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ABSTRACT 

 

 

Studies on Nitrogen and Silicon Deficiency in Microalgal Lipid Production 

 

 

by 

 

 

Curtis Adams, Doctor of Philosophy 

 

Utah State University, 2013 

 

 

Major Professor: Dr. Bruce Bugbee 

Department: Plants, Soils, and Climate 

 

 

Microalgae are a rich, largely untapped source of lipids. Algae are underutilized, 

in part, because lipid formation generally is stimulated by stress, such as nutrient 

deficiency. Nutrient deficiencies reduce growth, resulting in a tradeoff between elevated 

cellular lipids and abundant cell division. This tradeoff is not well understood. We also 

have a poor understanding of the physiological drivers for this lipid formation. Here we 

report on three sets of research: 1) Assessment of species differences in growth and lipid 

content tradeoffs with high and low level nitrogen deficiency; 2) Investigation of 

physiological drivers of lipid formation, by mass balance accounting of cellular nitrogen 

with progressing deficiency; 3) Examination of the effects of sodium chloride and silicon 

on lipid production in a marine diatom. 

1) Nitrogen deficiency typically had disproportionate effects on growth and lipid 

content, with profound differences among species. Optimally balancing the tradeoff 

required a wide range in the rate of nitrogen supply to species. Some species grew first 



 

 

 

iv 

 

and then accumulated lipids, while other species grew and accumulated lipids 

concurrently—a characteristic that increased lipid productivity. High lipid content 

generally resulted from a response to minimal stress. 

2) Commonalities among species in cellular nitrogen at the initiation of lipid 

accumulation provided insight into the physiological drivers for lipid accumulation in 

nitrogen deficient algae. Total nitrogen uptake and retention differed widely among 

species, but the ratio of minimum retained nitrogen to nitrogen at the initiation of lipid 

accumulation was consistent among species at 0.5 ± 0.04. This suggests that lipid 

accumulation was signaled by a common magnitude of nitrogen deficiency. Among  the 

cellular pools of nitrogen at the initiation of lipid accumulation, the concentration of 

RNA and the protein to RNA ratio were most similar among species with averages of 3.2 

± 0.26 g L
-1

 (8.2% variation) and 16 ± 1.5 (9.2% variation), respectively. This implicates 

critical levels of these parameters as potential signals initiating the accumulation of 

lipids.  

3) In a marine diatom, low levels of either sodium chloride or silicon resulted in at 

least 50% increases in lipid content. The synergy of simultaneous, moderate sodium 

chloride and silicon stress resulted in lipid content up to 73%. There was a strong sodium 

chloride/silicon interaction in total and ash-free dry mass densities that arose because low 

sodium chloride was inhibitory to growth, but the inhibition was overcome with 

excessive silicon supply. This suggests that low sodium chloride may have affected 

metabolism of silicon. 

(136 pages) 
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PUBLIC ABSTRACT 

 

 

Studies on Nitrogen and Silicon Deficiency in Microalgal Lipid Production 

 

 

by 

 

 

Curtis Adams, Doctor of Philosophy 

 

Utah State University, 2013 

 

 

Major Professor: Dr. Bruce Bugbee 

Department: Plants, Soils, and Climate 

 

 

 

Microalgae are single celled plants that inhabit aquatic and terrestrial 

environments across the planet. Many species are oleaginous, which means they are 

capable of producing oils, similar to many higher plants we are familiar with like canola, 

safflower and coconut. Different from higher plants, however, algae have simple 

structures that allow them to grow at very high rates. Due to these characteristics—oil 

production and rapid growth rates—algae are considered a promising future source of oil. 

Algal oils could be useful for production of food for people, feed for animals, biodiesel, 

detergents, and many other applications. 

Algae have not been heavily used to this point as a source of lipids for a variety of 

reasons. One primary reason is that algal lipid formation generally is prompted by stress, 

such as nutrient deficiency. Nutrient deficiencies reduce growth, resulting in a difficult 

tradeoff between elevated cellular lipids and abundant cell division. This tradeoff is not 

well understood. We also have a poor understanding of what happens in the cell 
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physiologically in response to nutrient deficiency that drives this lipid formation. To 

make algae useful as lipid producers on commercial scales, research is needed. 

This dissertation is a report on three sets of research: 1) An assessment of species 

differences in growth and lipid content tradeoffs with high and low level nitrogen 

deficiency; 2) Investigation of physiological drivers of lipid formation, by mass balance 

accounting of cellular nitrogen pools with progressing deficiency; 3) Examination of the 

effects of sodium chloride and silicon on lipid production in a marine diatom. 

1) Nitrogen deficiency typically had disproportionate effects on growth and lipid 

content, with profound differences among species. Optimally balancing the tradeoff 

required a wide range in nitrogen supply among species. Some species grew first and 

then accumulated lipids, while other species grew and accumulated lipids concurrently—

a characteristic that increased lipid productivity. High lipid content generally resulted 

from a response to minimal stress. 

2) Commonalities among species in cellular nitrogen at the initiation of lipid 

accumulation provided insight into the physiological drivers for lipid accumulation in 

nitrogen deficient algae. Total nitrogen uptake and retention differed widely among 

species, but the ratio of minimum retained nitrogen to nitrogen at the initiation of lipid 

accumulation was consistent among species at 0.5 ± 0.04. This suggests that lipid 

accumulation was signaled by a common magnitude of nitrogen deficiency. Among  the 

cellular pools of nitrogen at the initiation of lipid accumulation, the concentration of 

RNA and the protein to RNA ratio were most similar among species with averages of 3.2 

± 0.26 g L
-1

 (8.2% variation) and 16 ± 1.5 (9.2% variation), respectively. This implicates 
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critical levels of these parameters as potential signals initiating the accumulation of 

lipids. 

3) In a marine diatom, low levels of either sodium chloride or silicon resulted in at 

least 50% increases in lipid content. The synergy of simultaneous, moderate sodium 

chloride and silicon stress resulted in lipid content up to 73%. There was a strong sodium 

chloride/silicon interaction in total and ash-free dry mass densities that arose because low 

sodium chloride was inhibitory to growth, but the inhibition was overcome with 

excessive silicon supply. This suggests that low sodium chloride may have affected 

metabolism of silicon. 

These studies give insight into how nutrient deficiency can be used effectively to 

enhance lipid production in oleaginous algae. 
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ABBREVIATIONS 

 

 Non-standard abbreviations used in this dissertation are defined at their first 

instance of use, with the exception of nutrient elements. These abbreviations are used 

extensively and include: nitrogen (N), silicon (Si), carbon (C), phosphorus (P), potassium 

(K), sodium (Na), sulfur (S), magnesium (Mg), calcium (Ca), boron (B), iron (Fe), 

chloride (Cl), manganese (Mn), zinc (Zn), copper, (Cu), molybdenum (Mo). The nutrient 

elements are fully spelled out in all abstracts and titles. 

 



CHAPTER 1 

INTRODUCTION & LITERAURE REVIEW 

 

1.1. Introduction 

 

Microalgae are a rich, largely untapped source of lipids. Algae are capable of lipid 

productivity far greater than higher plants (Mata et al. 2010), but are not heavily used 

commercially (Roessler 1990, Borowitzka 1999, Spolaore et al. 2006). Several challenges 

have hampered the development and implementation of reliable, large-scale production 

of lipids by algae. Foremost among these challenges is that algal lipid accumulation is 

generally promoted by stress conditions—primarily nutrient deficiency—and we have 

insufficient understanding of stress optimization (Sheehan et al. 1998). The potential of 

algae is well appreciated, however, as evidenced by the recent surge in research into their 

use as a biodiesel feedstock (Chisti 2007, Hu et al. 2008, Griffiths and Harrison 2009, 

Brennan and Owende 2010, Mata et al. 2010, Verma et al. 2010, Wijffels and Barbosa 

2010), which was a primary motivation of the research summarized in this dissertation. In 

a recent published opinion, Michel (2012) suggested that development of biofuels is 

“nonsense” and that more efficient solar/battery technologies are the more sensible route. 

But this opinion overlooks the indispensable contemporary need for transportable and 

energy-dense liquid fuels. In addition to fuel markets, tremendously diverse algal lipids 

could have greater place in the higher-value markets for food, detergent lipids, and 

specialty lipids (Roessler 1990, Guschina and Harwood 2006, Mata et al. 2010). The 

following literature review covers some history of algal cultivation, the physiology of 

nutrient stress-induced lipid accumulation, and aspects and challenges of cultivation. 
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1.2. Literature Review 

1.2.1. History of Artificial Algal Culture 

For academic and commercial purposes, algae have been cultured for more than a 

century. Bold (1942) suggested that A. Famintzin was likely the first to report the culture 

of algae in liquid media (Famintzin 1871). Early researchers such as Beyerinck (1890), 

who is credited with being the first to culture bacteria-free green algae, employed the 

common sense method of culturing algae in water directly from natural habitats. Growth 

was poor in natural waters in these early studies, however. In response to the apparent 

lack of essential growth factors in early culture media, the use of soil extracts was 

introduced by Pringsheim (1912), which greatly extended the number of algae that could 

be cultivated. From his work developing artificial seawater media, Allen (1914) 

concluded that soil extracts contained unknown organic substances that are required for 

algal growth. “We now know that soil extract performs numerous functions in culture 

media, and [those functions] have largely been replaced by specific compounds. Soil 

extract provides various elements and vitamins needed for plant growth, metal 

complexing by organic compounds that sequester potentially toxic metals, and organic 

compounds that keep iron in solution” (Harrison and Berges 2005). 

Modern algal media are greatly improved, most are completely artificial and 

defined, and many allow for the culture of a large diversity of algal organisms. Some 

media appear to be designed for production, while others are designed to approximate 

conditions in nature. In addition to the macronutrient elements (e.g. N, P), many 

micronutrient elements (e.g. Zn, Mn, Cu), some vitamins (vitamin B12, thiamine, and 
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biotin are most common), and chelating agents are often added to modern media. As an 

excellent example of the development of a modern marine culture media, Provasoli et al. 

(1957) reviewed historical developments in media and offered physiologically and 

research-based justifications for the composition of their popular ASP-2 media. The Bold 

Basal Medium (Bischoff and Bold 1963), which is a variation of the original Bristol’s 

solution (Bold 1949), is an example of a widely used freshwater media capable of 

culturing a wide variety of freshwater algae. 

Today, however, there are numerous published recipes for algal media. Many of 

the recipes are simple manipulations of other recipes that accommodate specific research 

needs (e.g. varied N concentration). Some recipes vary slightly from other published 

recipes to suit particular physiological needs of specific organisms (e.g. dilution of 

micronutrient metals). Somewhat recently, Andersen et al. (2005) compiled dozens of the 

more common marine and freshwater media recipes in a format that lends itself to 

comparison among media (i.e. molar component concentrations); they also comment 

briefly on the derivation of each media and mention some organisms that have been 

grown in each. 

 

1.2.2. Algal Lipid Formation is Stimulated by Stress 

 

All algae have membrane phospholipids and glycolipids that are a relatively 

constant fraction of their biomass. Additionally, algae produce neutral, storage lipids 

called triacylglycerides (TAG). Some  algae will accumulate relatively small amounts of 

neutral lipid in non-stress conditions, but large increases have been observed in many 

algal species under stress conditions—primarily nutrient deficiencies (Shifrin and 
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Chisholm 1981, Griffiths and Harrison 2009). Nutrient deficiencies necessarily reduce 

growth and therefore, from a lipid production standpoint, there is a tradeoff between 

nutrient deficiency that results in high cellular lipid content and nutrient sufficiency that 

results in an abundance of cells. The literature is full of reports on the lipid content 

achievable with various species in high stress conditions; there is less information on the 

optimization of the growth and lipid content tradeoff. The scientific community is 

recognizing the need to select species and to study cultural conditions that lead, not just 

to high lipid content, but high lipid productivity (Zhukova and Aizdaicher 1995, Griffiths 

and Harrison 2009, Rodolfi et al. 2009, Huerlimann et al. 2010, Araujo et al. 2011, 

Mutanda et al. 2011). 

Overwhelmingly more than other nutrient deficiencies, N deficiency has been 

shown to induce lipid accumulation in algae (Shifrin and Chisholm 1981, Tornabene et 

al. 1983, Utting 1985, Larson and Rees 1996, Kilham et al. 1997, Alonso et al. 2000, 

Illman et al. 2000, Zhila et al. 2005, Li et al. 2008, Converti et al. 2009, Gouveia et al. 

2009, Hsieh and Wu 2009, Wang et al. 2009). After N, effects of P have been reported at 

least several times (Lombardi and Wangersky 1991, Reitan et al. 1994, Kilham et al. 

1997). Specifically in diatoms, Si deficiency has been shown to induce lipid 

accumulation, with an effect more rapid and severe than N or P deficiencies in those 

organisms (Shifrin and Chisholm 1981, Taguchi et al. 1987, Mortensen et al. 1988, 

Lombardi and Wangersky 1991). 
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1.2.3. Physiology of Lipid Accumulation under Nitrogen Deficiency 

Nitrogen is central to the proper function of algal cells. It is a key component of 

amino acids, proteins, enzymes, nucleic acids, and photosynthetic pigments and as such is 

taken up among the highest levels of all nutrient elements. McGlathery et al. (1996) and 

Dortch et al. (1984) investigated algal responses to N deficiency and found that 

individual N pools (e.g. protein, chlorophyll, inorganic N) are depleted at different rates. 

This observation indicates that some N pools serve more of a storage function, while 

others are more critical. Dortch et al. (1984) showed that endogenous inorganic N was 

accumulated in periods of excessive N supply, then rapidly and drawn down below 

detectable levels with limiting N supply. The concentration of free amino acid was shown 

to be considerable in N-sufficient algae, but was often still present in reduced 

concentrations in N deficient conditions (Dortch et al. 1984). The concentration of RNA 

typically decreased dramatically with N deficiency, while the concentration of  DNA 

remained relatively steady (Dortch et al. 1984). Considerable species differences were 

identified in protein losses with N deficiency, with some species maintaining most of 

their N-sufficient protein levels and others experiencing dramatic decreases (Dortch et al. 

1984, McGlathery et al. 1996). Photosynthetic pigments (e.g. chlorophylls) and enzymes 

(e.g. Rubisco) generally decreased in concentration per cell, which ultimately leads to 

reductions in photosynthetic capacity (Dortch et al. 1984, Turpin 1991). 

An N-sufficient algal cell typically has a molar C/N ratio of ~10/1 and 

approximately 20% of photosynthetic electron flow is devoted just to support N 

assimilation (Turpin et al. 1991). Given the importance of N, algal cells have adapted 
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strategies to help them to moderate the effects of temporal variation in supply. Two 

categories of strategies have been identified: those that regulate N supply and those that 

regulate energy supply for N assimilation. 

Luxury consumption of N and autophagy are examples of strategies that regulate 

N supply. Luxury consumption is when an organism takes up something essential in 

excess of immediate need. This process allows algae to store up N in times of plenty for 

use in times of scarcity; it has been well documented and described in algae (Droop 

1975). Nitrogen consumed in luxury may be stored in inorganic forms (NO3
-
 and NH4

+
) 

or may also be rapidly assimilated to form simple N-containing compounds that act as a 

reservoir for the nutrient. Autophagy is the process by which organisms degrade cellular 

components, such as organelles and proteins, to recycle the resources for more critical 

purposes. The use of genetic markers has shown that autophagy is active at a low levels 

in plants in non-stress conditions for routine nutrient recycling and that up-regulation of 

the process occurs in stress conditions, such as N limitation (Thompson et al. 2005). 

Thompson et al. (2005) described plants in which autophagy was disabled as 

“hypersensitive” to N or C starvation. The process is non-selective (general degradation), 

but it allows essential cell processes to proceed despite exhaustion of exogenous resource 

supply. 

The production of organic storage compounds is an example of a strategy that 

regulates the supply of energy for N assimilation. In physiological N sufficiency, the 

molar rate of photosynthetic C fixation is seven to 10 times the rate of N assimilation, 

which is a suitable ratio of the elements for synthesis of essential N-containing cellular 
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components. In the initial phases of N deficiency—before photosynthetic capacity is 

significantly diminished—C fixation may exceed demands for assimilation of N-

containing compounds and excess C may be diverted into storage compounds, such as 

lipids and carbohydrates. When N is resupplied, the energy and C from storage 

compounds is used, in part, for N assimilation, until photosynthetic capacity is restored 

(Turpin 1991).  

A growing body of evidence is showing a connection between the cellular lipid 

accumulation observed in N deficiency and autophagy. In the green alga Chlamydomonas 

reinhardtii, Perez-Perez et al. (2010) identified that autophagy was active in this alga in 

stress conditions, including N deficiency, oxidative stress, or the presence of misfolded 

proteins in the endoplasmic reticulum. Wang et al. (2009) extended this finding, 

identifying a pathway linking autophagy activity and the production of storage lipids and 

carbohydrates in this alga. The proteins and signaling pathways known to mediate the 

autophagy process have been described in yeast, mammals, plants, algae, and others 

(Wullschleger et al. 2006, Diaz-Troya et al. 2008, Perez-Perez et al. 2010). In mammals, 

autophagy-related proteins have been found to sense the energy and nutrient status of 

cells, signaling the metabolism of storage lipids at the onset of stress (Wullschleger et al. 

2006, Singh et al. 2009). 

Flynn (1990) speculated that the biochemical responses to N deficiency, such as 

autophagy and lipid accumulation, would likely be triggered by reaching critical levels or 

proportions of key metabolites of C and N. As discussed earlier, changes in the cellular 

concentrations of these metabolites have been measured in N deficiency studies, but none 
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have sought to identify critical levels or interactions of these related to storage lipid 

accumulation. 

 

1.2.4. Lipid Profiles 

The types of lipid produced by different algae appears to be an intrinsic 

characteristic which may be influenced somewhat by environmental and cultural 

conditions. For example, many diatoms have been shown to produce a high lipid fraction 

of C16 fatty acids relative to green algae, which tend to produce a higher fraction of C18 

fatty acids (Volkman et al. 1989). Factors such as temperature, pH, nutrient limitations, 

and growth phase have been found to exert an influence on these unique lipid profiles 

(Benamotz et al. 1985, Volkman et al. 1989, Dunstan et al. 1993, Zhu et al. 1997, Zhila et 

al. 2011). Thus, species selection and cultural management can be used to encourage 

desired lipid products. 

 

1.2.5. Lipid Quantification 

Most literature on algal lipids use a gravimetric method of lipid determination 

(Folch et al. 1957) to report mass lipid content of their algae. In this method, a mixture of 

polar and non-polar solvents is used to extract lipids from biomass, which are dried and 

weighed. The dry mass of the lipid extract over the total biomass gives the mass lipid 

content. The lipid extract contains all lipid-soluble cellular contents (e.g. chlorophyll), 

however, which typically leads to an overestimation of lipids. A more accurate and direct 

method of lipid quantification is by gas chromatograph (Wahlen et al. 2011). Gas 

chromatography can also be used to determine lipid profiles. 
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1.2.6. Lipid Conversion to Biodiesel 

Algal storage lipids (triacylglycerol or TAG) can be extracted from algal cells 

with organic solvents and a type of biodiesel can be produced by a transesterification 

reaction in which the lipids are converted to fatty acid alkyl esters. Lipids other than TAG 

(e.g. free fatty acids, phospholipids, and glycolipids) have also been shown to be 

convertible into this form of biodiesel, depending on the method of transesterification. 

Generally the transesterification reaction takes place in the presence of a catalyst and an 

alcohol. When methanol is the alcohol used, the fatty acid alkyl ester products are called 

fatty acid methyl esters or FAME. 

Four general classes of transesterification methods have been reported in 

literature: base-catalyzed, lipase-catalyzed, acid-catalyzed, and supercritical methanol 

biodiesel production. Only a superficial discussion of these method classes will be 

presented here, referring to the more extensive literature review of Wahlen (2011). Base-

catalyzed transesterification methods are the most commonly used methods and allow for 

fast and complete conversion of TAG to FAME. However, samples containing even low 

concentrations of free fatty acids foul FAME production with base catalysis. This 

characteristic precludes the use of lower-quality lipid sources using these methods. The 

lipase-catalyzed method, while being a robust and efficient method of transesterification 

that will convert free fatty acids to FAME, is too costly for commercial biodiesel 

production due to high lipase production costs. The supercritical methanol method does 

not require a catalyst and involves heating methanol above its critical point. The method 

is not ideal for commercial scales because of costly requirements for infrastructure and 
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equipment capable of generating and sustaining high temperature and pressure. Finally, 

acid-catalyzed methods have the benefit of being able to convert free fatty acids to 

FAME, but have traditionally had the drawbacks of long conversion time and high 

alcohol requirements. Canakci and Van Gerpen (2001) developed a two-step method 

combining acid- and base-catalyzed techniques to allow faster conversion of samples 

containing free fatty acids. This method has the drawbacks of high alcohol and catalyst 

requirements and complication inherent in being multi-step. 

A novel, acid-catalyzed method in which lipid extraction and transesterification 

occur in a single step was recently developed (Wahlen et al. 2011), building on the work 

of Lepage and Roy (1986). This method efficiently combines lipid extraction and 

transesterification, reducing the need for organic solvent; the reaction occurs significantly 

faster than traditional acid-catalyzed methods. As in other acid-catalyzed methods, there 

is a high alcohol requirement, but the author states that the alcohol may be recycled for 

use in multiple transesterification reactions. Free fatty acids are transesterified in the 

reaction, making biodiesel with low quality lipid sources possible. Reaction conditions 

were optimized to obtain 100% conversion of TAG to FAME. Using samples of 

cyanobacteria known to produce no TAG, the author demonstrated that this method is 

also capable of transesterifing phospholipids and glycolipids to FAME. 

 

1.2.7. Algal Culture Management 

 An algal culture consists of two general components: the medium and the 

biomass. These components may be managed in a variety of ways to obtain desired 

culture growth. 
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Commercially, most algae are grown in batch cultures (Borowitzka 1999).
1
 In a 

batch culture, all nutrients and other growth factors are added at once in fixed quantities 

to make a medium, the medium is inoculated with algae, and growth proceeds to an 

application-specific point at which the entire culture is harvested. The batch culture 

process is the simplest form of culture management. Simplicity in culture management, 

however, is traded off for some drawbacks (Borowitzka 1997). Since all nutrients must 

be added up front, initial nutrient concentrations may be at or near harmful levels in order 

to meet demands for all expected growth. “Fed-batch” culture was designed to overcome 

this problem. A fed-batch is a culture in which nutrients are added in stages, more closely 

matching nutrient supply with demand, but harvest occurs only at the end of the growth 

phase like a regular batch culture. 

As a batch culture grows it first experiences a lag phase, a period in which culture 

density is little and growth is slow. Light capture efficiency (light absorbed by algae / 

incident light) is low due to the diluteness of the culture. After proceeding through an 

exponential growth phase, batch cultures become limited by some factor (light, if the 

medium is replete with nutrients) and enter a stationary phase in which growth slows to 

an eventual halt. In this phase, the dense culture may begin to self-shade and just enough 

light may be received to provide energy for maintenance respiration demands and growth 

cannot occur. Available light is not efficiently used also in this phase. Batch culture is 

                                                 
1
 Although published 14 years ago, this article provides the most recent comprehensive 

discussion of commercial algal production, including details on production practices, that 

we were able to find. Short-term batch cultures are still the most effective method for 

growing a quality product, as they are simply managed and provide the grower with 

lower likelihood of culture contamination, culture death, etc. 
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largely popular due to its ease of use, rather than to it being an optimized procedure. 

Nevertheless, batch culture is useful from a lipid-production standpoint in that dense 

cultures may be grown up and starved for a lipid-inducing nutrient during the stationary 

phase. 

Other common methods of cultural management are forms of continuous culture. 

Continuous culture techniques approach some level of ongoing biomass density and 

media component regulation, which allows maintenance of growth in the exponential 

phase. True continuous culture is the maintenance of absolutely steady cultural 

conditions, but requires a complex system and is generally not practical on large scales. 

Semi-continuous culture techniques regulate biomass density and media component 

concentrations at some frequent interval (e.g. daily biomass harvest and nutrient 

replacement in response to growth). Semi-continuous culture has the benefits of being 

relatively simple (no complex system required) and, compared to batch culture, more 

efficient use of light and a more steady-state, low-level nutrient supply. But only nutrient 

limitation, not starvation, is possible in continuous cultures, which may preclude the 

possibility of obtaining the high lipid content for most species of algae. 

 

1.2.8. Production Systems 

 In algal production systems, the terms open and closed are often applied to 

describe a system’s exposure to the surrounding environment. Open systems are any of 

several variations of pond that are exposed to the natural environment and typically rely 

on natural sunlight for growth (Fig. 1‒1). Algal competitors (such as wild algal strains, 

cyanobacteria and bacteria) and predators (such as rotifers) are ubiquitous in the 



 

 

 

13 

 

environment and always pose a risk of contamination of open culture systems. Closed 

systems provide an enclosed (or largely enclosed), artificial environment in which 

environmental conditions are more easily optimized and the risks of culture 

contamination by foreign species are reduced. Closed systems are often referred to as 

bioreactors. It is important to note, however, that large-scale closed systems are not 

sterile systems in which axenic algal culture is absolutely ensured (such as small-scale 

systems in which fundamental research is conducted), although system design and 

treatment can help to reduce risks of contamination. Closed system designs include those 

that rely on natural sunlight and others in which light is supplied by electric lights. Fig. 

1‒2 is an image of plate bioreactors, designed to improve light penetration and gas 

exchange. Mata et al. (2010) provided a comprehensive discussion of pros and cons on 

the use of open and closed systems. 

Borowitzka (1999) provided a review of systems for commercial algae 

production, both large and small, and discussed considerations in the use of each system. 

At the time of his review (1999), Borowitzka stated that all large commercial culture 

systems were open systems, due simply to economics. Closed systems can increase 

productivity, but intensive energy and infrastructure demands make these options cost 

ineffective for most lower-value applications. 

With the recent biofuel-based interest in algae production, there has been a surge 

in research on cultivation systems (Brennan and Owende 2010), including open and 

closed system designs. If algae are to be a viable biofuel feedstock that provide an 

appreciable portion of human energy demands, algae cultivation must happen on 
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unprecedentedly large scales and must be cost competitive on world fuel markets (Chisti 

2007). This is also true if algae are to be grown for lipid supply to the food, detergent, 

and specialty lipid industries. This reality seems to favor lower input open systems, but 

adequate production quantity or quality may not be possible in this type of system. 

Obtaining lipid-productive algae capable of thriving in extreme conditions that exclude 

competitors and predators, such as high or low pH, may provide an answer. Innovation in 

bioreactor technologies may also provide an answer.  

 

1.2.9. Species Selection for Cultural Stability 

 

There are thousands of characterized algal species, each with characteristics that 

allow them to exploit various freshwater, marine, and soil environments around the 

world. The environments where algae have been found include extreme habitats, such as 

terrestrial Antarctica, (Davey 1989), on dry desert soils (Chantanachat and Bold 1962), 

the most saline waters on Earth (Brock 1975), in high pH solutions (Vonshak and 

Richmond 1988), and in the absence of nutrients (such as Ca in Chlorella pyrenoidosa) 

essential to most biological organisms (Hopkins and Wann 1926). From an algae 

production standpoint, the ability to survive in extreme environments is an advantage—

adaptation to an extreme cultural environment allows a species of algae to grow with 

decreased predation and less microbiological competition for space or resources (e.g. 

nutrients, light). Such a characteristic may be critical in the success of large-scale algae 

production systems, both open and closed. The species must also be lipid-productive in 

their extreme environment. 
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1.2.10. Conclusions 

Algal oils could be useful for production of food for people, feed for animals, 

biofuels, detergents, and many other applications. This literature review discussed many 

of the elements and challenges involved in large-scale production of algal lipids, 

including the role of nutrient deficiency. Nutrient deficiency is a primary stress that 

stimulates the accumulation of storage lipids in algae, but nutrient deficiencies also 

reduce growth resulting in a tradeoff between elevated cellular lipids and abundant cell 

division. This tradeoff is not well understood. We also have a poor understanding of what 

happens in the cell physiologically in response to nutrient deficiency that drives this lipid 

formation. To make algae useful as lipid producers on commercial scales, research is 

needed to address these gaps in our understanding. 
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Fig. 1‒1: An example of an open raceway algae growth system, located at the Utah State 

University Research Greenhouse Complex. 
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Fig. 1‒2: A plate bioreactor system at the Utah State University Research Greenhouse 

Complex, designed to improve light penetration and gas exchange. 

 

 

 



 

 

 

24 

 

CHAPTER 2 

UNDERSTANDING PRECISION NITROGEN STRESS 

TO OPTIMIZE THE GROWTH AND LIPID CONTENT TRADEOFF 

IN OLEAGINOUS GREEN MICROALGAE
2
 

 

2.1. Abstract 

 

Nitrogen deficiency promotes lipid formation in many microalgae, but also limits 

growth and lipid productivity. In spite of numerous studies, there is poor understanding 

of the interactions of growth and lipid content, the time course of lipid accumulation and 

the magnitude of nitrogen deficiency required to stimulate lipid formation. These 

relationships were investigated in six species of oleaginous green algae, comparing high 

and low levels of deficiency. Nitrogen stress typically had disproportionate effects on 

growth and lipid content, with profound differences among species. Optimally balancing 

the tradeoffs required a wide range in nitrogen supply rate among species. Some species 

grew first and then accumulated lipids, while other species grew and accumulated lipids 

concurrently which resulted in increased lipid productivity. Accumulation of high lipid 

content generally resulted from a response to minimal stress. The data highlight the 

tremendous biodiversity that may be exploited to optimally produce lipids with precision 

nitrogen stress. 

                                                 
2
 The content of this chapter has been published elsewhere under the following reference: 

“Adams, C., Godfrey, V., Wahlen, B., Seefeldt, L. & Bugbee, B. 2013. Understanding 

precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous 

green microalgae. Bioresource Technology 131:188-194.” Reprint permission forms from 

authors not listed on the title page of this dissertation and from the journal, Bioresource 

Technology, are included in an appendix. 
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2.2. Introduction 

Microalgae have been recognized as a potential source of lipids for multiple 

outlets. This is because some algae can accumulate energy-dense neutral lipid 

(triacylglycerides or TAG). TAG can be chemically extracted and simply converted to 

fatty acid methyl esters (FAME), or biodiesel. For this reason—in the worldwide quest to 

increase use of renewable biofuels—there is currently focus on algae as a biodiesel 

feedstock (Chisti 2007, Hu et al. 2008, Griffiths and Harrison 2009, Brennan and 

Owende 2010, Verma et al. 2010, Wijffels and Barbosa 2010). Environmental stress has 

been shown to elevate the production of lipid bodies containing TAG (Thompson 1996). 

Synthesizing dozens of reports, Hu et al. (2008) calculated an average algal lipid content 

of ~46% in stress conditions, up from an average of ~26% in non-stress conditions; 

several high lipid content values, from 70 to 90%, were reported. The primary stress 

applied to the algae was N deficiency. 

In N sufficiency, the molar rate of photosynthetic C fixation is seven to 10 times 

the rate of N assimilation, which is a suitable ratio of the elements for synthesis of 

essential N-containing cellular components. In the initial phases of N deficiency—before 

photosynthetic capacity is significantly diminished—C fixation may exceed C demands 

for N assimilation and excess C may be diverted into storage compounds, such as lipids 

and carbohydrates. As storage compounds accumulate due to N deficiency, the growth 

rate is diminished. When N is resupplied, the energy and C from storage compounds is 

used, in part, for N assimilation, until photosynthetic capacity is restored (Turpin 1991). 
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If N deficiency is to be an effective tool for the production of algal lipids, we 

must have a thorough understanding of the resulting tradeoff between growth and lipid 

accumulation. The executive summary of the Aquatic Species Program (Sheehan et al. 

1998)—a nearly two decade effort supported by the U.S. Department of Energy to 

develop biofuel from algae—stated that “The common thread among the studies showing 

increased oil production under stress seems to be the observed cessation of cell 

division…The increased oil content of the algae does not lead to increased overall 

productivity of oil. In fact, overall rates of oil production are lower during periods of 

nutrient deficiency.” The validity of this claim is important for the future prospects of 

algal biodiesel, because culturing either many cells with low lipid content (nutrient 

replete conditions) or few cells with high lipid content (severe nutrient stress), will not 

result in an economically viable biodiesel feedstock. High biomass density (growth) is 

needed to increase yield per unit culture area and high lipid content is needed to reduce 

processing costs per unit of biomass product (Griffiths and Harrison 2009). Achieving the 

best economic scenario will require the proper balance of growth and lipid content. 

Two trends in the biofuels-related algae literature, which are evident in the 

articles reviewed by Griffiths and Harrison (2009) and Hu et al. (2008), illustrate that the 

need to balance growth and lipid content has not been appreciated. The first is the 

common comparison of lipid productivity in N-deficient conditions to productivity in N-

replete conditions. This comparison implicitly makes the assumption that the relatively 

stable production of structural phospholipids and glycolipids is an appropriate benchmark 

for the productivity of storage lipids. The second is that reports of high lipid content are 
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often observed in stressful cultural conditions that severely limit growth. Even large 

increases in lipid content will not pay off energetically or economically if growth is 

severely reduced. 

Little is known quantitatively about the interactions of growth and lipid content, 

the time course of lipid accumulation and the magnitude of N deficiency required to 

stimulate lipid formation. The objective of this study was to investigate these 

relationships in six species of oleaginous green algae, comparing high and low levels of 

N deficiency. We sought to identify physiological characteristics among the algae that 

lead to the highest productivity of high-lipid content biomass. We also sought to compare 

lipid production dynamics with batch and semi-continuous cultural techniques. 

 

2.3. Materials and Methods 

2.3.1. Batch Culture Studies 

Experimental design and setup are described here; apparatus, species and 

measurement details are described in the sections that follow. These studies were 

designed to track the progress of physiological changes to N deprivation in six species of 

green algae, with two N treatments—low N stress and high N stress (higher N supply and 

lower N supply, respectively). Daily measurements were facilitated by running 12 

replicate cultures per N treatment in air-lift, glass bioreactors and harvesting one daily, a 

form of trend analysis. For each species, culture growth was started by filling the 12 

reactors with media and 100 mL of axenic inoculation culture to a 1.2 L volume. Daily 

measurements of cellular N and lipid content were taken on harvested biomass. Dry mass 

density was measured daily during the dark period on every reactor. Solution N 



 

 

 

28 

 

concentration was measured daily during the dark period only on the reactors to be 

harvested on a given day. 

 

2.3.2. Semi-Continuous Culture Study 

Experimental design and setup are described here; apparatus and measurement 

details are described in the sections that follow. A 7-d semi-continuous culture study was 

done with N. oleoabundans to compare lipid productivity by this method with batch 

culture. This species was chosen because it required the least N stress to prompt lipid 

accumulation in batch culture, as evident in preliminary tests. There were four N 

treatments that were defined by the initial concentration of N in the media and the 

concentration of N in the refill media: 11, 5.5, 2.8, and 1.4 mM N. The N treatments were 

designed to supply N in a range from abundant to severely limiting for growth. There 

were two replicate air-lift, glass bioreactors per N treatment. Partial culture removal and 

media renewal were done once daily during the dark period in response to growth. For 

each reactor, culture was removed at a volume calculated to bring transmission at 750 nm 

to 1% (0.43 g L
-1

) after renewal of media, thus minimizing effects of differential light 

absorption among treatments with different growth rates. Daily measurements of cellular 

N and lipid content were taken on harvested biomass. Solution N concentration was 

measured daily during the dark period on all reactors. 

 

2.3.3. Algal Strains 

Six species were studied: Chlorella sorokiniana (UTEX #1602); Chlorella 

vulgaris (UTEX #265); Chlorococcum oleofaciens (UTEX #105); Neochloris 
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oleoabundans (UTEX #1185); Scenedesmus dimorphus (UTEX #417); Scenedesmus 

naegelii (UTEX #74). 

 

2.3.4. Culture Apparatus 

Algal cultures were grown in glass, air-lift bioreactor tubes that were autoclaved 

before use. The bioreactors had an outer diameter of 50 mm, inner diameter of 45 mm 

and were filled to an approximate height of 75 cm, giving a culture volume of 1.2 L. The 

bioreactor tubes were placed in a plexiglass water tank maintained at 25˚C. CO2-enriched 

(1%), filtered air (Whatman  PolyVENT 0.2 μm PTFE filters, L#639) was bubbled into 

the bottom of each bioreactor through a 1 mm glass capillary tube at a rate of 0.5 L min
-1

. 

For the semi-continuous study, the bioreactor tubes were altered with valves fixed to the 

reactor bottoms, for simple and clean removal of culture. Light was supplied by banks of 

fluorescent tubes that ran perpendicular to the bioreactor tubes, completely covering one 

side. The photosynthetic photon flux (PPF) was 300 µmol m
-2

 s
-1  

(300 µE m
-2

 s
-1

) for the 

batch cultures and 350 µmol m
-2

 s
-1 

for the semi-continuous cultures, both with a 16-h 

photoperiod. (The Einstein, commonly used in algae literature, is defined as a mole of 

photons, but is not an SI unit and does not facilitate comparison with the photochemical, 

photobiology and plant biology literature.) A 16-h photoperiod was chosen to 

approximate the natural photoperiod of summers days in the mid-latitudes and to provide 

a regenerative dark period. Growth of photosynthetic organisms is best determined by the 

daily integrated PPF (Bugbee and Monje 1992), which was 17.3 mol m
-2

 d
-1

 in the batch 

cultures and 20.2 mol m
-2

 d
-1

 in the semi-continuous cultures. This is less than 50% of the 

average daily PPF of 45 to 55 mol m
-2

 d
-1

 in the summer months in North America. For 
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conversion of measurements made by volume (e.g. g L
-1

) to a unit of area (e.g. g m
-2

), the 

illuminated area of the bioreactor tubes was used as a conversion factor as follows: 1.2 L 

/ πrh = 1.2 L / (3.14 x 2.25 cm x 75.5 cm) x (1 m
2
 / 100

2
 cm

2
) = 22.5 L m

-2
 and 22.5 L m

-

2
 x g L

-1
 = g m

-2
. 

 

2.3.5. Media Composition and Preparation 

To make media, all ingredients other than P were added to deionized water in 20 

L carboys. The carboys were autoclaved, maintaining a liquid temperature of 130˚C for 1 

h. A P stock solution was autoclaved separately and added to the media after cooling. The 

freshwater culture media was a custom recipe with the following composition: 0.61 mM 

CaCl2 ˑ 2H2O; 0.63 mM MgSO4 ˑ 7H2O; 0.34 mM KH2PO4; 21.4 μM DTPA-Fe; 11.4 μM 

H3BO3; 7.0 μM MnCl2 ˑ 4H2O; 0.79 μM CuSO4 ˑ 5H2O; 3.1 μM ZnSO4 ˑ 7H2O; 0.16 μM 

Na2MoO4 ˑ 2H2O; 0.34 μM CoCl2 ˑ 6H2O. For all N treatments, 1 mM N was added as 

NaNO3 and the remaining N was added as KNO3.
3
 For the high N stress treatment (4 mM 

N): 1 mM NaNO3 and 3 mM KNO3. For the low N stress treatment (11 mM N): 1 mM 

NaNO3 and 10 mM KNO3 (except in the case of C. sorokiniana, where 15 mM KNO3 

was added for a final concentration of 16 mM N). The media had the following elemental 

concentrations: 4 mM N (high N stress) or 11 mM N (low N stress); 0.34 mM P; 1.34 

mM K (high N stress; low as a counter ion to N) or 10.34 mM K (low N stress; high as a 

counter ion to N); 0.61 mM Ca; 0.63 mM Mg; 0.64 mM S; 1.2 mM Cl; 1.0 mM Na; 21.4 

μM Fe; 11.4 μM B; 7.0 μM Mn; 3.1 μM Zn; 0.79 μM Cu; 0.16 μM Mo; 0.34 μM Co. In 

                                                 
3
 We were concerned about putting up to 10 mM Na in our algal media for the potential 

of toxicity. We opted for higher levels of K instead. 
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the semi-continuous culture of N. oleoabundans the same media was used, but in each 

treatment (11, 5.5, 2.8, and 1.4 mM N) N was split evenly by moles between NaNO3 and 

KNO3 because of the high tolerance of this organism of Na (Arredondo-Vega et al. 

1995). Based on common levels of K in published media, K was assumed to be at 

adequate levels in both low and high N stress treatments (Andersen et al. 2005) and as 

such would not be expected to affect growth or lipid accumulation. 

 

2.3.6. Growth/Algal Density Measurement 

Measurements of culture density were made spectrophotometrically at 750 nm 

with a Shimadzu UV-2401 PC, UV-VIS recording spectrophotometer (Shimadzu 

Corporation, Kyoto, Japan). Dilution of algal suspensions was made if absorbance 

measurements exceeded a value of 1.0. Spectral measurements were converted to dry 

mass densities by relationships developed individually for each species. Dry mass was 

determined by filtering 10 mL suspensions of algae with Whatman GF/C filters that were 

dried for one to two days at 105˚C. Virtually all increases in dry mass are necessarily due 

to photosynthetic production, whether in the form of lipids or cellular components. This 

work focused on photosynthetic production. Cell counts were not made, limiting the 

ability to make conclusions on rates of cell division. 

 

2.3.7. Biomass Harvesting and Drying 

Cells suspended in media were concentrated for harvest with a Sorvall RC6 Plus 

centrifuge (ThermoFisher Scientific, Waltham, MA). Spinning speed and duration varied 

somewhat among species, depending on pelleting characteristics. Generally, a speed of 
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7500 rpm for 5 mintes was sufficient for full recovery of the algae. Following 

centrifugation the biomass was loaded into 15 mL plastic sample vials and frozen at         

-80˚C. Frozen biomass was freeze-dried with a Labconco Freezone 4.5 freeze-drier 

(Labconco, Kansas City, MO). 

 

2.3.8. Solution and Cellular Nitrogen Measurements 

Samples of algal suspension (3 mL) were collected daily from the bioreactor tubes 

to be harvested and filtered with Whatman GF/C filters to monitor N consumption rates. 

Solution N concentration was measured on a Lachat QuikChem 8500 Automated Ion 

Analyzer using the total N, in-line persulfate digestion, imidazole buffer method that is 

available from the manufacturer (Lachat Instruments, Loveland, CO). Total C and N in 

algae were measured by a Perkin-Elmer Model 2400 CHN analyzer (Waltham, MA). 

 

2.3.9. Lipid Extraction, Conversion to FAME and Quantification 

Simultaneous conversion and extraction of algal lipids to fatty acid methyl esters 

(FAME) was done by the method of Wahlen et al. (2011). This method effectively 

converts to FAME the fatty acids contained in membrane phospholipids and glycolipids, 

as well as free fatty acids and storage lipid triglyceride. The lipid or FAME content of 

100 mg freeze-dried algal samples was determined with a gas chromatograph (Model 

2010, Shimadzu Scientific, Columbia, MD) equipped with a programmable temperature 

vaporizer (PTV), split/splitless injector, flame ionization detector (FID) (GCMS-

QP2010S, Shimadzu Scientific, Columbia, MD), and autosampler. The FID detector was 

used in this analysis. Analytes were separated on an RTX-Biodiesel column (15 m, 0.32 
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mm ID, 0.10 μm film thickness, Restek, Bellefonte, PA) using a temperature program of 

60˚C for 1 min followed by a temperature ramp of 10˚C per min to 360˚C for 6 min. 

Constant velocity of helium as a carrier gas was set at 50 cm s
-1

 in velocity mode. Sample 

sizes of 1 μL were injected into the PTV injector in direct mode that followed an identical 

temperature program to that of the column. The FID detector was set at 380˚C. Each 

sample contained octacosane (10 μg mL
-1

) as an internal standard. FID detector response 

to FAME was calibrated using methyl tetradecanoate (C14:0), methyl palmitoleate 

(C16:1), and methyl oleate (C18:1) at concentrations ranging from 0.1 mg mL
-1

 to 1 mg 

mL
-1

 and tripalmitin at concentrations ranging from 0.05 mg mL
-1

 to 0.5 mg mL
-1

. 

Standards were obtained as pure compounds (Nu-Chek Prep, Inc., Elysian MN) and were 

diluted with chloroform to obtain the needed concentrations. A standard (GLC-68A, Nu-

Chek Prep, Inc.) containing methyl esters ranging from methyl tetradecanoate (C14:0) to 

methyl nervonate (C24:1) was used to identify the retention time window for FAME peak 

integration. Peaks within this region were integrated using GC solution postrun v. 2.3 

(Shimadzu) and concentrations were determined by linear regression analysis. 

 

2.4. Results & Discussion 

2.4.1. Introduction 

This is an analysis of progressive N deprivation in batch cultures of six species of 

oleaginous green microalgae at two N supply rates, keeping other nutrients constant 

between treatments. The treatment with a lower supply of N was designed to apply 

significant N stress while allowing reasonable growth and is hereafter referred to as “high 

N stress.” The treatment with a higher supply of N was designed to apply only minimal N 
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stress and is hereafter referred to as “low N stress.” We also investigated the 

effectiveness of semi-continuous culture for yielding high productivity of high-lipid 

content biomass. In studies of the effect of N on algal lipids it is common to quantify 

lipids by a gravimetric method, a portion of which is lipid soluble material. To ensure an 

accurate representation of the lipid production potentials of the algae and cultural 

methods studied here, the in situ transesterification method of Wahlen et al. (2011) was 

used to extract and convert lipids to FAME for quantification by gas chromatography. 

This method effectively converts to FAME the fatty acids contained in membrane 

phospholipids and glycolipids, as well as free fatty acids and storage lipid triglyceride. 

Because algae rapidly consume and store N (luxury consumption (Dortch et al. 1984)), 

measurements of cellular N were necessary to gauge the magnitude of N stress in the 

cells. Cellular N was thus used in analysis of lipid and growth responses. 

 

2.4.2. Growth and Lipid Content Tradeoffs in Batch Culture 

Nitrogen stress generally had disproportionate effects on growth and lipid content, 

with profound differences among species (Fig. 2‒1). Conceptually, the organisms can be 

separated into three categories of response (comparing from low to high N stress): 1) the 

increase in lipid content exceeded the decrease in growth, resulting in higher lipid content 

and productivity with high N stress; 2) the decrease in growth exceeded the increase in 

lipid content, resulting in higher lipid productivity with low N stress and higher lipid 

content with high N stress; and 3) the increase in lipid content was offset by the decrease 

in growth, resulting in approximately equal lipid productivity with high or low N stress 

but higher lipid content with high stress. 
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N. oleoabundans and S. dimorphus fell into the first category. In particular, N. 

oleoabundans exhibited only a small decrease in growth (-21%) and drastically higher 

lipid content (100%) with high N stress relative to low. C. vulgaris and C. oleofaciens fell 

into the second category, with drastic decreases in growth and relatively modest increases 

in lipid content. This may seem like the case in which N stress was not effective in 

increasing lipid productivity, but there is another, more appropriate perspective (at least 

for C. vulgaris and C. oleofaciens). Rather than a high degree of N stress, these species 

required only a low level of stress to achieve high lipid productivity with relatively high 

lipid content. With low N stress—where growth was substantially higher—these species 

were able to accumulate 35 and 40% lipids (only 24 and 17% less than with high stress, 

respectively). In approximately one-for-one tradeoffs in growth and lipid content, C. 

sorokiniana and S. naegelii fell into the third category. If grown as lipid feedstock crops, 

higher N stress would always be the preferred cultural condition for third category 

species because of the higher lipid content and thus lower processing costs per unit lipid. 

These categories are somewhat arbitrary, as species may be categorized 

differently depending on the exact N supply rates tested. However, the differences among 

species identified here may signify differences in N metabolism and/or strategies for 

handling N deficiency. First category species may have a panic response, making 

significant physiological sacrifices to generate adequate lipids to supply energy and C 

needs for times of hardship. N. oleoabundans, a first category species, was apparently 

first isolated in an arid, sand dune environment in Saudi Arabia (Chantanachat and Bold 

1962) and would be expected to have adaptations for managing prolonged periods of 
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resource scarcity. In second category species, cellular function and thus growth may be 

particularly sensitive to severe N deficiency; when N deficiency is less severe, the 

photosynthetic mechanism may be functioning and capable of high rates of lipid 

production. In the event of N deficiency, third category species may directly divert 

energy and C intended for growth into lipids. 

Table 2‒1 displays percent changes in peak values of growth, lipid content, and 

lipid productivity between the stress treatments for all species. The lipid content values 

listed for “No N stress” were taken from our initial measurements of lipids in N-replete 

conditions. Because the measurements of lipid includes fatty acids contained in 

membrane phospholipids and glycolipid, free fatty acids and storage lipid triglyceride, 

the “No N stress” values may be reasonable estimates of relatively stable phospholipid 

and glycolipid background levels for each species. 

These data allow a clearer picture of differences among oleaginous green algal 

species in their growth and lipid content responses to N stress. The data indicate that 

optimally balancing lipid content and growth tradeoffs required a wide range in N supply 

rate among species—lower levels of stress for some, higher for others. 

 

2.4.3. Stress Quantification and the Timing of Lipid Accumulation 

There were tremendous differences among the species in the magnitude of N 

stress required to stimulate the onset of lipid accumulation in the population. Fig. 2‒2 

shows how the lipid content of the cells varied as a function of total N in the algae 

(cellular N concentrations are used here as a proxy for levels of N stress). The level of N 

stress at which lipid accumulation was triggered was unique for the populations of each 
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species, ranging from minimal to severe stress. N. oleoabundans began accumulating 

lipids with the application of minimal stress (~7.5% cellular N), just following exhaustion 

of exogenous N; C. vulgaris, C. sorokiniana, C. oleofaciens, and S. dimorphus were 

intermediate (~4 to 5% cellular N); and S. naegelii required the most severe N deficiency 

(~3% cellular N). The coincidence of these lipid development trends as a function of 

cellular N in independent N treatments provides strong evidence for the roll of N in the 

response, rather than counter ions of N or other effects. In general, the species that 

accumulated the highest lipid content were the species that responded to the least stress. 

A response to minimal N stress was less well correlated to high rates of lipid 

productivity, however, due to species differences in growth cessation with stress. There 

was a three-fold variation among species in the cellular N content at which growth 

stopped, from ~1% to 3% N. The algae that stopped growing with higher cellular N 

presumably employ a more conservative growth strategy, to preserve their physiological 

state at a higher level of function (e.g. maintenance of higher cellular protein 

concentrations). But early cessation of growth resulted in stalled rates of lipid 

productivity, and not all species continued to accumulate lipids in the stationary phase. 

With a finite supply of N as in batch cultures, where cellular N decreases with growth, 

the range in cellular N over which lipid accumulation occurred is proportional to the 

amount of growth and lipid accumulation that occurred concurrently. Among the six 

species in this study, those that exhibited the highest values of lipid productivity were the 

species in which there was more concurrent growth and lipid accumulation. This trend is 

evident by comparing lipid productivities in Table 2‒1 with the ranges in cellular N 
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where lipids accumulated in Fig. 2‒2. At the extremes, some algae grow first and then 

accumulate lipids, while other species grow and accumulate lipids at the same time. 

Comparing C. sorokiniana—which grew and then accumulated lipids—and N. 

oleoabundans—which grew and accumulated lipid concurrently—illustrates the large 

impact these timing characteristics have on lipid productivity (Fig. 2‒3). Despite having 

similar peak values of lipid content and growth (with high N stress), lipid productivity 

reached only up to 85 mg L
-1

 d
-1

 in C. sorokiniana, but up to 131 mg L
-1

 d
-1

 in N. 

oleoabundans. Time-series progress of cultural parameters—including solution N 

concentration, cellular N content, growth, lipid content and lipid productivity—for all 

species are shown in Fig. 2‒4. This data shows wide variation in the extent to which each 

species combined or separated their growth and lipid accumulation phases. C. 

oleofaciens, C. vulgaris, N. oleoabundans and S. dimorphus were the species with the 

highest lipid productivity and the greatest amount of concurrent growth and lipid 

accumulation. The data clearly shows the importance of harvest timing, as an optimal 

harvest window may be brief, just prior to growth and lipid-accumulation cessation. 

Selection of species as lipid feedstock crops should be broadened to include 

concurrent lipid accumulation and growth, a characteristic that resulted in higher lipid 

productivity in this study. The most promising biodiesel feedstock species will combine 

this characteristic with the ability to accumulate high lipid content. The data indicate that 

the species capable of accumulating higher lipid content generally form lipids in response 

to more minimal N stress. 
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2.4.4. Extrapolating to the field 

 Radiation is the ultimate limiting factor in all photosynthetic systems. Algal 

productivities are often expressed per unit of culture volume, but this does not allow 

extrapolation to the field without knowing the productivity per unit area. The results of 

these studies are expressed in both units of volume and area to facilitate extrapolation. 

However, as indicated previously, the daily integrated PPF was less than half of that in 

the field in the summer months. An even better way to express productivity is per unit of 

photosynthetic light. This is done by taking the ratio of productivity per unit area and 

time (g m
-2

 d
-1

) and the daily PPF integral (mol m
-2

 d
-1

), yielding the productivity in units 

of g mol
-1

 of photons. The best biomass productivity achieved in higher plants is 

approximately 1 g mol
-1

 in CO2-enriched controlled environments (Bugbee and Monje 

1992). The highest biomass productivities in the batch cultures in this study were about 

10 g m
-2

 d
-1

 with a PPF of 17.3 mol m
-2

 d
-1

, which is 0.58 g mol
-1

. Higher algal biomass 

productivities have been reported (Williams and Laurens 2010). Algal systems are 

uniquely valuable for their lipid productivity, however. The highest lipid productivity in 

this study was 3.3 g m
-2

 d
-1

, which is 0.19 g mol
-1

 of photons. The highest lipid 

productivity from higher plants is typically reported from oil palm (Elaeis guineensis) at 

about 5950 L ha
-1

 (Chisti 2007). This equates to about 535 g of oil m
-2

, with a specific 

density of 0.9 g ml
-1

. Assuming continuous production over a year, this is 1.5 g m
-2

 d
-1

. 

Assuming an average daily integrated PPF near the equator of 40 mol m
-2

 d
-1

 gives 0.036 

g mol
-1

 of photons. This makes oil production by oil palm about 20% of what we 

achieved in this study with algae, per unit light. Our values are similar to the peak values 
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reported by others (Amaro et al. 2011). The challenge is to achieve high lipid 

productivity at scale. 

 

2.4.5. Semi-Continuous Culture 

Because N. oleoabundans required the least N stress to prompt lipid accumulation 

in batch cultures, this species was chosen to compare its lipid productivity in batch and 

semi-continuous cultures. Semi-continuous culture yielded relatively low lipid content at 

all levels of N limitation tested and, in fact, lipid content and lipid productivity were 

inversely related (Fig. 2‒5). To attain lipid productivity approximately equivalent to the 

peak productivity in batch culture, N replete conditions were required, a condition in 

which there was likely no storage lipid accumulation. Rather, lipid productivity directly 

mirrored biomass productivity and the production of structural lipids. 

This comparative analysis indicated that batch culture was a far more effective 

cultural method for generating high productivity of high lipid content biomass than semi-

continuous culture. The lack of storage lipid accumulation in semi-continuous culture 

may suggest that lipid production was inhibited by frequent supply of N. This may also 

suggest that the kinetics of lipid accumulation were not fast enough to overcome the 

effects of frequent, partial-culture removal or some other species-specific interaction. 

Cellular N content did not descend below ~3% in semi-continuous culture as compared to 

~2% in batch culture, which indicates that semi-continuous culture did not apply N stress 

with the same severity as batches. Some species, however, as suggested by the research 
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of Hsieh and Wu (2009), may be capable of high productivity of high-lipid content 

biomass in semi-continuous culture.
4
 

 

2.5. Conclusions 

 Nitrogen stress generally had disproportionate effects on growth and lipid content, 

with tremendous differences among species. A wide range among species in N supply 

rate was required for optimal production of high-lipid content biomass. Concurrent 

growth and lipid accumulation resulted in increased lipid productivity. The most 

promising biodiesel feedstock organisms will combine this characteristic with the ability 

to accumulate high lipid content, which typically occurred in species that accumulated 

lipids in response to minimal N stress. Batch culture is more effective than semi-

continuous culture for optimizing growth and lipid content tradeoffs, even for species 

requiring the least N stress. 
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(g L-1)   

Density 
Decrease 

(%)   Lipid Content (%)   
Lipid Content 
Increase (%)   

Lipid 
Productivity 
(mg L-1 d-1) 

Species   
Low 

Stress 
High 

Stress   

Low 
Stress to 

High   
No N 
Stress 

Low 
Stress 

High 
Stress   

No 
Stress 
to Low 

No 
Stress to 

High   
Low 

Stress 
High 

Stress 

C. sorokiniana 
 

4.1 1.8 
 

-55 
 

15 21 47 
 

46 222 
 

68 85 

C. vulgaris 
 

4.3 2.1 
 

-51 
 

10 40 48 
 

302 377 
 

146 94 

C. oleofaciens 
 

4.3 2.0 
 

-55 
 

12 35 46 
 

195 286 
 

127 86 

N. oleoabundans 2.4 1.9 
 

-20 
 

13 29 58 
 

132 358 
 

91 131 

S. dimorphus 
 

5.3 4.0 
 

-25 
 

9 20 34 
 

117 277 
 

86 111 

S. naegleii   4.8 2.0   -57   10 21 39   118 306   83 83 

 

Table 2‒1: Peak values and calculations on algal density, lipid content and lipid 

productivity in 12-d batch cultures. Nearly three-fold differences among species were 

observed in growth between the high and low N stress treatments. Lipid content increased 

over baseline levels up to 377% and as little as 222% with high N stress. Even with low 

N stress, lipid increased from 46 to 302%. Lipid productivities reflect the independent 

effects of N supply on growth and lipid content on each species. “No stress” lipid content 

values were obtained from the high and low stress treatment data, prior to the onset of 

lipid accumulation shown in Fig. 2‒4. To convert “per L” to “per m
2
,” multiply by 22.5 L 

m
-2

. 
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Fig. 2‒1: Tradeoffs in growth and lipid content observed between high and low N stress 

treatments in six species of oleaginous green algae. For each species, the cross-hatched 

bubble on the right is peak lipid productivity with low N stress and the solid bubble on 

the left is peak lipid productivity with high N stress. Lipid productivity is calculated for 

12 days and therefore the position of the bubbles is only approximate for species whose 

peak productivity occurred prior to 12 days. The data highlights tremendous biodiversity 

and the need for species-specific N optimization in production of lipid feedstock algae—

higher N stress for some, lower for others. To convert “per L” to “per m
2
,” multiply by 

22.5 L m
-2

. 
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Fig. 2‒2: The lipid content of the cells as a function of total N in algae. Cellular N is used 

here as a proxy for N stress. The vertical, dotted lines signify the levels of N stress at 

which lipid accumulation began and ceased in each species. The level of N stress that 

triggered the onset of lipid accumulation was unique for each species and ranged from 

minimal to severe stress. In general, the species that accumulated the highest lipid content 

were the species that responded to the least stress. The range in cellular N over which 

lipid accumulation occurred is proportional to the amount of growth and lipid 

accumulation that occurred concurrently. Species that grew and accumulated lipids 

concurrently had higher lipid productivity. 
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Fig. 2‒3: The impact on lipid productivity of the timing of lipid accumulation relative to 

the timing of growth is evident in comparing C. sorokiniana and N. oleoabundans. The 

vertical, dotted line in each graph signifies the point at which lipid accumulation began. 

C. sorokiniana grew and then accumulated lipids—only 15% of growth occurred as lipids 

were accumulating. N. oleoabundans grew and accumulated lipids at the same time—

75% of growth occurred as lipids accumulated. Concurrent growth and lipid 

accumulation resulted in higher lipid productivity. 
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Fig. 2‒4: Time-series data on growth, cellular N, lipid content, and lipid productivity for 

six species of oleaginous green algae. The data shows wide variation in the extent to 

which each species combined or separated their growth and lipid accumulation phases. 

The importance of harvest timing is clear, as an optimal harvest window may be brief, 

just prior to growth and lipid-accumulation cessation. 
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Fig. 2‒5: Because it required the least N stress to prompt lipid accumulation in batch 

cultures, N. oleoabundans was chosen to evaluate the effectiveness of semi-continuous 

culture for production of high-lipid content biomass. A limiting supply of N resulted in 

drastically diminished growth and only small increases in the lipid content of the 

biomass. In fact, lipid content and lipid productivity were inversely related across the 

scope of N supply rates studied. The data suggests that this cultural method is unsuitable 

for production of high-lipid content biomass, at least for this species. 
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CHAPTER 3 

POTENTIAL SIGNALS FOR INITIATION OF MICROALGAL LIPID 

ACCUMULATION ARE IMPLICATED BY COMMONALITIES 

AMONG SPECIES IN CELLULAR NITROGEN 

 

3.1. Abstract 

Changes in concentration of the primary nitrogen-containing cellular components 

in microalgae have been analyzed in nitrogen deficiency studies, but studies identifying 

critical levels or interactions of the components associated with initiation of lipid 

accumulation are lacking. Here we report on total cell nitrogen and changes in five 

cellular pools of nitrogen (protein, free amino acids, DNA, RNA, chlorophyll) and lipids 

during progressive nitrogen deficiency in three species. Total nitrogen uptake and 

retention differed widely among species, but the ratio of minimum retained nitrogen to 

nitrogen at the initiation of lipid accumulation was consistent among species at 0.5 ± 

0.04. This suggests that lipid accumulation was signaled by a common magnitude of 

nitrogen deficiency. Among  the cellular pools of nitrogen at the initiation of lipid 

accumulation, the concentration of RNA and the protein to RNA ratio were most similar 

among species with averages of 3.2 ± 0.26 g L
-1

 (8.2% variation) and 16 ± 1.5 (9.2% 

variation), respectively. This implicates critical levels of these parameters as potential 

signals initiating the accumulation of lipids. These results provide insight into the 

physiological drivers for lipid accumulation in nitrogen deficient algae. 
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3.2. Introduction 

3.2.1. Background 

 Algae are increasingly being recognized as an important source of lipids. Owing 

to the wide diversity among species in native habitat and physiology, the types of lipids 

algae produce are many (Guschina and Harwood 2006). This diversity and their potential 

for high rates of lipid productivity (Mata et al. 2010) make them candidates for 

production of lipids for many applications. Accumulation of lipids generally occurs in 

stress conditions, including N deficiency, but the physiological drivers of the effect are 

not well understood. 

 

3.2.2. Algal Strategies for Managing Nitrogen Deficiency 

Nitrogen is central to the proper function of algal cells. It is a key component of 

amino acids, proteins, enzymes, nucleic acids, and photosynthetic pigments and as such is 

taken up among the highest levels of all nutrient elements. Depending on species and the 

form of N supplied, a N-sufficient algal cell typically has a molar C/N ratio of ~10/1 and 

approximately 20% of photosynthetic electron flow is devoted just to support N 

assimilation (Turpin et al. 1991). Given the importance of N, algal cells have adapted 

strategies to help them to moderate the effects of temporal variation in supply. Among 

previous studies it is possible to identify two types of strategies: those that regulate N 

supply and those that regulate energy supply for N assimilation. 

Luxury consumption of N and a process called autophagy are examples of 

strategies that regulate N supply. Luxury consumption is when an organism takes up 

something essential in excess of immediate need. This process allows algae to store up N 
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in times of plenty for use in times of scarcity; it has been well documented and described 

in algae (Droop 1975). Nitrogen consumed in luxury may be stored in inorganic forms 

(NO3
-
 and NH4

+
) or may also be rapidly assimilated to form simple N-containing 

compounds that act as a reservoir for the nutrient. Autophagy is the process by which 

organisms degrade cellular components, such as organelles and proteins, to recycle the 

resources for more critical purposes. The use of genetic markers has shown that 

autophagy is active at a low levels in higher plants in non-stress conditions for routine 

nutrient recycling and that up-regulation of the process occurs in stress conditions, such 

as in N deficiency (Thompson et al. 2005). Thompson et al. (2005) starved plants for N 

and C in which autophagy had been purposely disabled and described their response as 

“hypersensitive.” Autophagy appears to be non-selective (general degradation), but it 

allows the most critical cell processes to proceed despite depletion of exogenous resource 

supply. 

The production of organic storage compounds is an example of a strategy that 

regulates the supply of energy for N assimilation. In physiological N sufficiency, the 

molar rate of photosynthetic C fixation is seven to 10 times the rate of N assimilation, 

which is a suitable ratio of the elements for synthesis of essential N-containing cellular 

components. In the initial phases of N deficiency—before photosynthetic capacity is 

significantly diminished—C fixation may exceed demands for assimilation of N-

containing compounds and excess C may be diverted into storage compounds, such as 

lipids and carbohydrates. When N is resupplied, the energy and C from storage 

compounds is used, in part, for N assimilation, until photosynthetic capacity is restored 
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(Turpin 1991). Many  literature reports have demonstrated that N deficiency is a key 

stress that promotes accumulation of lipids in many algae (Shifrin and Chisholm 1981, 

Zhila et al. 2005, Li et al. 2008, Converti et al. 2009, Gouveia et al. 2009, Hsieh and Wu 

2009, Wang et al. 2009, Adams et al. 2013). 

 

3.2.3. Cellular Nitrogen Distribution in Physiological Deficiency 

McGlathery et al. (1996) and Dortch et al. (1984) investigated algal responses to 

N deficiency and found that individual N pools (e.g. protein, chlorophyll, inorganic N) 

are depleted at different rates. This observation suggests that some pools of N may serve 

a storage function, while the maintenance of other pools is more critical. Dortch et al. 

(1984) showed that inorganic N (NO3
-
 and NH4

+
) was taken up and stored during periods 

of excessive N supply, then rapidly drawn below detectable levels with limiting N 

supply. The concentration of free amino acids was often considerable in N-sufficient 

algae, and, surprisingly, a free amino acid pool remained in N deficient conditions in 

some algae (Dortch et al. 1984). RNA usually decreased dramatically with N deficiency, 

while DNA content remained relatively steady (Dortch et al. 1984). There were 

considerable species differences in protein losses with N deficiency, with some species 

maintaining most of their N-sufficient protein levels and others experiencing dramatic 

decreases (Dortch et al. 1984, McGlathery et al. 1996). Photosynthetic pigments (e.g. 

chlorophylls) and enzymes (e.g. RUBISCO) generally decreased, which would ultimately 

lead to reductions in photosynthetic capacity (Dortch et al. 1984, Turpin 1991). 
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3.2.4. How does Nitrogen Deficiency Signal Lipid Accumulation? 

A growing body of evidence indicates a connection between the cellular lipid 

accumulation observed in N deficiency and autophagy. In the green alga Chlamydomonas 

reinhardtii, Perez-Perez et al. (2010) identified that autophagy was active in stress 

conditions, including N deficiency, oxidative stress, or the presence of misfolded proteins 

in the endoplasmic reticulum. Wang et al. (2009) extended this finding in this species, 

identifying a pathway linking autophagy activity and the production of storage lipids and 

carbohydrates. The proteins and signaling pathways known to mediate the autophagy 

process have been described in yeast, mammals, plants, algae, and other forms of life 

(Wullschleger et al. 2006, Diaz-Troya et al. 2008, Perez-Perez et al. 2010). In mammals, 

autophagy-related proteins have been found to sense cellular energy and nutrient status, 

signaling the metabolism of storage lipids at the onset of stress (Wullschleger et al. 2006, 

Singh et al. 2009). 

Flynn (1990) speculated that the physiological responses to N deficiency, such as 

autophagy and lipid accumulation, would likely be triggered by reaching critical levels or 

proportions of key metabolites of C and N. As discussed earlier, changes in concentration 

of the primary N-containing cellular components have been analyzed in N deficiency 

studies, but studies identifying critical levels or interactions of these components 

associated with the initiation of lipid accumulation are lacking. 

 

3.2.5. Objectives and Hypotheses 

 Our objective was to investigate associations between critical levels or 

interactions of specific pools of N and the initiation of lipid accumulation. We 
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hypothesized that there are commonalities among species in N concentration and/or 

partitioning associated with initiation of lipid accumulation. 

 

3.3. Materials and Methods 

3.3.1. Experimental Design 

Three species of algae were studied in batch cultures, each given two N 

treatments: 4 and 10 mM N (hereafter referred to as low N and high N, respectively). 

Measurements were taken on all significant pools of N in the cell (protein, free amino 

acids, DNA, RNA, chlorophyll) and lipid content as the algae became progressively more 

N deficient. For 10 days of growth, once-daily measurements were facilitated by running 

10 replicate, 1.2 L cultures per N treatment and running analysis on one culture per day. 

This is a form of trend analysis and did not include daily treatment replicates; the validity 

of the data can be assessed and verified by observation of the time-series trends. Standard 

deviations are included for measurements of cell count and volume, which are discussed 

in a later section. The experimental setup was designed to deliver algal biomass with a 

wide range of levels of N stress—from N-replete to severely N deficient. For each 

species, culture growth was started by filling the 10 reactors with media and 100 mL of 

axenic inoculation culture to a 1.2 L volume. Details on the growth apparatus and 

experimental methods are in the sections that follow.  

 

3.3.2. Algal Strains 

Three species were studied: Chlorella sorokiniana (Shihira & R.W. Krauss), 

UTEX #1602; Ettlia oleoabundans (S. Chantanachat & H.C. Bold) J. Komarek (formerly 
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Neochloris oleoabundans), UTEX #1185; Nannochloropsis salina (D.J. Hubbard), 

CCMP #1776. 

 

3.3.3. Culture Apparatus 

Algal cultures were grown in glass, air-lift bioreactor tubes that were autoclaved 

before use. The bioreactors had an outer diameter of 50 mm, inner diameter of 45 mm 

and were filled to an approximate height of 75 cm, giving a culture volume of 1.2 L. The 

bioreactor tubes were placed in a plexiglass water tank maintained at 25˚C. CO2-enriched 

(1%), filtered air (Whatman  PolyVENT 0.2 μm PTFE filters, L#639) was bubbled into 

the bottom of each bioreactor through a 1 mm glass capillary tube at a rate of 0.5 L min
-1

. 

Light was supplied at a photosynthetic photon flux (PPF) of 250 µmol m
-2

 s
-1

 for 16 h per 

day by banks of fluorescent tubes that ran perpendicular to the bioreactor tubes, 

completely covering one side. A 16-h photoperiod was chosen to approximate the natural 

photoperiod of summers days in the mid-latitudes. The daily integrated PPF, a better 

indicator of growth potential than the instantaneous PPF (Bugbee and Monje 1992), was 

14.4 mol m
-2

 d
-1

 in these studies. For conversion of measurements made by volume (e.g. 

g L
-1

) to a unit of area (e.g. g m
-2

), the illuminated area of the bioreactor tubes containing 

algae was used as a conversion factor as follows: 1.2 L / πrh = 1.2 L / (3.14 x 2.25 cm x 

75.5 cm) x (1 m
2
 / 100

2
 cm

2
) = 22.5 L m

-2
 and 22.5 L m

-2
 x g L

-1
 = g m

-2
. 
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3.3.4. Media Composition and Preparation
5
 

The study included two freshwater organisms (C. sorokiniana and N. 

oleoabundans) and a salt water organism (N. salina) that were treated with two levels of 

N: 4 and 10 mM N (low N and high N). Differences in ionic strength due to the N 

treatments were compensated for by adjusting levels of Cl, resulting in equal levels of all 

ions between treatments except N and Cl. The freshwater media components and 

concentrations were: 4.0 mM NaNO3 (low N) or 6.0 mM KNO3 and 4.0 mM NaNO3 

(high N); 6 mM KCl (low N) or 0 mM KCl (high N); 0.60 mM CaCl2 ˑ 2H2O; 0.60 mM 

MgSO4 ˑ 7H2O; 0.40 mM KH2PO4; 15 μM DTPA-Fe; 11 μM H3BO3; 7.0 μM MnCl2 ˑ 

4H2O; 0.70 μM CuSO4 ˑ 5H2O; 3.0 μM ZnSO4 ˑ 7H2O; 0.15 μM Na2MoO4 ˑ 2H2O; 0.20 

μM CoCl2 ˑ 6H2O. The seawater media components and concentrations were: 4.0 mM 

NaNO3 (low N) or 10 mM KNO3 (high N); 6.0 mM KCl (low N) or 0 mM KCl (high N); 

1.0 mM CaCl2 ˑ 2H2O; 6.0 mM MgSO4 ˑ 7H2O; 300 mM NaCl; 0.5 mM KH2PO4; 0.20 

mM Na2SiO3 ˑ 9H2O; 7.5 μM Fe-NH4 citrate; 7.5 μM DTPA-Fe; 15 μM H3BO3; 1.5 μM 

MnCl2 ˑ 4H2O; 0.08 μM CuSO4 ˑ 5H2O; 0.20 μM ZnSO4 ˑ 7H2O; 0.05 μM Na2MoO4 ˑ 

2H2O; 0.10 μM CoCl2 ˑ 6H2O; 1.5 nM vitamin B12; 4.1 nM biotin; and 150 nM thiamine. 

                                                 
5
 The media described here were designed to provide adequate levels of all essential 

nutrients, with the exception of N, for potential growth in our system. Particularly in 

seawater, however, P can precipitate and become deficient. We ran chemical speciation 

analysis on our seawater media using MINEQL+ version 4.6 (Environmental Research 

Software, Hallowell, ME) to determine P precipitation potential. This analysis indicated 

that all P would remain in solution in various free and complexed forms. Initially, for 

example, of 0.5 mM P supplied, only 2.2 x 10
-7

 mM would exist as the free PO4
-
 ion 

while the remaining P would be in chemical complexes. With algal P uptake, we would 

expect complexed P to become available. There is also potential for P to become limiting 

in the later stages of growth with the higher N/P ratios tested here. 
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The media were autoclaved (P and Si stocks were autoclaved separately; vitamins were 

filter sterilized). 

 

3.3.5. Cell Component Measurements 

Protein, free amino acids and RNA/DNA were quantified on homogenates 

generated from cell suspensions taken daily from the first bioreactor in each N treatment 

series. Chlorophyll, total cellular N, and lipid content were quantified on dried algal cells 

of the same bioreactors. Cell suspensions were concentrated for drying by centrifugation 

(Sorvall RC6 Plus centrifuge, ThermoFisher Scientific, Waltham, MA) at 7500 rpm for 5 

min; the biomass was loaded into 15 mL plastic sample vials, frozen at -80˚C, and 

lyophilized. 

 In the final analysis, assumptions had to be made on the N content of each N pool. 

The protein pool was assumed to contain 16% N, the N content of the BSA that was used 

as standard in protein measurements (Pierce Biotechnology, Rockford, IL). The free 

amino acid pool was assumed to have the same percent N as the protein pool. For DNA 

and RNA, the distribution of bases was assumed to be equal (i.e. A = T = C = G and A = 

U = C = G). Since the molar ratio of deoxyribose or ribose to base to phosphate is 1:1:1 

in DNA and RNA, respectively, the total mass of N in each base was divided by the sum 

of the masses of the base, deoxyribose or ribose, and a phosphate group and the values 

for the four bases averaged for each nucleic acid (14.49% N for DNA and 13.95% N for 

RNA). Chlorophylls a and b were quantified separately, so the N content of each (6.27% 

N for a and 6.18% N for b) was applied separately then added together. The N content of 

each pool was divided by total cellular N determined by CHN combustion analysis 
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(described later) in determination of percent N recovery. Recovery efficiency of each N 

pool and total N was assumed to be constant among species.  

 

3.3.5.1. Protein 

Forty five mL of cell suspension was placed in a 50-mL centrifuge tube and 

centrifuged for 3 min at 7500 rpm at 5˚C to pellet the cells. The solution was decanted 

and the pellet resuspended in 20 mL of 100 μM NaCl solution by Vortex mixing. The 

sample was homogenated by three sequential runs through a French press (SLM Aminco 

French Pressure Cell Press Model FA-078, Urbana, IL) and immediately stored in a -

80˚C freezer for measurement later. Once thawed, 2 mL of homogenate was subsampled 

and placed in a 15-mL centrifuge tube for trichloroacetic acid (TCA) precipitation of the 

protein (Waterborg 2002). To the homogenate, 0.2 mL of 3.6 mM deoxycholate (Sigma-

Aldrich, St. Louis, MO) was added and mixed by Vortex. After standing at room 

temperature for 10 min, 0.2 mL of 4.4 M TCA (ThermoFisher Scientific, Waltham, MA) 

was added and mixed by Vortex. The homogenate was centrifuged for 10 min at 5000 

rpm. The supernatant was decanted and stored at -80˚C for measurement of free amino 

acids at a later time. To dissolve the protein, 2 mL of a 4% SDS (Sigma-Aldrich, St. 

Louis, MO) was added to the biomass pellet and the centrifuge tube was placed in a 

boiling water bath for 15 min, mixing by Vortex every 5 min. Protein was measured on 

the solution with a BCA protein assay kit (Pierce Biotechnology, Rockford, IL), with 

BSA as the standard within the recommended concentration range given by the company. 
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3.3.5.2. Free Amino Acids 

Free amino acids were measured by the fluorescamine method as described in 

Clayton et al. (1988), with slight modification, on supernatant collected from TCA-

precipitated homogenate in the protein procedure. One mL of supernatant was placed in a 

15-mL centrifuge tube and 3 mL of borate buffer were added. The buffer was prepared by 

making a 200 mM sodium borate solution that was adjusted to pH 9 with boric acid 

powder; heating in a water bath was necessary to dissolve all the material. A 0.5 mM 

fluorescamine solution was prepared by adding 14 mg of fluorescamine (Sigma-Aldrich, 

St. Louis, MO) to 100 mL acetone. One mL of fluorescamine was added to the buffered 

supernatant drop wise while Votex mixing. Fluorescence was measured on the mixture 

with a fluorescence spectrophotometer (Varian Cary Eclipse, Palo Alto, CA) with an 

excitation wavelength of 390 nm and emission wavelength of 480 nm. A standard curve 

was generated using glutamate (Sigma-Aldrich, St. Louis, MO), from 5 to 300 μg mL
-1

. 

 

3.3.5.3. RNA/DNA 

RNA and DNA were quantified by the fluorometric, ethidium bromide method of 

Thoresen et al. (1983) with minor adaptations for our system. Thirty mL of cell 

suspension was placed in a 50-mL tube and centrifuged for 3 min at 7500 rpm at 5˚C to 

pellet the cells. The solution was decanted and the pellet resuspended in 29.76 mL of 

PBS and 0.18 mL of 15 μg mL
-1

 bentonite (Sigma-Aldrich, St. Louis, MO) solution. 

Bentonite is an inhibitor of ubiquitous RNase enzymes. The sample was homogenated by 

three sequential runs through a French press (SLM Aminco French Pressure Cell Press 

Model FA-078, Urbana, IL) and immediately stored in a -80˚C freezer for measurement 
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later. Once thawed, three, 2 mL samples of homogenate were subsampled and placed in 

15-mL centrifuge tubes for measurement of DNA and RNA + DNA. To all three tubes, 

0.25 mL of 200 μg mL
-1

 pronase from Streptomyces griseus (Sigma-Aldrich, St. Louis, 

MO) was added. To the DNA tube, 0.25 mL of 1 mg mL
-1

 RNase A from bovine 

pancreas (Sigma-Aldrich, St. Louis, MO) was added to degrade RNA, while PBS was 

added to the RNA + DNA tube. All tubes were incubated in a water bath at 37˚C for 20 

min. The tubes were then centrifuged for 10 min at 5˚C at 7500 rpm. Two mL of 

supernatant from each tube was subsampled and placed in 5-mL glass tubes and 0.5 mL 

of 25 μg mL
-1

 ethidium bromide (Sigma-Aldrich, St. Louis, MO) solution was added. 

Three minutes were allowed for complete fluorescence development. Fluorescence was 

measured on a fluorescence spectrophotometer with an excitation wavelength of 365 nm 

and an emission wavelength of 590 nm. Separate RNA and DNA standard curves were 

prepared from yeast RNA Ambion, Life Technologies, Carlsbad, CA) and DNA sodium 

salt from calf thymus (Sigma-Aldrich, St. Louis, MO) at concentrations from 0.5 to 5 μg 

mL
-1

. 

 

3.3.5.4. Chlorophyll 

Chlorophyll was extracted and quantified according to the method and equations 

of Wellburn (1994), with slight modifications for our system. Ten mg samples of dried 

algal tissue were weighed in glass vials and 10 mL of DMSO (Sigma-Aldrich, St. Louis, 

MO) was added. The vials were capped tightly, placed in an oven at 65°C for 1 h, and 

shaken about every 15 min. After removal from the oven, cell material was allowed to 

settle in the vials for 10 min. Two mL samples of DMSO solution were taken for spectral 
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determination of chlorophylls a and b (UV-2401 PC, UV-VIS recording 

spectrophotometer, 0.1 nm resolution, Shimadzu Corporation, Kyoto, Japan). 

 

3.3.5.5. Total Cellular Nitrogen 

Total C and N in algae were measured by combustion analysis (Model 2400 CHN 

analyzer, Perkin-Elmer, Waltham, MA) according to the standard methods published by 

the instrument manufacturer. EDTA was used as the standard. 

 

3.3.5.6. Lipid Content 

Simultaneous conversion and extraction of algal lipids to fatty acid methyl esters 

(FAME) was done by the method of Wahlen et al. (2011). This method effectively 

converts to FAME the fatty acids contained in membrane phospholipids and glycolipids, 

as well as free fatty acids and storage lipid triglyceride. The lipid or FAME content of 

100 mg freeze-dried algal samples was determined with a gas chromatograph (Model 

2010, Shimadzu Corporation, Kyoto, Japan) equipped with a programmable temperature 

vaporizer (PTV), split/splitless injector, flame ionization detector (FID) (GCMS-

QP2010S, Shimadzu Corporation, Kyoto, Japan), and autosampler. The FID detector was 

used in this analysis. Analytes were separated on an RTX-Biodiesel column (15 m, 0.32 

mm ID, 0.10 μm film thickness, Restek, Bellefonte, PA) using a temperature program of 

60˚C for 1 min followed by a temperature ramp of 10˚C per min to 360˚C for 6 min. 

Constant velocity of helium as a carrier gas was set at 50 cm s
-1

 in velocity mode. Sample 

sizes of 1 μL were injected into the PTV injector in direct mode that followed an identical 

temperature program to that of the column. The FID detector was set at 380˚C. FID 
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detector response to FAME was calibrated using methyl tetradecanoate (C14:0), methyl 

palmitoleate (C16:1), and methyl oleate (C18:1) (Sigma-Aldrich, St. Louis, MO) at 

concentrations ranging from 0.1 mg mL
-1

 to 1 mg mL
-1

. Standards were obtained as pure 

compounds (Nu-Chek Prep, Inc., Elysian MN) and were diluted with chloroform to 

obtain the needed concentrations. A standard (GLC-68A, Nu-Chek Prep, Inc.) containing 

methyl esters ranging from methyl tetradecanoate (C14:0) to methyl nervonate (C24:1) 

was used to identify the retention time window for FAME peak integration. Peaks within 

this region were integrated using GC solution postrun v. 2.3 (Shimadzu) and 

concentrations were determined by linear regression analysis. 

 

3.3.6. Growth Parameter Measurements 

Uniformity of growth among replicate bioreactors was monitored daily by 

measurements of optical density at 750 nm (UV-2401 PC, UV-VIS recording 

spectrophotometer, 0.1 nm resolution, Shimadzu Corporation, Kyoto, Japan). 

Measurements of cultural dry biomass density, cell counts, and cell volumes were made 

daily only on the first bioreactor in each N treatment series. Dry biomass density was 

determined by filtering 10 mL suspensions of algae (GF/C filters, Whatman, Kent, UK); 

the filters were dried for one day at 105˚C. Cell count and volume determinations were 

made microscopically (ICC50 microscope camera mounted on a DM750 microscope 

body, Leica, Buffalo Grove, IL) with a hemacytometer (Reichert Bright-Line, Hausser 

Scientific, Horsham, PA). Per sample, the hemacytometer was loaded twice with 15 μL 

samples of cell suspension, all cells in a 0.25 mm
2
 grid were manually counted, and 

averaged between counts. Dilutions were made to keep cell numbers at approximately 
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300 or less. Images of the 0.25 mm
2
 grid were taken for determination of cell volumes. 

Two 0.05 mm
2
 boxes were chosen within the 0.25 mm

2
 grid, this area was zoomed, 

images were printed, and the diameters of all cells were manually measured, normalized 

to the hemacytometer grid, and averaged. In data presentation, error bars showing 

standard deviations are given to describe variability in cell counts and volumes. 

 

3.4. Results and Discussion 

3.4.1. Metrics for Data Analysis 

The lipid accumulation observed in N deficient microalgae may be signaled by 

reaching a critical low concentration of total cell N or certain pools of N (Flynn 1990). In 

assessing associations between algal N and lipid accumulation, the units of data summary 

are critically important as they impact the conclusions made. In single-celled, 

autonomous organisms, data summarized per unit biomass is primarily useful in 

assessment of population or ecological physiology; data summarized per cell is more 

appropriate for assessment of cellular physiology. Here we are interested in metabolic 

stress responses of the cell. Further normalizing the data to the volume of the cell 

facilitates comparison among cells of different volume, which ranges over nine orders of 

magnitude in algae (Finkel et al. 2010). As such, the data presented here is given per unit 

cell volume (e.g. mM N, g protein L
-1

). This choice of units is validated by the lipid 

accumulation data (discussed later), which is presented both per unit biomass and per unit 

cell volume. 
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3.4.2. Cellular Nitrogen Uptake, Retention, and Distribution 

Differences among species in growth parameters (cell density, cell mass, cell 

volume) and N uptake rate resulted in wide differences in total N uptake and retention 

(Fig. 3‒1). C. sorokiniana had the broadest range in total N concentration from ~520 to 

2050 mM N in the cell; E. oleoabundans ranged from 430 to 1230 mM, and N. salina 

from 350 to 1165 mM. 

The cellular concentration of five major pools among which this N was 

distributed (protein, free amino acids, DNA, RNA, and chlorophyll) were measured for 

10 days and their respective N contents were estimated. Fig. 3‒2 displays the time-series 

trends in the N pools, for validation of the raw data per unit biomass. Fig. 3‒3 displays 

the data normalized to cell volume, given as a function of the concentration of N in the 

cell. The daily percent N recovery was calculated as the sum of N in all measured 

pools—given the assumptions stated in the methods and materials—divided by the total 

N determined by combustion analysis (Table 3‒1). In general, the concentration of each 

N pool decreased linearly with decreasing cell N. There were close relationships between 

total cell N and protein and RNA that were fairly consistent among species. Maximum 

and minimum concentrations of protein and RNA mirrored the unique concentration 

ranges of N taken up and retained by each species. The rate of decrease in RNA 

concentration with decreasing cell N was particularly dramatic, signifying the negative 

effect of N deficiency on cellular processes. Concentrations and patterns of change 

among the other pools of N varied more from species to species. The average cellular 

concentration of free amino acids was 4.5, 10.4, and 13.9 g L
-1

 (N. salina, C. sorokiniana, 
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and E. oleoabundans, respectively), though the rate of decrease in concentration with 

decreasing cell N was similar among species. DNA concentrations were relatively steady 

with decreasing N in C. sorokiniana and E. oleoabundans, but decreased to low levels in 

N. salina (this result was repeated twice on our original sample). Given that the cells 

were not synchronized, the integral function of DNA in the cell, and the data of Dortch et 

al. (1984) showing steady DNA levels with decreasing N, we expected the DNA 

concentration to remain fairly steady. DNA concentrations per cell for C. sorokiniana and 

E. oleoabundans were within the documented range reported in the Kew Royal Botanical 

Gardens Cvalues database (http://data.kew.org/cvalues/CvalServlet?querytype=6), but 

lower-end concentrations for N. salina were not. All these considerations provide cause 

for skepticism of the DNA values obtained for N. salina. The maximum concentration of 

chlorophyll and the rate of decline with decreasing cell N differed greatly among species, 

converging on a similar minimum concentration. 

There were several notable differences among species in the fraction of N 

allocated to each pool as N deficiency progressed (Fig. 3‒4). (This analysis is based on 

the linear regression of data presented in Fig. 3‒3.) All species increased in the fraction 

of cell N held in protein, but to different extents: C. sorokiniana and E. oleoabundans 

experienced modest 6 to 7% increases, while N. salina had a 20% increase. In all species, 

protein N amounted to a minimum of 70% of total N; at the peak of N deficiency, 90% of 

total N was held in the protein pool in N. salina. Predictably, N. salina decreased in the 

fraction of N held in free amino acids, suggesting a priority of exporting free amino acids 

to build proteins. Interestingly, C. sorokiniana and E. oleoabundans increased in the 

http://data.kew.org/cvalues/CvalServlet?querytype=6
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fraction of cell N held in free amino acids, suggesting that storage of free amino acids is a 

priority in these species. Free amino acid N constituted from 7 to 23% of total N. In one 

of nine algal species studied, Dortch et al. (1984) also reported a high value of percent 

free amino acid N of 26.4% in a N deprived condition. The fraction of cell N held in 

chlorophyll was fairly steady in C. sorokiniana and N. salina, but decreased somewhat in 

E. oleoabundans—the species with the highest overall chlorophyll concentration. This 

difference may suggest that E. oleoabundans overproduces chlorophyll when N supplies 

are sufficient to do so. Due to its relatively steady concentration in the cell, the fraction of 

N held in DNA increased (except in N. salina). The RNA pool, of course, decreased 

dramatically in the fraction of N held there. 

Total N uptake and retention, N pool concentrations, and changes in N 

distribution with deficiency, as determined in this study, are generally consistent with the 

reports of Dortch et al. (1984) and McGlathery et al. (1996). As such, the data provide a 

sound basis for analysis of associations between N deficiency and lipid accumulation. 

 

3.4.3. Associations between Cellular Nitrogen and Lipid Accumulation 

In analysis of the effect of algal N on lipid accumulation, the data was initially 

summarized per unit biomass: lipids as a content (%), as a function of the N to C ratio of 

the biomass (Fig. 3‒5, left). In all three species, there was a clear relationship between 

the N to C ratio and the initiation of lipid accumulation, as shown by the concomitant rise 

in lipid content in both N treatments. But large species differences were observed in the 

value of the N to C ratio at which lipid accumulation began, as well as the value at which 

accumulation (and growth) ceased. Normalizing this data to the volume of the cell greatly 
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reduced these species differences (Fig. 3‒5, right). In this data, the ratio of minimum 

retained N to N at the initiation of lipid accumulation was fairly consistent at 0.5 to 1 

(Table 3‒2). This observation suggests a commonality among species in the magnitude of 

N deficiency that leads lipid accumulation. 

Among five pools of N in the cell at the initiation of lipid accumulation (Table 3‒

3), the concentrations of protein, RNA, and their ratio were most similar among species 

with averages of 52 ± 8.6 g L
-1

, 3.2 ± 0.26 g L
-1

, and 16 ± 1.5, respectively. The most 

consistency among species was observed in RNA and the protein to RNA ratio, as shown 

by the coefficient of variation (standard deviation/mean *100) also listed in Table 3‒3. 

Fig. 3‒6 illustrates the convergence of the protein to RNA ratio at ~16 to 1 in all species 

at the initiation of lipid accumulation, despite differences in total N uptake and retention. 

In the remaining pools (free amino acids, DNA, chlorophyll), intrinsic species differences 

in concentration and disparate effects of N deficiency resulted in large dissimilarities 

among species at lipid accumulation. Other physiologically relevant ratios of the N pools 

were also highly inconsistent among species. As such, if lipid accumulation is signaled 

by reaching critical concentrations or ratios of specific pools of N, this data most 

implicates RNA and the protein to RNA ratio. 

 

3.4.4. Use and Extrapolation of the Data 

These results provide insight into the physiological drivers for lipid accumulation 

in N deficient algae. The information could guide biochemical and molecular studies that 

seek to elucidate signaling pathways and genetic regulation of lipid accumulation in 

response to N deficiency. The data could also provide information for models for 
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optimization of lipid production in commercial systems, and understanding production in 

nature. 

 

3.5. Conclusions 

These data suggest the initiation of lipid accumulation is associated with a 

commonality among species in the magnitude of total N deficiency. Among five pools of 

N in the cell, the data implicates critical levels of RNA and the protein to RNA ratio as 

potential signals for accumulation of lipids. 
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 C. sorokiniana E. oleoabundans N. salina 

Time Low N High N Low N High N Low N High N 

(d) ------------------(% Nitrogen Recovery)------------------ 

1 114 109 103 119 135 110 

2 104 87 96 129 77 90 

3 110 82 107 95 75 60 

4 103 78 119 83 84 78 

5 105 75 122 92 93 67 

6 94 75 107 84 94 74 

7 99 67 101 89 100 77 

8 95 86 104 85 76 81 

9 93 75 107 80 77 84 

10 99 67 106 87 84 71 

 

Table 3‒1: Percent Nitrogen Recovery: The sum of N (given assumptions stated in the 

methods and materials) in all measured N pools (protein, free amino acids, DNA, RNA, 

chlorophyll) divided by the total N determined by combustion analysis. Variation from 

100% recovery reflects combined experimental error in determination of total N and each 

N pool, plus errors in estimating the N content of the N pools. 
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Species Max N Lipid Onset N Min N  Min/Onset Max/Onset 

 ----------------(mM)----------------  -----------(ratio)----------- 

C. sorokiniana 2050 950 520  0.55 2.2 

E. oleoabundans 1230 910 430  0.47 1.4 

N. salina 1165 730 350  0.48 1.6 

Avg 1482 863 433  0.50 1.7 

SD 493 117 85  0.041 0.41 

CV*100 33 14 20  8.3 24 

 

Table 3‒2: Total N concentrations in the cell at their maximum (Max), minimum (Min), 

and at the initiation of lipid accumulation (Initiation). Maximum and minimum 

concentrations were measured, while the lipid accumulation initiation values were 

determined qualitatively according to the trends apparent in Fig. 3‒5. A strong similarity 

among species was observed in the ratio of cell N at the minimum to the N at lipid 

accumulation initiation, with an average value of 0.5 ± 0.04. This commonality among 

species suggests that lipid accumulation was signaled by a common magnitude of cellular 

N deficiency. (Avg, average; SD, standard deviation; CV, coefficient of variation.) 
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       AA/ Prot/ Prot/ RNA/ 

Species Prot AA DNA RNA Chl  Prot DNA RNA DNA 

 ---------------(g L
-1

)---------------  -----------------------(ratio)----------

------------- 
C.s. 57 10 5.1 3.3 4.8  0.18 11 17 0.64 

 (52, 61) (8.4, 12) (4.7, 5.5) (1.9, 4.8) (4.4, 5.2)      

E.o. 57 14.5 2.5 3.4 6.5  0.25 23 17 1.4 

 (52, 62) (13, 16) (2.3, 2.7) (1.7, 5.1) (6.0, 7.1)      

N.s. 42 4.6 1.1 2.9 2.8  0.11 40 14 2.8 

 (38, 46) (4.0, 5.3) (0.81, 1.3) (2.2, 3.6) (2.4, 3.1)      

Avg 52 10 2.9 3.2 4.7  0.18 25 16 1.6 

SD 8.6 5.0 2.1 0.26 1.9  0.07

3 

14 1.5 1.1 

CV*100 17 51 71 8.2 40  40 59 9.2 68 

 

Table 3‒3: The cellular concentration of pools of N, and select ratios, at the initiation of 

lipid accumulation. The concentration of RNA and the protein to RNA ratio were most 

similar among species, as shown by low coefficient of variation, implicating critical 

levels of these parameters as potential signals for lipid accumulation. The table values 

were determined by a qualitative analysis of total N at initiation of lipid accumulation 

from Fig. 3‒5, then calculation of N pool concentrations at those points from the 

regression lines in Fig. 3‒3. The bracketed values are 95% confidence intervals for the 

regression lines at the lipid accumulation initiation points. Confidence intervals were 

calculated by SigmaPlot (Systat Software Inc., San Jose, CA) by the reduced chi-square 

method. (C.s., C. sorokiniana; E.o., E. oleoabundans; N.s., N. salina; Prot, protein; AA, 

free amino acids; Chl, chlorophyll; Avg, average; SD, standard deviation; CV, coefficient 

of variation.) 
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Fig. 3‒1: Time-series measurements of growth parameters and cellular N concentration in 

two N treatments in cultures of three species of oleaginous algae. Data were collected 

once a day from independent bioreactor tubes (10 replicate tubes per N treatment; one 

tube processed per day). Time series trends are apparent in the data. Standard deviations 

are given for cell density and cell volume and show variability in these parameters within 

bioreactor tubes. (High N, 10 mM; low N, 4 mM.) 
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Fig. 3‒2: Time-series measurements of the raw data for total biomass N and five cellular 

pools among which the N was distributed. 
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Fig. 3‒3: The concentration of five major pools of N in the cell, including the cellular 

concentration of N in those pools (given assumptions stated in the methods and 

materials), as a function of total cell N. All data is given per unit cell volume, for 

relevance to the physiology of the cell. In general, the concentration of each pool 

decreased linearly with decreasing cell N. (Inner axis, pool concentration in cell; outer 

axis, pool N concentration in cell.) 



 

 

 

78 

 

 
 

Fig. 3‒4: The percentage of total N held in five cellular pools as a function of total N. 

The vertical, dotted line represents the initiation of lipid accumulation. As N deficiency 

progressed, all species increased in the fraction of N held in protein and most did in 

DNA. Predictably, all species decreased in the fraction of N in RNA. Patterns in free 

amino acids and chlorophyll varied more among species. 
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Fig. 3‒5: Lipid accumulation per unit biomass as a function of the N to C mass ratio 

(left), and transformed data per unit cell volume as a function of cell N per unit cell 

volume (right). The initiation of lipid accumulation had a clear dependence on specific 

concentrations of total cell N in all three species, as shown by the concomitant rise in 

lipid content in two N treatments. The area between the vertical, dotted lines signifies the 

range in cell N over which lipids accumulated. Normalizing the data to the cell greatly 

reduced species differences in the value of cell N at which lipid accumulation began and 

ceased (High N, 10 mM; low N, 4 mM.) 
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Fig. 3‒6: Despite differences in total N uptake and retention, the protein to RNA ratio 

converged at ~16 to 1 in all species at the initiation of lipid accumulation. These trends 

are based on the regression lines for protein and RNA found in Fig. 3‒3. 
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CHAPTER 4 

ENHANCING LIPID PRODUCTION OF THE MARINE DIATOM 

 CHAETOCEROS GRACILIS: SYNERGISTIC INTERACTIONS 

OF SODIUM CHLORIDE AND SILICON
6
 

 

4.1. Abstract 

Silicon deficiency is a lipid-promoting stress for many oleaginous diatoms. 

Literature reports suggest that reduced salinity in seawater, a primary component of 

which is sodium chloride, may inhibit metabolism of silicon in marine diatoms. We 

hypothesized that lowering sodium chloride below ocean levels may thus be effective in 

creating silicon stress and enhancing lipid productivity. We examined the interacting 

effects of silicon supply (0.05, 0.1, 0.2 and 0.8 mM) and sodium chloride concentration 

(50, 100, and 400 mM) on growth and lipid production in Chaetoceros gracilis. This was 

done in batch culture to facilitate the application of severe stress. Low levels of either 

sodium chloride or silicon resulted in at least 50% increases in lipid content. The synergy 

of simultaneous, moderate sodium chloride and silicon stress resulted in lipid content up 

                                                 
6
 The terminology for the different forms of silicon can be confusing and warrant a brief 

discussion. “Silicon” is the name of the element, found on the periodic table. “Silicate” is 

a general term for a large group of sparingly soluble or insoluble mineral salts that 

contain silicon. Silicate minerals are among the most abundant in the earth’s crust. Most 

silicate compounds are oxides, but not all. “Silicic acid” generally refers to a specific 

silicate compound that is in solution, SiH4O4, and is the primary form of silicon available 

for biological uptake. Silicic acid is also a general name for a family of soluble silicon 

compounds containing oxide and hydroxyl groups. “Silica” refers to the solid, dioxide 

form of silicon and is synonymous with the term “silica glass.” In this chapter we 

measured silicic acid by the QuikChem method 10-114-27-1-A developed by the Lachat 

company. To simplify our message, we refer to this only as silicon. This is simply done, 

as there is one mole of silicon per mole of silicic acid. 
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to 73% of dry mass and lipid productivity of 1.7 g m
-2

 d
-1

; with a daily integrated 

photosynthetic photon flux of 17.3 mol m
-2

 d
-1

, the efficiency of lipid synthesis was thus 

0.1 g mol
-1

 of photons. Decreased silicon also resulted in a 5% shift in lipid chain length 

from C18 to C16 fatty acids. We observed a strong sodium chloride/silicon interaction on 

total and ash-free dry mass densities that arose because low sodium chloride 

concentrations were inhibitory to growth, but the inhibition was overcome with excessive 

silicon supply. This observation suggests that low levels of sodium chloride may have 

affected metabolism of silicon. The findings of this study can be used to enhance lipid 

production in oleaginous marine diatoms. 

 

4.2. Introduction 

4.2.1. Silicon and Sodium Chloride 

Diatoms are a diverse and ecologically successful class of marine and freshwater 

algal organisms. Diatoms are the primary constituent of the marine plankton community, 

typically representing more than 70% of total plankton, and are estimated to contribute up 

to 40% of total oceanic primary production (Sumper and Brunner 2008). A primary 

driver of the ecological success of diatoms is their use of Si for formation of their 

exoskeleton, called a frustule. Some likely reasons for this are that it is energetically less 

costly to make a Si-based cell wall than a carbon-based cell wall and that, different from 

other limiting nutrients, diatoms have little competition from non-diatoms for Si (Martin-

Jezequel et al. 2000). Huge diatom abundance has caused dissolved Si to be drawn down 

to low levels, however; there is an approximate average of 35 μM Si in surface waters 

(Hem 1985) and a global average of approximately 70 μM Si (Sumper and Brunner 
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2008). This has resulted in Si becoming a major limiting nutrient for diatoms in the 

oceans. 

There are two primary Si pools in diatoms: cellular Si and frustule-associated or 

mineralized Si (Vrieling et al. 1999). At high concentrations, Si enters the cell by 

diffusion, but at low concentrations (< ~30 μM) Si is actively taken up by sodium (Na)-

dependent Si transport proteins (Bhattacharyya and Volcani 1980, Hildebrand et al. 1997, 

Thamatrakoln and Hildebrand 2008). Cellular Si is mineralized to form the frustule in 

specialized intracellular compartments called Si deposition vesicles (SDVs). Cell division 

and Si metabolism are closely tied (Martin-Jezequel et al. 2000). In some species, 

including Chaetoceros gracilis (Lombardi and Wangersky 1991), the production of 

storage lipid (triacylglycerol or TAG) is stimulated when Si availability is limiting to cell 

division (Araujo et al. 2011, Hildebrand et al. 2012). Little is known, however, about the 

physiological mechanism by which deficient Si signals the accumulation of lipids 

(Merchant et al. 2012). Deficiencies of other nutrients, like N and P, have also been 

shown to promote lipid accumulation in diatoms, but several studies suggest that Si 

deficiency stimulates lipid formation more rapidly and can result in higher lipid content 

(Shifrin and Chisholm 1981, Enright et al. 1986, Taguchi et al. 1987, Mortensen et al. 

1988, Parrish and Wangersky 1990, Lombardi and Wangersky 1991, McGinnis et al. 

1997). 

Some studies suggest that salinity may affect the metabolism of cellular Si in 

marine diatoms. At low salinity, Vrieling et al. (1999) and Tuchman et al. (1984) 

observed increases in total diatom Si concentration, with a larger cellular Si pool 
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accounting for most of the increase. At some level, these observations suggest inhibition 

by low salinity of Si movement from the cellular pool to the mineralized pool. In two 

diatoms grown at low salinity, Vrieling et al. (2007) observed nanostructural changes in 

mineralized Si, including increased Si density. The density of mineralized Si is affected 

by the size of coalescing Si particles inside the SDVs, with smaller particles resulting in a 

denser frustule. The authors therefore suggested that salinity affects intracellular Si 

transport to the SDVs or the function of the SDVs themselves (Vrieling et al. 1999, 

Vrieling et al. 2007). Currently little is known about the effect of salinity on these 

processes (Vrieling et al. 1999, Sumper and Kroger 2004, Vrieling et al. 2007). 

Observations of increased lipid content in marine diatoms grown at low salinity, 

including C. gracilis, may further suggest a connection between Si metabolism and 

salinity (Chelf 1990, Araujo et al. 2011). 

 

4.2.2. Objectives and Hypotheses 

The marine diatom C. gracilis is known to accumulate lipids when Si deficient 

and when cultivated at low salinity. These effects may have a connection, however, as 

studies suggest that low salinity may affect intracellular Si transport or mineralization. 

We thus hypothesized that reducing salinity (by reducing the concentration of NaCl) may 

be effective in enhancing lipid accumulation in C. gracilis at any given rate of Si supply. 

Testing combinations of wide ranges in Si and NaCl, we sought to characterize the 

respective effects of Si, NaCl and their interaction on lipid content, growth rate, and other 

parameters in batch culture. Our broad objectives were to provide useful information to 



 

 

 

85 

 

the lipid producer and, secondarily, to provide data suggesting the nature of the 

relationship between NaCl and the metabolism of Si in a marine diatom. 

 

4.3. Methods and Materials 

4.3.1. Experimental Outline 

Experimental design and setup are described here; apparatus and measurement 

details are described in the sections that follow. Batch cultures of the marine diatom 

Chaetoceros gracilis (UTEX #LB 2658) were grown in glass, air-lift bioreactors to test 

combinations of three NaCl concentration treatments (50, 100 and 400 mM) and four Si 

supply treatments (0.05, 0.1, 0.2 and 0.8 mM). There were two replicate bioreactor tubes 

per combination of treatments, for a total of 24 tubes. The cultures were started by adding 

media and 100 mL of inoculum to the bioreactor tubes to a 1.2 L volume. The inoculum 

culture was pre-adapted to an intermediate NaCl concentration of 100 mM and a low Si 

supply of 0.1 mM. This was done by growing a culture at 100 mM NaCl and 0.1 mM Si 

for seven days, then transferring 100 mL to a new 100 mM NaCl/0.1 mM Si media and 

allowing it to grow for four days. An absorbance measurement was taken from each tube 

daily. Solution Si measurements were taken two days. The cultures were harvested when 

the absorbance of all treatments had plateaued (two days of consistent optical density). 

Terminal measurements were taken of total and ash-free dry mass, biomass lipid content 

and lipid chain length. 
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4.3.2. Culture Apparatus and Maintenance 

The cultures were grown in glass, air-lift bioreactors that were autoclaved before 

use. The bioreactors had an outer diameter of 50 mm, inner diameter of 45 mm and were 

filled to an approximate height of 75 cm, giving a culture volume of 1.2 L. Under the 

same conditions and timeframe as the final experiment, we quantified Si leaching from 

the bioreactors and found that total leaching was 3.2 ± 0.3 μM Si (n=3), which is only 6% 

of the Si in the lowest treatment. As such, interference by Si leaching was expected to be 

minimal. The bioreactor tubes were placed in a plexiglass water tank that was maintained 

at a temperature of 25˚C. Filtered air (Whatman PolyVENT 0.2 μm PTFE filters, L#639) 

was bubbled into the bottom of each bioreactor through a 1 mm glass capillary tube at a 

rate of 0.5 L min
-1

. Carbon supply and pH were managed by NaHCO3 and CO2 inputs, 

equally distributed to all bioreactors. pH was maintained between 7.2 and 7.5 (variation 

in pH among treatments did not exceed 0.15 pH units). pH was measured by a Mettler 

Toledo SG2 SevenGo pH electrode kit (Mettler Toledo, Columbus, OH). During the lag 

phase (the first two days of growth) 0.05 mM NaHCO3 was added once daily. For the 

remainder of the experiment the air flow was enriched in CO2; the enrichment rate 

increased over time in response to algal metabolism, up to ~1% CO2. Light was supplied 

by banks of fluorescent tubes that ran perpendicular to the bioreactor tubes, completely 

covering one side. The photosynthetic photon flux (PPF) was 300 µmol m
-2

 s
-1 

(300 µE 

m
-2

 s
-1

) with a 16-h photoperiod. A 16-h photoperiod was chosen to approximate the 

natural photoperiod of summers days in the mid-latitudes. Growth of photosynthetic 

organisms is best determined by the daily integrated PPF (Bugbee and Monje 1992), 
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which was 17.3 mol m
-2

 d
-1

 in this study. This is less than 50% of the average daily PPF 

of 45 to 55 mol m
-2

 d
-1

 in the summer months in North America. For conversion of 

measurements made by volume (e.g. g L
-1

) to a unit of area (e.g. g m
-2

), the illuminated 

area of the bioreactor tubes containing algae was used as a conversion factor as follows: 

1.2 L / πrh = 1.2 L / (3.14 x 2.25 cm x 75.5 cm) x (1 m
2
 / 100

2
 cm

2
) = 22.5 L m

-2
 and 22.5 

L m
-2

 x g L
-1

 = g m
-2

. 

 

4.3.3. Media Composition and Preparation 

Three media were prepared and autoclaved, differing in NaCl concentration: 50, 

100 and 400 mM. Silicon was added separately to each bioreactor tube at four 

concentrations: 0.05, 0.1, 0.2 and 0.8 mM Si. Because of the effect of Si on pH, the pH of 

the bioreactor tubes was adjusted individually to 7.5 by addition of 1 M NaOH or 1 M 

HCl. The culture media had the following composition: 2.5 mM KNO3; 0.9 mM CaCl2 ˑ 

2H2O; 7.0 mM MgSO4 ˑ 7H2O; 6 mM KCl; 50, 100 or 400 mM NaCl; 1.5 mM KH2PO4; 

0.05, 0.1, 0.2 or 0.8 mM Na2SiO3 ˑ 9H2O; 14.3 μM ferric ammonium citrate; 25 μM 

H3BO3; 3.0 μM MnCl2 ˑ 4H2O; 0.25 μM CuSO4 ˑ 5H2O; 0.75 μM ZnSO4 ˑ 7H2O; 0.2 μM 

Na2MoO4 ˑ 2H2O; 0.2 μM CoCl2 ˑ 6H2O; 1.5 nM vitamin B12; 4.1 nM biotin; and 150 

nM thiamine. Differential addition of Na within each NaCl treatment—due to initial pH 

adjustment (NaOH) and the counter ions of Si (Na2SiO3 ˑ 9H2O)—were expected to have 

a minimal effect. NaOH was added only to the 0.05 and 0.1 mM Si treatments, resulting 

in up to a 1.6 mM increase in Na. The counter ion Na that came with Si most affected the 

high Si treatments, up to 1.6 mM. 
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4.3.4. Algal Density Measurement and Harvest 

Daily measurements of culture density were made spectrophotometrically at 750 

nm with a Shimadzu UV-2401 PC, UV-VIS recording spectrophotometer (Shimadzu 

Corporation, Kyoto, Japan). Ash-free dry mass densities were determined by filtering 10 

mL suspensions of algae with Whatman GF/C filters. The filters were dried for one to 

two days at 105˚C, weighed to determine total dry mass density, then combusted at 550˚C 

for 15 min to determine ash. Cells suspended in media were concentrated for harvest by 

centrifugation at 7500 rpm for 5 min. Following centrifugation the biomass was loaded 

into 15 mL plastic sample vials, frozen at -80˚C, and lyophilized. For accurate 

determination of total dry mass (cellular mass, including ash), attempts were made to 

rinse the filters free of extracellular salts. This resulted in loss of algae from the filters. 

Therefore, ash content was determined by combusting 20 mg samples of lyophilized 

algae. 

 

4.3.5. Solution Silicon Measurements 

Samples of algal suspension (3 mL) were collected from each bioreactor tube 

every-other day and filtered with Whatman GF/C filters. Solution Si was measured on the 

filtered media with a Lachat QuikChem 8500 Automated Ion Analyzer using the 

QuikChem method 10-114-27-1-A that is available from the manufacturer (Lachat 

Instruments, Loveland, CO). 
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4.3.6. Lipid Extraction, Conversion to FAME and Quantification 

Simultaneous conversion and extraction of algal lipids to fatty acid methyl esters 

(FAME) was done by the method of Wahlen et al. (2011). This method effectively 

converts to FAME the fatty acids contained in membrane phospholipids and glycolipids, 

as well as free fatty acids and storage lipid triglyceride. The lipid or FAME content of 

100 mg freeze-dried algal samples was determined with a gas chromatograph (Model 

2010, Shimadzu Scientific, Columbia, MD) equipped with programmable temperature 

vaporizer (PTV), split/splitless injector, flame ionization detector (FID) (GCMS-

QP2010S, Shimadzu Scientific, Columbia, MD), and autosampler. The FID detector was 

used in this analysis. Analytes were separated on an RTX-Biodiesel column (15 m, 0.32 

mm ID, 0.10 lm film thickness, Restek, Bellefonte, PA) using a temperature program of 

60˚C for 1 min followed by a temperature ramp of 10˚C per min to 360˚C for 6 min. 

Constant velocity of carrier gas helium was set at 50 cm s
-1

 in velocity mode. Sample 

sizes of 1 μL were injected into the PTV injector in direct mode that followed an identical 

temperature program to that of the column. The FID detector was set at 380˚C. Each 

sample contained octacosane (10 μg mL
-1

) as an internal standard. FID detector response 

to FAME was calibrated using methyl tetradecanoate (C14:0), methyl palmitoleate 

(C16:1), and methyl oleate (C18:1) at concentrations ranging from 0.1 mg mL
-1

 to 1 mg 

mL
-1

 and tripalmitin at concentrations ranging from 0.05 mg mL
-1

 to 0.5 mg mL
-1

. 

Standards were obtained as pure compounds (Nu-Chek Prep, Inc., Elysian MN) and 

diluted with chloroform to obtain needed concentrations. Peaks were integrated using GC 
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solution postrun v. 2.3 (Shimadzu) and concentrations were determined by linear 

regression analysis. 

 

4.3.7. Statistical Analysis 

Analysis of variance was conducted using the general linear model (Proc GLM) in 

the SAS system (Statistical Analysis System, Cary, NC). Error bars in all plots represent 

the standard deviation. 

 

4.4. Results and Discussion 

4.4.1. Silicon Uptake, Growth, and Lipid Content 

Despite decreased growth rates with both decreasing Si supply and NaCl 

concentration, the removal of Si was nearly complete in all NaCl/Si treatments (Fig. 4‒1). 

Averaged across all treatments, 12 ± 2.8 μM Si was never recovered from solution. It is 

unclear whether this Si was available for Si uptake however, because soluble Si was 

measured by the molybdate assay in acidic conditions which could have solubilized 

polymeric forms of Si. Analysis of variance showed a strong interaction between NaCl 

and Si on total and ash-free dry mass densities, but that NaCl was the primary factor 

determining the outcome of these parameters (Table 4‒1 and Fig. 4‒2). The interaction 

arose because low NaCl concentrations were inhibitory to growth, but the inhibition was 

overcome with excessive Si supply rates. This suggests that low levels of NaCl may have 

affected the metabolism of Si. 

In a synergistic effect, lipid content was positively affected by both decreasing Si 

and decreasing NaCl (Fig. 4‒2). The relationships shown here are not perfectly linear, 
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however, as a result of the lipid content in the 50 and 100 mM NaCl treatments peaking 

at 0.2 and 0.1 mM Si, respectively, and decreasing with lower Si supply. We speculate 

that, due to the severe stress in these conditions, the relationships are not linear because 

lipids that were produced were consumed or degraded before measurement. Statistical 

analysis of the data showed that the relative effects of Si and NaCl on promoting storage 

lipids were similar—each increasing the lipid content by more than 50%—with Si having 

a slightly larger effect (Table 4‒1). With combinations of low Si (0.05, 0.1 and 0.2 mM) 

and low NaCl (50 and 100 mM), lipid content increased to more than 70% of dry mass. 

 

4.4.2. Lipid productivity 

 Lipid productivity is derived by multiplying total dry mass density by the lipid 

content and dividing by time (Fig. 4‒2). Sodium chloride—because of its large impact on 

growth—and a significant NaCl/Si interaction were the dominant factors determining 

lipid productivity (Table 4‒1). Lipid productivity peaked at a high NaCl concentration 

(400 mM) and a low rate of Si supply (0.05 mM), but was not significantly different than 

the productivity with intermediate levels of NaCl and Si (100 mM NaCl and 0.1 or 0.2 

mM Si). These treatment combinations did differ in lipid content, however, with 

intermediate levels of NaCl and Si resulting in about 14% higher lipid content. Thus, 

from a lipid production standpoint, intermediate levels of NaCl and Si stress resulted in a 

more favorable outcome. The contour plots of Fig. 4‒3 illustrate the tradeoffs in total dry 

mass density and lipid content as a function of NaCl concentration and Si supply. 
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4.4.3. Fatty Acid Chain Length Distribution 

 Decreased Si resulted in a 5% shift in lipid chain length from C18 to C16 fatty 

acids, but there was no effect of NaCl (Fig. 4‒4). C14 fatty acids were unchanged. 

Together, C14, C16 and C18 fatty acids accounted for ~93% of all lipids. 

 

4.4.4. Efficiency of Lipid Production 

 Radiation is the ultimate limiting factor in all photosynthetic systems and thus it is 

appropriate to compare productivities based on the input of light (Bugbee and Monje 

1992). In this study, peak lipid productivity was about 75 mg L
-1

 d
-1

 over a 7-d growing 

period and the illuminated surface-to-volume ratio of the bioreactor tubes was 0.044 m
2
 

L
-1

. This gives a lipid productivity of 1.7 g m
-2

 d
-1

. The daily PPF integral was 17.3 

molphotons m
-2

 d
-1

, giving an efficiency of lipid production of 0.10 g mol
-1

 of photons. For 

comparison, this was about 50% of the best efficiency (0.19 g mol
-1

 of photons) found in 

green algae by using N deficiency to promote lipid accumulation in a recent publication 

using the same growth system (Adams et al. 2013). 

 

4.5. Conclusions 

Low levels of either NaCl or Si increased lipid content by about 50% each. The 

synergy of simultaneous, moderate NaCl and Si stress resulted in lipid content up to 73% 

with a lipid productivity of 1.7 g m
-2

 d
-1

; with a daily integrated photosynthetic photon 

flux of 17.3 mol m
-2

 d
-1

, the efficiency of lipid synthesis was thus 0.10 g mole
-1

 of 

photons. The observation of a strong NaCl/Si interaction on total and ash-free dry mass 

densities suggests that low levels of NaCl may have affected the metabolism of Si. The 
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findings of this study can be used to enhance lipid production in oleaginous marine 

diatoms. 
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Total Dry Mass Density 

Source DF F Value Pr > F 

Si 3 

2 

23.1 <.0001 

NaCl 

S 

2 82.5 <.0001 

Si*NaCl 6 8.9 0.0008 

Error 12   

R2 0.960   

Ash-Free Dry Mass Density 

Source DF F Value Pr > F 

Si 3 

2 

20.4 <.0001 

NaCl 

S 

2 72.2 <.0001 

Si*NaCl 6 11.0 0.0003 

Error 12   

R2 0.958   

Lipid Content 

Source DF F Value Pr > F 

Si 3 

2 

19.4 <.0001 

NaCl 

S 

2 17 0.0003 

Si*NaCl 6 2.1 0.1313 

Error 12   

R2 0.897   

Lipid Productivity 

Source DF F Value Pr > F 

Si 3 

2 

2.8 0.0834 

NaCl 

S 

2 28.8 <.0001 

Si*NaCl 6 11.9 0.0002 

Error 12   

R2 0.920   

 

Table 4‒1: Analysis of variance in four response parameters (total dry mass density, ash-

free dry mass density, lipid content and lipid productivity) for two factors and their 

interaction (Si, NaCl and Si*NaCl). DF = degrees of freedom. The F values were used in 

determination of the relative impact of each factor on the response parameters and in 

assigning statistical significance. 
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Fig. 4‒1: Time series measurements of relative growth rate (on left) and Si in solution (on 

right) with combinations of four Si treatments (0.05, 0.1, 0.2 and 0.8 mM) and three NaCl 

treatments (50, 100 and 400 mM). The relative growth rate, determined by optical density 

at 750 nm, was negatively affected by decreasing NaCl concentration and Si supply rate. 

The diatom removal of Si was nearly complete in all treatments, with a fairly consistent, 

small amount of Si never recovered from solution: 12 ± 2.8 μM Si. 

 

 

 

 

 

 

 

 

 

 



 

 

 

98 

 

 
 

Fig. 4‒2: Terminal measurements of total dry mass density, ash-free dry mass density, 

lipid content, and lipid productivity as a function of Si supply. Sodium chloride was the 

dominant factor determining total and ash-free dry mass yields (A and B), while NaCl 

and Si contributed approximately equally to the accumulation of storage lipid (C). Lipid 

productivity reflected the strong effect of NaCl on growth and a significant NaCl/Si 

interaction (D). 
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Fig. 4‒3: Contour plots showing total dry mass density (A), lipid content (B) and lipid 

productivity (C) as a function of Si supply and NaCl concentration. The most favorable 

lipid production outcome—high lipid productivity and high lipid content—was observed 

with moderate levels of NaCl and Si stress 
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Fig. 4‒4: The distribution in lipid chain length shifted with the rate of Si supply. An 

increase in C16 fatty acids with decreasing Si supply was offset by a similar reduction in 

C18 fatty acids. C14 fatty acids were unchanged. Sodium chloride had no significant 

effect on lipid distribution. The 50 mM NaCl treatment is shown here 

 

 

 

 

 

 

 

 

 



 

 

 

101 

 

CHAPTER 5 

SUMMARY & CONCLUSIONS 

 

5.1. This Research 

Algae are increasingly being recognized as an important source of lipids. Owing 

to the wide diversity among species in native habitat and physiology, the types of lipids 

algae produce are many. This diversity in lipid products and their potential for high rates 

of lipid productivity make algae candidates for production of lipids for many 

applications. Accumulation of lipids generally occurs in stress conditions, including 

nutrient deficiency, but research is needed to understand the physiological drivers of the 

effect and how best to optimize the stress. The aim of the research summarized in this 

dissertation was to provide scientific insights into these problems. 

Three sets of research were reported here: 1) An assessment of species differences 

in growth and lipid content tradeoffs with high and low level N deficiency; 2) An 

investigation of physiological drivers of lipid formation, by mass balance accounting of 

cellular N with progressing deficiency; 3) An examination of the effects of NaCl and Si 

on lipid production in a marine diatom. 

1) Nitrogen deficiency typically had disproportionate effects on growth and lipid 

content, with profound differences among species. Optimally balancing the tradeoff 

required a wide range in N supply among species. Some species grew first and then 

accumulated lipids, while other species grew and accumulated lipids concurrently—a 

characteristic that increased lipid productivity. High lipid content generally resulted from 

a response to minimal stress. 



 

 

 

102 

 

2) Commonalities among species in cellular nitrogen at the initiation of lipid 

accumulation provided insight into the physiological drivers for lipid accumulation in 

nitrogen deficient algae. Total nitrogen uptake and retention differed widely among 

species, but the ratio of minimum retained nitrogen to nitrogen at the initiation of lipid 

accumulation was consistent among species at 0.5 ± 0.04. This suggests that lipid 

accumulation was signaled by a common magnitude of nitrogen deficiency. Among  the 

cellular pools of nitrogen at the initiation of lipid accumulation, the concentration of 

RNA and the protein to RNA ratio were most similar among species with averages of 3.2 

± 0.26 g L
-1

 (8.2% variation) and 16 ± 1.5 (9.2% variation), respectively. This implicates 

critical levels of these parameters as potential signals initiating the accumulation of 

lipids. 

3) In a marine diatom, low levels of either NaCl or Si resulted in at least 50% 

increases in lipid content. The synergy of simultaneous, moderate NaCl and Si stress 

resulted in lipid content up to 73%. There was a strong NaCl/Si interaction in total and 

ash-free dry mass densities that arose because low NaCl was inhibitory to growth, but the 

inhibition was overcome with excessive Si supply. This suggests that low NaCl may have 

affected metabolism of Si. 

This research provides insight into how nutrient deficiencies promote lipid 

accumulation in oleaginous microalgae and how best to optimize the stress for 

production. The physiological reactions to nutrient deficiency that were identified 

provide an improved future basis for species selection, nutritional optimization, and 

discovery of the molecular mechanisms of algal lipid accumulation. 
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5.2. The Current State of Algal Cultivation for Lipids 

 A collaboration of partners in research, academia, and industry estimated the 2011 

cost (a theoretical cost based on the state of research and technology) of extracted algal 

oil to be between $10.87 and $13.32 gallon
-1

 (Sun et al. 2011). These prices—which do 

not include downstream processing costs, such as conversion to biodiesel—far exceed 

current market values for most oils and oil products. The current state of algal cultivation 

for lipids shares many similarities with the former state of higher-plant agricultural 

production, prior to the agricultural revolution (Pienkos and Darzins 2009). Research and 

innovation in agriculture have resulted in enhanced plant material, improved management 

practices, more efficient processing equipment, better infrastructure, and the ability to 

care for a growing population. Continued work on algae would likely result in analogous 

advancements. 

 

5.3. Future Research 

A recent techno-economic analysis by Davis et al. (2011) helps put perspective on 

where research may be most critical in advancing lipid production by algae. A 

“sensitivity analysis” was presented in which the impact on production costs of 

reasonable changes in production parameters and inputs was assessed. According to their 

estimates, the parameter or input to which production cost was most sensitive was lipid 

content, followed by growth rate. The analysis indicated that these parameters were far 

more critical in determining product cost than inputs such as inorganic nutrients, 

flocculent for harvest, water, water and nutrient recycling processes, and CO2 delivery. 

Davis et al. (2011) estimated that the cost of algal lipids could decrease by nearly $4 
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gallon
-1

 if the biomass lipid content increased from 25% to 50%.This assessment 

validates the importance of the research summarized in this dissertation and indicates that 

more innovation is needed on this front. There is potential for identifying oleaginous 

species that are better suited for production systems, with the ability to maintain 

relatively high photosynthetic rates in stress conditions. Direct measurement of 

photosynthesis would be a powerful tool in understanding the impact of stress and in 

identifying superior species. There is room for continued work on nutritional 

optimization, to further hone lipid content-growth tradeoffs and to improve nutrient use 

efficiency. Broadening the focus beyond just lipids to also look at high-value co-

products—such as protein, antioxidant molecules, and omega-3 fatty acids—will help to 

make algal cultivation cost effective and a more valued process. Molecular modifications 

will likely play a key role in enhancing and ensuring reliable algal production in the 

future. This could include, for example, imparting characteristics for cultural stability 

(e.g. tolerance to extreme conditions) and lipid accumulation without the need for stress. 
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APPENDIX A 

SUPPLEMENTAL STATISTICAL ANALYSIS 

FOR CHAPTERS 3 AND 4 
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A.1. Supplemental statistical analysis for chapter 3 

 

Fig. A‒1: Measures of variability—R
2
 and 95% confidence intervals—in 

determination of cellular N pool concentrations as a function of total cell N in batch 

cultures of the green alga C. sorokiniana. 
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Fig. A‒2: Measures of variability—R
2
 and 95% confidence intervals—in 

determination of cellular N pool concentrations as a function of total cell N in batch 

cultures of the green alga E. oleoabundans. 
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Fig. A‒3: Measures of variability—R
2
 and 95% confidence intervals—in 

determination of cellular N pool concentrations as a function of total cell N in batch 

cultures of the green alga N. salina. 
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A.2. Supplemental statistical analysis for chapter 4 

 
The SAS System 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Silica 4 0.05 0.1 0.2 0.8 

Sodium 3 50 100 400 

 

Number of Observations Read 24 

Number of Observations Used 24 

 
 

 
The SAS System 

 
The GLM Procedure 

Dependent Variable: TotalDryMass  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 1.44699046 0.13154459 26.15 <.0001 

Error 12 0.06035950 0.00502996   

Corrected Total 23 1.50734996    

 

R-Square Coeff Var Root MSE TotalDryMass Mean 

0.959957 9.725917 0.070922 0.729208 

 

Source DF Type III SS Mean Square F Value Pr > F 

Silica 3 0.34830946 0.11610315 23.08 <.0001 

Sodium 2 0.82973808 0.41486904 82.48 <.0001 

Silica*Sodium 6 0.26894292 0.04482382 8.91 0.0008 
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The SAS System 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Silica 4 0.05 0.1 0.2 0.8 

Sodium 3 50 100 400 

 

Number of Observations Read 24 

Number of Observations Used 24 

 
 

 
The SAS System 

 
The GLM Procedure 

Dependent Variable: AshFreeMass  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 1.14483333 0.10407576 24.73 <.0001 

Error 12 0.05050000 0.00420833   

Corrected Total 23 1.19533333    

 

R-Square Coeff Var Root MSE AshFreeMass Mean 

0.957752 9.706484 0.064872 0.668333 

 

Source DF Type III SS Mean Square F Value Pr > F 

Silica 3 0.25890000 0.08630000 20.51 <.0001 

Sodium 2 0.60785833 0.30392917 72.22 <.0001 

Silica*Sodium 6 0.27807500 0.04634583 11.01 0.0003 
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The SAS System 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Silica 4 0.05 0.1 0.2 0.8 

Sodium 3 50 100 400 

 

Number of Observations Read 24 

Number of Observations Used 24 

 
 

 
The SAS System 

 
The GLM Procedure 

Dependent Variable: LipidContent  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 3182.548737 289.322612 9.51 0.0002 

Error 12 365.213451 30.434454   

Corrected Total 23 3547.762189    

 

R-Square Coeff Var Root MSE FAMECont Mean 

0.897058 9.406434 5.516743 58.64861 

 

Source DF Type III SS Mean Square F Value Pr > F 

Silica 3 1769.729205 589.909735 19.38 <.0001 

Sodium 2 1032.122696 516.061348 16.96 0.0003 

Silica*Sodium 6 380.696837 63.449473 2.08 0.1313 
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The SAS System 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Silica 4 0.05 0.1 0.2 0.8 

Sodium 3 50 100 400 

 

Number of Observations Read 24 

Number of Observations Used 24 

 
 

 
The SAS System 

 
The GLM Procedure 

Dependent Variable: LipidProductivity  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 6894.205557 626.745960 12.48 <.0001 

Error 12 602.733359 50.227780   

Corrected Total 23 7496.938916    

 

R-Square Coeff Var Root MSE FAMEProd Mean 

0.919603 12.10392 7.087156 58.55256 

 

Source DF Type III SS Mean Square F Value Pr > F 

Silica 3 426.218217 142.072739 2.83 0.0834 

Sodium 2 2887.972161 1443.986081 28.75 <.0001 

Silica*Sodium 6 3580.015179 596.669196 11.88 0.0002 
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