Restoration ecologists have traditionally relied 

on removal of undesirable species in order to eliminate competition with desirable species, but 

they are increasingly using woody plants as facilitators in order to promote establishment of 

desirable species (Gómez-Aparicio 2009). However, the existence of facilitation does not always 

mean it will be useful for restoration activities; the utility of the facilitator for restoration depends 

on the beneficiary life-stage, which performance metrics are improved, and the environmental 

context of plant interactions (King and Stanton 2008). 

Balancing the objectives of fuel load management near human populations with the 

objectives of conservation plans can be aided by an understanding of how plants interact in their 

community. Specific to the SMNRA, MSHCP covered plant species and plants used by MSHCP 

covered butterflies as larval and nectar hosts (desirable species) may aggregate with the woody 

fuels being removed. Aggregated patterns sometimes indicate a history of facilitative interactions 

(Fowler 1986; Callaway 2007; Brooker et al. 2008) so if desirable species demonstrate this 

pattern, land managers should be wary of removing their neighbors. Experiments should be 

conducted to assess the effect of removal on the performance of desirable species; ideally, these 
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should include assessments of interactions at every life stage for a complete understanding of the 

demographic impact of removal. In areas where desirable species benefit from removal, 

management of fuels may serve a double benefit; removal reduced fuel loads and increases the 

habitable space of desirable species. Caution must be taken, however, since invasive species may 

also benefit from the removal (e.g. Griffith 2010), especially if conditions allow for rapid uptake 

of nutrients that may remain in the soil long after removal (see Bechtold and Inouye 2007). If 

removal improves desirable species emergence, but not their survival (a seed-seedling conflict; 

sensu Schupp 1995), then removal may deplete the seed-bank as many seedlings emerge, but 

most die before contributing to the next generation. If removal has the opposite effect, seedling 

emergence is improved by shrubs but seedling survival is hindered, then removal should be 

selectively used only after emerged seedlings are well established, and only if removal has lasting 

positive effects on reproduction. 

 
Future directions for further research 

 
Many MSHCP plant species were not covered in these investigations. Similar associative 

patterns have been observed between shrubs and a population of Eriogonum umbellatum, the sole 

larval host plant for the MSHCP covered Spring Mountains dark blue butterfly (Euphilotes 

ancilla purpurea) (reviewed in Ostoja et al. 2010; Pinyon Environmental Engineering Resources 

Inc. 2011). Patterns of association were detected between E. umbellatum at the lower elevations 

of Lee Canyon, but no further investigations were made (Poulos, unpublished data); based on 

these associative patterns, considering interactions between shrubs and this important larval host 

plant may allow land managers to assess the effect of removal on this critical larval host plant. 

Chapter 2 was limited in its ability to determine the causes of spatial association between P. 

palmeri populations and shrubs; however, factorial studies (e.g. Chapter 3) and structural 

equation modeling (e.g. Chapter 4) were particularly useful in resolving those limitations. 
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Understanding the causes of spatial dissociation between emerged seedlings and shrubs (Chapter 

2) can be achieved by using seed sowing experiments (e.g. Chapter 3) and investigating the 

distribution of P. palmeri populations in the seed bank using greenhouse studies of soil samples 

(e.g. Carrillo-Garcia et al. 2000). Further, caging experiments may prove useful in understanding 

the role of seed and seedling predators and herbivores in altering the spatial distribution of P. 

palmeri populations. Finally, these observations occurred over a relatively short duration and 

focus on post-emergence life-stages which limits our ability to understand the complete role of 

shrubs in P. palmeri life-history, especially the seed dispersal, survival, and germination stages; 

future studies could benefit greatly by contrasting the entire fate of P. palmeri individuals in 

shrub and interspace microhabitats, from seed to reproductive adult. Future studies should 

compare the soil characteristics of interspaces to those accumulated under A. tridentata to help 

understand why this shrub’s soil was associated with reduced seedling emergence, but improved 

survival relative to interspace soils (Chapter 3). Further attention needs to be given to testing 

whether the stages of the seed-seedling conflicts that are improved or worsened are different 

between interspace and shrub microhabitats; long term studies and simulations could be 

particularly useful to assess how seed-seedling conflicts might influence seed bank persistence 

and a plant population’s resistance and resilience to environmental perturbations. Demographic 

models (e.g. Griffith 2010) would be particularly useful for translating individual-level shrub 

effects to the scale of populations and confirmatory SEM’s could test the generality of the SEM 

developed in Chapter 4 (or similar SEM’s) in new areas and with new species.  
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Appendix A. Size-Biomass curve 

 

  

 

Appendix A: Size (caudex diameter; mm) regressed on the logarithm of 
biomass (dry aboveground mass; mg). Data arise from 220 destructively 
sampled, greenhouse reared P. palmeri seedlings (taken from Poulos et al. in 
manuscript). 
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Appendix B. Pathway descriptions and the potential mechanisms and processes responsible for 
their possible effects. Path numbers refer to the paths found in Figs. 4-1 and 4-2. 
 
 Fig.-

Path 
Description Possible mechanism(s)/process(es) 
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1-1 Growing location  Avg. 
neighbor dist. 

Facilitation of seedling and adult survival leads to 
closer neighbors (Chapter 2). 

1-2 Growing location  
Caudex diameter  

Competition with shrubs may reduce growth leading 
to smaller size (Miriti 2006). 

1-3 Avg. neighbor dist. CID Plants with further neighbors may face lower 
intraspecific competition (Weiner 1982) for water or 
may have water facilitated by hydraulic 
redistribution (reviewed in Ryel 2004). 

1-4 Growing location  CID Shrubs can ameliorate water stress of plants growing 
beneath them (Maestre et al. 2003; Gómez-Aparicio 
et al. 2004). 

1-5 Avg. neighbor dist. 
Plant size 

Intra-specific competition is partially a function of 
neighbor distance (Weiner 1982; Silander and Pacala 
1985). 

1-6 Water stress  Plant size Growth is particularly sensitive to water-stress 
(Hsiao et al 1976); thus water stress may result in 
reduced plant size. 
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1-7 Local flower density  % 
pollen foraging bees 

If surrounded by many flowers, pollinators may 
choose to leave for flowers on more rewarding plants 
since they may forage optimally (MacArthur and 
Pianka 1966). 

1-8 Nectar production  % of 
pollen foraging bees 

Rewarding plants are often foraged upon more 
intensely (Zimmermann 1988) and nectar provides 
energy for other tasks, like foraging for pollen. 

1-9 Number of open flowers 
 percentage of pollen 
foraging bees 

Bees often focus foraging effort on plants with many 
flowers (Galen 1999). 
 

1-10 Number of open flowers 
 nectar production 

Flowers may compete for limited resources 
(Stephenson 1981) leading to lower per flower nectar 
production (reviewed in Zimmermann 1988). 
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1-11 Percentage of pollen 
foraging bees  No. 
pollen forages 

A higher percentage of pollen foraging bees implies 
that a plant will receive more pollen forages. 

1-12 No. foraging bees  
percentage that forage for 
pollen 

Pollen is a shared resource, so if more bees are 
foraging a smaller percentage may choose to forage 
for pollen (Thomson et al. 1987). 

1-13 Local flower density  
number of foraging bees 

Plants in dense flower patches may be visited more 
or less due to facilitation and competition for 
pollinator services (Rathcke 1983; Moeller 2004; 
Ghazoul 2006). 

1-14 Nectar production  
number of foraging bees 

Bees may remember rewarding plants (Pyke 1978) 
and/or detect nectar volatiles (Howell and Alarcón 
2007) leading bees to focus foraging efforts on plants 
with higher nectar production than their neighbors. 

1-15 open flowers  number 
of foraging bees 

Plants with many flowers draw in more bees leading 
to an increase in the number of foraging bees 
(reviewed in Galen 1999). 
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1-16 No. foraging bees  No. 
pollen forages 

Plants that have many foraging bees are more likely 
to have their pollen foraged upon. 
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1-17 Bud initiation  aborted 

buds 
Plants that initiate more buds are expected to abort 
more buds, flowers, and fruits, have more mature and 
consumed fruits simply because there are more bud 
fates being followed. 

1-18 Bud initiation  aborted 
fruits 

1-19 Bud initiation  aborted 
flowers 

1-20  Bud initiation  mature 
fruits 

1-21 Bud initiation  
consumed fruits 

1-22 Aborted buds  aborted 
flowers  

Translocation of resources from aborted buds to 
developing flowers may reduce the flower abortion 
(Stephenson 1981). 

1-23 Aborted flowers  
aborted fruits 

Translocation of resources from aborted flowers to 
developing fruits may reduce fruit abortion 
(Stephenson 1981). 
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1-24 Aborted buds  
consumed fruits 

Plants that aborted fewer buds may have fewer fruits 
consumed since buds did not survive long enough to 
be eaten. 

1-25 Aborted buds  aborted 
fruits 

Translocated resources from aborted buds to 
developing fruits may reduce fruit abortion 
(Stephenson 1981). 

1-26 Aborted buds  mature 
fruits 

Plants that abort more buds may mature fewer fruits 
since fewer buds survived. 

1-27 Aborted flowers  
mature fruits  

Plants that abort more flowers may mature fewer 
fruits since fewer flowers survived. 

1-28 Aborted flowers  
consumed fruits 

Plants that aborted more flowers should implicitly 
have fewer fruits consumed since flowers died before 
being eaten. 

1-29 Aborted fruits  mature 
fruits 

Plants that aborted fewer fruits may have fewer fruits 
matured since flowers died before maturation was 
complete. 

1-30 Consumed fruits  
mature fruits  

Plants with many consumed fruits may have fewer 
fruits matured since fruits were consumed before 
maturation. 

1-31 Aborted fruits  mature 
seeds  

Resources may be translocated from aborted fruits or 
buds to increase the number of mature seeds 
(Stephenson 1981). 1-32 Aborted buds  mature 

seeds  

1-33 Mature fruits  mature 
seeds  

Plants with more mature fruits should implicitly have 
more mature seeds since fruits contain seeds. 

1-34 Aborted flowers  
mature seeds  

Resources may be translocated from aborted flowers 
to increase the number of mature seeds (Stephenson 
1981). 
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1-35 Consumed fruits  
mature seeds  

Plants with many consumed fruits may have fewer 
seeds matured since fruits were consumed before 
maturation. 
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2-1 Growing location  
percentage of pollen 
foraging bees  

Altered microhabitat by shrubs may modify 
pollinator behavior on plant; a higher or lower 
percentage of bees may collect pollen due to either a 
shade effect on pollinator thermoregulation (Linsley 
1978), or indirect alteration of nectar or pollen 
production. 

2-2 Growing location  
number of foraging bees 

Shrubs may visibly obscure flowers (novel 
hypothesis) or compete for shared pollinators, 
reducing the number of foraging bees; shrubs may 
also facilitate pollination through shared floral 
display (Rathcke 1983; Gazhoul 2006). 

2-3 Neighbor distance  local 
flower density 

Plants with distant neighbors should intrinsically 
have lower local flower density. 

2-4 Water stress  aborted 
fruits  

Plants under water stress may have more aborted 
fruits (Saavedra et al. 2003; Wubs et al. 2009). 

2-5 Water stress  aborted 
buds 

Plants under water stress may have more aborted 
buds (e.g. Saavedra et al. 2003; reviewed in Galen 
2005). 

2-6 Water stress  aborted 
flowers  

Plants under water stress may have more aborted 
flowers (Saavedra et al. 2003; Wubs et al. 2009). 

2-7 Water stress  open 
flowers 

Water limitation during flowering may lead to flower 
closure and reduced longevity (Galen 2005). 

2-8 Water stress  nectar 
production  

Water limitation may reduce nectar production 
(reviewed in Galen 2005; e.g. Carroll et al. 2001). 

2-9 Water stress  buds 
initiated 

Plants may allocate different amounts of resources to 
reproduction in response to water limitation ( 
Karlsson and Méndez 2005). 

2-10 Caudex diameter  nectar 
production  

Larger plants may have increased per-flower nectar 
production since plant size is closely related to the 
resources available to reproduction (Stephenson 
1981; reviewed in Weiner et al. 2009) and 
provisioning nectar requires a substantial amount of 
photosynthate (e.g. Southwick 1984). 

2-11 Caudex diameter  buds 
initiated 

Larger plants may initiate more buds since the 
amount of resources available through translocation 
as well as the ability to obtain more resources 
through roots and leaves are tightly related to plant 
size (Stephenson 1981). 
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2-12 Buds initiated  open 
flowers  

Plants that initiate more buds should have more open 
flowers simply because more had the chance to 
develop. 

2-13 Aborted buds  no. of 
open flowers 

Plants with many aborted buds may have fewer 
flowers open simply because less survived to 
anthesis. 
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2-14 No. pollen forages  
mature seeds 

Pollination intensity is often positively related to the 
number seeds developed per fruit (reviewed in Lee 
1988), thus highly foraged plants may have produce 
more seeds after controlling for fruit number. 

2-15 No. pollen forages  
mature fruits  

Additional foragers may promote fruit growth and 
development since pollen tube growth stimulates the 
transition to fruiting (reviewed in Lee 1988). 
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Appendix C. Derivation of mean and variance for the ‘growing location’ parameter. 

 

 The growing location parameter consists of twenty-seven 0’s representing ‘interspace’ 

associated plants and twenty-seven 1’s representing ‘shrub’ associated plants. Therefore sample 

size (N) = 54. Given the data, we know that 

    ∑ X௜
ே
௜ୀଵ  = 		∑ X௜

ଶே
௜ୀଵ 	= 27, 

  where Xi = the ith observed value. 

And since 

Mean	 ൌ 	μ	 ൌ
ଵ

ே
∑ X௜
ே
௜ୀଵ  , so 

μ = 27/54 = 0.5. 

To calculate variance we know: 

Variance = σଶ ൌ 1
ܰ
∑ X݅

2N
݅ൌ1   so ,2ߤ	–

σ2 = 27/54 – (0.5)2 = 0.25 
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